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Quantum many-body scars in few-body dipole-dipole interactions
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We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body
dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system,
we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the
energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter
space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between
the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which
play a critical role in slowing the dynamics of the three- and four-body interactions.
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I. INTRODUCTION

The thermodynamic evolution of strongly interacting,
closed quantum systems offers insight into behavior that can-
not be described by conventional statistical mechanics. Unlike
classical systems, which explore all of their states with equal
probability in the thermodynamic limit, the evolution of an
isolated quantum system is unitary. The eigenstate thermal-
ization hypothesis (ETH) proposes that if a quantum system
thermalizes for any initial state, then it must likewise reach
thermal equilibrium when initialized in any of the many-body
energy eigenstates [1-3]. For a system that obeys the ETH,
entanglement can spread rapidly while the memory of the
initial state becomes inaccessible to local measurements. In
the presence of disorder, an alternative fate is many-body
localization (MBL), in which some signature of the initial
state remains at long times [4—6]. Nonergodic dynamics are
also possible if the initial state has significant overlap with
only a small subset of the energy eigenstates. These special
eigenstates were recently dubbed quantum many-body scar
states [7].

Understanding these dynamics will provide insight into
the fundamental physics of energy transport, localization,
collective behavior, and entanglement growth. Over the past
two decades, significant numerical and theoretical progress
has been made [8-30]. Furthermore, the development of ex-
perimental platforms using superconducting qubits [31-34],
trapped ions [35,36], and nitrogen-vacancy centers [37] has
made it possible to explore these dynamics in the laboratory.

Control of closed quantum systems is necessary for en-
gineering quantum devices and for the analog modeling of
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condensed matter. The ability to precisely control their ge-
ometry and interactions makes ultracold Rydberg atoms an
excellent candidate for studying the quantum dynamics of
closed systems. Ultracold Rydberg atoms have been used to
explore thermalization, the spread of entanglement, and quan-
tum many-body scar states [7,38—45].

Resonant Forster, or dipole-dipole, interactions among
ultracold Rydberg atoms have been studied extensively
[46-56]. In a two-body resonant interaction, the initial and
final atomic pair states are degenerate and coupled by the
dipole-dipole operator V,, oc 1/R3, where R is the distance
between the two atoms. In this work, we consider two types
of resonant dipole-dipole interactions.

If each final electronic state is different from each initial
electronic state, then the interaction is typically tuned into
resonance by using an electric field to adjust the Stark en-
ergy levels. This defines a “field-tuned” interaction in which
the interaction is resonant at a specific field. In rubidium,
for example, the 36p3/2,|m/.|=1/2 + 36p3/2,|m‘/|=1/2 <~ 365‘1/2 +
37512 exchange is resonant at an electric field of 3.29 V/cm
[57], as shown by the leftmost set of arrows in Fig. 1.

Resonant field-tuned interactions can also arise when there
are degenerate few-body initial and final electronic states if
they are coupled by detuned intermediate states. Three- and
four-body dipole-dipole interactions have been observed and
studied in both cesium and rubidium Rydberg atoms [57-63].
Though recent work has shown that localization can persist in
the presence of three-body interactions [64,65], most studies
of thermalization to date focus on two-body interactions.

There is also a set of interactions that do not depend on
the electric field tuning, in which the electronic states are
swapped between initial and final states. For example, the
39p3/2 + 39512 <> 39512 + 39p3/2 exchange is always reso-
nant in a spatially homogeneous field [66]. These interactions
are often referred to as hopping interactions, since one can
imagine the upper energy state to be an excitation that hops
from atom to atom.
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FIG. 1. Two-, three-, and four-body interactions for the four-level
spp's’ model. The horizontal axis is the applied electric field while
the vertical axis is energy. Pairs of solid red, dashed blue, and dotted
green arrows represent individual detuned steps in the three- and
four-body interactions. Open circles indicate initial states and closed
circles indicate final states. While these circles are horizontally offset
to allow space for the transition arrows, individual resonant interac-
tions occur at only one electric field. The detuning § of the three-body
interaction is indicated by a double-arrow at the top-center. These
energy exchanges are described by Egs. (1)—(7) and the Hamiltonians
are given by Eqgs. (8), (A4), and (AS).

