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Abstract—Spaceborne passive microwave (PMW) images have
been used as primary data sources to obtain sea ice concentration
(SIC) and sea ice velocity (SIV) information in the polar oceans.
Based on the PMW satellite observations and meteorological air
temperature and wind data, we develop a fully convolutional
neural network to predict daily SIC and SIV. When training this
deep learning model, instead of using a fully data-driven ap-
proach, we integrate physical knowledge about sea ice dynamics
to regulate the prediction results into physically valid values. This
physics-informed learning is conducted by including the physics
loss function that is independent of the data loss function. Qur
experiment shows that the physics loss function improves SIC
and SIV predictions for most of the Arctic Ocean and winter
seasons. The enhancement by the physics loss function appears
more substantial when we predict SIV with a small number of
training samples.

Index Terms—Physics-informed machine learning, passive mi-
crowave, sea ice, sea ice concentration, sea ice drift

I. INTRODUCTION

According to various satellite observations, the Arctic sea
ice extent and thickness have dramatically decreased over the
last few decades. Sea ice extent has been reduced by more
than 50,000 km*/year because of anthropogenic CO2 emission
and global warming [1]. At the same time, the Arctic sea ice
thickness has decreased by more than 2 m, leading to the loss
of thick multi-year ice by more than 50 % [2]. Along with
such dramatic changes in sea ice extent and thickness, the
thermodynamic and dynamic conditions of the Arctic sea ice
have encountered a new phase [3], [4]. In particular, since the
dynamic movement of sea ice is highly correlated to sea ice
area and sea ice volume, it is essential to understand both sea
ice dynamics and area fraction as a clue in the future of the
Arctic Ocean and global climate.

A main tool to monitor global sea ice dynamics in polar
regions is satellite passive microwave (PMW) images. Multi-
channel passive microwave images have primarily provided
daily or bi-daily estimates of sea ice concentration (SIC) over
the polar oceans since 1978 [5]. The SIC retrieval algorithms
of PMW are based on the assumption that the variations in
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brightness temperature result from the spatial variations in
SIC change and ice temperature [6], [7]. These algorithms
have used the empirical linear relationship between SIC and
brightness temperature from multiple PMW frequencies and
polarizations. In addition, PMW images have been used to
retrieve sea ice velocity (SIV) by tracking structures in sea
ice cover in a pair of consecutive PMW images [8]. Although
the spatial resolutions of the PMW-based sea ice observations
(tens-of-km scale) are not as fine as optical images (tens-
of-meters scale), PMW images have been the most effective
way for sea ice monitoring because of their penetrability over
clouds and daily global coverage.

Hence, by assimilating these spaceborne PMW-based sea
ice observations and physical knowledge of sea ice dynamics,
many numerical sea ice models have been developed and
calibrated to predict the Arctic sea ice motions [9], [10]. These
sea ice models rely on a physical understanding of sea ice
and its interaction with the atmosphere and ocean. However,
such physics models require too many complicated param-
eterizations accompanying high computational costs to run
the models. Moreover, considering that numerical models are
highly sensitive to initial conditions and physical assumptions,
their results can be inconsistent with real observations [11].

Recently, machine learning (ML) techniques, particularly
deep learning, have emerged as alternatives for physics nu-
merical models to forecast sea ice conditions, including both
SIC and SIV. Various deep learning models, including convo-
lutional neural networks (CNN) and recurrent neural networks
(RNN), have been used to predict daily SIC from PMW data
[12]-[14]. Besides SIC, CNN and RNN have also been used
to predict daily SIV, outperforming other statistical methods
[15], [16].

However, since sea ice movement is extremely complicated
due to the interaction between the atmosphere and ocean,
a fully data-driven machine learning approach can introduce
significant uncertainties in the prediction result. In particular,
if the number of training datasets is not enough or the training
datasets contain significant noises, the fidelity of the fully data-
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driven models can deteriorate. Moreover, the physical variables
predicted by such a fully data-driven approach can sometimes
be physically inconsistent or implausible [17]. Therefore, it is
necessary to integrate fundamental physical laws and domain
knowledge into the ML training as informative priors. By
including prior knowledge or constraints, the ML model can
yield more interpretable predictions even in the presence of
imperfect data, such as missing, noise, or outliers data [17].

