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Abstract— Forecasting sea ice concentration (SIC) and sea
ice velocity (SIV) in the Arctic Ocean is of great significance
as the Arctic environment has been changed by the recent
warming climate. Given that physical sea ice models require
high computational costs with complex parameterization, deep
learning techniques can effectively replace the physical model
and improve the performance of sea ice prediction. This study
proposes a novel multitask fully conventional network architec-
ture named hierarchical information-sharing U-net (HIS-Unet)
to predict daily SIC and SIV. Instead of learning SIC and SIV
separately at each branch, we allow the SIC and SIV layers
to share their information and assist each other’s prediction
through the weighting attention modules (WAMs). Consequently,
our HIS-Unet outperforms other statistical approaches, sea ice
physical models, and neural networks without such information-
sharing units. The improvement of HIS-Unet is more significant
to when and where SIC changes seasonally, which implies that the
information sharing between SIC and SIV through WAMs helps
learn the dynamic changes of SIC and SIV. The weight values of
the WAMs imply that SIC information plays a more critical role
in SIV prediction, compared to that of SIV information in SIC
prediction, and information sharing is more active in marginal
ice zones [e.g., East Greenland (EG) and Hudson/Baffin Bays
(HBB)] than in the central Arctic (CA).

Index Terms— Cryosphere, information sharing, machine
learning (ML), sea ice forecast, sea ice motion, U-net, weighting
attention module (WAM).

I. INTRODUCTION

HE Arctic sea ice extent (SIE) and thickness have

changed dramatically over the last few decades. SIE has
been reduced by more than 50000 km?/year (4%/decade)
since the era of satellite observation in the 1970s [1], [2],
which is mainly attributed to anthropogenic CO, emission
and resultant global warming [3]. Such a loss of the Arctic
sea ice cover has been observed for all seasons, both winter
and summer, and almost all regions in the Arctic Ocean [4].
Meanwhile, the Arctic sea ice thickness (SIT) has decreased
by more than 2 m (>60%), and more than half of multiyear
ice (MYI) has disappeared for the last few decades [5], [6].
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Such dramatic changes in SIE and SIT could have affected
the thermodynamic and dynamic conditions of the Arctic sea
ice [7], [8], [9]. In particular, since the dynamic movement
of sea ice has significant impacts on sea ice area and sea ice
volume, it is important to understand both sea ice dynamics
and area fraction together as a clue in the future Arctic and
global climate [10].

To predict the Arctic sea ice motions, a number of numerical
sea ice models have been developed based on a physical under-
standing of sea ice and its interaction with the atmosphere
and ocean. However, such physics models require too many
complicated parameterizations [11], [12] accompanying high
computational costs to run the models. Moreover, considering
that numerical models are highly sensitive to initial conditions
and physical assumptions, they can produce prediction results
inconsistent with real observations [13].

Recently, in addition to these physical numerical models,
machine learning (ML) techniques, particularly deep learning,
have emerged as another efficient way to forecast sea ice
conditions. The most common sea ice variable predicted
by the deep learning model is sea ice concentration (SIC).
Myriad deep learning models, including convolutional neu-
ral network (CNN) and recurrent neural network (RNN),
have been proposed to predict SIC [14], [15], [16], [17],
[18] with lead times varying from daily [19], [20], [21] to
weekly [22] and monthly scale [23], [24]. While most previous
deep learning studies have focused on predicting SIC, deep
learning has rarely been used for predicting sea ice velocity
(SIV). Nevertheless, several studies demonstrated that CNN
outperformed other statistical methods in daily SIV prediction
[25], [26].

However, those previous ML studies have only focused on
the prediction of a single variable, such as either SIC or
SIV alone. Considering that SIC and SIV affect each other,
these two variables can potentially complement each other
to improve their own prediction. Thus, this study develops a
fully convolutional deep learning model performing short-term
forecasting of SIC and SIV simultaneously. We design a
fully convolutional network (FCN) architecture consisting of
two branches specialized for SIC and SIV prediction, which
share their intermediate prediction layers through information-
sharing blocks. We aim to improve both SIC and SIV
prediction performances by allowing the SIC and SIV inter-
mediate layers to share their information during the model
training.
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The main contributions of this research work consist of the
following.

1) We design a novel FCN architecture called hierarchical
information-sharing U-net (HIS-Unet) to predict SIC and
SIV simultaneously.

To allow sharing and emphasizing important information
between SIC and SIV, we insert weighting attention
modules (WAMs) between SIC and SIV branches, con-
sisting of linear weights to SIC and SIV features and
channel and spatial attention modules.

We conduct extensive experiments to check if shar-
ing and highlighting information between SIC and
SIV branches via WAMs improves SIC and SIV pre-
dictability and when and where these improvements are
significant.

By interpreting the spatial patterns of information shar-
ing at WAMs, we exhibit how the SIC and SIV
information is shared for different regions.

By comparing the climatological conditions of the test
year with training years, we check whether sharing SIC
and SIV information can assist each other’s prediction
even in climatologically anomalous years.

2)

3)

4)

5)

The remainder of the article is organized as follows.
Section II reviews several literature regarding the physical
models for sea ice prediction, ML for sea ice prediction, and
multitask ML. Section III explains details of remote sensing
and meteorological data used in this study, and Section IV
presents the detailed architecture of our information-sharing
network and the baseline models. The accuracy and implica-
tion of the model are given in Sections V and VI, respectively.

II. RELATED WORK

In Section II-A, we first discuss the prediction of sea ice
dynamics with physical models. Next, in Section II-B, we dis-
cuss the recent development of neural network techniques for
sea ice prediction. Finally, in Section II-C, we discuss the
recent development of multitask neural networks in remote
sensing.