Recently, Liu et al., including some of the authors of this
work, measured the time evolution of two-, three-, and four-
body interactions in rubidium for a frozen Rydberg gas [57].
The experiment was a typical quantum quench in which the
atoms were excited to the same initial Rydberg state. An elec-
tric field then tuned dipole-dipole interactions into resonance,
which coupled the atoms to nearby final Rydberg states. The
measured fraction of atoms in the upper final Rydberg state
appeared to grow more slowly than expected for the three-
and four-body interactions.

Motivated by these results, we have constructed an ide-
alized model of few-body dipole-dipole interactions. We
numerically solve the Schrodinger equation using exact di-
agonalization for one-dimensional chains of Rydberg atoms.
Since our simulations are performed at the resonant electric
fields, we assume that energy levels not involved in the in-
teractions can be neglected. In order to study the dynamics at
longer times and to maximize the size of the system, we ignore
atomic motion [67] and the finite lifetime of the Rydberg
atoms [68,69]. We also ignore the angular dependence of the
dipole-dipole interaction [70,71]. Each of these are expected
to play a role in a real experimental system.

In our simulations, we vary both the interaction energy
and the spatial disorder. When only two-body interactions
are present, we find that the system thermalizes rapidly in all
cases. However, for three- and four-body interactions (along-
side the two-body hopping interactions), the system evolves
slowly for a large region of the parameter space of interaction
energy and disorder. We identify two reasons for this. First, we
find numerical evidence for quantum many-body scar states.
Second, increasing the disorder slows the dynamics and sug-
gests that these systems could be candidates for MBL studies.

The quantum many-body scars arise when the two-body
hopping interactions are significantly stronger than the three-
or four-body field-tuned interactions, which is true for a wide
range of interatomic spacings. This is similar to the context in
which quantum many-body scars were first discovered. In the
Rydberg system studied by Turner et al., the coupling between

the ground state and Rydberg state was much weaker than the
van der Waals interaction between Rydberg states [7,45].

We consider two models of the dipole-dipole energy ex-
change. First, we use a model that includes the four relevant
energy levels in the experiment of Liu et al., labeled s, p, P/,
and ', as shown in Fig. 1 [57]. We shall refer to this as the
spp’s’ model. In Sec. II, we show that quantum many-body
scar states emerge for three- or four-body interactions. How-
ever, we are limited to simulating at most 11 atoms for the
three- and four-body interactions with the spp’s’ model; be-
yond that the number of states becomes too large (see Sec. A2
in the Appendix for details on how the states are counted).

The limited number of atoms presents two challenges to
studying the dynamics. First, we would like to be in the regime
where the spatial boundaries or small number of atoms do
not determine the evolution. This is a particular concern in
the case of three- and four-body interactions, where a small
system size significantly limits the number of possible triplets
or quadruplets of atoms. For example, our results change
meaningfully as we increase the number of included atoms
from 10 to 11. In this sense, with only 11 atoms, the dynamics
have not yet converged (see Appendix A 3).

Second, it is not possible to probe the evolution at long-
enough times to draw conclusions about the thermodynamic
fate of the system. The timescale on which we expect the
finite size of the system to become relevant is given by the
Heisenberg time 15 o< 1/AE. We estimate AE from the aver-
age energy level spacing. We find that, using the spp’s’ model,
ty is generally too short to numerically study thermalization.
This problem is explored in detail by Panda et al. [72].

In order to achieve better convergence and to probe longer
times, we have developed the sps’ model, in which we omit
the p’ energy level. In removing an energy level, we sacri-
fice the ability to quantitatively model the populations of the
more realistic energy levels. However, we retain the essen-
tial qualitative feature of the experimental system: field-tuned
few-body dipole-dipole interactions alongside two-body hop-
ping interactions.

For the sps’ model, the scaling of the size of the Hamilto-
nian with the number of atoms is more favorable and we can
include 12 to 14 atoms in our simulations (again, see Sec. A 2
in the Appendix for details on how the states are counted).
Since ty scales with the size of the system, we can reliably
probe longer times and study thermalization with the sps’
model. We present more details on the Heisenberg times and
convergence of the spp’s’ and sps’ models in Appendix A 3.

In Sec. III we show that quantum many-body scar states
arise in the sps’ model for the three- or four-body interac-
tions, just as for the spp’s’ model. In Sec. IV, we explore
the dynamics of the sps’ model at longer times. We find that,
for a wide range of interaction energies and spatial disorders,
thermalization is slow and the dynamics are nonergodic.

