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Biologically informed deep neural
networks provide quantitative
assessment of intratumoral heterogeneity
in post treatment glioblastoma
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Petros Petridis 2,4, William Savage2, Pamela Jackson5, Andrea Hawkins-Daarud5, Nhan Tran6,
Leland Hu7, Kyle W. Singleton5, Lisa Paulson5, Osama Al Dalahmah8, Jeffrey N. Bruce 2,
Jack Grinband 9,10, Kristin R. Swanson5,11, Peter Canoll8,11 & Jing Li1,11

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent
glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous
landscape of histopathological alterations throughout the entire lesion for each patient.We developed
BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-
specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet
significantly outperforms existing methods (p < 2e-26). In cross-validation, BioNet achieved AUCs of
0.80 (Pro) and 0.81 (Inf), with accuracies of 80%and 75%, respectively. In blind tests, BioNet achieved
AUCs of 0.80 (Pro) and 0.76 (Inf), with accuracies of 81% and 74%. Competing methods had AUCs
lower or around 0.6 and accuracies lower or around 70%. BioNet’s voxel-level predictionmaps reveal
intratumoral heterogeneity, potentially improving biopsy targeting and treatment evaluation. This non-
invasive approach facilitates regular monitoring and timely therapeutic adjustments, highlighting the
role of ML in precision medicine.

Glioblastoma (GBM) exhibits pronounced intratumoral heterogeneity,
which can confound diagnosis and clinical management, and is a
leading driver of tumor recurrence1,2. Treatment-induced reactive
changes further exacerbate intratumoral heterogeneity3,4. Because his-
topathological and molecular analyses are limited by sparse biopsy
sampling, there is a significant need to develop non-invasive approa-
ches to map the heterogeneous landscape of histopathological altera-
tions throughout the entire lesion. Such advancements would improve
surgical targeting of confirmatory biopsies and non-invasive assess-
ment of neuro-oncological treatment response, thereby informing
subsequent therapeutic strategies. Radiogenomics is a growing research

field, which seeks to develop machine learning (ML) models to predict
cellular, molecular and genetic characteristics of tumors based on
Magnetic Resonance Imaging (MRI) and other imaging types2,5,6.
Radio(gen)omics methods have been shown to accurately predict not
only diversity in tumor cell density associated with diffuse invasion into
the brain parenchyma peripheral to the frank lesion seen onMRI7–9, but
also abnormalities in hallmark genes such as EGFR, PDGFRA, and
PTEN10–13, IDH mutation status14–18, and MGMT methylation status
based on radiographic features13–15. Histopathology-validated machine
learning models have been developed to discriminate between true
progression and pseudo-progression in GBM by using MRI19–24. These
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studies represent examples in which the prediction provides a single
categorical label per tumor using imaging features that span the entire
lesion.

However, precise representations of intratumoral heterogeneity
require voxel-wise labels (e.g., image-localized biopsies) that reflect local or
regional characteristics of the lesion. A major challenge for such prediction
is the lack of large image-localized biopsy datasets25,26 to train deep learning
(DL) models that are well-known to be heavily-parameterized and data-
hungry. Creation of large training datasets is limited by various factors such
as the invasiveness and high expense of sample acquisition, need of highly-
specialized experts to create accurate labels, and difficulty in patient
recruitment25. Moreover, the lack of large datasets has severely limited the
number of studies focusing on predicting regional characteristics within
each lesion, which are crucial for revealing intratumoral heterogeneity. A
few studies have developed MRI-biology fusion models to predict regional
cell density27–32 or regional copy number variation of individual driver genes
such as EGFR, PDGFRA, and PTEN, in untreated, primary GBM33,34. In
recurrent GBM (recGBM), however, treatment-induced reactive changes
lead to additional intratumoral heterogeneity and the related additional
complexity in tissue composition makes prediction of gene modules more
difficult35.

In this study, we compiled a unique dataset that includedmulti-region
biopsy samples and MRI from recGBM patients. The dataset consisted of
derived measurements for three gene modules, from each biopsy, by
combining data of individual gene expressions from RNA sequencing and
cellular composition patterns from immunohistochemistry (IHC). The
three gene modules identified through gene ontology analysis include:
proliferative (Pro), associated with proliferation and cell cycle ontologies
indicative of recurrent tumor; inflammatory (Inf), linked to cytokine pro-
duction and immune response, representative of treatment-induced reac-
tive cells; and neuronal (Neu), related to neuronal signaling, reflecting
infiltrated brain tissue. Assessing the gene modules of GBM has significant
clinical value and has drawn much attention recently36. For recGBM, the
ability to differentiate proliferative/recurrent tumor and treatment-induced
reactive/inflammatory cells (two primary gene modules in our dataset) is
crucial for evaluating treatment effectiveness. However, such differentiation
is notoriously difficult in clinical practice due to their indistinguishable
appearances on MRI. Even among seasoned practitioners, accurately dis-
tinguishing between proliferative/recurrent tumors and treatment-induced
reactive/inflammatory cells remains an elusive task. Currently, the sole
method for distinguishing between these two gene modules is obtaining
biopsies and conducting comprehensive transcriptomic and immunohis-
tochemical profiling. However, biopsies, the gold-standard approach, can
only cover a few sparse regions, leaving substantial regions within the lesion
unexamined and the differentiation in these regions is nearly equivalent to a
random guess. Therefore, our unique dataset, comprising a development
cohort and a test cohort, facilitated the first-ever development of a non-
invasive approach based on MRI and DL to predict voxel-level gene mod-
ules throughout the entire lesion for each patient.

To tackle the inherent challenge of limited training data from biopsy
samples, we proposed BioNet, a novel unified framework whose learning
capacity is significantly augmented by integrating multiple implicit and
qualitative biological domain knowledge. The integration of biological/
biomedical domain knowledge, such as biological principles, empirical
models, simulations, and knowledge graphs, can provide a rich source of
information (pseudo data) to help alleviate the data shortage in training DL
models. Various approaches have been proposed for integrating domain
knowledge, depending on its form. For example, some researchers proposed
to use the knowledge of biological pathways to guide the design of DL
architecture37,38. In certain biomedical domains, knowledge exists in the
form of algebraic equations that capture biological principles, which were
integrated with DL architecture or loss functions29,39. Some researchers
proposed to integrate knowledge about feature behavior as attribution
priors into DL training40. However, existing methods lack the ability to
simultaneously incorporate multiple implicit, qualitative domain

knowledge that is difficult todescribe inmathematical formulations,making
themunsuitable for our problem41. To fully harness the potential of this type
of domain knowledge, BioNet integrated several strategies. Firstly, it creates
large virtual biopsydatasets basedondomainknowledge to pre-train theDL
model, enabling it to learn generalizable feature representations that can be
transferred to the downstream task based on real biopsy samples. Secondly,
BioNet adopts a hierarchical design inspired by domain knowledge, con-
sidering the interaction between gene modules and their conditional rela-
tionships. Lastly, BioNet employs a knowledge attention loss function that
combines data-driven and knowledge-driven components, penalizing vio-
lations of domain knowledge on unlabeled samples. These strategies col-
lectively empower BioNet to effectively integrate domain knowledge into
the learning process.