A. Dynamic Sea Ice Models

In general, changes in SIC are driven by two components:
dynamic and thermodynamic processes. The evolution of SIC
(A) is governed by the following equation [27]:

04 v A) = 1
VWA = fo - (1)

where u is ice motion, f. is SIC change from freezing or
melting (thermodynamic process), and r is SIC change from
mass-conserving mechanical ice redistribution processes (e.g.,
ridging or rafting) that convert ice area to ice thickness.
Based on this relationship, the SIC changes in the Arctic and
Southern Oceans have been explored as the combination of
sea ice motion, thermodynamic growth, and mechanical ice
deformation [27], [28].

In addition, numerous physical sea ice models have been
proposed to explain and predict the dynamic behavior of the
Arctic sea ice. Assuming the elastic—viscous—plastic (EVP)
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condition of sea ice, these models are governed by the fol-
lowing momentum equation [29]:

Du

mEZ—mkaU‘i‘Tai‘*‘Twi‘i‘F_mgVH (2)

where D/Dt = 9/dt +u -V is the substantial time derivative,
m is the ice mass per unite area, k is a unit vector normal to
the surface, u is the ice velocity, f is the Coriolis parameter,
7, and t,; are the forces due to air and water stresses, H is
the elevation of the sea surface, g is the gravity acceleration,
and F is the force due to variations in internal ice stress.
As many previous studies have already suggested, wind and
ocean forcings have primary impacts on SIV. Particularly,
wind velocity has been treated as a major variable in SIV,
which can contribute to up to 70% of the SIV variances [30]
depending on season or region [31]. Nevertheless, predicting
sea ice dynamics based on physical models is still challenging
due to its intrinsic complexity and dependency on numerous
atmospheric and oceanic parameterizations.

B. Deep Learning for Sea Ice Prediction

Nowadays, various ML and deep learning techniques have
been extensively used in many applications of remote sensing
of polar oceans [32], [33], [34], [35], [36]. In particular,
deep learning techniques have been effective in predicting
the high complexity of sea ice conditions (i.e., SIC and SIV)
[37] (Table I). First, in terms of SIC, Andersson et al. [14]
proposed a deep-learning sea ice forecasting system named
IceNet, which is designed to forecast monthly SIC for the next
six months. Kim et al. [15] also used CNN to predict after-one-
month SIC from satellite-based SIC observations and weather
data for the previous months, and their model showed a
mean absolute error (MAE) of 2.28% and anomaly correlation
coefficient of 0.98. Similarly, a CNN model proposed by Ren
and Li [16] showed <1% of MAE in daily SIC prediction
for the melting season, and U-Net by Ren et al. [17] showed
2%-3% of MAE in daily SIC prediction. In addition to
CNN, long short-term memory (LSTM), an advanced RNN
architecture, has been commonly used to predict SIC. LSTM
models generally have shown >0.98 correlation coefficient and
<10% of root mean square error (RMSE) for a daily-scale SIC
prediction [19], [21]. The monthly SIC predictions performed
by LSTM models have shown <10%-12% of RMSE [18],
[23], [24].

CNN and LSTM have also been used for SIV prediction
in several studies. Zhai and Bitz [26] used CNN to predict
SIV, and their model showed a correlation coefficient >0.8,
outperforming other statistical and physical models. Similarly,
the CNN model proposed by Hoffman et al. [25] showed
approximately 0.8 correlation coefficient in SIV prediction.
The convolutional LSTM presented by Petrou and Tian [38]
showed 2.5-3.1 km/day of MAE and 3.7-4.2 km/day of RMSE
in SIV prediction. However, to our knowledge, most previous
ML studies only focused on deriving either SIC or SIV, not
attempting to integrate SIC and SIV information. This study
is the first to integrate SIC and SIV information in a single
multitask neural network architecture, aiming to improve the
prediction of both variables.
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TABLE I
EXAMPLES OF DEEP LEARNING FOR SEA ICE PREDICTION
Sea ice variable Method References
CNN [14]-[17]
Sea ice concentration LSTM [18], [20], [23], [24]
Conv-LSTM [19], [21], [22]
. . CNN [25], [26]
Sea ice velocity LSTM [38]

C. Multitask Neural Network

In the existing multitask network studies, the most common
architecture is the “shared-trunk”: all tasks share certain hid-
den layers to learn common features for all tasks but keep
several task-specific branched layers [39]. Conventionally,
multitask networks can be categorized into two formulations
depending on how to choose the branched level and share
the information between tasks: 1) early-branched network
and 2) late-branched network. The early-branched or late-
branched approaches have been adopted in various fields
for the classification and segmentation of remote sensing
imagery data [40], [41], [42], [43]. Alhichri [40] used a
multitasking architecture similar to a late-branch network for
multiple land-use classification tasks. Papadomanolaki et al.
[41] proposed a UNet-like multitask architecture to perform
segmentation and change detection from multispectral image
sets. Ilteralp et al. [42] used a multitask convolutional network
for Chlorophyll-a estimation and month classification with
satellite images. Li et al. [43] proposed a multitask network to
perform mask prediction, edge prediction, and distance map
estimation.

However, this shared-trunk architecture makes a model
inflexible, so the model performance highly depends on where
different branches split up. A late-branch network can lose
significant task-specific features because nearly all network
parameters are shared across all training processes [44]. Exces-
sive sharing can also hinder the performance of another task
that has different needs (also known as negative transfer).
On the contrary, an early-branched network can fail to leverage
information effectively between tasks because of too little
sharing [39]. Hence, instead of the shared trunk architecture,
another crosstalk approach has been proposed: each task has
a separate network, but information flow is added between
parallel layers of the task networks. For example, Misra et al.
[45] proposed cross-stitch units between separate CNNs for
different tasks, which provide the optimal linear combinations
for a given set of tasks. Similarly, a sluice meta-network
introduced by Ruder et al. [46] consists of a shared input layer,
two task-specific output layers, and three hidden layers that
have task-specific and shared subspaces. The input of each
layer is determined as a linear combination of task-specific
and shared outputs of the previous layers. Instead of a linear
combination of the additional parameters, Gao et al. [47]
used 1 x 1 convolution to perform neural discriminative
dimensionality reduction (NDDR) to retain the discriminative
information from task-specific and shared features. Similarly,
He et al. [44] introduced task consistency learning (TCL)
blocks in their hierarchically fused U-Net. However, to the best
of our knowledge, no studies have conducted such a multitask
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network for sea ice applications. This article proposes the first
multitask network designed for SIC and SIV prediction.

