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Abstract—The precise prediction and tracking of deep internal
layers of ice sheets is becoming increasingly important as we
deal with the impacts of climate change and the rise of global
atmospheric temperatures. Synthetic Aperture Radar (SAR) is
the only sensor capable of penetrating through ice and providing
us with information about what lies beneath the ice surface,
allowing us to monitor changes on a large scale. Forecasting and
tracking these internal ice sheet layers is crucial for calculating
snow mass balance, inferring otherwise difficult-to-observe ice
dynamic processes, and extrapolating ice age from direct mea-
surements of the subsurface. To achieve this, we developed a
geometric deep learning model that uses a supervised, multi-
target, adaptive long short-term memory graph convolutional
network to predict the thicknesses of multiple deep ice layers
at specific coordinates in an ice sheet given the thicknesses of a
few shallow ice layers. Furthermore, we expanded the model to
consider additional physical features of the ice, alongside layer
thickness. We found that the inclusion of snow mass balance,
meltwater refreezing, and height change due to melting as node
features give our model better and more consistent performance.

Index Terms—Deep learning, graph neural networks, recurrent
neural networks, airborne radar, ice thickness

I. INTRODUCTION

With the rise in global atmospheric temperatures and chang-
ing climate patterns, accurate tracking and prediction of polar
snow accumulation and ice thickness has become increas-
ingly important. Understanding the variability of polar snow
accumulation over time and space is crucial for reducing
uncertainties in climate model predictions, particularly sea
level rise. This is achieved by studying the internal ice layers
of polar ice sheets, which represent annual isochrones and
provide information about the climate of that location during
the corresponding year. Tracking and forecasting these internal
ice layers is also essential for calculating snow mass balance,
extrapolating ice age, and inferring other difficult-to-observe
processes.

Traditionally, to measure the ice thickness, ice cores and
shallow pits are drilled. However, it is exceedingly difficult
to capture catchment-wide accumulation rates using these
methods due to their inherent sparsity, access difficulty, high
cost, and depth limitations. Attempts to interpolate these in-
situ measurements introduce further uncertainties to climate

models, especially considering the high variability in local
accumulation rate.

Airborne measurements using nadir-looking Synthetic Aper-
ture Radar (SAR) sensors has quickly become a popular
complementary method of mapping ice sheet topography and
monitoring accumulation rates with a broad spatial coverage
and ability to penetrate deep ice layers. The Center for Remote
Sensing of Ice Sheets (CReSIS), as part of NASA’s Operation
Ice Bridge, operates the Snow Radar [1], an airborne SAR
sensor that takes high-resolution echograms of polar ice sheets.

Recent studies involving graph convolutional networks
(GCNs) [2] have shown promise in spatiotemporal tasks such
as traffic forecasting [3]–[5], wind speed forecasting [6], and
power outage prediction [7]. In a previous study, we proposed
a geometric deep learning model that uses a supervised, multi-
target, adaptive long short-term memory graph convolutional
network (AGCN-LSTM) [8], [9] to predict the thicknesses
of multiple deep ice layers at specific coordinates in an ice
sheet given the thicknesses of few shallow ice layers. In this
paper, we expand the model to consider additional physical
features of the ice, alongside layer thickness. More specifically,
we analyze performance when using combinations of each
ice layers’ snow mass balance (SMB), surface temperature,
meltwater refreezing, height change due to melt, and snowpack
height as node features.

In our experiments, we use a sample of Snow Radar flights
over Greenland in the year 2012. We convert this internal ice
layer data into sequences of temporal graphs to be used as
input to our model. We convert the five shallow ice layers
beneath the surface into five spatiotemporal graphs. Our model
then performs multi-target regression to predict the thicknesses
of the fifteen deep ice layers beneath them. Our modified
model was shown to perform better and with more consistency
than previous models.