In summary, by leveraging two real clinical datasets, this study is
the first of its kind that developed a non-invasive approach for quan-
tifying regional distributions of gene modules representing pro-
liferative/recurrent tumor and treatment-induced reactive/
inflammatory cells using MRI in the recGBM setting. The mapping of
these gene module distributions throughout the entire lesion for each
patient offers valuable clinical benefits. It can assist in the identification
of locations within a lesion for confirmatory biopsy sampling. With
BioNet’s guidance, the likelihood of sampling locations with the desired
gene modules is significantly improved, offering a more reliable alter-
native to the current sampling approach. It can also assist clinicians in
evaluation of treatment effectiveness. The non-invasive nature of the
approach can potentially facilitate regular monitoring of the gene
modules over time, enabling identification of treatment response or
resistance and making timely therapeutic adjustment. By gaining
granularity from regional assessment, clinicians may gain better
understanding of patient-specific nuances and tailor treatment more
individually.

Results
Figure 1 presents an overview of the application of BioNet in assisting the
assessment of treatment responses and informing subsequent therapy
decisions.

Patient characteristics
This study involved a developmental cohort (A) and a test cohort (B).
Cohort A was acquired as part of a retrospective, observational study
designed to study patients who had undergone repeat surgical resection for
recurrence of high-grade gliomas following chemotherapy and radiation
therapy36. This cohort included 84 biopsies harvested from 37 patients
(mean age = 56, 63%male, 1–3 biopsies per patient). Cohort Bwas acquired
as part of a prospective, clinical trial for convection enhanced delivery of
topotecan chemotherapy42. It comprised 31 biopsies from five patients
(median age = 56, 60% male, 1–10 biopsies per patient). Biopsy samples
from each patient were obtained according to IRB-approved protocol from
the operating room (see details in Methods). Patient information was de-
identified and maintained by a tissue broker who has designated clinical
information. Both cohorts received standard of care neuroimaging per-
formed at Columbia University Irving Medical Center within one month
prior to surgery (Cohort A) or one day prior to surgery (Cohort B). The
neuroimaging exam of each patient produced multiparametric MRI data
including T1-weighted+Gd (T1Gd), T2-weighted (T2), FLAIR, apparent
diffusion coefficient (ADC), and susceptibility weighted imaging (SWI).
Detailed MRI parameter setting can be found in Methods and Supple-
mentary Data 2.

Biologically-informed design principles for BioNet
Our goal is to develop a model, which can accurately predict labels of Pro
(yi;pro) and Inf ðyi;inf Þ for each region i within a tumoral Area of Interest
(AOI) basedonregionalMRI features (xi), for individual patients.The labels
of threegenemodulesPro (yi;pro), Inf ðyi;inf Þ, andNeu(yi;neu) aredetermined
by comparing the raw scores to zero. Specifically, scores above zero are
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labeled as “high”, while those below zero are labeled as “low”. Given the
limitations on the small sample size of labeled biopsies, BioNet is proposed
to leverage the substantial volume of unlabeled AOI samples by integrating
domain knowledge through its unique framework design.

Specifically, the domain knowledge reveals two key relationships
between Pro and Inf conditional on the status of Neu (Fig. 2a): (1) Genes in
theNeumodule are enriched in normal brain tissue and depleted in lesional
brain tissue. Thus, samples with highNeu tend to have low Pro and low Inf;
(2) In sampleswith lowNeu, the lesional component of the tissue comprises
amixture of Pro and Inf. Thus, if a sample hasmore proliferative tumor, i.e.,
Prohigh, it is likely tohave less inflammatory response, i.e., Inf Low, andvice
versa. This implies that samples with low Neu are inclined to exhibit a
negative correlationbetweenPro and Inf.HighPro indicate regions of active
tumor cell proliferation, which may suppress the local inflammatory
response, resulting in low Inf. Conversely, areas with high Infmay represent
regions where the inflammatory response is more pronounced, potentially
inhibiting tumor cell proliferation, resulting in low Pro. The two relation-
ships are evident when dividing biopsy samples into two groups based on
the enrichment scores of Neu: above-zero (high) and below-zero (low).
Figure 2b shows that sampleswithhighNeuhave significantly loweraverage
scores of Pro and Inf, compared to samples with low Neu. This empirical
evidence confirms the relationship (1). Figure 2c shows that samples with
low Neu have a significant negative correlation between Pro and Inf, which
confirms the relationship (2). These findings are consistent with the com-
plex interactions between tumor growth and the immune environment
within the GBM microenvironment. While these relationships have been
demonstrated in biopsy samples, they are also presumed to exist in unla-
beled samples as well. This presumption is based on fundamental under-
standing of the spatial landscape of neuropathological alterations in GBM36.
As described in36, the three genemodules, determined by distinct patterns of
cellular composition, reveal these relationships in the analysis. Incorpora-
tion of these knowledge-based relationships leads to a hierarchical design of
BioNet (Fig. 2d).

Construction of BioNet_Neu to predict Neu using transfer
learning and uncertainty quantification
The overall architecture of BioNet_Neu is presented in Fig. 3. We adopted
several strategies to tackle the challenge of a small biopsy sample size: (1)
Employed transfer learning by pre-training the network using a large
number of unlabeled samples who have noisy Neu labels informed by
biological knowledge, then fine-tuning it using real biopsy samples. (2)
Incorporated Monte Carlo dropout43 to enable uncertainty quantification
(UQ) of the predictions. (3) Applied data augmentation by including
neighboring samples of each biopsy sample in training. BioNet_Neu
achieved an Area Under the Curve (AUC) of 0.77 based on Cohort A using
5-fold cross validation (CV). Without Monte Carlo dropout, transfer
learninganddata augmentation, theAUCwas reduced to0.70, 0.64 and0.56
(Supplementary Fig. 3a). In the data augmentation approach, including
samples within a 5-voxel radius of the biopsy sample yielded the most
optimal performance.

In the hierarchical design of BioNet, BioNet_Neu played an important
role in stratifying unlabeled samples into high and low predicted Neu
groups, denoted as i 2 Neuþ

� �
and i 2 Neu�f g, respectively. As the sub-

sequent model was dependent on this sample stratification, we aimed to
select unlabeled samples which had high predictive certainty. This high-
lighted the importance of theUQ capability of BioNet_Neu. To evaluate the
UQ capability of a DLmodel, a common strategy is to examine if themodel
satisfies the “more certain more accurate (MCMA)” criterion44, indicating
that predictions with higher certainty are more accurate. To evaluate this
criterion forBioNet_Neu,wefirst computed the predictive entropy (PE)45 as
an uncertainty score for each biopsy sample. We then computed the
accuracy on subsets of samples above increasingly stringent PE thresholds.
Supplementary Fig. 3b shows that BioNet_Neu satisfied the MCMA cri-
terion. The accuracy increased from71% to 90%when computed on the top
certain samples. To ensure the selected samples have relatively high accu-
racy, we set a threshold, PE*, corresponding to a 90% accuracy level, and
retained only those samples for which PE is less than PE*.

