
Journal of Glaciology

Article

*Present address: Lehigh University
Mountaintop Campus, 113 Research Drive,
Bethlehem, PA 18015, USA

Cite this article: Koo Y, Rahnemoonfar M
(2025). Graph convolutional network as a fast
statistical emulator for numerical ice sheet
modeling. Journal of Glaciology 71, e15, 1–13.
https://doi.org/10.1017/jog.2024.93

Received: 16 April 2024
Revised: 31 October 2024
Accepted: 6 November 2024

key words:
Antarctic glaciology; climate change; glacier
flow; glacier modeling; ice dynamics

Corresponding author:
Maryam Rahnemoonfar;
Email: maryam@lehigh.edu

© Lehigh University, 2024. Published by
Cambridge University Press on behalf of
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

Graph convolutional network as a fast
statistical emulator for numerical ice
sheet modeling

Younghyun Koo1,2 and Maryam Rahnemoonfar1,2*

1Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA and 2Department of
Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA

Abstract

The Ice-sheet and Sea-level System Model (ISSM) provides numerical solutions for ice sheet
dynamics using finite element and fine mesh adaption. However, considering ISSM is compatible
only with central processing units (CPUs), it has limitations in economizing computational time
to explore the linkage between climate forcings and ice dynamics. Although several deep learning
emulators using graphic processing units (GPUs) have been proposed to accelerate ice sheet mod-
eling, most of them rely on convolutional neural networks (CNNs) designed for regular grids.
Since they are not appropriate for the irregular meshes of ISSM, we use a graph convolutional
network (GCN) to replicate the adapted mesh structures of the ISSM. When applied to transient
simulations of the Pine Island Glacier (PIG), Antarctica, the GCN successfully reproduces ice
thickness and velocity with a correlation coefficient of approximately 0.997, outperforming
non-graph models, including fully convolutional network (FCN) and multi-layer perceptron
(MLP). Compared to the fixed-resolution approach of the FCN, the flexible-resolution structure
of the GCN accurately captures detailed ice dynamics in fast-ice regions. By leveraging 60–100
times faster computational time of the GPU-based GCN emulator, we efficiently examine the
impacts of basal melting rates on the ice sheet dynamics in the PIG.

1. Introduction

As the global climate has been warming, ice sheets in Greenland and the Antarctic have lost
more than 7500 Gt of ice from 1992 to 2020, contributing to approximately 21 mm of global
sea-level rise (Otosaka and others, 2023). The rate of ice loss is now up to five times higher
than in the early 1990s in Greenland and 25 % higher in the Antarctic. In Antarctica, the
Pine Island Glacier (PIG) (Fig. 1a) has experienced the most rapid mass loss and acceleration
in ice velocity, which were primarily induced by melt-driven thinning near the grounding line
and calving events (Jacobs and others, 2011; Joughin and others, 2021a, 2021b). Consequently,
the PIG accounts for more than 20 % of Antarctica’s contribution to global sea-level rise
(Rignot and others, 2019). Due to the great contribution of the PIG to global sea-level rise,
accurate modeling of ice thickness and velocity of the PIG has been a paramount concern
for the science community (Vieli and Payne, 2003; Gladstone and others, 2012; Larour and
others, 2012a; Seroussi and others, 2014; Rosier and others, 2021).

For the last few decades, scientists have proposed several physical models to explain the
thermomechanical flows of ice sheets. In those modeling studies, ice is the viscous
non-Newtonian fluid that follows the Stokes equation (Glen and Perutz, 1955). On the
basis of the Stokes equation, the dynamic mechanisms of large ice sheets can be described
by ‘Full-Stokes’ (FS) equations consisting of partial differential equations (PDEs) with four
unknowns: the 3 components of the ice velocity, (u, v, w), and the pressure, p. However,
since solving FS equations is computationally expensive and impractical at a continental
scale and a high resolution, several simplified approximations of FS have been proposed.
For example, the Shallow Ice Approximation (SIA) (Hutter, 1983) assumes that ice sheet
dynamics is mostly driven by basal sheer stress, balancing the basal shear stress and gravita-
tional driving stress of grounded ice. However, its simplified mechanical assumptions limit its
applicability to non-ice-streaming regions and valley glaciers where ice flow is dominated by
vertical shearing. For ice streams or floating ice shelves, the Shallow Shelf Approximation
(SSA) (Morland, 1987; MacAyeal, 1989) provides an alternative 2D solution by assuming
that horizontal velocity is depth-independent and vertical shear stresses are negligible.
However, SSA cannot describe the ice dynamics in areas where vertical variations in speed
are considerable, such as grounding lines, ice stream margins, or complex ice flow near an
ice divide. Besides the 1D solutions of SIA and 2D solutions of SSA, the Blatter-Pattyn
approximation (BP) (Blatter, 1995; Pattyn, 1996) provides valid and efficient 3D solutions
in the majority of an ice sheet, both longitudinal stresses of fast-flowing ice streams and ver-
tical shear stresses of slow ice.

The Ice-sheet and Sea-level System Model (ISSM) is a thermomechanical numerical model
that provides solutions for these four different ice flow models using a finite element approach
(Larour and others, 2012b). The unique characteristics of the ISSM model can be summarized
as follows: (1) finite element methods, (2) fine mesh adaptation, and (3) parallel technologies.
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First, by using unstructured meshes, the ISSM provides efficient
ice flow solutions with high resolutions in areas where ice flow
dynamics is critical. Second, adaptive mesh refinement (AMR)
allows ISSM to allocate its computational resources to the
fine-resolution area of fast ice and coarse-resolution areas of stag-
nant ice. Finally, state-of-the-art parallel technologies reduce the
running time of the ISSM model dramatically when implemented
in computer clusters.