III. DATA

We collect SIV and SIC satellite observation data as the
input and output of the models. We also collect wind and air
temperature data from the ERAS climate reanalysis product as
additional input variables. Sea ice physics model data is also
collected to be used for a baseline comparison. We collect the
data from 2016 to 2022 and filter out any data with null values
or physically invalid values. In Sections III-A-III-D provide
details of the datasets we use (see Table II).

A. Sea Ice Velocity

For the SIV data, we use the NSIDC polar pathfinder daily
25 km EASE-grid sea ice motion vectors version 4 [48], [49].
This product derives daily sea ice drift from three primary
types of sources: 1) gridded satellite imagery (e.g., AVHRR,
SSMI, SSMI/S, and AMSR); 2) NCEP/NCAR wind reanalysis
data; and 3) buoy position data from the International Arctic
Buoy Program (IABP). The u component (along-x) and v
component (along-y) of sea ice motions are independently
derived from each of these sources and optimally interpolated
onto a 25 km equal-area scalable Earth (EASE) grid by
combining all sources. When sea ice drift is derived from
satellite image data, a correlation coefficient is calculated
between a small target area in one image and a searching area
in the second image. Then, the location in the second image
where the correlation coefficient is the highest is determined
as the displacement of ice [48]. The mean difference between
the interpolated u components and the buoy vectors was
approximately 0.1 km/day with a root mean square (rms) error
of 2.9 km/day, and 0.3 km/day with an rms error of 2.9 km/day
for v components [48]. The SIV extraction schemes of this
dataset are valid at significant distances from the ice edges,
in areas where ice conditions are relatively stable, stationary,
homogenous, and isotropic day to day. Therefore, surface
melting in the summer season can deteriorate drift accuracy
because it affects the passive-microwave identification of ice
parcels [49]. In this study, we use SIV values at least 50 km
(or 2 pixels) away from the coastline.

B. Sea Ice Concentration

For the SIC data, we use NOAA/NSIDC climate data
record (CDR) of passive microwave (PMW) SIC version
4 data [50]. This dataset provides a CDR of SIC (i.e., the areal
fraction of ice within a grid cell) from PMW data, including
SMMR, SSMI, and SSMI/S. The CDR algorithm output is
the combination of SIC estimations from two algorithms: the
NASA Team (NT) algorithm [51] and the NASA Bootstrap
(BT) algorithm [52]. These empirical algorithms estimate SIC
from the PMW brightness temperatures at different frequencies
and polarizations (i.e., vertical and horizontal polarizations at
19, 22, and 37 GHz). Then, the CDR product adjusts algorithm
coefficients for each sensor to optimize the consistency of daily
and monthly SIC time series. Several assessments showed that
the error of this SIC estimation is approximately 5% within
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TABLE 11
INPUT DATASETS FOR ML MODELS

Dataset Name Spatlgl Tempqral
resolution  resolution

Sea ice velocity (u and v) NSIDC Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors [49] 25 km Daily

Sea Ice Concentration NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration [50] 25 km Daily

Wind velocity (u and v) ECMWF Reanalysis v5 (ERAS) hourly data on single levels [57] 0.25° Hourly

Air temperature ECMWF Reanalysis v5 (ERAS) hourly data on single levels [57] 0.25° Hourly

X Y coordinates 25 km Equal-Area Scalable Earth (EASE) Grid 25 km -

the consolidated ice pack during cold winter conditions [53],
[54], [55]. However, in the summer season, the error can rise
to more than 20% due to surface melt and the presence of melt
ponds [56]. Due to the data quality issue near coastal areas,
we use the SIC data more than 50 km from the coastline.
Since the projection of this SIC data (NSIDC Sea Ice Polar
Stereographic North) is different from that of SIV data (EASE
grid), we reproject SIC into the EASE grid using bilinear
interpolation.

C. ERA5 Climate Reanalysis

ERAS is the fifth generation ECMWF (European Center for
Medium-Range Weather Forecasts) atmospheric reanalysis of
the global climate covering the period from January 1940 to
the present [57]. ERAS provides hourly estimates of atmo-
spheric, land, and oceanic climate variables [57]. We acquire
the daily average wind velocity (# and v components) at
10 m height and 2 m air temperature from this hourly data.
In addition, since the raw ERAS data is gridded to a regular
latitude-longitude grid of 0.25°, we reproject this data onto
the 25 km EASE grid using bilinear interpolation to co-locate
with the SIV data.

D. Sea Ice Physics Model

As a baseline to compare the performance of our ML
model, we use the Arctic Ocean physics analysis and forecast
data (level 4) provided by Copernicus Marine Services. This
data uses the operational TOPAZ4 Arctic Ocean system [58]
with a hybrid coordinate ocean model (HyCOM) [59]. It is
run daily to provide ten days of forecast (average of ten
members) of the 3-D physical ocean, including sea ice albedo,
sea ice area fraction, SIT, and SIV. The original gridded data
(12.5 km resolution at the North Pole on a polar stereographic
projection) is also converted to the 25 km EASE grid.

IV. METHOD

Given that the interaction between SIC and SIV is extremely
complicated by various thermodynamic and dynamic mecha-
nisms, the multitask model for SIC and SIV prediction should
be flexible and interactive. Hence, in order to share SIC and
SIV information efficiently, we adopt the crosstalk multi-
task architecture [39] instead of the shared-trunk approach.
In addition, based on the assumption that sharing SIC and
SIV information throughout the learning process improves
their prediction, we add WAMs between the SIC and SIV
task-specific networks to allow sharing and highlighting of
essential information. The details of the proposed multitask

network architecture and comparison with baseline models are
described in this section.