Thus, this study develops a fully convolutional deep learning
model performing daily forecasting of SIC and SIV, and we
aim to improve the model fidelity by integrating the physical
knowledge in the model training. In order to guarantee valid
SIC and SIV values in the prediction, we add a physics loss
term that reflects the physical relationship between SIC and
SIV. The main contributions of this research work consist of
the following.

o We propose a physics loss function to integrate intrinsic
sea ice dynamics into deep learning training and regulate
the valid sea ice concentration and velocity range.

o The proposed physics loss function is added to a multi-
task fully convolutional network to predict daily sea ice
concentration and velocity.

o Our extensive experiments show that the physics loss
function improves accuracy in SIC and SIV predictions,
even when the number of training samples is insufficient.

II. RELATED WORK
A. Physics in sea ice dynamics

It is known that dynamic and thermodynamic mechanisms
determine the spatiotemporal changes in SIC. The evolution
of SIC (A) is expressed by the following equation [18]:

ALV (wly=fo—r M)
ot
where w is ice motion, f. is the ice concentration change from
freezing or melting (thermodynamic mechanisms), and 7 is the
concentration change from mass-conserving mechanical ice
redistribution processes (e.g., ridging or rafting) that convert
ice area to ice thickness.

Additionally, numerous physical sea ice models have pro-
posed the following mathematical equation to explain sea
ice dynamics by assuming the elastic-viscous-plastic (EVP)
properties of sea ice [19]:

Du

"Dt
where D/Dt = 0/0t+w-V is the substantial time derivative,
m is the ice mass per unite area, k is a unit vector normal to
the surface, u is the ice velocity, f is the Coriolis parameter,
Tqi and 7,,; are the forces due to air and water stresses, H is
the elevation of the sea surface, g is the gravity acceleration,
and F' is the force due to variations in internal ice stress. As
many previous studies have already suggested, wind and ocean
forcings have primary impacts on SIV and dynamics. Partic-
ularly, wind velocity has been treated as a major variable in
SIV, which can contribute to up to 70 % of the sea ice velocity

=—-mfkXu+ Ty + 7w + F—mgVH (2)

variances [20] depending on season or region. Nevertheless,
predicting sea ice dynamics based on physical models is still
challenging due to its intrinsic complexity and dependency on
numerous atmospheric and oceanic parameterizations.

B. Neural network for sea ice prediction

Convolutional neural networks (CNN) are the most popular
and efficient deep learning network to predict SIC and SIV.
First, regarding SIC, Andersson et al. [21] proposed a deep-
learning sea ice forecasting system named IceNet, designed
to forecast monthly sea ice concentration for the next six
months. Kim et al. [22] used CNN to predict after-one-month
SIC from satellite-based SIC observations and weather data
for the previous months, and their model showed a mean
absolute error (MAE) of 2.28% and correlation coefficient of
0.98. Similarly, a CNN model proposed by Ren et al. [12]
showed < 1 % of MAE in daily SIC prediction for melting
season, and U-Net by Ren et al. [23] showed 2-3 % of MAE
in daily SIC prediction. When it comes to SIV, a CNN model
proposed by Hoffman et al. [15] showed approximately 0.8
correlation coefficient in SIV prediction. Additionally, Koo et
al. [24] proposed a multi-task CNN to predict daily SIC and
SIV simultaneously. However, to our knowledge, no studies
have attempted to integrate physics knowledge embedded in
sea ice dynamics into CNN or any other neural networks.
Therefore, this study is the first to apply a physics-informed
neural network for sea ice prediction.

III. DATA

We collect SIC and SIV satellite observation data retrieved
from PMW sensors of the NOAA (National Oceanic and
Atmospheric Administration) satellites as the primary input of
the models (Fig 1). We also collect wind and air temperature
data from the ERAS climate reanalysis product as additional
input variables.