Despite these advantages of ISSM in reducing computational
time via parallel technologies, implementing the ISSM model is
only available through multi-core central processing units
(CPUs) because solving PDEs of ice dynamics requires serial pro-
cessing of CPU. The computational demand of CPU-based
numerical modeling makes it time-consuming and inefficient to
explore the impacts of climate forcings on ice sheet dynamics.
Hence, in order to predict the ice sheet dynamics under various
climate forcings (e.g. temperature, CO2 concentration, basal melt-
ing rate), statistical emulators have been used to approximate the
mapping between climate forcings and ice sheet behaviors
(Edwards and others, 2021; Berdahl and others, 2021; Van
Katwyk and others, 2023). Recently, leveraging the capability of
graphic processing units (GPUs) in parallel processing, deep
learning techniques have emerged as an attractive and efficient
tool for statistical emulators. GPUs divide a given task into a
number of small tasks and process them in parallel, which allows
a considerable speed-up compared to serial processing by CPU.
Although GPUs cannot be used to directly solve the PDEs of ice
flow, the parallel processing ability of GPUs for matrix multiplica-
tion allows deep learning models to learn the statistical features of
numerical simulation results with much faster computational time.
Thus, once trained with numerical simulation data, GPU-based

deep learning models can act as emulators that replicate the behav-
ior of numerical models and accelerate the computational time of
ice sheet modeling.

When using deep learning techniques as statistical emulators
for numerical ice sheet models, it is essential to select an appro-
priate model architecture to represent the geospatial features of
ice sheets accurately. In this aspect, convolutional neural networks
(CNNs) have been employed as a typical architecture to capture
the spatial variations in topographical features, which play a key
role in determining ice sheet dynamics (Jouvet and others,
2022; Jouvet and Cordonnier, 2023; Jouvet, 2023). However,
although traditional CNN architectures can successfully recognize
spatial patterns of Euclidean or grid-like structures (e.g. images)
by using fixed-size trainable localized filters, they cannot be
used for non-Euclidean or irregular structures where the connec-
tions to neighbors are not fixed (Zhang and others, 2019). Since
ISSM uses unstructured meshes, using CNN as an emulator for
ISSM can introduce two problems: (1) the CNN grid with fixed
resolution can lose dynamical details in fast ice areas; (2) the
CNN grid requires unnecessary computational demands in slow
ice areas. Instead, for such non-Euclidean or irregular data struc-
tures, including molecules, point clouds, social networks, and nat-
ural language processing, graph neural networks (GNNs) have
been proposed and broadly utilized (Zhang and others, 2019).
In GNNs, data structures are depicted as graphs consisting of
data points (i.e. nodes) connected by lines (i.e. edges). GNNs
find statistical patterns or make predictions in graphs using pair-
wise message passing between nodes, such that individual nodes
iteratively update their representations by exchanging information
with their neighboring nodes. Various GNN architectures have
been proposed with various message passing procedures by

Figure 1. (a) Location of Pine Island Glacier (PIG) in the Antarctic indicated by a red poylgon. Dashed lines are 10-degree-apart latitudes and 30-degree-apart long-
itudes. (b) Initial ice velocity, (b) surface elevation, and (c) ice thickness of the PIG. The meshes in (b), (c), and (d) are initialized with 20 km mesh size. The extent of
meshes in (b), (c), and (d) correspond to the red polygon in (a).
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different applications and graph characteristics (Zhang and
others, 2019). Among these, graph convolutional network
(GCN), the most typical and simple GNN architecture, can
replace traditional CNNs in non-regular graph structures because
it applies convolutional operators directly on graphs (Fig. 2).

The objective of this study is to develop a computationally effi-
cient GCN emulator for ISSM in order to infer the contributions
of thermal melting to the ice dynamics of the PIG. We substitute
the ISSM meshes with graph structures and let our GCN imitate
the ability of the ISSM to predict ice thickness and flow. The main
contributions of this study are the following:

We develop a GCN as a statistical emulator to reproduce the ice
thickness and velocity simulated from the ISSM numerical ice
sheet model.

We conduct extensive experiments for the PIG to evaluate the
fidelity and performance of the GCN model, and compare
the GCN with other non-graph machine learning models.

Using the fast GCN emulator, we examine the impacts of basal
melting rate on the ice volume and velocity in the PIG.

The remainder of the paper is organized as follows. Section 2
describes the details of how to train and evaluate a GCN and
other baseline deep learning models with ISSM simulation data.
Next, in section 3, we evaluate the fidelity and computational per-
formance of the GCN emulator by comparing it with CPU-based
ISSM simulations and other baseline models. Section 3 also
demonstrates how this GCN emulator can be used to investigate
the impacts of basal melting rate on the ice sheet behavior. In
section 4, we evaluate the upstream training costs of the deep
learning emulators and provide a comprehensive discussion
about the advantages and challenges of the GCN.

2. Methods

We train and test a GCN emulator with the numerical ice sheet
simulations of ISSM. We compare this GCN emulator with two
non-graph deep learning architectures: CNN and multi-layer per-
ceptron (MLP).

2.1 Preparation of training data from numerical simulations

In order to train deep learning emulators, we collect the numer-
ical simulation results in the PIG from the ISSM transient simula-
tions. We simulate the 20-year evolution of ice thickness and ice
velocity in the PIG by adapting the ISSM-based sensitivity experi-
ments conducted by Seroussi and others (2014) and Larour and
others (2012a). Since the PIG has a significant portion of floating
ice, we use the SSA (Morland, 1987; MacAyeal, 1989) to explain
ice flow. The SSA can be expressed by the following equations:

∂

∂x
4Hm

∂u
∂x

+ 2Hm
∂v
∂y

( )
+ ∂

∂y
Hm

∂u
∂y

+ Hm
∂v
∂x

( )

= rgH
∂s
∂x

(1)

∂

∂y
4Hm

∂v
∂y

+ 2Hm
∂u
∂x

( )
+ ∂

∂x
Hm

∂u
∂y

+ Hm
∂v
∂x

( )

= rgH
∂s
∂y

(2)

where (u, v) are the x and y components of the ice velocity vector
in the Cartesian coordinate system, H is the local ice thickness,

Figure 2. Structures of data and node connectivity for different deep learning architectures: graph convolutional network (GCN), convolutional neural network
(CNN), and multi-layer perceptron (MLP) for fast and slow ice conditions. The graph structure of GCN is converted from the finite element (i.e. unstructured meshes)
of ISSM: the fast-ice area has a fine mesh resolution (a), and the slow-ice area has a coarse mesh resolution (d), and the nodes of the element are connected as
edges. The graph convolution of a node is determined by the neighboring nodes. The regular grid structure of CNN has the same resolution (2 km) for all locations
regardless of ice velocity (b and e), and the convolutional kernel size is fixed to 3 × 3 for all locations. The node of MLP is the same as the node of ISSM and GCN, but
the connectivity between nodes is not used; only the features of a node are used to predict the ice condition at that node (c and f).
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μ is the effective ice viscosity, ρ is ice density, and g is the accel-
eration due to gravity.