II. RELATED WORK

A. Automated Ice Layer Segmentation

In recent years, automated techniques have been developed
to track the surface and bottom layers of an ice sheet using
radar depth sounder sensors. Tracking the internal layers,
however, is more difficult due to the low proximity between
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each layer, as well as the high amount of noise present in the
echogram images. Due to its exceptional performance in au-
tomatic feature extraction and image segmentation tasks, deep
learning has been applied extensively on ice sheet echograms
in order to track their internal layers [10]–[13]. [12] used
a multi-scale contour-detection convolutional neural network
(CNN) to segment the different internal ice layers within Snow
Radar echogram images. In [10], the authors trained a multi-
scale neural network on synthetic Snow Radar images for more
robust training. A multi-scale network was also used in [13],
where the authors trained a model on echograms taken in the
year 2012 and then fine tuned it by training on a small number
of echograms taken in other years. [11] found that using
pyramid pooling modules, a type of multi-scale architecture,
helps in learning the spatio-contextual distribution of pixels
for a certain ice layer. The authors also found that denoising
the input images improved both the model’s accuracy and F-
score. While these models have attempted to segment Snow
Radar echogram images, none have yet attempted to predict
deep ice layer thicknesses with only information about shallow
ice layers.

B. Graph Convolutional Networks

Graph convolutional networks have had a number of ap-
plications in a vast array of different fields. In the field of
computer vision, recurrent GCNs have been used to generate
and refine “scene graphs”, in which each node corresponds
to the bounding box of an object in an image and the
edges between nodes are weighted by a learned “relatedness”
factor [14], [15]. GCNs have also been used to segment and
classify point clouds generated from LiDAR scans [16], [17].
Recurrent GCNs have been used in traffic forecasting, such as
in [3], where graph nodes represented traffic sensors, edges
were weighted by the physical distance between sensors, and
node features consisted of the average detected traffic speed
over some period of time.

Some existing graph-based weather prediction models, such
as [6] and [18], have tested models in which edge weights are
defined as learnable parameters rather than static values. This
strategy allowed the models to learn relationships between
nodes more complex than simple geographic distance, and was
shown to improve performance at the expense of increased
computational complexity.

In a previous study [19], we used a GCN-LSTM to predict
the thicknesses of shallow ice layers using the thicknesses of
deep ice layers. Our results were reasonable, usually lying
within 5 pixels of the ground-truth, and we found that GCN-
LSTM performed better and with more consistency than equiv-
alent non-temporal and non-geometric models. In a follow-up
paper [20], we modified the model structure, most notably
implementing an adaptive layer prior to the GCN-LSTM layer.
This modified structure proved to give even better results,
though remained simplistic in its node features, using only
latitiude, longitude, and ice layer thickness.

III. DATASET

In this study, we use the Snow Radar dataset made public
by CReSIS as part of NASA’s Operation Ice Bridge. The
Snow Radar operates from 2-8 GHz and is able to track deep
ice layers with a high resolution over wide areas of an ice
sheet. The sensor produces a two-dimensional grayscale profile
of historic snow accumulation over consecutive years, where
the horizontal axis represents the along-track direction, and
the vertical axis represents layer depth. Pixel brightness is
directly proportional to the strength of the returning signal.
Each of these grayscale echogram profiles has a width of 256
pixels and a height ranging between 1200 and 1700 pixels.
Each pixel in a column corresponds to approximately 4cm of
ice, and each echogram image has an along-track footprint
of 14.5m. Accompanying each image are vectors that provide
positional data (including geographic latitude and longitude)
of the sensor for each column, as well as Model Regional
Atmospheric (MAR) physical data for each of the ice layers.
Snow mass balance (SMB), surface temperature, meltwater
refreezing, height change due to melt, and snowpack height
were extracted from MAR model. In order to gather ground-
truth thickness data, the images were manually labelled in
a binary format where white pixels represented the tops of
each firn layer, and all other pixels were black. Thickness data
was extracted by finding the distance (in pixels) between each
white pixel in a vertical column.