Fig. 1 | Overview of the application of BioNet in assisting the assessment of
treatment responses and informing subsequent therapy decisions. Our datasets
comprise two types of data: sparsely labeled data from biopsy locations, and
abundant unlabeled data from all locations throughout the entire brain. The labels
for biopsy samples (yi) are obtained through comprehensive transcriptomic and
immunohistochemical profiling. The input features (xi) for all samples, both labeled
and unlabeled, which are utilized in the training and testing of BioNet, are extracted
from multiparametric MRI. Within the tumoral Area of Interest (AOI) of each
patient (blue outline), local regions (small squares) were created by sliding windows

according to the physical size of surgical biopsies. Statistical and texture features xi
� �

were computed based onmultiparametricMRI within the sliding windows at biopsy
locations (red, a few) and remaining unlabeled locations (yellow, abundant). Labeled
samples, along with selectively chosen unlabeled samples, are employed in the
training of BioNet. Once adequately trained, BioNet is capable of generating voxel-
level prediction maps for proliferative/recurrent tumors (Pro) and treatment-
induced reactive/inflammatory cells (Inf), respectively, within AOI. These predic-
tion maps yield crucial insights into the gene status at the voxel level throughout the
entire tumor.
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Fig. 2 | Overview of the biological relationships. a Revealing biological relation-
ships from domain knowledge to inspire BioNet design. b Bar chart for the group
mean over the average scores of Pro and Inf in the group with high Neu in com-
parison to that in the group with low Neu. c Scatter plot of Pro and Inf for the group

with lowNeu. The Pearson correlation coefficient is represented by r. dHierarchical
design of BioNet inspired by two biological relationships (1) and (2) betweenPro and
Inf given the high/low status of Neu.

Fig. 3 | Overall architecture of BioNet. BioNet
consists of two networks: BioNet_Neu to predict
Neu using MRI; BioNet_ProInf to simultaneously
predict Pro and Inf using MRI. a BioNet_Neu is a
feedforward neural network pre-trained using a
large number of unlabeled samples with noisy Neu
labels informed by biological knowledge, and fine-
tuned using biopsy samples with data augmentation.
It also corporates Monte Carlo dropout to enable
uncertainty quantification for the predictions. The
role of BioNet_Neu is to stratify unlabeled samples
with high predictive certainty, which were then
incorporated into the training of BioNet_ProInf. b
BioNet_ProInf is a multitask semi-supervised
learning model with a custom loss function. The
architecture consists of a shared block and task-
specific blocks. The loss function combines a pre-
diction loss and a knowledge attention loss that
penalizes violation of the knowledge-based rela-
tionships on unlabeled samples.
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Construction of BioNet_ProInf to predict Pro and Inf by combin-
ing multitask learning, semi-supervised learning, and domain
knowledge
BioNet_ProInf is a multitask, semi-supervised learning model with a cus-
tom loss function. The loss function imposes penalties on prediction errors
Lprediction aswell as violation of the knowledge-based relationshipsLknowledge.
There are three components in Lknowledge. The first two are tailored to cor-
respondwith twoknowledge-based relationships, forNeuhigh andNeu low
respectively. The third component is a barrier loss46 defined on all unlabeled
samples, aiming to discourage the predicted ŷi;pro and ŷi;inf from both being
high. The input for BioNet_ProInf consists of biopsy/labeled samples, along
with unlabeled samples that are selected and stratified by BioNet_Neu. The
overall architecture of BioNet_ProInf is presented in Fig. 3.

We compared BioNet_ProInf with a range of existing models: (1)
Supervised learning models such as feed-forward neural network (NN),
support vector regression (SVR), and random forest (RF), which used only
biopsy/labeled samples. (2) Semi-supervised learning (SSL) that utilized
both labeled and unlabeled samples. We included a recent method called
AdaMatch47, a refined model for the highly-cited FixMatch48. (3) Multitask
learning (MTL) that exploited the relationship between multiple outputs
such as Pro and Inf in our case. We included a supervised MTL-NN and a
recent semi-supervised MTL model called multitask adversarial

autoencoder (MTL-AAE)49. The hyperparameters of BioNet and all com-
peting methods were systematically tuned based on the same data-driven
criterion through random search and grid search techniques.

Excluding 15 samples due to corrupted files ormissing scans, there are
69 biopsy/labeled samples from31patients in cohortA (1–3per patient). As
shown in Fig. 4a, BioNet_ProInf achieved AUCs of 0.80 and 0.81 for pre-
dicting Pro and Inf, respectively, on cohort A using leave-one-patient-out
CV (LOPOCV). The classification accuracies (ACCs) by dichotomizing the
scores into high and low were 80% and 75% with standard deviation 0.014
and 0.013. In contrast, despite extensive hyperparameter tuning, competing
methods demonstrated limitations, achieving only modest performance
metrics: AUCs lower or around 0.6 and ACCs lower or around 70%. This
outcome not only underscores the intrinsic challenges posed by the task but
also reflects the complexity of the underlying data. Presently, even experi-
enced experts face difficulties in differentiating between Pro and Inf. Simi-
larly, currentdata-drivenapproaches fall short in accurately classifying these
two gene states, indicating a significant gap in the predictive capability of
existing models.

Testing of BioNet in an independent cohort B
The primary objective of our study was to evaluate the effectiveness of
BioNet in its capability to precisely predict the Pro and Inf gene states in

Fig. 4 | Performance of BioNet and competing methods evaluated by Classifi-
cation Accuracy and Area Under the Curves (AUCs). Results are shown for
developmental cohort A under leave-one-patient-out cross-validation (LOPO CV) in

a, and for test cohortB inb. cAtable summarizes thekeyperformancemetrics ofBioNet
and competing methods. The standard deviation of accuracy for cohort A, calculated
using leave-one-patient-out cross-validation (LOPO CV), is shown in brackets.
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unseendatasets. This assessment aimed to verify themodel’s generalizability
across different datasets, underscoring its potential applicability in broader
gene state classification tasks.We employed cohort B as a blind test dataset,
comprising 31 biopsy/labeled samples from5patients (1–10perpatient).As
shown in Fig. 4b, BioNet achievedAUCs of 0.80 and 0.76 for predicting Pro
and Inf, respectively, on cohort B. The ACCs by dichotomizing the scores
into high and low were 81% and 74%. In comparison, the competing
methods achievedAUCs ranging in 0.51–0.69 and0.53–0.60,ACCs ranging
in 51%–65% and 58%–65%, for predicting Pro and Inf. BioNet out-
performed all the competing methods.

Evaluating the generalizability of BioNet on both cohorts
The most robust assessment of model performance is derived from the
prediction accuracy of biopsy samples, as previously indicated. However,
due to their sparse nature, biopsy samples are not suitable for evaluating the
generalizability of each method. To overcome this, BioNet_ProInf and its
competing methods were utilized to predict the Pro and Inf scores for
unlabeled samples within each AOI. To assess the models’ generalizability,
we proposed to leverage two known relationships between gene modules.
This analysis served as an effective method to validate the predictive accu-
racy of each model beyond the biopsy locations. Specifically, we computed

two knowledge concordance (KC)metrics, denoted as KCneuþ and KCneu� ,
to quantify the concordance between the model’s predictions and the
relationships. The results were presented in Fig. 5b.

To provide a visualization for the regional distributions of gene
modules across the AOI, prediction maps of two gene modules were gen-
erated for each patient. Figure 5 displays the prediction maps on a selected
MRI slice, specifically chosen for having the most biopsies in a single slice.
The prediction maps in Figure. 5c, d were from BioNet and the best-
performing ML and DL competing methods (color maps overlaid on the
patient’s T1Gd MRI image Fig. 5a). The average prediction entropy for
BioNet is 0.588, markedly lower than that of RF (0.683) and Ada-
Match (0.667).