A. Hierarchical Information-Sharing U-net

Fig. 1(a) describes the architecture of the multitask network
we propose in this study: HIS-Unet. In this architecture,
two separate SIV and SIC prediction tasks have their own
branches after a common convolutional layer of 32 filters. Each
branch has a U-net structure [60] consisting of the encoder
(contracting path) and decoder (expansive path). Each encoder
consists of repeated two 3 x 3 convolutions and a 2 x 2 max
pooling operation with stride 2 for downsampling. The number
of feature channels is doubled after each downsampling step.
The decoder consists of several upsampling steps implemented
by a 2 x 2 up-convolution that halves the number of feature
channels, a concatenation with the cropped feature map, and
two 3 x 3 convolutions [60]. The hyperbolic tangent (tanh)
activation function is applied after each convolutional layer.
Although each branch has a separate U-net construction that
produces SIV or SIC, they share and transfer their information
through six WAMs. By adopting linear weighting parameters
and channel/spatial attention modules in WAMSs, we enable
these WAMs to 1) determine how much information from SIC
and SIV is shared with each other and 2) highlight important
channel and spatial information. We insert six WAMs right
after the max pooling or up-convolution operations: three
blocks in the encoder steps and three blocks in the decoder
steps.

As shown in Fig. 2(a), each WAM first receives information
from SIV and SIC branches and calculates the weighted
sum of them. Letting a WAM receive the SIV feature map
(&ins1v; image height H, image width W, and channels C)
and SIC feature map (&in,si1c; H x W x C) from the previous
max-pooling or up-convolution operations, the input shared
information (&, share) 15 determined by following:

3)

where Aj, siv and Ay, sic denote the weights for the SIV and
SIC information, respectively. We initially set both A;, srv and
Ainsic as 0.5, which indicates both SIV and SIC information
are equally shared before training the model. As the model is
trained with data, Aj, srv and Aj, sic are fine-tuned for the best
accuracy. If Aj, srv is high, more SIV information is shared
during the information sharing; if Aj,sic is high, more SIC
information is shared.

After the input shared information &, share i determined by
the linear weighting combination of &, siv and &ip sic, this
shared information passes through channel attention module

&in,share = Ain,s1v&in,stv + Ain,sicin,sic
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[see Fig. 2(b)] and spatial attention module [see Fig. 2(c)].
The channel and spatial attention module were proposed by
Woo et al. [61] and have been widely used to improve
the representation power of CNNs. The channel attention
highlights what channel is meaningful in a given input image,
and the spatial attention highlights where an informative part
is located [61]. In the channel attention module, the spatial
information of an input feature map is aggregated using max
pooling and average pooling operations, and these two descrip-
tors are forwarded to a multilayer perceptron (MLP) with
one hidden layer. Consequently, the channel attention map of
1 x 1 x C dimension is generated, and this channel attention
map is multiplied with the input feature of H x W x C
dimension. After the channel attention is applied, the spatial
attention is applied. In the spatial attention module, average
pooling and max pooling are applied along the channel axis,
and these two feature descriptors generate a spatial attention
map (H x W x C dimension) through a convolutional layer.
As aresult, these channel and spatial attention modules convert
the input shared information &, ¢hare into the output shared
information (Eout, share)

‘i:out,share = Ms (g:in,share) & (Mc (éin,share) ® Ein,share) (4)

Output layer

64 2

Uicer Vice

(Next day)

,.,’@%;
1528
Output layer
SIC (Next day)

ii(
sl

64

256 128 128

= 2562

2562

Architecture of multitask CNN models tested in this study. (a) HIS-Unet. (b) EB-Unet. (c) LB-Unet.

where M and M, denote spatial attention map and channel
attention map derived from spatial and channel attention
modules, respectively, and ® denotes element-wise multipli-
cation. If a certain channel is important in model training,
this channel should have a higher channel attention value
than the others. Similarly, if a specific spatial coordinate is
important, this location is highlighted as higher value in the
spatial attention. By arranging the channel attention and spatial
attention sequentially, we can highlight what and where shared
information is important. These channel and spatial attention
modules are also applied to the input SIV and SIC feature
maps (&in,stv and &y sic).

Then, the attention shared information is sent to the SIV
and SIC branches after multiplying output weights (Aoyt,siv
and Aoy sic) and adding attention SIV and SIC information,
respectively,

Sout,SIV = Aout, SIvV gout, share

+ M (Einstv) @ (McGinsiv) ® Einstv) (5
gout,SIC = Aout,SICSout,shaIe
+ M (&insic) @ (M (Eins1c) @ insic).  (6)
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Fig. 2. Schematic of (a) WAM, (b) channel attention module, and (c) spatial
attention module.

Here, Aguesiv and Agysic determine the relative importance
of shared information to each branch. A higher Aqy siv value
means that more shared information is added to the SIV
branch, implying that SIC information is helpful for SIV
prediction. Likewise, a higher Aqysic value corresponds to a
greater contribution of SIV information to the SIC prediction.
In Section VI-B, we will discuss details about how those
weights in the WAMs affect the SIC and SIV predictions.

The objective loss function we use for learning is the sum
of the mean square error (MSE) for u-component SIV (u),
v-component SIV (v), and SIC (A)

Loss = Z(luprd_uobs|2+|vprd - Uobs|2+/3|Aprd - Aobs|2)
(7

where the subscript obs means observation and prd means
prediction, and B is the weight for SIC mse. When we
experimented with B values of 0.1, 0.2, 0.5, and 1.0, 8 =
0.5 produced the best accuracy, balancing both SIV and SIC
predictability. Thus, we set 8 to 0.5.