The ISSM transient simulations require some ice sheet obser-
vation data (e.g. ice velocity, thickness, and bed elevation) and cli-
matological data (e.g. temperature, surface mass balance). We
collect ice velocity data from the NASA Making Earth System
Data Records for Use in Research Environments (MEaSUREs)
(Scheuchl and others, 2012) (Fig. 1b). This ice velocity map is
derived from multiple SAR images from 2007 to 2009 with
1 km spatial resolution. The surface elevation and bed topography
are collected from the 1 km Antarctic digital elevation model
(DEM) data in 2008 (Bamber and others, 2009) (Fig. 1c) and
the Amundsen Sea bathymetric map data in 2007 with 250 m
grids (Nitsche and others, 2007) (Fig. 1d). Finally, we collect
three climatological datasets: Antarctic surface temperature
records of infrared satellite data (1 km resolution) and weather
stations from 1979 to 1998 (Comiso, 2000), 5-km interpolated
Antarctic surface mass balance (SMB) map in 1986–1998
(Vaughan and others, 1999), and 5-km interpolated Antarctic
geothermal heat flux in 2005 (Maule and others, 2005).

The unstructured meshes of ISSM are generated and adapted by
the bi-dimensional anisotropic mesh generator (BAMG) (Hecht,
2006). Once a triangular mesh is set with an initial mesh size
(M0), the BAMG algorithm refines the mesh by splitting the tri-
angle edges and inserting new vertices in the mesh until the desired
resolution is reached. The desired resolution is determined by cri-
teria based on the element distance to the grounding line and ZZ
error estimator for deviatoric stress tensor and ice thickness (dos
Santos and others, 2019). This AMR procedure can improve the
accuracy of numerical simulations and reduce computational cost
compared to the uniform meshes without AMR (dos Santos and
others, 2019). To examine how the results change with mesh reso-
lution, we implement the ISSM simulations on three different mesh
sizes: M0 = 2 km, M0 = 5 km, and M0 = 10 km. For different mesh
size experiments, meshes are adjusted by ice velocity after the ini-
tialization: the area with fast ice has a relatively finer mesh reso-
lution, and slow ice has a coarser mesh resolution (Larour and
others, 2012b; dos Santos and others, 2019). The 2 km, 5 km,
and 10 km mesh initialization generates the final mesh grid with
12,459, 5,499, and 3,511 elements, respectively, corresponding to
6,384, 2,852, and 1,833 nodes (Table 1).

In addition, considering basal melting is the main driver of ice
mass loss in the PIG (Jacobs and others, 2011; Joughin and others,
2021a), we collect the ISSM simulations from different basal melting
rate scenarios to statistically examine how different melting rates
change the dynamic behavior of ice sheet. We implement the
ISSM simulations for 36 different annual basal melting rates ranging
from 0 to 70m a−1 for every 2m a−1. Transient simulations are run
forward for 20 years with time steps of one month. Consequently,
we execute 20-year (240-month) transient simulations 108 times:
3 different mesh sizes and 36 different melting rates.

The ISSM simulation produces the ice velocity and thickness
predictions for individual nodes that consist of adjusted triangular
meshes (Fig. 2). In order to use this data as the input and output
training data for GCN, CNN, and MLP, we convert the raw
mesh of ISSM into a certain data structure that corresponds to
each deep learning architecture. For the GCN architecture, we con-
vert the raw finite elements into graph nodes and edges. In the

ISSM meshes, each element consists of three nodes; we connect
these nodes with edges. Since we use the nodes and elements of
the raw ISSM mesh, the resolution of this graph is exactly the
same as the ISSM simulation. On the other hand, since the CNN
requires regular grid data, we interpolate the raw ISSM mesh into
a 2 km regular grid using bilinear interpolation. Since the 2 km
resolution is applied to all locations, the resolution of this regular
grid can be more coarse than the raw ISSM mesh in the fast-ice
region (Figs. 2a, b) but finer in the slow-ice region (Figs. 2d, e).
The MLP uses the same nodes as the GCN, but it does not incorp-
orate the connectivity information between the nodes (Figs. 2c, f).

2.2 Graph convolutional network (GCN)

We experiment with the GCN architecture proposed by Kipf and
Welling (2017). In this multi-layer GCN architecture, let the
undirected graph G = (V, E) consist of N nodes vi [ V (1≤
i≤N ) and edges (vi, vj) [ E (1≤ i, j≤N ). The connectivity
between nodes vi and vj can be represented by an adjacency
matrix A [ RN×N . When the node features in the lth layer are
propagated to the (l + 1)th layer, the node features are updated
using the following layer-wise propagation rule:

H(l+1) = s(D̃
−1

2ÃD̃
−1

2H(l)W(l)) (3)

where Ã = A+ IN is the adjacency matrix of the undirected
graph G with added self-connections. IN is the identity matrix,
D̃ii =

∑
j Ãij, W is a layer-specific trainable weight matrix, and

σ( ⋅ ) is an activation function. H(l) [ RN×D is the matrix of acti-
vations in the l th layer, and H(0) is the input of the neural net-
work. This propagation rule is inspired by the localized
first-order approximation of spectral graph convolutions on
graph-structured data (Kipf and Welling, 2017).