Discussion
In this study, we utilized a unique dataset and developed BioNet to facilitate
non-invasive quantification of regional distributions of gene modules in
recGBMpatients. The differentiation of proliferative/recurrent tumor (Pro)
and treatment-induced reactive/inflammatory cells (Inf) is crucial for
evaluating treatment effectiveness and guiding subsequent therapeutic
strategies, but is very challenging in clinical practice due to their indis-
tinguishable appearances onMRI. Biopsy, as the gold-standard approach, is

Fig. 5 | Generalizability of BioNet_ProInf and competing methods. a The
patient’s MRI images. b Knowledge concordance (KC) metrics, denoted as KCneuþ

and KCneu� , for the predictions on unlabeled samples with Neu high and Neu low,
respectively from the tumoral area of interest (AOI) of each patient on develop-
mental cohort A and test cohort B. Prediction maps of c recGBM_Pro and

d recGBM_Inf within the tumoral AOI by BioNet and the best-performing ML and
DLmethods (colormaps overlaid on (a)). Three purple boxes denote the locations of
three biopsies on this MRI slice. The maps indicate that BioNet attains the lowest
absolute errors in predicting both Pro and Inf.
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invasive and only samples a few sparse regions. Our approach enabled
voxel-level mapping of the regional distribution of these gene modules
across the entire lesion for each patient.

We systematically evaluated the performance of our proposedmethod
through a developmental cohort A and a blind test cohort B. On cohort A,
biopsy/labeled samples are sparse, with each patient having an average of
approximately 2 biopsies. BioNet achieved AUCs of 0.80 and 0.81 for
predicting Pro and Inf, respectively, using leave-one-patient-out CV. The
ACCs were 80% and 75%. It is worth mentioning that there are 31 biopsy/
labeled samples from 5 patients in cohort B, with 1–10 samples per patient.
A notable advancement in cohort B is the average of approximately 6
biopsies per patient, significantly higher than that in cohort A. This increase
in the number of samples per patient enhances the ability to assess whether
the model can generalize across different regions of the brain without
overfitting to specific areas.On cohort B, BioNet achievedAUCs of 0.80 and
0.76 for predicting Pro and Inf, respectively. The ACCs were 81% and 74%.
For comparison, we applied a range of supervised learning, semi-supervised
learning, and multitask learning algorithms to the same dataset, and their
AUCs and ACCs were much lower on both cohorts. All these existing
methods have partial considerations of utilizing biopsy samples, unlabeled
samples, and knowledge, while BioNet considered all these aspects in an
integrated framework. Also, even though multitask learning algorithms
were intended to account for the relationships between multiple outputs,
they account for them in a general sense, explaining their worse perfor-
mance thanBioNetwhich considered the specific relationships betweenPro
and Inf using a custom loss function.

The strong generalizability of BioNet is further validated on unlabeled
samples through knowledge concordance. BioNet_ProInf demonstrated
moderately high KC metrics (Fig. 5b), exceeding 60% in both cohorts. In
contrast, the KCneuþ values for all competing methods did not surpass 50%
in either cohort. These values suggest that the incorporation of knowledge
regularization into these models was effective. However, it is important to
recognize the inherent uncertainty in domain knowledge. Consequently,
overly strong regularization, potentially leading to very high concordance,
was not desirable. Instead, we aimed for a balanced approach wheremodels
harmonize knowledge regularization with prediction losses. From this
perspective, achieving moderately high concordance aligns well with our
objectives. In addition, the observation that all methods demonstrated
moderately high KCneu� suggests that this relationship might be inherently
more learnable for models, even without explicit regularization.

Furthermore, the predictionmaps (Figure. 5c, d) illustrate that BioNet
exhibits higher confidence in its predictions compared to competing
methods. The majority of locations in the prediction maps generated by
competing methods, especially by RF, are with light color, which suggests a
tendency of these models to predict most samples with gene module scores
around zero. Such a pattern indicates a degree of uncertainty in the classi-
fication, reflecting a potential limitation in the models’ discriminative
capabilities. Supporting this, the average prediction entropy for BioNet is
0.588, markedly lower than that of RF (0.683) and AdaMatch (0.667).

Compared with competing methods, BioNet not only delivers more
accurate predictions on biopsies, but also exhibits significantly stronger
generalizability and higher confidence in its predictions on unlabeled
samples. It helps enhance the accuracy of surgical targeting for confirmatory
biopsies, assists in evaluating treatment effectiveness, enables regular
monitoring of the gene modules for timely identification of treatment
response or resistance, and provides a deeper understanding of patient-
specific nuances to tailor treatment more effectively.

Due to the limited availability of labeled/biopsy samples, leveraging
abundant unlabeled samples and the biological relationships among three
genemodules were crucial to achieving a clinically usablemodel.Wewould
like to discuss key highlights in the architecture and loss function design of
BioNet.

In the architecture design, domain knowledge indicates a pronounced
relationship between Pro and Inf, conditioned on their corresponding Neu.
Consequently, the discriminative features identified for Neu are posited to

be beneficial in the classification tasks for Pro and Inf. Inspired by this
insight, we integrated the auxiliary task Neu into the BioNet_ProInf
architecture as a regularization strategy. Instead of explicitly providing the
model with labels for Neu, we designed it to independently discern the
relationships betweenMRI features and Neu. The linear classification layer
of Neu (indicated in deep blue in Fig. 3) compels the model to embed
discriminative features of Neu into the final shared layers’ outputs, which
enriches the feature representation for two primary classification tasks. This
approach enabled the model to align closely with expert understanding,
thereby enhancing its predictive accuracy and generalizability.

In the loss function design, prediction errors for Pro and Inf are
computed using biopsy/labeled samples. Conversely, prediction errors for
Neu are derived fromboth labeled samples andunlabeled sampleswithhigh
certainty predicted labels eyi;neu from BioNet_Neu. This approach
strengthens the generalization of discriminative features forNeu.Violations
of relationships are characterizedby a knowledge attention loss, and defined
on unlabeled samples. To subtly incorporate Neu labels into the model, we
propose using predicted labels ŷi;neu fromBioNet_ProInf for calculating the
knowledge loss, rather than the true labels. This strategy stems from the
observation that learning the biological relationships is relatively straight-
forward. In contrast, mapping MRI features to these gene modules is sig-
nificantly more complex and challenging. Employing true labels in the
knowledge losswill lead themodel to prioritize learning the simpler task and
neglect the more critical yet difficult ones. Consequently, after perfectly
learning the easier tasks, the model starts to trivially predict Pro and Inf
based solely onNeu, disregarding theMRI features.This is a scenarioweaim
to avoid. On the other hand, employing predictedNeu labels can encourage
the model to explore which relationships should be followed, and to better
understand the intricate relationships between MRI features and the gene
modules.

This study has several limitations. One limitation of this study is the
constrained sample size of biopsy samples in both cohorts.AlthoughBioNet
is innovatively designed to mitigate this limitation by leveraging unlabeled
samples and domain knowledge, the pivotal role of biopsy/labeled samples
in training an accurate and robust predictive model cannot be overstated.
Increasing the number of biopsy samples has the potential to significantly
improve the prediction accuracy of BioNet. Nevertheless, the invasive
nature of biopsies restricts the feasibility of acquiring large sample sizes from
individual patients. The second bottleneck of this work is the model’s
explainability. Although BioNet has demonstrated effectiveness in pre-
dicting regional distributions of genemodules usingMRI, the complexity of
the model poses challenges in understanding the underlying mechanisms
driving the predictions. The complex architecture and numerous para-
meters of DL models frequently result in a lack of interpretability.