B. Baseline Models

To compare with the HIS-Unet, we evaluate five neural
network models and two simple statistical models. Five neu-
ral network models are 1) early-branched U-net (EB-Unet),
2) late-branched U-net (LB-Unet), 3) U-net, 4) FCN only with
convolutional layers, and 5) CNN proposed by Hoffman et al.
[25] for SIV; two statistical models are 1) persistence and
2) linear regression (LR) models.
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Based on the U-net architecture [60], we test two multitask
networks: EB-Unet [see Fig. 1(b)] and LB-Unet [see Fig. 1(c)].
The EB-Unet only shares the first convolutional layer, but the
rest of the convolutional layers are separated into SIV and
SIC branches of independent U-net architecture. On the other
hand, the LB-Unet has the same architecture as the original
U-net, but the last convolutional layer and output layer are
branched for SIV and SIC prediction separately. In addition
to these multitask U-nets, we also test the original U-net
architecture [60] with three channels of u-component SIV, v-
component SIV, and SIC at the output layer.

Another neural network model we evaluate is a simple FCN
consisting of seven convolutional layers of 64 filters for each
and an output layer with three channels of u-component SIV,
v-component SIV, and SIC. We refer to this network as FCN7.
The final neural network we evaluate is the CNN architecture
proposed by Hoffman et al. [25]. This model consists of five
sequential layers of convolutional and max pooling, followed
by the flattening, dense, and reshaping layers. Since the
original CNN model [25] only predicts u- and v-component
SIV, we add an SIC output channel at the output layer.

As a statistical model, the persistence model simply assumes
that the sea ice condition remains the same as that of the
previous day. The LR model, another statistical model, predicts
u, v, and A at pixel (i, j) from the linear combination of the
input variables as follows:

u(i, j) =Y auxli, j)xili, j)

(8)
k=1

v, j) =Y avili, )xeli, ) ©)
k=1

Al ) =Y anili, i, j) (10)
k=1

where n is the number of input variables and x; is the kth
input variable. a, , a,x, and aa  are the linear coefficients
corresponding to x; for the prediction of u, v, and A, respec-
tively.

C. Training and Testing Models

To predict the daily SIV and SIC, we use the previous
three-days of SIV (u- and v-components), SIC, air temper-
ature, wind velocity (#- and v-components), and geographic
location (i.e., x and y coordinates) as the inputs of the predic-
tion models. Consequently, the input layer has 20 channels
(three-day data of six sea ice or meteorological variables
and two geographical variables) of 256 x 256 grid size. All
input values are normalized from —1 to 1 based on the
nominal maximum and minimum values that each variable
can have. Then, this model is trained to predict the SIV and
SIC for the next day. We collect the data from 2016 to 2022;
2016-2021 datasets are used to train/validate the model, and
2022 datasets are used to test the model. The 2016-2021
datasets are randomly divided into 80% of train datasets and
20% of validation datasets. The number of train, validation,
and test datasets is 1742, 438, and 363, respectively. The
HIS-Unet is trained to minimize the loss function in (7) and
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TABLE III
ACCURACY OF SIC AND SIV PREDICTION FOR EACH MODEL

Model Sea ice concentration (SIC) Sea ice velocity (SIV)

MAE (%) RMSE (%) R | MAE (km/d) RMSE (km/d) R
HIS-Unet 2.934 6.122 0.978 1.812 2.667 0.834
EB-Unet 3.139 6.238 0.974 1.926 2773  0.818
LB-Unet 3.122 6.575 0.970 1.960 2.814 0.813
Unet 3.400 6.601  0.970 1.981 2.834  0.815
FCN7 4.750 7.896  0.958 2.331 3213 0.770
CNN [25] 10.071 16.963  0.839 2.223 3217  0.742
LR 4.232 8.178  0.965 3.340 5.142  0.780
Persistence 3.135 7435 0.924 2.871 4,181 0.629
HYCOM [59] 8.874 15878  0.865 3.782 5.506  0.508

optimized by Adam stochastic gradient descent algorithm [62]
with 100 epochs and 0.001 learning rate. Such hyperparameter
settings are the same for the other neural network models.
We implement this model in Python using the PyTorch library.
All scripts are executed on the GPU nodes of the Frontera
supercomputing system from the Texas Advanced Computing
Center (TACC), each node equipping four NVIDIA Quadro
RTX 5000 GPUs of 16-GB memory.

D. Evaluation Metrics

The performances of the neural network models, statistical
baseline models, and sea ice physics model are evaluated by
the following three metrics: 1) correlation coefficient (R); 2)
RMSE; and 3) MAE:

=00 -9
R= a1
V@ =%y -7
RMSE = \/M (12)
N
MAE:Z'x_y| (13)

N

where x denotes the prediction values, y denotes the observa-
tion values, and N is the number of samples. In calculating
these metrics for SIV, we calculate the average of the u- and
v-components of SIV. In general, R can be useful to assess
the overall spatiotemporal pattern of SIC and SIV variations,
and RMSE or MAE can be useful to assess the magnitude of
prediction errors.

V. RESULTS

Table III shows the test accuracy of SIC and SIV in 2022 for
different models. The HIS-Unet model generally shows the
best SIC and SIV prediction results, with the highest R
(0.978 for SIC and 0.834 for SIV) and lowest RMSE (6.122%
for SIC and 2.677 km/day for SIV), followed by EB-Unet,
LB-Unet, Unet, and FCN7. These five fully CNN models
(HIS-Unet, EB-Unet, LB-Unet, Unet, and FCN7) generally
show better performance than the persistence model for both
SIC and SIV, suggesting that these models can significantly
predict the daily variations of sea ice conditions. In addition,
these ML models outperform the LR model and HYCOM
physical model. It is also worth mentioning that the CNN
proposed by Hoffman et al. [25] has better fidelity than the
persistence model in SIV but the worst performance in SIC

prediction. Since this CNN model was originally designed for
only SIV prediction, this architecture does not produce robust
predictions for SIC.