Let the lth graph convolutional layer receive a set of node features
H(l) = {h(l)1 , h(l)2 , . . . , h(l)N }, h(l)i [ RFl as the input and produce a
new set of node features, H(l+1) = {h(l+1)

1 , h(l+1)
2 , . . . , h(l+1)

N },
h(l+1)
i [ RFl+1 , for the (l + 1)th layer. Fl and Fl+1 are the number

of features in each node at the lth layer and (l + 1)th layer, respect-
ively. Then, the layer-wise propagation rule of Eq. (3) can be
expressed as follows:

h(l+1)
i = s

( ∑

j[N (i)

1
cij
W(l)h(l)j

)
(4)

where N (i) is the set of neighbors of ith node, cij is an appropriately
chosen normalization constant for the edge (vi, vj) defined as the
product of the square root of node degrees (i.e.
cij =

%%%%%%%
|N (j|)

√ %%%%%%%
|N (i)|

√
), and W(l) [ RFl+1×Fl .

The graph structure G for the GCN is generated from unstruc-
tured meshes of ISSM; the nodes and edges of the meshes are
taken as the nodes and edges of graph G (Figs. 2 and 3). To deter-
mine the optimal settings for the number of hidden layers and
features of the GCN, trial-and-error experiments were conducted
based on the mean square error (MSE). After we calculated MSE
for 16 settings with 4 different hidden layers (1, 2, 5, and 10
layers) and 4 different numbers of features (32, 64, 128, and
256), we determined to use the combination of 5 hidden layers
and 128 features, which produced the lowest MSE. The leaky
Rectified Linear Units (leaky ReLU) function with 0.01 negative
slope is chosen as the activation function (Fig. 3).

2.3 Baseline non-graph deep learning emulators

The GCN, FCN, and MLP have significant differences in handling
the spatial information of nodes. First, in the GCN, the nodes are

Table 1. The number of nodes, edges, and elements for three M0 settings

M0 2 km 5 km 10 km

Nodes 6,384 2,852 1,833
Edges 37,684 16,700 10,686
Elements 12,459 5,499 3,511

4 Younghyun Koo and Maryam Rahnemoonfar
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iteratively updated through a series of graph convolutional layers
by exchanging messages between the neighboring nodes con-
nected by edges (Eq. (4)). As the most commonly used deep
learning architecture for ice sheet emulators (Jouvet and others,
2022; Jouvet, 2023; Jouvet and Cordonnier, 2023), the CNN can
intrinsically embrace the neighboring information between
nodes in regular grids through weights of the convolutional ker-
nels, but the kernel size is fixed for all locations. On the other
hand, as the most basic deep learning architecture (Popescu and
others, 2009), the MLP handles individual nodes independently
and uses only the features of individual nodes to predict the out-
put features; the connections between nodes are not embedded in
the MLP architecture. In summary, the GCN uses the neighboring
information between nodes through their node-edge connectivity
regardless of their spatial distances (i.e. flexible connectivity); the
CNN uses the fixed neighboring information for all nodes merely
based on their distances (i.e. fixed connectivity); the MLP does
not use any spatial neighboring information between nodes (i.e.
no connectivity) (Fig. 2). The detailed architectures of CNN
and MLP are described in the following sections.

2.3.1 Convolutional neural network (CNN)
The CNN in this study, particularly a fully convolutional network
(FCN), has a similar architecture to Jouvet and others (2022) but
consists of one input layer (10 features), five hidden convolutional
layers, and one output layer (3 features). The 2-D convolutional
layers of this FCN have a kernel size of 3 × 3 and a filter size of
128. We conducted trial-and-error experiments to determine
the optimal number of hidden layers and filters. We calculated
MSE for 12 settings with 3 hidden layers (2, 5, and 10 layers)
and 4 features per hidden layers (32, 64, 128, and 256), and 5 hid-
den layers and 128 features are determined as the best setting to
minimize MSE and computational load of the FCN.
Convolutional operations at each hidden layer multiply 3×3
weights and pass to the next layer, and the leaky ReLU activation
function of 0.01 negative slope is applied after each convolutional
layer. Since the FCN takes regular grids as the input and output,
the interpolated 2 km grid datasets are used as the input and out-
put of the FCN.

2.3.2 Multi-layer perceptron (MLP)
The MLP consists of one input layer (10 features), five hidden
layers (128 features), and one output layer (3 features). When

determining the hyperparameters of the MLP, we did not conduct
trial-and-error experiments but used the same settings as the
GCN. Maintaining an equal number of learning parameters for
the GCN and MLP allows us to examine the pure effects of
embedding adjacency information between nodes into the
model training. All of the MLP layers are fully connected layers
(Haykin, 1998): i.e. each node in hidden layers is updated with
its own features without embedding the neighboring node fea-
tures during the propagation process. The leaky ReLU activation
function of 0.01 negative slope is applied after each hidden layer.

2.4 Training and testing graph neural networks

To train the GCN model, a total of 25,920 graph structures (240
months ×3 mesh sizes ×36 basal melting rates) are collected from
the ISSM transient simulations. All nodes of the input graphs
contain 10 input features (time, basal melting rate, bed elevation,
surface mass balance (SMB), initial x-component velocity, initial
y-component velocity, magnitude of initial velocity, initial surface
height, initial ice thickness, and initial ice/ocean mask) and 3 out-
put features (x-component ice velocity, y-component ice velocity,
and ice thickness). We normalize the input and output feature
values between [− 1, 1] using the nominal maximum and min-
imum values that each variable can have. We divide the 25,920
graph structures into train, validation, and test datasets based on
the melting rate values: melting rates of 0, 20, 40, and 60m a−1

are used for validation, melting rates of 10, 30, 50, and 70m a−1

are used for testing, and the remainders are for training. As a result,
the number of train, validation, and test datasets is 20,160 (77.78
%), 2,880 (11.11 %), and 2,880 (11.11 %), respectively. This data
splitting approach allows us to assess how accurately our emulators
can predict the ice sheet behaviors under out-of-training melting
rate scenarios. We use the MSE as the loss function, and the
model is optimized by Adam stochastic gradient descent algorithm
(Kingma and Ba, 2017) with 500 epochs and 0.001 learning rate.
All deep learning models are trained on the Python environment
using the Deep Graph Library (DGL) (Wang and others, 2019)
and PyTorch (Paszke and others, 2019) modules. In measuring
the computational time, we record the time to generate the final
results of 20-year ice thickness and velocity for all 36 melting
rates. Two computational resources of the same desktop (Lenovo
Legion T5 26IOB6) are compared: a CPU (Intel(R) Core(TM)
i7-11700F) and a GPU (NVIDIA GeForce RTX 3070).