Future research should aim to expand patient enrollment across
multiple centers, facilitating a more substantial collective sample base.
Different treatments can significantly impact the tumormicroenvironment
and imaging characteristics.However, due to the limited sample size and the
variability in treatments received, our current dataset is not large enough to
support a study dividing patients into different treatment groups. In the
future, as we collect more data and the sample size increases, we plan to
study how these treatments impact tumor progression and imaging char-
acteristics. To more robustly evaluate the proposed method, we are actively
working on collecting a new dataset from Mayo Clinic. By leveraging this
dataset,weplan tonot only evaluate BioNet’s performanceon the threegene
modules but also to test its adaptability to related tasks by predicting dif-
ferent cell types. Additionally, considering recentfindings on sex differences
in GBM50, the development of demographic-specific models, such as sex-
specific variants, may further refine prediction accuracy. Additionally,
future efforts should therefore prioritize enhancing the interpretability and
explainability of BioNet. Investigating methodologies such as advanced
visualization tools, and model-agnostic interpretability approaches can
provide valuable insights into the specific image features and patterns that
BioNet leverages for its predictions. Such advancements will not only
guarantee that decisions are made based on accurate and comprehensible
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information, but will also offer critical insights into the development of
different genemodules, thereby paving the way for future research inGBM.

In summary, we introduced BioNet, a biologically-informed model
designed to predict the regional distributions of three tissue-specific gene
modules: proliferating tumor, reactive/inflammatory cells, and infiltrated
brain tissue. BioNet offers valuable insights into the integration of multiple
implicit andqualitative biological domainknowledge,which are challenging
to describe in mathematical formulations. It significantly outperforms a
range of existing methods in both cross-validation and blind test datasets.
The voxel-level prediction maps generated by BioNet help reveal intratu-
moral heterogeneity, potentially enhancing the precision of surgical tar-
geting for confirmatory biopsies and the assessment of neuro-oncological
treatment effectiveness. Additionally, the non-invasive nature of this
approach could enable regular monitoring of gene module development
over time, facilitating timely therapeutic adjustments.

Methods
Biopsy acquisition
Samples for the developmental cohort (A) and test cohort (B)were acquired
from the brain tumor bank at Columbia University Irving Medical Center.
Study protocols were approved by the Columbia University Institutional
Review Board (IRB). All samples were de-identified prior to analysis.
Analyses were carried out in alignment with the principles outlined in the
World Medical Association (WMA) Declaration of Helsinki and the
Department of Health and Human services Belmont Report. Informed
written consent was provided by all patients. None of the participants were
compensated for participating in this study. Tissue acquisition followed the
same procedure that has been used in our prior publications32,42,51,52. A
flowchart of the acquisition procedure is shown in Fig. 6. The tissue sam-
pling was performed during the normal surgical plan, and posed no addi-
tional risk to the patient. Samples were taken from contrast-enhancing and
contrast-negative, FLAIR-positive regions of tumor within the planned
surgical trajectory. The locations of these biopsies were chosen at the neu-
rosurgeon’s discretion and the locations of the biopsies were documented
intraoperatively. Frameless stereotactic guidance was provided by a volu-
metric T1+Gd scan uploaded to a neuronavigation interface (Brainlab,
Feldkirchen, Germany). Biopsy location was recorded by screen captures of
the neuronavigation interface, allowing the downstream determination of
the Cartesian coordinates of each biopsy. A custom registration software
written in MATLAB was used to acquire the coordinates of each biopsy on
the T1-post-contrast 1 mm slice MRI image. FSL software was used to
confirm biopsy position, co-register all MRI-sequences to the base T1-post-
contrast thin slice MRI, and for any segmentation of FLAIR and contrast-
enhancing regions. Fresh tissue samples were divided into two pieces by
trained neuropathologists and technicians. One piece was embedded in
paraffin and underwent traditional H&E staining, while the second piece
was stored for later use in a −80°C freezer.

Spatial alignment between biopsy samples and imaging data
All biopsies were collected at the time of recurrence. Supplementary Fig. 1
shows the distribution of times between initial resection and recurrence.

Biopsies were collected before surgical debulking, use of mannitol, cere-
brospinal fluid diversion, or hyperventilation to minimize the effects of
brain shift and deformation. We have tested the accuracy of the spatial
correlation in Fig. 4 of ref.32. Specifically, we showed that the radiomic-
histomic correlation changes as a function of distance from the true biopsy
location. The correlation between the MR signal and cell counts drops to
zero beyond 3mm of the true biopsy location, indicating that, on average,
we have a spatial resolution of approximately 3mm or better. The window
size used to extract the textural features for BioNet is 5 mm × 5mm, thus
spatial alignment between biopsy samples and imaging data should have
minimal impact on the model’s predictions.

Identificationof three tissue-specificgenemodules:Neu,Pro, Inf
To reduce complexity and improve prediction accuracy, we amplified the
signal-to-noise ratio of genetic and cellular heterogeneity signal in the tissue
by combining individual gene expressions andcellular compositionpatterns
into three gene modules. While the radiogenomic signal associated with
individual genes can be noisy, there is a great potential to improve the
accuracy ofML/DLmodels by targeting on predicting clusters of correlated
genes. The detailed analysis procedure is as follows:
(1) SOX2, CD68, Ki67, and NeuN were used as (non-comprehensive)

proxies for different cell populations in the gliomamicroenvironment.
SOX2 is described as a robust marker for glioma cells53; CD68 is a
known marker of macrophages; Ki67 is a known marker of pro-
liferation; NeuN, also known as RBFOX3, is a canonical marker of
neurons. The majority of biopsies (48/84; 57%) in cohort A had both
RNA sequencing and IHC staining for SOX2, CD68, Ki67, and NeuN.

(2) Hemotoxylin counterstain was used to label all nuclei, providing a
measure of total cell density.

(3) Pearson correlation was calculated between the normalized expression
values for each gene and the IHC labeling index for each marker,
including SOX2, CD68, Ki67, NeuN, and total cell density. A corre-
lation matrix of all genes by 5 IHC markers was built.

(4) A p value cutoff of 0.05 (un-adjusted) was set for determining the
significance of the IHC-gene expression correlation for each IHC stain,
and all geneswith significant correlationswith≥1markerwere selected
for downstream analysis. 7779 genes were identified as statistically
significant at this step.

(5) Based on the resulting correlation matrix, hierarchical clustering
determined three distinct clusters/modules with mutually exclusive
genes (Fig. 7a). Module 1–3 consisted of genes which have significant
positive correlations with the labeling indices of SOX2, Ki67, and total
cell density; the labeling index of NeuN; and the labeling index of
CD68, respectively. For a complete list of the genes included in each
module, please refer to Supplementary Data 1. Gene ontology analysis
demonstrated that module 1–3 were associated with proliferative
(Pro)–proliferation/cell cycle ontologies; neuronal (Neu)–neuronal
signaling; inflammatory (Inf)–cytokine production/immune response,
respectively (Fig. 7b).