A. Sea ice concentration

SIC satellite observation is from NOAA/NSIDC Climate
Data Record of Passive Microwave Sea Ice Concentration
version 4 data [25]. This data provides a Climate Data Record
(CDR) of SIC (i.e., the areal fraction of sea ice within a
grid cell) from PMW sensors, such as Special Sensor Mi-
crowave Imager (SSMI) and Special Sensor Microwave Im-
ager/Sounder (SSMI/S) (Table I). The CDR algorithm output
is the combination of SIC estimations from two algorithms:
the NASA Team (NT) algorithm and NASA Bootstrap (BT)
algorithm. These empirical algorithms estimate SIC from the
PMW brightness temperatures at different frequencies and
polarizations (i.e., vertical and horizontal polarizations at 19
GHz, 22 GHz, and 37 GHz). Then, this CDR product adjusts
algorithm coefficients for each sensor to optimize the consis-
tency of daily and monthly SIC time series.

B. Sea ice drift

SIV data are acquired from the NSIDC Polar Pathfinder
Daily 25 km EASE-Grid Sea Ice Motion Vectors version 4
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Fig. 1. Normalized 6 input variables: (a) u-component sea ice velocity, (b) v-component sea ice velocity, (c) sea ice concentration, (d) air temperature, (e)
u-component wind velocity, and (f) v-component wind velocity. Sea ice velocity and concentration are acquired from multiple passive microwave sensors, and
air temperate and wind velocity are acquired from the ERAS climate reanalysis. This snapshot is from January 1st, 2022.

TABLE I
KEY PARAMETERS OF PASSIVE MICROWAVE IMAGES USED TO RETRIEVE
SEA ICE CONCENTRATION AND SEA ICE DRIFT DATASETS

PMW Sensor Frequency Footprint | Spacing

(GHz) (km) (km)
Special Sensor Microwave 19V/19H 6943 25%25

22V 60 x 40 25 x 25
fmager (SSM/L) 37V3TH 37x28 | 25x25
Special Sensor Microwave 19V/I9H 72x44 4574

22V 72 x 44 45 x 74
Imager / Sounder (SSMIS) 37V/3TH 44 % 26 98 x 45
Advanced Microwave Scan- | 89V 6 x4 5x5
ning Radiometer (AMSR-E)

[26]. This product derives daily sea ice drift from three primary
types of sources: (1) gridded satellite imagery (e.g., Ad-
vanced Very High-Resolution Radiometer (AVHRR), SMMR,
SSMI, SSMI/S, Advanced Microwave Scanning Radiometer
(AMSR)) (Table I), (2) wind reanalysis data, and (3) buoy
position data from the International Arctic Buoy Program
(IABP). The u component (along-x) and v component (along-
y) of sea ice motions are independently derived from these
sources and optimally interpolated onto a 25 km EASE grid
by combining all sources. After a correlation coefficient is
calculated between a small target area in one image and
a searching area in the second image, the location in the
second image where the correlation coefficient is the highest
is determined as the displacement of ice [26].

C. ERAS climate reanalysis

Wind and air temperature can have significant impacts on
sea ice motion and thermodynamic freezing and melting of
sea ice. Thus, we use wind velocity and air temperature from
ERAS climate reanalysis as the input of our neural network
models. ERAS is the fifth generation ECMWF (European
Centre for Medium-Range Weather Forecasts) atmospheric
reanalysis of the global climate covering the period from
January 1940 to the present [27]. We acquire the daily average
wind velocity (u and v components) at 10 m height and
2 m air temperature. The raw ERAS gridded data of 0.25
degrees are projected onto the 25 km EASE grid using bilinear
interpolation to co-locate with the sea ice drift data.

IV. METHOD

Generally, the most common ways to embed prior physics
knowledge in neural networks are (1) introducing appropriate
loss functions that satisfy physical constraints or (2) designing
network architectures that guarantee physical constraints [17].
In this study, to embed fundamental knowledge of sea ice
dynamics, we introduce physics loss functions in the training
phase of an existing convolutional network architecture. This
section presents what neural network architecture and loss
functions are used in this study.