Figure 3. Schematic illustration of the graph convolutional network (GCN) emulator.
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2.5 Model evaluation

We evaluate the ability of our emulators to reproduce ice velocity
and ice thickness by comparing the predictions with the ISSM
simulation results. We calculate two metrics for this assessment:
root mean square error (RMSE) and correlation coefficient (R):

RMSE(ŷ, y) =

%%%%%%%%%%%%%%%%%
1
N

∑N

i=1

(ŷi − yi)
2

√√√√ (5)

R(ŷ, y) =

∑N
(ŷi − ŷ)(yi − y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
∑N

(ŷi − ŷ)2
∑N

(yi − y)2
√ (6)

where y is the reference value from ISSM simulations, ŷ is the pre-
dicted value from emulators, and N is the number of nodes.
RMSE measures the difference between predictions and ISSM
results; a value of 0 indicates the perfect fit between them. R mea-
sures the statistical correlation between predictions and ISSM
results, ranging from -1 to 1; as a model better represents the spa-
tial and temporal patterns of the ISSM results, the value is closer
to 1. We note that we conduct additional interpolation to calcu-
late the RMSE and R of the FCN model. Since the output of
the FCN (2-km regular grid) does not exactly correspond to
ISSM meshes, we interpolate the FCN outputs to the ISSM
mesh using bilinear interpolation, and these interpolated values
are compared to the true values of ISSM meshes.

3. Results

We evaluate the fidelity and computational efficiency of these
deep learning emulators in predicting ice thickness and velocity.
This evaluation is conducted and compared for three different ini-
tial mesh sizes (M0) to investigate the sensitivity of results to mesh
resolutions.

3.1 Ice thickness

Table 2 shows the overall accuracy of ice thickness represented by
RMSE and R. All deep learning emulators exhibit good agree-
ments with the ISSM simulations with R greater than 0.999. On
finer meshes of 2 km and 5 km M0, GCN shows the best accuracy
with around 12 m of RMSE. Even though the FCN shows the low-
est RMSE on 10 km M0, the difference between FCN and GCN is
negligible. The MLP always shows the lowest accuracy among the
three emulators on all mesh conditions. When comparing the
accuracy for different mesh sizes, it is interesting that the RMSE
of GCN and MLP remain consistent for different mesh resolu-
tions: 12–14 m of RMSE for GCN and 24–25 m of RMSE for
MLP. However, the RMSE of FCN varies from 14 to 21 m
depending on the mesh resolutions; the FCN shows a lower

fidelity on a finer mesh structure. This variation in accuracy
with the FCN model could be attributed to the fixed regular
grid structure of FCN. While the GCN and MLP directly take
the unstructured meshes of ISSM (i.e. smaller mesh sizes for faster
ice) as input and output, the FCN uses the 2 km regular grids
interpolated from the ISSM meshes. Hence, this interpolated
grid causes the FCN to lose topographical details and deteriorate
the accuracy where the unstructured meshes are arranged more
densely than the 2 km grid. Such a loss of spatial details can be
critical in the precise delineation of the ice boundary where the
ice conditions change drastically.

Figure 4 shows the RMSE of ice thickness by years for four test
melting rates (r = 10, 30, 50, and 70 m a−1) and three initial mesh
sizes (M0 = 2 km, 5 km, and 10 km). The GCN generally shows
the lowest RMSE over 20-year transient simulation for most melt-
ing rates and mesh sizes. As shown in Fig. 4, the RMSEs of GCN
and MLP do not vary significantly by different mesh sizes; how-
ever, the RMSE of FCN decreases with coarser mesh resolutions.
In all melting rate scenarios, the RMSEs of GCN and FCN slightly
decrease from the initial condition to around year 10 and then
increase until year 20. On the contrary, the RMSE of MLP con-
tinuously increases from the initial condition to year 20. At the
melting rate of 70 m a−1, the RMSE of MLP reaches 60 m in
year 20. The RMSE of ice thickness for a 70 m a−1 melting rate
experiment rises more rapidly by year compared to the other
melting rates. Dramatic changes in ice flow under a higher melt-
ing rate scenario could make it difficult for deep learning emula-
tors to replicate such a rapid change.

The maps of ice thickness from the ISSM simulation and deep
learning emulators are depicted in Fig. 5. The overall spatial dis-
tribution of ice thickness is well reproduced by deep learning
emulators: thicker ice (>1000 m) on the northeast side and thin-
ner ice on the south side near the coast (<500 m). The emulators
tend to overestimate ice thickness at a higher melting rate (r = 70
m a−1) and underestimate ice thickness at a lower melting rate. It
is noted that such overestimation and underestimation occur near
the central ice stream where the ice moves fast. Additionally, com-
pared to the GCN and FCN, the MLP shows higher errors around
the grounding lines. Such a higher error from MLP can be attrib-
uted to the no-connectivity characteristics of the MLP architec-
ture, which prohibits the MLP from predicting the complicated
interaction between grounding and floating ice around the
grounding line. On the other hand, the GCN and FCN reproduce
relatively stable accuracy near the grounding line due to their abil-
ity to leverage neighboring node information.