The EB-Unet shows considerable improvement in both
SIV and SIC prediction compared to LB-Unet and U-net.
This implies that separating SIC and SIV information at
the early-branch stage is more efficient in predicting both
variables than using the late-branch architecture or adding
channels at the output layer. However, considering that such
an early-branch approach prevents information sharing at the
intermediate learning stages, the information sharing between
SIC and SIV through WAMs in the middle of HIS-Unet
architecture allows a better prediction for both SIC and SIV
than the EB-Unet.

Fig. 3 depicts the monthly accuracy for each model. It is
notable that the HIS-Unet has remarkably better perfor-
mance during all months in both SIC and SIV prediction.
In particular, the correlation coefficient derived by HIS-Unet
outperforms the other ML models in both SIC and SIV
prediction, which supports that the HIS-Uent produces the spa-
tiotemporal variations of SIC and SIV more successfully [see
Fig. 3(a) and (b)]. In terms of SIC prediction, the HIS-Unet
shows a higher R by 0.002-0.006 and a lower RMSE by
0.05%-0.25% compared to the EB-Unet. In particular, the
largest improvement occurs in the summer months from July
to October. While R varies significantly from July to October
by other models (<0.97), the HIS-Unet keeps R > 0.97 in
these months, maintaining a similar level of R to winter
months. October shows the most conspicuous improvement
in SIC, reducing RMSE by 0.26% and increasing R by 0.006.
In general, the Arctic SIE decreases rapidly in July and
reaches the minimum in September. Then, sea ice starts to
grow from September, recording the fastest ice growth rate in
October [63]. As a result, the thermodynamic and dynamic sea
ice condition changes more abruptly in the summer months.
Integrating SIV information into SIC prediction via HIS-Unet
might contribute to predicting SIC in this fast-melting and
fast-growing season. Furthermore, as shown in Fig. 4(a), the
improvement of R is observed near marginal sea ice zones,
rather than the central Arctic (CA). This implies that SIV
information can help predict spatiotemporal trends of SIC
for where SIC changes dynamically in melting and freezing
seasons. On the other hand, regarding the RMSE value of the
SIC prediction, the HIS-Unet also contributes to reducing SIC
errors slightly in the CA [see Fig. 4(b)].
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Fig. 3. Comparison of monthly accuracy of the models in 2022: (a) R of

SIC, (b) R of SIV, (c) RMSE of SIC, and (d) RMSE of SIV.

As for the SIV prediction, the R of HIS-Unet is higher
than the EB-Unet by 0.01-0.02 and the RMSE is lower by
0.05-0.25 km/day on average. In the case of SIV, the largest
improvement by HIS-Unet occurs in October—December:
RMSE decreases more than 0.2 km/day, and R increases by
0.02. During these months, the Arctic SIE starts to increase
and sea ice becomes compacted. Such a compacted sea ice
pack can either regulate or accelerate sea ice movement.
Consequently, the integration of SIC information via HIS-Unet
improves the SIV prediction when sea ice compactness
increases in October—December. As shown in Fig. 4(c) and (d),
the improvement of SIV prediction occurs in marginal sea
ice zones out of the CA. Since the north of Greenland and
the Canadian Archipelago are mainly covered by MYI that
survives even in summer [64], the SIC in the CA does not
change much over a year. Although the integration of SIC
information via the HIS-Unet does not efficiently improve the
SIV predictability in such a static region of the CA, it improves
the SIV prediction broadly for the marginal ice zones where
SIC changes seasonally.

VI. DISCUSSION

Considering that the interaction between SIV and SIC can
vary by sea ice conditions (e.g., marginal sea ice zones versus
CA), it is worth comparing the model accuracy for different
regions. Thus, in Section VI-A, we discuss how the model
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Fig. 4. Difference of R and RMSE between HIS-Unet and EB-Unet: (a) R
of SIC, (b) RMSE of SIC, (c) R of SIV, and (d) RMSE of SIV. All pixel
values are the average of all days of 2022 when the SIC and SIV values of
the pixels are valid.

accuracy changes for different regions of the Arctic Ocean.
Furthermore, in Section VI-B, we examine the characteristics
of information sharing between SIV and SIC layers, which
occurs in WAMs. Finally, in Section VI-C, we discuss the
climatological representativity of 2022 with respect to its
impact on the training and testing of ML models.

A. Model Accuracy for Different Arctic Subregions

We assess the accuracy of HIS-Unet for six different sub-
regions in the Arctic Ocean (see Fig. 5): CA, Chukchi and
Beaufort Seas (CBS), Laptev and East Siberian Seas (LESS),
Kara and Barents Seas (KBS), East Greenland (EG), and
Hudson and Baffin Bays (HBB). The division of these Arctic
subregions has been conducted in many previous studies on
the basis of their unique atmospheric and sea ice characteris-
tics [65], [66], [67], [68], [69]. Fig. 6 shows the RMSE and
R of SIC and SIV prediction for these six subregions every
month in 2022.

Regarding the SIC prediction, CA shows the most accurate
prediction, with the highest R and lowest RMSE for all
months. This should be because the CA region is almost cov-
ered by high-concentration sea ice all months [see Fig. 6(c)].
Since SIC remains stable at almost 100% for all seasons, the
prediction of SIC in this region is relatively easier than in
other regions. All other subregions also show R values greater
than 0.95 and RMSE less than 10% for all seasons. The CA,
CBS, and LESS regions show a seasonal trend in the SIC
predictability: the RMSE increases in the summer months from
June to October. The lower SIC prediction performance in the
summer months might be because SIC changes significantly
in these regions during the summer months, accompanied by
fast melting and fast-growing [see Fig. 6(c)]. When these
three regions are entirely covered by sea ice from January
to April, the RMSE of SIC is less than 2% [see Fig. 6(b)].
KBS shows a low error of SIC from August to September
because of its almost ice-free condition during these months,

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 17,2025 at 15:02:05 UTC from IEEE Xplore. Restrictions apply.