We focus on radar data captured over Greenland during
the year 2012. Since each ice layer often represents an
annual isochrone, we may refer to specific layers by their
corresponding year (in this case, the surface layer corresponds
with the year 2012, the layer below it 2011, and so on). In
order to capture a sufficient amount of data, only echogram
images containing a miniumum of 20 ice layers were used (five
feature layers and fifteen predicted layers). Five and fifteen
feature and predicted layers, respectively, were chosen in order
to maximize the number of usable images while maintaining
a sufficient number of experimental layers. This restriction
reduced the total number of usable images down to 703. Five
different training and testing sets were generated by taking five
random permutations of all usable images and splitting them
at a ratio of 4:1. Each training set contained 562 images, and
each testing set contained 141 images.

IV. METHODS

A. Graph Convolutional Networks

Traditional convolutional neural networks use a matrix of
learnable weights, often referred to as a kernel or filter, as a
sliding window across pixels in an input image. The result
is a higher-dimensional representation of the image that au-
tomatically extracts image features that would otherwise need
to be identified and inputted manually. Graph convolutional
networks apply similar logic to graphs, but rather than using
a sliding window of learned weights across a matrix of pixels,
GCN performs weighted-average convolution on each node’s
neighborhood to automatically extract features that reflect the
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Fig. 1. Architecture of the proposed model.

structure of a graph. The size of the neighborhood on which
convolution takes place is dictated by the number of sequential
GCN layers present in the model (i.e. K GCN layers results
in K-hop convolution). In a sense, GCNs are a generalized
form of CNNs that enable variable degree.

A special form of GCN, known as adaptive GCN (or
AGCN), define edge weights within an input graph as learn-
able parameters rather than predefined constants. In certain
cases, this may increase model performance if relationships
between nodes are more advanced than those specified by the
input. In the case of our model, we route the graphs through
an EvolveGCNH layer [9] prior to entering the GCN-LSTM
layer.

EvolveGCNH is a version of EvolveGCN that behaves
similarly to a traditional GCN, but treats its learned weight
matrix as a temporal hidden state that, through use of a gated
recurrent unit (GRU), implicitly adjusts the structure of input
graphs by modifying node embeddings. The adjustment of
the weight matrix at each forward pass is influenced by the
previous hidden weight state as well as the node embeddings
of the current input graph.

B. Physical Ice Features

In this paper, we experiment with five different physical
properties as node features: snow mass balance, surface tem-
perature, meltwater refreezing, height change due to melt,
and snowpack height that are extracted from MAR model.
“Snow mass balance” is the sum of daily snowfall minus
sublimation, evaporation, and run-off. “Surface temperature”
is the average annual surface temperature at that point during
the respective layer’s surface year. “Meltwater refreezing” is
the annual amount of meltwater that refroze at that location.
“Height change due to melt” is the annual change in height

that an ice layer experienced due to melt. “Snowpack height” is
the total height of snowpack (non-melting, dense snow) within
a particular ice layer. We also experimented with using the
elevation of the ice sheet as each point as a node feature.

C. Model Architecture

Our model (see Figure 1) uses an EvolveGCNH layer to
introduce adaptivity to input adjacency matrices. The resulting
node matrix is used as the feature matrix for a GCN-LSTM
layer with 256 output channels. This leads into three fully-
connected layers: the first with 128 output channels, the
second with 64 output channels, and the third with 15 output
channels, each corresponding to one of the 15 predicted
ice layer thicknesses. Between each layer is the Hardswish
activation function [21], an optimized approximation of the
Swish function that has been shown to perform better than
ReLU and its derivatives in deep networks [22]. Between the
fully-connected layers is Dropout [23] with p=0.2. We use
the Adam optimizer [24] over 300 epochs with mean-squared
error loss. We use a dynamic learning rate that halves every
75 epochs beginning at 0.01.