3.2 Ice velocity

RMSE and R of ice velocity are shown in Table 3. All deep learn-
ing models show good agreements with the ISSM simulation
results with R > 0.99, but the GCN outperforms the others on
all meshes. In particular, the superiority of GCN over FCN and
MLP is more evident on a finer mesh of 2 km M0: the RMSE of
GCN is lower than the FCN and MLP by 30m a−1 and 45m a−1,
respectively. Similar to the ice thickness result, the GCN and MLP
show relatively low variations in RMSE by different mesh resolu-
tions: the range of RMSE is around 6m a−1 and 8m a−1 for
GCN and MLP, respectively. However, the RMSE of FCN varies
from 58m a−1 on 10 km M0 to 86m a−1 on 2 km M0, equivalent
to 28m a−1 of range. As already discussed in the ice thickness result,
the fixed 2 km resolution of FCN can lose the detailed ice dynamics
at faster ice zones, leading to lower accuracy at finer mesh
resolutions.

Figure 6 shows the RMSE of ice velocity by years for different
melting rates. In general, the GCN shows the lowest RMSE over
20-year transient simulation for most of the melting rates and

Table 2. Accuracy of ice thickness for three deep learning emulators with
different mesh resolutions

Model
M0 = 2 km M0 = 5 km M0 = 10 km

RMSE (m) R RMSE (m) R RMSE (m) R

GCN 12.261 0.9998 12.678 0.9998 14.267 0.9997
FCN 21.463 0.9995 17.120 0.9997 14.248 0.9997
MLP 24.125 0.9992 24.569 0.9992 25.337 0.9991

All metrics are averaged for the 10, 30, 50, and 70 m a−1 melting rates. The best accuracy for
each mesh size is highlighted in bold.
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Figure 4. RMSE of ice thickness by years for different basal melting rates (r) and initial mesh sizes (M0).

Figure 5. Maps of ice thickness modeled by the ISSM simulation and difference with deep learning emulators (GCN, FCN, and MLP from top to bottom) for two
different basal melting rates (r = 10 and 70m a−1) and different initial mesh sizes (M0 = 2, 5, and 10 km). Each map shows the 20-year average of ice thickness. The
ice thickness maps for years 1, 10, and 20 are shown in Fig. 9. The dashed grids indicate a Cartesian 20 km grid, and the magenta line indicates the grounding line.
The south side of the grounding line is floating, and the north side of the grounding line is grounded.
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mesh sizes. Similar to the ice thickness result, mesh resolutions do
not have a significant impact on the RMSEs of GCN and MLP,
whereas the RMSE of FCN decreases with coarse mesh resolu-
tions. In all melting rate scenarios, the RMSEs of emulators
increase from the first year to the last year. The MLP shows the
most dramatic increase in RMSE by year: at 70 m a−1 of melting
rate, the RMSE reaches up to 300 m a−1 in year 20. However, the
increases in RMSEs by year for GCN and FCN are not as signifi-
cant as MLP; at 70 m a−1 of melting rate, the RMSEs reach
150–200 m a−1 in year 20. The higher errors at higher melting
rates might be caused by more dynamic ice conditions under
more accelerated melting; since ice flows faster as time passes
under a higher melting rate, it would be difficult for deep learning
emulators to learn such dramatic variations in ice flow.

The spatial distribution of ice velocity from the ISSM simula-
tion and deep learning emulators are shown in Fig. 7. The overall
spatial distribution of ice velocity is well reproduced by deep
learning emulators: fast ice along the central ice stream, slow ice
flow around ice margins, higher velocity under higher melting
rates, and increase in ice velocity by time under a higher melting
rate. Interestingly, most large errors are found along the ground-
ing part of the central ice stream. All deep learning emulators
overestimate velocity at a melting rate of 10 m a−1 and underesti-
mate velocity at a melting rate of 70 m a−1. Similar to the findings

from ice thickness results, the MLP exhibits larger errors around
the grounding line, which may be caused by the no connectivity
propagation process of MLP. Additionally, it is worth mentioning
the substantial differences between GCN and FCN results on a
mesh resolution of M0 = 2 km. In the M0 = 2 km result, the FCN
shows a significant error around the boundary between fast and
static ice on the floating ice part, which is not observed in the
GCN result. This result implies the limitation of fixed-resolution
FCN in describing the detailed ice dynamics with a finer reso-
lution. While the ISSM simulation refines mesh sizes and renders
a finer mesh in the fast ice region, the FCN uses a 2 km grid size
for all locations regardless of ice dynamic conditions. Hence, the
2 km fixed resolution of FCN does not capture the dynamic
details produced by numerical ice sheet models near the bound-
ary of fast and slow ice.

3.3 Computational performance

The main contribution of the deep learning emulators is to reduce
the computational time by exclusively using GPUs. The total
elapsed times for generating the transient results from the ISSM
and deep learning models are shown in Table 4. Most deep learn-
ing emulators take less time than the ISSM with both CPU and
GPU. The MLP generally takes the least time for all mesh sizes
because of its simplest architecture. While the computational
times of FCN remain consistent for all mesh size experiments
because the grid size is always fixed to 2 km, the computational
times of GCN and MLP increase with more nodes with a finer
mesh resolution. When a GPU is used, the FCN shows approxi-
mately 69 times speed-up compared to the ISSM simulations for
all mesh resolutions. On the other hand, the GPU-based compu-
tation time of MLP is 432 times, 603 times, and 732 times faster
than ISSM for 2 km, 5 km, 10 km of M0, respectively; the
GPU-based computation time of GCN is 64 times, 86 times,
and 103 times faster than ISSM for 2 km, 5 km, 10 km of M0,
respectively. When comparing the CPU and GPU computation

Table 3. Accuracy of ice velocity for three deep learning emulators with
different mesh resolutions

Model
M0 = 2 km M0 = 5 km M0 = 10 km

RMSE (m a−1) R RMSE (m a−1) R RMSE (m a−1) R

GCN 55.668 0.9975 49.607 0.9982 51.341 0.9983
FCN 86.223 0.9948 69.982 0.9969 58.393 0.9978
MLP 101.187 0.9920 94.199 0.9932 93.029 0.9942

All metrics are averaged for the 10, 30, 50, and 70 m a−1 melting rates. The best accuracy for
each mesh size is highlighted in bold.