KOO AND RAHNEMOONFAR: HIERARCHICAL INFORMATION-SHARING CONVOLUTIONAL NEURAL NETWORK

y -

Central Arctic
Chukchi/Beaufort Seas
Laptev/East Siberian Seas
Kara/Barents Seas

East Greenland

Fig. 5. Six Arctic subregions defined in this study: CA, CBS, LESS, KBS,
EG, and HBB.

but accuracy deteriorates in the fast ice-growing season in
October—November and melting season in May—July. HBB
also shows a similar accuracy variation with higher errors in
melting seasons from May to July. EG shows relatively stable
accuracy in SIC with R > 0.97 and RMSE < 5%, along with
a consistent SIC all over the seasons.

Next, in terms of the SIV prediction, it is interesting that the
prediction performance is relatively stable in the CA region.
While the other regions experience large fluctuations in R
and RMSE values, the fluctuation of R and RMSE in CA
is not as large as the other regions. The R-value remains
0.8-0.9 and RMSE 3.0-5.0 km/day for most of the months
in CA. In CBS and LESS, the RMSE of SIV does not exceed
4.5 km/day before October, but the RMSE increases up to
6 km/day in October-December. The KBS and HBB regions
show abnormally high R and low RMSE values from July to
October, but these values can be caused by very low SIC [see
Fig. 6(c)] and slow sea ice drift [see Fig. 6(g)]. Compared
to the other subregions, EG shows extremely fast SIV [see
Fig. 6(c)] as a gateway to a magnificent amount of sea ice
exports through the Fram Strait [70]. Despite such fast SIV,
this region shows relatively better accuracy than the other
subregions, with < 4 km/day of RMSE except for September.

Although our HIS-Unet model shows significant perfor-
mance in both SIC and SIV prediction, here we note that the
uncertainties in the target SIC and SIV observations should be
taken into account. We calculate the monthly uncertainties in
SIC and SIV observations for each subregion [see Fig. 6(d)
and (h)], which can be obtained from the SIC and SIV
datasets [48], [49]. The uncertainties of SIC are relatively
low in CA, CBS, and LESS compared to those in KBS, EG,
and HBB, and the SIC uncertainties increase substantially in
the summer months in all subregions. On the other hand, the
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Fig. 6. SIC prediction accuracy by subregions and months: (a) R of SIC and
(b) RMSE of SIC. Bright white indicates better accuracy and dark red indicates
worse accuracy. The monthly mean and uncertainty of SIC are displayed in
(c) and (d), respectively. SIV prediction accuracy by subregions and months:
(e) R of SIV and (f) RMSE of SIV. The monthly mean and uncertainty of
SIV are displayed in (g) and (h), respectively.

regional and seasonal variations in SIV uncertainties are not
as significant as those of SIC. However, KBS and HBB show
slightly larger SIC uncertainties compared to the other regions
from August to October, when sea ice melts and grows fast.

B. Characterization of Information Sharing Pattern in WAMs

In the HIS-Unet architecture, the WAMs make it possible for
the SIC and SIV prediction layers to share their information
with each other. In the WAM, the information sharing is
implemented by linear weight combination between SIC and
SIV layers followed by channel and spatial attention mod-
ules. Moreover, the output feature from this WAM is passed
through the multiplication of the output weights before being
transferred to each branch. These input and output weights
determine how much SIC and SIV information is to be mixed
with each other and how significant this shared information
is to be for each branch. Thus, we extract and examine the
weight metrics of each WAM.

The input and output weights for WAM levels 1-6 are
displayed in Fig. 7(a) and (b), respectively. Since each weight
has the same dimension as the input layer (H x W x C),
here we calculate the mean weights along all the channels
(H x W). In this section, we discuss the weighting values
and spatial patterns exhibited only in the WAMI, WAM2,
WAMS, and WAMG6 because their H x W dimensions are
closer to the original input and output dimension (256 x 256).
There is a possibility that other intermediate WAMs represent
fine-tuning the weights and biases in the model rather than
weighted information sharing.

First, when the SIV and SIC information are first blended
through WAMI, SIC information is more weighted than SIV
with higher input weights. In particular, interesting is that a
higher Aj, sic is observed near the EG and HBB regions. These
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Fig. 7.
and (6)] for each level of HIS-Unet in Fig. 1(a).

regions are known to have somehow different characteristics
of sea ice dynamics from the other regions; HBB is relatively
isolated from global oceanic currents in the CA (e.g., trans-
polar drift and Beaufort Gyre), and EG is a highly advective
region [see the fastest ice velocity in Fig. 6(f)] because of the
fast sea ice near the Fram Strait. A higher Aj, sic in these
regions implies that SIC information is useful to predict such
distinctive SIV characteristics. When this shared information
is transferred to each branch, the shared information in the
HBB, EG, and KBS regions is weighted for the SIV branch
(i.e., shown as higher A,y srv), and the shared information
in the EG and KBS regions is weighted for the SIC branch
(i.e., shown as higher Aoy sic). We emphasize that the shared
information is highly weighted in EG for both SIV and
SIC predictions, which suggests that the information sharing
between SIV and SIC is beneficial for predicting SIV and
SIC in extremely dynamic regions like EG. In general, the
magnitudes of output weights are higher in the SIV branch
compared to the SIC branch.