A. Hierarchical information-sharing U-net

The Hierarchical information-sharing U-net (HIS-Unet) (Fig
2) [24] is used as a deep learning model to predict SIC and
SIV. HIS-Unet consists of two separate SIC and SIV branches
of U-net-shaped fully convolutional networks, which share the
first convolutional layer. The kernel size of the convolutional
layer is set to 3 3, and the hyperbolic tangent (tanh) activation
function is applied after each convolution. These SIC and
SIV branches share and highlight their information through
weighting attention modules (WAMs). Since these WAMs con-
tain linear weighting parameters and channel/spatial attention
modules, the SIC and SIV information is mixed up with
their relative importance, and more important information is
highlighted in WAMs. This HIS-Unet architecture shows a
better performance than other fully convolutional networks
and statistical approaches in the daily prediction of SIC and
SIV in the Arctic Ocean [24]. In particular, HIS-Unet is more
successful than other models in (1) the late melting season
and early freezing season and (2) marginal sea ice zones near
coastal regions out of the central Arctic [24].

B. Physics loss function

Based on the HIS-Unet model, we modify the loss function
to consider physical constraints. Our objective loss function
consists of (1) a data loss term represented by mean square
error (MSE) and (2) a physics loss term inspired by physical
constraints.

First, the MSE data loss term (L p) can be calculated by the
following equation with u-component SIV (u), v-component
SIV (v), and SIC (A):
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Fig. 2. (a) Architecture of Hierarchical information-sharing U-net (HIS-Unet); (b) Weighting attention module (WAM) in HIS-Unet; (c) channel attention

module and (d) spatial attention module in WAM [24]

Ldata :Z(‘up_uo|2+ |Up_v0|2+ |A;D_AO|2) (3)

where the subscript o means observation (ground-truth) and p
means prediction by HIS-Unet.

Next, we propose a first physics loss term (Lyp,1) based on
the valid SIC values. Since the valid SIC values range from
0to 1 (i.e.,, 0-100 %), we add a penalty if the predicted SIC
value exceeds this valid range as follows:

LPhyl = Z(|mm(0, A;D)| + ‘max(ovAp - ]-)D (4)

The second physics loss term (Lppny2) represents the valid
SIV values associated with SIC values. Since the SIV data
we use defines valid sea ice motion only where SIC is greater
than 15 % [26], the SIV value should be zero where SIC is
less than 15 %. Therefore, we define the second physics loss
term as follows:

|uIQ7 +U12,|,
0,

if A, <0.15

5
if A, >0.15 ©)

Lphy2 =

The last physics loss term (Lppy3) is based on Eq. 1,
which explains the thermodynamic and dynamic SIC changes.
As shown in Eq. 1, the thermodynamic SIC changes (f.)
and mechanical ice redistribution (r) can be calculated by

temporal changes of SIC and the combination of advection and
divergence of SIC. Since we focus on daily SIC prediction,
the daily variations of the right term in Eq. 1 (i.e., fo + )
should not exceed (-1, 1). We assume that the combination of
thermodynamic SIC changes and mechanical ice redistribution
cannot saturate SIC from 0 % to 100 % or remove the entire
sea ice from 100 % to 0 % within a day. Based on this
assumption, we propose the following physics loss term:

updp)| —1)

0A
Lphys = ReLU(| == +V - ( ©)

where the time derivative term (861?) is derived by subtracting
the previous-day SIC from the output SIC, and the spatial
derivative term (V - (upA,)) is derived from the gradients in
output SIV and SIC grids.

Consequently, the total physics loss term (Lyy,) and the
final objective loss functions (L) are defined as follows:

N
®)

where A is the weight for the physics loss term, which is set
to 1.0 in this study.

Lyphy = Lphyr + Lphy2 + Lphys
L= Ldata + ALphy

C. Experiment setup

As the input of the model to predict the daily SIV and
SIC, we use the previous 3-days of SIV (u- and v- compo-
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Unet with physics loss function and without physics loss function; (b) The
difference of sea ice velocity RMSE between HIS-Unet with physics loss
function and without physics loss function

TABLE I

ACCURACY OF SEA ICE CONCENTRATION FOR DIFFERENT TRAINING
SAMPLES AND NEURAL NETWORK MODELS

Training samples Model R RMSE (%)
W/ Lphy 0.990 5.197

20 % Wio Lyny, | 0990 | 5253
W/ Lpny 0.993 4.437

100 % w/o Liphy 0.992 4.500

1 2 3 4 5 6 7 8 9 1011 12
Month

Fig. 3. Comparison of monthly accuracy of the models: (a) R of SIC, (b) R
of SIV, (c) RMSE of SIC, and (d) RMSE of SIV