Figure 6. RMSE of ice velocity by years for different basal melting rates (r) and initial mesh sizes (M0).
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times for deep learning models, the GPU outperforms the CPU
significantly, speeding up by 3–30 times. The most dramatic
speed-up by replacing GPU with CPU occurs with FCN: the com-
putational time of FCN speeds up by 28 times using CPU for all
mesh resolutions.

This result demonstrates the computational flexibility of GCN
to mesh resolution and the inflexibility of FCN when using differ-
ent mesh resolution settings. Since the FCN should be implemen-
ted on regular grids for all locations with a fixed resolution, it
cannot efficiently allocate computational resources in accordance
with ice dynamic conditions and computational complexity.
However, since the GCN is implemented on adjusted meshes,
computational resources can be efficiently allocated to where a
more detailed resolution and computational complexity are neces-
sary. In this aspect, we can adjust the mesh resolution of the GCN
emulator depending on the desired details of the ice dynamics,
whereas we should use the same resolution for all locations in
the FCN emulator. Consequently, the GCN would be a more

efficient option than the FCN in emulating numerical ice sheet
models without losing detailed fine-resolution information.

3.4 Sensitivity of ice sheet behaviors to basal melting rate

Since the deep learning emulators reduce computational time
dramatically, they can be useful for a fast sensitivity analysis
to investigate the impacts of environmental parameters on the
behavior of ice sheets. Considering that accelerated ocean warm-
ing in the Amundsen Sea is the main driver for ice shelf melting
in the west Antarctic during the 21st century (Naughten and
others, 2018; Jourdain and others, 2022; Naughten and others,
2023), we use our emulators to examine how the total ice vol-
ume and mean ice velocity change with different basal melting
rate scenarios. The 20-year variations in total ice volumes and
mean ice velocities by different melting rates 10, 30, 50, and
70 m a−1 are retrieved by the ISSM simulations and deep learn-
ing emulators (Fig. 8). Regarding the total ice volume (Fig. 8a),
deep learning models successfully reproduce the decrease in ice
volume with higher melting rates. As the melting rate changes
from 10 to 70 m a−1, the ice volume loss is more accelerated.
If the melting rate increases from 10 to 70 m a−1, the PIG will
lose approximately 2,600 km3 of ice after 20 years, according
to the ISSM simulations. Such potential ice mass loss changes
driven by melting rates are underestimated by deep learning
emulators: 2,000 km3 of ice loss by GCN and FCN, and 1,600
km3 by MLP. This is because deep learning emulators tend to
underestimate the total ice volume at lower melting rate scen-
arios and overestimate ice volume at higher melting rate
scenarios.

Figure 7. Maps of ice velocity modeled by the ISSM simulation and difference with deep learning emulators (GCN, FCN, and MLP from up to bottom) for two dif-
ferent basal melting rates (r = 10 and 70m a−1) and different initial mesh sizes (M0 = 2, 5, and 10 km). Each map shows the 20-year average of ice velocity. The ice
velocity maps for years 1, 10, and 20 are shown in Fig. 10. The dashed grids indicate a Cartesian 20 km grid, and the magenta line indicates the grounding line. The
south side of the grounding line is floating, and the north side of the grounding line is grounded.

Table 4. Total computational time (in seconds) for producing final ice sheet
transient simulations for 20 years and 36 different melting rates

Model
M0 = 2 km M0 = 5 km M0 = 10 km

CPU GPU CPU GPU CPU GPU

Simulation ISSM 1538.17 − 753.30 − 541.98 −
Emulator GCN 148.19 23.85 69.74 17.83 45.04 14.96

FCN 621.72 22.20 613.33 22.54 612.03 22.46
MLP 56.64 3.56 27.45 2.55 18.89 2.10

The fastest emulator is highlighted in bold.
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We also find the ice velocity increases with higher melting
rates (Fig. 8b), which are reproduced by the ISSM and all machine
learning emulators. If the melting rate changes from 10 to
70 m a−1, the mean ice velocity increases by up to 200 m a−1

after 20 years. In general, deep learning emulators overestimate
ice velocity at lower melting rate scenarios and underestimate it
at higher melting rate scenarios. Similar to the ice thickness
experiment, the MLP shows larger variations of ice velocity
with the ISSM simulation, but the GCN and FCN follow the
trend of ISSM well with negligibly low differences.

4. Discussion

4.1 Upstream training time

As shown in Table 4, the deep learning emulators can produce the
transient simulation results extremely fast by leveraging GPUs.
However, since such statistical emulators should be first trained
with the numerical simulation data before applying them, it is
necessary to consider the upstream training cost to assess whole-
process efficiencies. Table 5 shows the number of learnable para-
meters and training time for the GCN, FCN, and MLP models.

Figure 8. (a) Total ice volume and (b) mean ice velocity of the PIG over 20 years with four test melting rates (r = 10, 30, 50, and 70 m a−1) and three initial mesh sizes
(M0 = 2, 5, and 10 km).
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These models are trained on the Texas Advanced Computing
Center (TACC) Lonestar 6 multiple-GPU system equipped with
3 NVIDIA A100 GPUs (40 GB memory). The MLP takes the
least training time because of the simplest architecture, followed
by GCN and FCN. It is noted that the FCN takes 2.66 times
and 4.18 times more training time than GCN and MLP, respect-
ively, because it has more than double the learnable parameters
compared to the other emulators. Therefore, considering the
model fidelity (Tables 2 and 3), the computational time for pro-
ducing transient results (Table 4), and training time (Table 5)
together, the FCN would not be the best option to replicate the
numerical ice sheet simulations. Instead, depending on the
expected level of fidelity and computational speed, the GCN
can be a better alternative for representing mesh structures of
the numerical ice sheet models.