(6) These three gene clusters were used as gene sets for downstream Gene
Set Variation Analysis (GSVA) on a sample-by-sample basis, which

Fig. 6 | A flowchart of the biopsy acquisition procedure. Biopsy acquisition in this study followed the same procedure that has been used in our prior publications32,42,51,52.
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Fig. 7 | Defining tissue-specific gene modules to connect with key immunohis-
tochemical features. a Heatmap depicting correlation between normalized gene
expression and immunohistochemical labeling indices, with subsequent hierarchical
clustering revealed three orthogonal tissue-specific genemodules.Module 1 consists
of 3688 genes significantly positively correlated with SOX2/Ki67/H&E; module 2
consists of 1673 genes correlated with NeuN; module 3 consists of 2418 genes
correlated with CD68. b Bar plot depicting top significant gene ontologies enriched

in each of the three tissue-specific gene modules derived from the IHC-RNAseq
correlation analysis. X axis is –log10 (p value) of each ontology. Module 1 is enriched
in genes involved in proliferation (Pro), module 2 in neuronal-specific genes (Neu),
and module 3 in genes in immune infiltration (Inf). c Heatmap depicting single-
sample Gene Set Variation Analysis (GSVA) for each of 84 MRI-localized biopsies
for each of the three tissue-specific gene modules. Color gradient represents mag-
nitude/direction of tissue-specific enrichment for each biopsy.
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produced gene set enrichment scores for all MRI-localized biopsies
(Fig. 7c).
The results shown in Fig. 7 were obtained based on analysis performed

on cohort A. Upon completing the sample collection of cohort B, the gene
clusters identified in cohort A were used to perform GSVA on cohort B to
obtain the enrichment scores for the same gene modules. In this paper, the
gene modules were named Pro, Inf, and Neu. In this study, to adhere to
standard practices in machine learning, align with algorithm requirements
and simplify implementation, the raw enrichment scores of three gene
modules, originally ranging from−1 to 1, are transformed to a [0, 1] scale
using the mapping function f xð Þ ¼ xþ1

2 . Consequently, the threshold dis-
tinguishing high and low gene module expression is correspondingly
transformed from 0 to 0.5.

RNAseq-IHC correlation analysis, clustering, and GSVA
For samples in Cohort A that had both RNAseq and IHC quantification,
Pearson correlation was calculated between the normalized expression
values for each gene and the IHC labeling index for eachmarker, building a
correlation matrix of 15,001 genes by 5 IHC markers (4 IHC markers and
total normalized cellularity from H&E images). The 15,001 genes were
filtered from 23,802 genes to include only protein coding genes that had
more than 10 reads across all samples. A p value cutoff of 0.05 (un-adjusted)
was set for determining the significance of the IHC-gene expression cor-
relation for each stain, and all genes with significant correlations with ≥1
marker were selected for downstream analysis. Furthermore, based on the
resulting correlation matrix, we performed clustering analysis. A variety of
different clustering algorithms were used, which repeatedly found the
optimal cluster number to be two or three. Considering the findings in a
recent publication by our group that described a three-gene-module model
of glioma36, we ultimately decided to proceed with the three-cluster result
from hierarchical clustering withWard’s linkage. Threemajor clusters with
mutually exclusive genes were identified, and these gene clusters were used
as gene sets for downstream Gene Set Variation Analysis (GSVA) on a
sample-by-sample basis, which produced three gene set enrichment scores
for each MRI-localized biopsy. We call the three gene sets “gene modules”
and use the enrichment scores as estimates of gene module expression.
Given that there exists a degree of noise in bulk RNAseq analysis, this
technique allows us to leverage themulti-modal data (RNAseq and IHC) to
link expression with biologically meaningful tissue features (IHC markers)
to further strengthen the gene module approach.

RNA extraction and pooled library amplification for tran-
scriptome expression RNA-sequencing (PLATE-Seq)
Total RNA was extracted from these tissue samples using the institutional
genomic core. Samples with an RNA Integrity Number (RIN) greater than
six were selected and subsequently sequenced using the PLATE-Seq pro-
tocol. PLATE-Seq is a novel sequencing platform that can produce high-
throughputRNA-sequencingdata throughbarcoding andpoolingof cDNA
libraries10. RNA samples from 84MRI-localized samples were normalized
to between 60 and 100 nanograms in 16.5microliters of nuclease-freewater
and placed in a 96-well PCR plate. Purified mRNA was reverse transcribed
andbarcode segmentswere added to create easily identifiedcDNA.Multiple
batches were pooled, cDNA was purified, and then underwent PCR
amplification. Samples were ultimately sequenced on an Illumina NextSeq
500 sequencer10. Raw reads were mapped to the human transcriptome by
the institutional sequencing center using STAR alignment to generate gene
counts. All RNAseq processing and analysis was performed using the sta-
tistical computing softwareR.RNAsequencing countswerefirst trimmed to
only include genes with ≥10 counts across all samples. Counts were then
normalized using the DESeq2 package to generate normalized expression
values for each gene.

Immunohistochemical staining (IHC) and quantification
A subset of the biopsies in Cohort A (n = 48) and all biopsies in Cohort B
underwent histological staining for H&E and IHC for SOX2, Ki67, CD68,

and NeuN. Five-micrometer sections from a single localized biopsy were
obtained for staining with hematoxylin-eosin and immunostaining with
SOX2, Ki67, CD68, and NeuN. Slides were subsequently scanned and
digitized at ×40 magnification using a Leica SCN400 system (Leica Bio-
systems, Buffalo Grove, Illinois). Total cell density was calculated using a
validated semi-automated whole slide cell-counting algorithm17.

In brief, the algorithm was trained to select all hematoxylin-stained
nuclei using 9 randomly generated high-power fields (HPF) from each
sample, defined as 0.225mm× 0.225mm (900 × 900 pixels). Subsequently,
the algorithm could be used to iteratively process all HPFs until the entire
H&E stained slide was counted. After collecting the total cell counts for an
H&E-stained slide, the algorithm was trained to select SOX2-stained and
Ki67-stained nuclei on 9 randomly generated HPFs from SOX2-stained or
Ki67-stained slides, respectively. For CD68-stained and NeuN-stained
samples, the algorithm was trained to select CD68-stained and NeuN-
stained cells in 9 randomly generated HPFs from CD68-stained or NeuN-
stained slides, respectively. Areas of the slide without tissue were excluded
from calculations in all cases. Algorithm-derived cell counts were manually
verified and total cell density, SOX2cell density,Ku67 cell density,CD68 cell
density, andNeuNcell densitywere calculated across allHPFs in a slide. The
mean cell count per HPF was used as a representative measure in all cases
given that intra-specimenheterogeneitywas limitedby the standardized size
of each biopsy. A labeling index (LI) for each immunostain was computed
by dividing the number of immunostain-positive cells by the total cell count
in a HPF (from the same slide). For H&E-stained slides, cell counts were
converted to a percentage by dividing each by the largest cell count across all
samples. Algorithm-derived cell counts were manually verified by a human
reviewer. For validation, 100HPFs were chosen at random and each field as
manually inspected to determine the number of nuclei present. The same
field was then evaluated by the automated cell-counting algorithm. A high
correlationwas observed between the automated algorithm and themanual
cell counts for SOX2 and Ki67 cell density as determined by a Pearson
coefficient, as shown in Supplementary Fig. 2.