D. Graph Generation

Each ground-truth echogram image is converted into five
graphs, each consisting of 256 nodes. Each graph corresponds
to a single ice layer for each year from 2007 to 2011. Each
node represents a vertical column of pixels in the ground-
truth echogram image and has three base features: two for
the latitude and longitude at that point, and one for the
thickness of the corresponding year’s ice layer at that point.
As part of the feature ablation study, we tested the model
with every combination of five additional node features: snow
mass balance, temperature, refreezing, height change, and
snowpack.

6940

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 17,2025 at 14:42:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
RESULTS FROM THE NON-GEOMETRIC LSTM, NON-TEMPORAL GCN, NON-ADAPTIVE GCN-LSTM, NON-PHYSICAL AGCN-LSTM, AND BEST

PROPOSED MODELS ON THE FIFTEEN PREDICTED ANNUAL ICE LAYER THICKNESSES FROM 1992 TO 2006. RESULTS ARE SHOWN AS THE MEAN ±
STANDARD DEVIATION OF THE RMSE OVER FIVE TRIALS (IN PIXELS).

LSTM GCN GCN-LSTM AGCN-LSTM Physical AGCN-LSTM
Total RMSE 5.817± 1.349 3.496± 0.509 2.766± 0.312 2.712± 0.179 2.599± 0.086

All graphs are fully connected and undirected. All edges
are inversely weighted by the geographic distance between
node locations using the haversine formula. For a weighted
adjacency matrix A:

Ai,j =
1

2 arcsin

✓
hav(�j � �i) + cos(�i) cos(�j) hav(�j � �i)

◆

where

hav(✓) = sin2

✓
✓
2

◆

Ai,j represents the weight of the edge between nodes i and
j. � and � represent the latitude and longitude features of a
node, respectively. Node features of all graphs are collectively
normalized using z-score normalization. Weights in the adja-
cency matrices of all graphs are collectively normalized using
min-max normalization with a slight offset to prevent zero-
and one-weight edges. Self-loops are added with a weight of
two. While we use an EvolveGCNH layer to introduce learned
adjacency, this predefined spatial adjacency matrix serves as
the initial state of the learned adjacency matrix, and is also
passed residually to the GCN-LSTM layer.

V. RESULTS

In order to determine which physical parameters were im-
portant and which were not, we performed a node feature abla-
tion study in which we tested how every possible combination
of features performed with identical hyperparameters, input
data, and random seeds. We found that using the combination
of snow mass balance, meltwater refreezing, and height change
due to melt as node features (in addition to latitude, longitude,
and layer height) resulted in noticeably increased performance
and consistency. This difference is highlighted in Table I,
where the non-physical model (labelled “AGCN-LSTM”) per-
forms worse by an average of 0.11 pixels. The performance
of other baseline models, including a non-geometric LSTM,
non-temporal GCN, and non-adaptive GCN-LSTM are shown
as well.

Over each trial, the root mean squared error (RMSE) was
taken between the predicted and ground truth thickness values
for each of the fifteen ice layers from 1992 to 2006 over all
images in its corresponding testing set. The mean and standard
deviation RMSE over all five trials are displayed in Table
I. The proposed Physical AGCN-LSTM model consistently
performed better than the baseline models in terms of mean
RMSE. The qualitative results are depicted in Figure 2.

Fig. 2. Examples of model outputs. Green pixels represent ground truths, and
red pixels represent predicted values.

VI. CONCLUSION

In this work, we developed a temporal, geometric, adap-
tive multi-target machine learning model that predicts the
thicknesses of deep ice layers within the Greenland ice sheet
(corresponding to the annual snow accumulation from 1992 to
2006, respectively) given the thicknesses of shallow ice layers
(corresponding to the annual snow accumulation from 2007
to 2011, respectively) to consider physical parameters of the
shallow ice layers during prediction. Our proposed model was
shown to perform better and with more consistency than our
previous, non-physical and baseline models.
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