4.2 Advantages and challenges of GCN

The first and foremost advantage of the GCN over the traditional
FCN or MLP is that the GCN shows better fidelity for the refined
mesh structure of ISSM. Since the FCN interpolates the raw ISSM
mesh into the regular mesh, the interpolated grid loses the topo-
graphical detail and deteriorates the model accuracy for where the
ice moves fast. On the other hand, the ice thickness and velocity
predicted by the MLP show significant errors with the ISSM
results due to the lack of embedded connections between nodes.
Hence, the GCN is a better approach to reproducing ice thickness
and velocity without losing significant spatial information
between nodes. Second, the GCN is flexible to any graph structure
and mesh resolution within the area of interest (PIG in this case).
Since the FCN uses the fixed regular grid and kernel size, which
are not flexible to different resolutions, it is necessary to generate
another grid and train another FCN model if we want to change
the targeted resolution. Moreover, as FCN resolution increases,
the computational demands rise exponentially due to the add-
itional interpolation and excessive number of processed points.
On the contrary, once a GCN model is trained, it can be applied
to any graph structure of any mesh resolution without a signifi-
cant variation in model fidelity by mesh resolution (Tables 2
and 3). Such flexibility to mesh resolution of GCN allows us to
save a lot of computational costs spent for training the model
and producing transient simulation results. Finally, although we
use the simplest GNN architecture, GCN, in this study, GNNs
can be easily adapted and incorporated with different architec-
tures. In general, a GNN architecture is determined by what
message-passing procedures are used between nodes (Eqs. (3)
and (4)). Recently, various GNN architectures have been pro-
posed with numerous attention and aggregation algorithms to
improve the model for a certain application of interest
(Hamilton and others, 2017; Veličković and others, 2018; He
and others, 2024). Hence, based on the GCN architecture pro-
posed in this study, various GNN architectures can be further
adapted and developed for ice sheet problems.

However, several challenges of GCN should be considered and
mitigated for future applications in ice sheet dynamics. First, like
all types of data-driven machine learning approaches, the gener-
alizability is dependent on training samples. Even though our
emulators can guarantee substantial fidelity in the PIG region,

there is a possibility that these emulators will not perform as
well for the other out-of-training ice sheets that have different dis-
tributions of ice velocity, ice thickness, and bed topography.
Therefore, in order to improve the generalizability of the
model, it is necessary to collect training data from various ice
sheets and shelves under various environmental conditions.
Incorporating physical knowledge (e.g. mass conservation law,
SSA equations) into the GNN architecture (so-called physics-
informed neural network (Raissi and others, 2019; Riel and
others, 2021; He and others, 2023; Riel and Minchew, 2023))
can also help enhance the generalizability. In addition, since we
employ the static graph structure over the 20-year time period,
the mass balance changes of the ice sheet caused by the ice
sheet domain changes or complex ice dynamical events (e.g.
movement of the ice front, calving) cannot be fully described by
our emulators. To describe the spatiotemporal changes of ice con-
ditions and boundaries, we can consider using further advanced
GNN architectures, such as equivariant GCN (EGCN) (Satorras
and others, 2022), which preserves the equivariance of graph
structures on dynamic systems, or recurrent GNN, which captures
the temporal features in graphs (Wu and others, 2021).

5. Conclusion

We propose a high-fidelity and computationally efficient graph
convolutional network (GCN) emulator for the Ice-sheet and
Sea-level System Model (ISSM), which operates on unstructured
meshes. Selecting the Pine Island Glacier (PIG), where ice flows
fastest in Antarctica driven by basal melting, as the test site, we
train and test a GCN architecture and compare it with traditional
non-graph deep learning models, including fully convolutional net-
work (FCN) and multi-layer perceptron (MLP). While the FCN
intrinsically uses the fixed kernel convolution for all grid nodes
(i.e. fixed connectivity) and the MLP does not use any connectivity
information between nodes (i.e. no connectivity), the GCN can
leverage the connection between neighboring nodes via the adja-
cency matrix of graph structure (i.e. flexible connectivity). Based
on the advantages of representing adjusted mesh structures of
ISSM, the GCN successfully reproduces the 20-year ice thickness
and velocity modeling, outperforming the other baseline emulators.
Compared to the FCN, which has been commonly used as a deep
learning emulator, the robustness of GCN remains consistent
regardless of mesh sizes. In particular, whereas the FCN loses
fine-resolution ice dynamics in fast ice regions, the GCN can
keep the fine-resolution ice dynamics because it directly uses the
refined mesh structures of ISSM. The GCN also shows better accur-
acy in ice thickness and velocity than the MLP, especially near the
grounding line, where the dynamic ice behavior changes rapidly by
interacting with floating and grounding ice parts. In terms of com-
putational efficiency, the GCN is 60-100 times faster than ISSM
simulations by leveraging the parallel processing ability of GPU.
This study exhibits for the first time that GCNs have great potential
as a statistical emulator that mimics finite-element-based ice sheet
modeling. The high fidelity and computational efficiency of the
GCN emulator will be useful for predicting the variations in ice
dynamics driven by climatological forcings.
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Appendix A.

Figures 9 and 10 show the ice thickness and velocity maps, respectively, for
years 1, 10, and 20. The overall errors increase from year 1 to year 20, particu-
larly near the fast ice stream regions.

Figure 9. Maps of ice thickness modeled by the ISSM simulation and difference with deep learning emulators (GCN, FCN, and MLP from up to bottom) for two
different basal melting rates (r = 10 and 70m a−1) and two initial mesh sizes (M0 = 2 and 10 km) in years 1, 10, and 20.

Figure 10. Maps of ice velocity modeled by the ISSM simulation and difference with deep learning emulators (GCN, FCN, and MLP from up to bottom) for two
different basal melting rates (r = 10 and 70m a−1) and two initial mesh sizes (M0 = 2 and 10 km) in years 1, 10, and 20.
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