Parameters for each MRI sequence
Each patient received an MRI exam, which included T1Gd, T2, FLAIR,
ADC, and SWI sequences. For the T1 sequence, we used a 3D acquisition
with fields of view (FOV) ranging from 240 to 260mm. FLAIR sequences
mostly used 2D acquisitions, featuring FOV typically around 220 to
240mm. T2 sequences were executed in 2D, with FOV also in the 220 to
240mm range. ADCmapping, crucial for diffusionmeasurement, used 2D
acquisitions with FOV mostly around 220 to 240mm. SWI sequences,
included both 2D and 3D formats with FOV from 220 to 260mm. All
sequences conducted on MRI systems from manufacturers such as GE
Medical Systems, PhilipsMedical Systems, andSiemens,withmagneticfield
strengths of either 1.5 Tesla or 3 Tesla. Detailed MRI parameters used in
both cohort A and B can be found in Supplementary Data 2.

Multiparametric MRI pre-processing, segmentation, and feature
extraction. All MRI images were preprocessed using a pipeline built in
Python. For each patient, the multiparametric image set was affine
registered (12 degrees of freedom) to the DTI B0 image using
SimpleElastix54. Registration transforms were then applied to the asso-
ciated tumor segmentation masks for each image. Next, inhomogeneity
correction was performed using the N4 algorithm55 implemented in
SimpleITK56. In addition, a brain mask was extracted for each patient
using MONSTR, a multi-contrast brain-stripping tool57. The brain mask
was used to normalize the image intensities to a mean of zero and
standard deviation of one for all images except the computed ADC.
Finally, all images and segmentations were resampled to a common voxel
size of 1.05 mm × 1.05 mm for data consistency across patients.

For each patient, the enhancing tumor and infiltrating tumor were
manually segmented based on T1Gd and T2/FLAIR images. The infiltrated
tumor defined onT2/FLAIRMRI scans refers to hyperintense regions of the
brain that show evidence of tumor cell infiltration beyond the clearly
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defined, solid tumor boundaries typically visible on T1Gd scans. Images
were segmented by trained technicians using a rule set for selecting
hyperintense signal caused by tumor for each image sequence. All seg-
mentations are then reviewed for quality assurance and consistency by a
segmentation supervisor (Lisa Paulson). A board-certified neuroradiologist
(Leland Hu) was available for consultation as needed. A grouped segmen-
tation was then determined by combining the T1Gd and T2/FLAIR seg-
mentations. This group segmentationwas thendilated by amargin of 7mm
to create our AOI.

A sliding window of 5 × 5 pixel2 was placed at each pixel within the
AOI. From each sliding window, we extracted textural features from the
ADC, FLAIR, SWI, T1Gd, and T2. Specifically, two commonly used texture
analysis algorithms, Gray-Level Co-occurrenceMatrix (GLCM) and Gabor
Filters, were used to generate a total of 38 textural features for each of thefive
MRI images, for a total of 190 features. In addition, 18 commonly used 1st-
order statistical features such as mean, standard deviation, and energy were
extracted, for a total of 90 1st-order statistical features from the five MRI
images. Collectively, our texture analysis pipeline generated 280 features for
each sliding window. These features were also used in our prior radiomic
study of GBM and shown to be effective for capturing imaging phenotypic
information correlative with genetic and histopathological characteristics of
the tumor27,33,34.

Extraction of regional features frommultiparametric MRI
The regions were defined as 5 × 5 pixel2 windows on the axial view of MRI.
This size approximated the physical size of biopsy samples. For each biopsy
sample, image featureswere extracted fromawindowat the biopsy location.
This resulted in a labeled dataset xi; yi

� �l
i¼1, yi ¼ ðyi;neu; yi;pro; yi;inf Þ.

Additionally, image features were extracted from regions beyond the biopsy
locations within a tumoral AOI, to generate unlabeled samples. To do this,
we first defined the AOI of each patient by combining the segmented
enhancing tumor portion on T1Gd and infiltrating tumor portion on T2/
FLAIR plus a 7mmmargin. Then, we placed sliding windows with a size of
5 × 5 pixel2 and a stride size of 1 throughout the AOI, and extract image
features from eachwindow (Fig. 1 Texture feature extraction). This resulted
in an unlabeled dataset xi

� �lþu
i¼lþ1 with about 1.82e6 samples (5e3 to 9e4 per

patient). The regional image feature set consisted of 280 statistical and
texture features computed from T1Gd, T2, FLAIR, ADC and SWI.

Training, validation, and testing datasets
We utilized cohort A for training and validation, and cohort B for testing.
Cohort A comprises 69 biopsy/labeled samples. By employing leave-one-
patient-out cross-validation (LOPO CV), the validation set for each fold
includes 1 to 3 labeled samples from the validation patient. In contrast,
cohort B contains 31 biopsy/labeled samples. Consequently, in our study,
each training set consisted of 66 to 68 labeled samples (cohort A), the
validation sets included 1 to 3 labeled samples (cohort A), and the testing set
comprised 31 labeled samples (cohort B). The distribution of biopsy/labeled
samples across the three gene modules is shown in Table 1.

Construction of BioNet using cohort A
BioNet includes two networks: (1) BioNet_Neu is to predict Neu; (2) Bio-
Net_ProInf is to simultaneously predict Pro and Inf.

1) BioNet_Neu
Architecture. This network included two 2048-dimension hidden layers
with ReLU as the activation function. To incorporate UQ, Monte Carlo
dropout was adopted with a dropout rate of 1e-3.

Knowledge informedpre-training.We created a large, noisy labeleddataset,
denoted as fNoisyg, to pre-train the network. The noisy labeled dataset
consisted of unlabeled samples that were likely to have high or low Neu
based on domain knowledge, denoted as classe1 or classe0, respectively. The
overhead ‘�’ indicates uncertainty and potential labeling errors, whichwere
acceptable for pre-training. In detail, we have the knowledge that Neu tends
to be high on the boundary of AOI and outside the AOI (i.e., in the normal
brain areas), as the genes included Neu are predominantly involved in
neuronal signaling. To avoidunwantedbrain structures,we chose to include
samples located on the AOI boundary as class e1 samples. Furthermore, we
have the knowledge that Neu tends to be lowwithin the enhancing tumoral
area on T1Gd, as this region is known to involve tumor proliferation or
immune response58 rather than neuronal signaling. Thus, we included
samples from the enhancing tumoral area as classe0 samples. As a result, the
noisy labeled dataset included about 7500 samples in class e1 and e0,
respectively, from 31 patients.We used this dataset to pre-train the network
with cross-entropy loss.

Labeled data guided fine-tuning. The pre-trained network was then fined-
tuned using biopsy samples under the soft cross-entropy loss. Data aug-
mentation was used by incorporating neighbor samples of each biopsy
sample.

Prediction and stratification of unlabeled samples. The networkwas used to
predict theNeu scores for unlabeled sampleswithin the ROIof eachpatient.
Recall that the unlabeled samples corresponded to 5 × 5pixel2 windowswith
a stride of 1, sliding over theAOI.Using zero as a cutoff, the predicted scores
were dichotomized into two classes, fNeuþg or fNeu�g. Furthermore, the
network’s UQ capability made it possible to generate an uncertainty score
for each prediction, measured by Predictive Entropy (PE)45. To filter out
unlabeled samples whose predictions have high certainty, we applied a
threshold PE**, corresponding to a 90% accuracy level, and only retained
samples with PE < PE*. The retained samples were then divided into two
subsets: i 2 Neuþ

� �
and i 2 Neu�f g, which included unlabeled samples

predicted to be Neuþ or Neu� with high certainty, respectively. These
subsets would be used in training BioNet_ProInf as discussed in the fol-
lowing section.