nents), SIC, air temperature, and wind velocity (u- and v-
components). Consequently, the input layer has 18 channels
of 256x256 grid size. All input values are normalized to -1
to 1 based on the nominal maximum and minimum values
that each variable can have. We collect the data from 2016 to
2022; 2016-2021 datasets are used to train/validate the model,
and 2022 datasets are used to test the model. To check how
the physics loss function improves the model fidelity in small
data samples, we train the model with two different training
sample sizes: (1) using all 2016-2021 data as training samples
(i.e., 100 % sampling) and (2) randomly selecting 20 % of
2016-2021 data as training samples (i.e., 20 % sampling).
The total number of training samples is 2177 and 436 for
the 100 % sampling and the 20 % sampling, respectively.
We assess and compare the results from the HIS-Unet with
those two different training sample cases and with or without
physics loss function. The loss functions are optimized by
Adam stochastic gradient descent algorithm with 100 epochs
and 0.001 learning rate. All scripts are executed on eight
NVIDIA RTX A5000 GPUs with 24 GB memory.

V. RESULTS

Table II shows the accuracy of SIC for HIS-Unet with
and without physics loss function using 20 % and 100 %
training samples. Since 100 % sampling allows more samples
during the model training, it is reasonable that 100 % sampling
always shows a better accuracy than 20 % sampling. It is also
noted that the inclusion of the physics loss function slightly

improves the SIC accuracy for both training samples: root
mean square error (RMSE) reduces by 0.056 % for 20 %
samples and 0.063 % for 100 % samples. When it comes to
monthly comparison (Fig 3a and 3c), the physics loss function
contributes to improving SIC prediction, particularly in winter
months from January to April. Furthermore, as shown in Fig
4a improvements in SIC prediction are observed in most of
the Arctic Ocean, particularly near the Bering Sea and Barents
Sea, where the RMSE of SIC decreases by up to 1 % by
adopting the physics loss function.

Next, table III shows the accuracy of SIV for the same
models and the same sampling cases. Similar to the SIC cases,
100 % sampling shows better accuracy than 20 % sampling,
and the models trained with the physics loss function show
better accuracy. RMSE of the with-physics model is less
than the without-physics model by 0.053 km/day for 20 %
samples and 0.016 km/day for 100 % samples. While the
improvement of SIC prediction by physics loss term does not
vary much with the number of training samples (Table II), the
improvement of SIV prediction by the physics loss function is
more significant for fewer training samples. The physics loss
function contributes to the SIV prediction consistently over
the season (Fig 3b and d) and evenly over the Arctic Ocean

TABLE III
ACCURACY OF SEA ICE VELOCITY FOR DIFFERENT TRAINING SAMPLES
AND NEURAL NETWORK MODELS

Training samples Model R RMSE (km/day)
W/ Lphy 0.818 2.699

20 % wio Ly, | 0808 | 2752
W/ Lphy 0.846 2.468

100 % w/o Liphy 0.845 2.484
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(Fig 4b). However, some regions near the East Siberian and
Beaufort Seas do not show improvements in SIV prediction
with the physics-loss function.

VI. CONCLUSION

This study uses the sea ice datasets from passive microwave
(PMW) satellite images and a deep learning model to predict
daily sea ice concentration (SIC) and sea ice velocity (SIV).
We obtain more accurate and physically plausible prediction
results by employing a physics loss function in addition
to a fully data-driven mean square error loss function. Ex-
tensive experiments are implemented using the Hierarchical
information-sharing U-net (HIS-Unet) and sea ice datasets
derived from PMW images from 2016 to 2022. In order
to investigate the impact of training samples on the model
robustness, the models are trained with two different training
samples: (i) all available training samples (100 %) and (ii)
20 % of training samples. The results exhibit that the physics
loss function slightly improves the SIC and SIV predictions.
The improvement of SIC prediction is more significant in
winter seasons from January to April and for the entire Arctic
Ocean; meanwhile, the SIV improvement is also observed over
the Arctic Ocean and throughout the year. While the SIV
improvement is not so significant when the model is trained
with all training samples, it becomes more significant when
only 20 % of the total samples are used for training. This
result implies that the integration of physics knowledge into
deep learning can contribute to the accurate forecast of sea ice
dynamics, even in case of a lack of sufficient datasets.
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