At the next level of information sharing at WAM?2, SIC
information is also more weighted in sharing information,
and the SIV branch receives more shared information in
transferring the shared information. When the WAM?2 receives
information from SIV and SIC branches, SIC information
is significantly weighted near marginal sea ice zones out
of the CA, particularly in KBS and HBB (i.e., higher
Ajpsic). This similar pattern is also observed in WAMS:
more SIC contribution to shared information, particularly

(a) WAM input weights [Ajn stv and Ajj sic; refer to Fig. 2 and (3)] and (b) WAM output weights [Agy,stv and Aoy sic; refer to Fig. 2 and (5)

near KBS. Given that the variation of SIC in KBS is
significantly influenced by the inflow and outflow of sea
ice from the CA [70], the collaboration of SIC and SIV
information can improve the model predictability in this
region.

At the last information sharing state (WAMO), it is noted
that the SIV information is weighted along the coastline in
the information sharing (i.e., high Aj, sv values). The SIC
information is also weighted more in the coastal regions (i.e.,
high Aj,sic values), especially near the EG region, than in
the CA. This indicates that the SIC information significantly
contributes to predicting SIV in the EG region, in agreement
with the results from WAMI1. When the shared information
transfers to each branch, the CBS and EG regions have higher
Aou.stv, while the magnitude of Agy siv in the CA is close
to zero. The spatial variability of Agy sic in WAMG6 appears
negligible.

In summary, we find the following noticeable characteristics
in information sharing through WAMs of HIS-Unet: 1) infor-
mation sharing between SIC and SIV is relatively active in
sea ice marginal zones compared to the CA; 2) when WAMs
receive information from each branch and share them, SIC
information is more weighted; 3) when WAMs pass the sharing
information to each branch, the shared information is more
weighted for the SIV branch than the SIC branch; and 4) the
information sharing between SIC and SIV is helpful to predict
SIV in the HBB, EG, and KBS regions that have distinctive
sea ice dynamics characteristics.
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Fig. 8. Monthly anomaly of (a) air temperature, (b) wind speed, (c) sea ice

area, and (d) SIV to the 20162021 monthly average in the Arctic Ocean. Sea
ice area is calculated as the area where SIC >15%. Anomaly maps of (e) air
temperature, (f) wind speed, (g) SIC, and (h) SIV in 2022 to the 2016-2021
average.

C. Climatological Representability in 2022

In this study, we use 20162021 data as training datasets
and 2022 data as test datasets. If the climatological condition
of 2022 is different from the other years, it can possibly make
the model performance biased to the training datasets and
reduce the representability of the model. Hence, in this section,
we check if any climatological difference exists between train-
ing and testing years and how it affects the model performance.
We compare the monthly anomalies of air temperature, wind
speed, SIC, and SIV in 2022 to the average in 2016-2021.
As shown in Fig. 8, 2022 showed lower temperature [see
Fig. 8(a)], lower wind speed [see Fig. 8(b)], greater sea ice area
[see Fig. 8(c)], and slower SIV than 2016-2021. The lower
anomalies of air temperature and wind speed are observed
across the entire Arctic Ocean [see Fig. 8(e) and (f)]. SIC
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anomaly also occurs in most Arctic regions; in particular,
LESS and KBS regions have extremely positive anomalies
with >10% higher than the 2016-2021 average [see Fig. 8(g)].
Such SIC anomalies in LESS and KBS regions could bring
relatively higher RMSE of SIC in these regions [see Fig. 6(b)].
The slow SIV in CBS and LESS ([see Fig. 8(h)] appears
somehow related to the negative anomaly of wind speed in
these regions [see Fig. 8(f)].

Herein, we emphasize that our HIS-Unet model shows
significant performance in such abnormal climate and sea
ice conditions in 2022 (as shown in Table IIl and Figs. 3
and 6), even though the model is trained only with
2016-2021 data. Interesting is that the spatial distribution of
SIC anomaly [see Fig. 8(g)] is somehow overlapped with
where HIS-Unet shows higher R than the EB-Unet [see
Fig. 4(a)]. Introducing SIV information into SIC prediction
could be beneficial to predicting the SIC anomaly condition
in 2022. Regarding SIV, it is worth mentioning that the
negative SIV anomaly regions in CBS and LESS show a slight
improvement of SIV prediction by HIS-Unet [see Fig. 4(c)
and (d)].

VII. CONCLUSION

In this study, we propose a multitask FCN to predict Arctic
SIC and SIV simultaneously. We accomplish the information
sharing between SIC and SIV layers by adding six WAMs
between separate SIC and SIV U-net branches. The impor-
tant SIC and SIV information is shared and highlighted in
WAMs by following procedures: 1) intermediate SIC and
SIV features are mixed with multiplying linear input weights;
2) the shared information is highlighted through channel
and spatial attention modules; and 3) the highlighted shared
information is transferred to SIC and SIV branches with
multiplying linear output weights, respectively. Since SIC
and SIV affect each other in thermodynamic and dynamic
ways, the information sharing and attention through WAMs
can indirectly allow the network to learn their complicated
interactions.

Our HIS-Unet shows better performance than other net-
work architectures, including convolutional network, U-net,
LB-Unet, and EB-Unet. In particular, our HIS-Unet outper-
forms these models in the melting or early freezing seasons
and shows a stable performance in the CA, where the SIC
is relatively consistent throughout the year. For the other
regions, although the model performance varies by the sea
ice conditions, the fidelity of HIS-Unet is close to or better
than the previous SIC and SIV prediction studies. When the
input and output weights of WAMs are examined, we find
that the information-sharing scheme of HIS-Unet plays an
important role in predicting SIC and SIV in the marginal
sea ice zones where sea ice conditions change dynamically,
such as EG, HBB, and Krara/Barents Seas. In these regions,
WAMs explicitly contribute to SIC and SIV predictions by 1)
assigning higher weights to SIC information in these regions
when mixing SIC and SIV information and 2) assigning
higher weights to shared information in these regions when
transferring shared information to the SIC and SIV branches.
Furthermore, the information sharing between SIC and SIV
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also helps predict the anomalous sea ice conditions in 2022,
even though this model is trained without this year’s data.
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