2) BioNet_ProInf
Architecture. The network used to predict Pro and Inf is a multitask semi-
supervised learning model with a custom loss function. It comprises a
shared block and task-specific blocks. The shared block consists of three
layers with dimensions of 256, 128, and 128, respectively. The task-specific
blocks for Pro and Inf each consist of three layers with dimensions of 128,
128, and 64, respectively. As the relationships between Pro and Inf are
conditional on the status of Neu, discriminant features of Neu provided
significant guidance for the main tasks. To enforce the shared latent
representations to encode the discriminant features, the auxiliary task block
corresponding to Neu was kept simple, comprising one layer of 128 units.
Input to the network included both biopsy/labeled samples and unlabeled
samples in i 2 Neuþ

� �S
i 2 Neu�f g which were selected by BioNet_Neu

as previously described. The output was used to define a custom loss
function, introduced as follows:

Loss function design. There are two parts in the loss function to penalize (1)
prediction errors on biopsy/labeled samples, and (2) violation of domain
knowledge, i.e.,

L¼Lprediction þ αLknowledge ð1Þ

Table 1 | Thenumbersof biopsy/labeled samples in eachof the
three classes in cohort A and B

Cohort A Cohort B

Low High Low High

Neu 46 23 21 10

Pro 43 26 19 12

Inf 39 30 12 19
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To computeLprediction, the network generated three predicted scores of
Pro, Inf, Neu for each biopsy sample, which were compared with the true
scores using the L2 norm for two main tasks and Kullback–Leibler diver-
gence for the auxiliary task. In addition, prediction errors for Neu are also
derived from unlabeled samples with high certainty predicted labels eyi;neu
from BioNet_Neu, i.e.,

Lprediction ¼
Xl

i¼1

jjyi;pro � ŷi;projj22 þ jjyi;inf � ŷi;inf jj22 þ DKLðyi;neujjŷi;neuÞ

þ
X

fi2Neuþg∪ fi2Neu�g
DKLð~yi;neujjŷi;neuÞ

ð2Þ
The knowledge attention loss Lknowledge is defined on unlabeled sam-

ples. To implicitly incorporate the labels for Neu into the model, we utilize
the predicted labels ŷi;neu in Lknowledge, which is designed to include three
components:

Lknowledge ¼ Lneuþ þ Lneu� þ βLneu ð3Þ

Here,

Lneuþ ¼
X

fi2Neuþg
ŷi;neuðjjŷi;projj22 þ ŷi;inf jj22Þ ð4Þ

Minimizing this loss encourages the predicted ŷi;pro and ŷi;inf to be low
for unlabeled samples in i 2 Neuþ

� �
, where ŷi;neu acts as a weight, pro-

moting a higher occurrence of such predictions for samples with higher
ŷi;neu.

Lneu� ¼
X

fi2Neu�g
ð1� ŷi;neuÞð1� ŷi;pro; ŷi;proÞð1� ŷi;inf ; ŷi;inf ÞT ð5Þ

Minimizing this loss encourages the predicted ŷi;pro and ŷi;inf to be
negatively correlated for unlabeled samples in i 2 Neu�f g, where ð1�
ŷi;neuÞ acts as a weight, promoting a higher occurrence of such predictions
for samples with lower ŷi;neu.

Lneu is a barrier loss46 defined on all unlabeled samples
i 2 Neuþ

� �S
i 2 Neu�f g, aiming to discourage the predicted ŷi;pro and

ŷi;inf from both being high. This loss can help strengthen the effect of the
other two losses, with its utility controlled by β. The formofLneu follows the
standard log barrier function commonly found in optimization literature,
i.e.,

Lneu ¼
X

i2Neuþf g∪ i2Neu�f g
�log max 0; c� ŷi;pro þ ŷi;inf

� �� �� �
ð6Þ

c is an upper bound that can be treated as a tuning parameter. However, for
simplicity of the design, we set c = 1.2, which is the maximum value of the
summation of scaled Pro and Inf scores in biopsy samples.

Statistical analysis of model performance on cohort A
To assess the statistical significance of the performance gain for BioNet, we
performed a one-sided paired t-test to compare BioNet against the com-
peting methods with the average best accuracy using leave-one-patient-out
cross-validation (LOPO CV). According to the p values from one-sided t-
test as shown in Table 2, BioNet significantly outperformed all competing
methods on both Pro and Inf.

Testing of BioNet using cohort B
TheMRI scans in cohort Bwere acquired at a different resolution compared
to cohort A. Using this test cohort could provide valuable insights into the
generalizability of BioNet on a less ideal yet more realistic dataset, reflecting
the common practice that MRI scans can be obtained under varying con-
ditions for different patients. However, the resolution discrepancy created

challenges indirectly applying the trainedBioNet fromcohortA to cohortB.
In DL, approaches that address input discrepancy when deploying a model
from one domain to another domain have been explored in the subfield of
domain adaptation59.

To address this discrepancy, we implemented an approach inspired by
domain adaptation, which replaced the unlabeled samples from cohort A
with those from cohort B to re-train BioNet_ProInf. The unlabeled samples
were abundant and contained only image features. Using the unlabeled
samples from cohort B had the effect of biasing BioNet_ProInf toward the
image representation in cohort B. Notably, this re-training process did not
includeanybiopsy sample fromcohortB.Thus, the re-trainedBioNet_ProInf
was still “blind” to the ground-truth scores of the biopsy samples in cohort B.

Computationof theknowledgeconcordance (KC)metricsoverall
unlabeled samples
Recall that the domain knowledge indicates two key relationships: (1) Pro
and Inf are likely to be negatively correlated for samples with low Neu; (2)
Pro and Inf are likely to be low for samples with high Neu. To compute the
KC metrics, we first used the trained BioNet_Neu model to stratify unla-
beled samples into two groups with low (<0) and high (>0) predicted scores
of Neu. Denote these groups by i 2 Neu�f g and i 2 Neuþ

� �
. Note that

these groups included all unlabeled samples within each AOI, not just the
unlabeled samples included to train BioNet_ProInf which are samples with
high certainty.Furthermore, we computed the KC metric with respect to
relationship (1), KCneu� , as the percentage of unlabeled samples in
i 2 Neu�f g whose predicted Pro and Inf satisfy one being below 0 and the
other above 0.We computed the KCmetric with respect to relationship (2),
KCneuþ , as the percentage of unlabeled samples in whose predicted Pro and
Inf are both below 0.

Data availability
The datasets for Cohort A and Cohort B are accessible on Figshare through
the project page: https://figshare.com/projects/Texture_features_of_
Multiparametric_MRI_-_Recurrent_Glioblastoma/193223, with the data-
set available at the following https://doi.org/10.6084/m9.figshare.23950584.
v1. RNAseq and enrichment analysis of these datasets have been pub-
lished in36.

Code availability
The code used to extract texture features, perform experiments, and analyse
data is available at: https://github.com/hairongw/BioNet.git.
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