II. THE spp’s’ MODEL

Rubidium Rydberg atoms in np states with 32 < n < 38
can resonantly exchange energy through a set of few-body
dipole-dipole interactions first observed in Ref. [60]. An
applied electric field tunes these interactions into reso-
nance via the Stark effect. For example, Liu ef al. initially
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excited a sample of atoms in a magneto-optical trap to the
36p32,1m;|=1/2 state, which we label as the p state. The en-
ergetically nearby 36p3/3 m;|=3/2, Or p’' state, was initially
unpopulated. As shown in Fig. 1, two p atoms can resonantly
exchange energy by the two-body field-tuned interaction

p+pes+s, e))

where s refers to the 37s state and s’ refers to the 36s state.

At a slightly larger electric field, the two-body interaction
is tuned out of resonance by the energy § = E, — Ey as shown
in Fig. 1. A third p atom can be recruited to account for this
defect via the s + p — p’ + s interaction so that one atom
ends up in the p’ state. By further increasing the electric field,
the energy defect can be setto § = 2(E, — E,/) so that a fourth
p atom is needed to bring the interaction into resonance. These
three- and four-body interactions are Borromean in nature and
require all atoms to participate simultaneously [60].

Along with the two-body field-tuned interaction given by
Eq. (1), we can summarize the field-tuned interactions in the
spp's’ model as

p+p+pos+s+p, (2)

prp+pt+pes+s+p+p. (3)

The hopping interactions are always present and are given by

p+s<s+p, @)
p+s <5 +p, 5)
P+s<os+p, (6)
pP+s <s+p. @)

Since the field-tuned two-, three-, and four-body interac-
tions are resonant at different electric fields, we simulate each
case separately. Even though all three Hamiltonians include
two-body hopping interactions, we shall refer to them as the
two-body, three-body, or four-body Hamiltonian operators, in
reference to the field-tuned interaction. For example, we can
write the three-body Hamiltonian operator as

1'73(3‘1917/5’) = Z (al A[fﬁ‘ App +Hec. )Vljk

i#j#k
+ (6,65 + V057,
i#]
NN 1
+a’6,,6], + B%6), Sp)Rg, ®)

where 6;; is an operator that takes the ith atom from the p
to the s state, the sums are performed over distinct triplets or
pairs of atoms, and u, v, «, and § are the dipole moments
coupling p<>s, p< s, p' < s, and p’ < s, respectively.
The first sum represents the field-tuned three-body interac-
tions, while the second sum represents the two-body hopping
interactions. We assume that we are at the resonant electric
field for the three-body interaction and ignore off-resonant
terms like the two-body hopping interaction p + s <> s + p
or the field-tuned two- and four-body interactions.

The factor V3’ *in Eq. (8) is calculated by summing over all
possible paths from the initial |ppp) state to the final |ss'p’)
state, having adiabatically eliminated the detuned interme-
diate state. Ignoring the angular dependence, there are two
possible paths so that

iy 1 L N
Vi = Sss' P p Isps') (sps'| 2 |ppp)

lppp)), )

where |sps’), for example, represents the product state
)i 1P); 15" s P P is the dipole-dipole operator coupling atoms
i and j, and § is the detuning of the intermediate steps. This
yields

+ (ss'p'1 2% Ips's) (ps's| p**

puv(Bv +ap)

V;jk = 3 p3
‘SR}kRik

(10
The two- and four-body Hamiltonians are similar and are
shown in Appendix A 1.

The dependence on the distance between atoms in Eq. (10)
results from summing over all possible paths from the initial
state to the final state. While the two-body field-tuned res-
onant and hopping matrix elements are proportional to R,
the field-tuned resonant matrix elements of the three- and
four-body interactions approximately scale as R~ and R~?,
respectively.

In all of our simulations, we arrange the atoms in a one-
dimensional array, with the spacing between atoms d chosen
to be experimentally realistic. We vary this spacing to adjust
the typical strength of the interactions. Results are presented
using atomic units for energy and, in order to compare the
different few-body interactions, we use a natural time unit.
The time unit is the reciprocal of the matrix element for N
nearest neighbors interacting via the N-body interaction that
are separated by the nominal spacing for that simulation run.

The values of the dipole moments are calculated numeri-
cally at the resonant electric field [73]. For example, we have

w = (37s| Ez|36p32,m;|=1/2) » (1)

where E is the applied electric field pointing in the z direction,
and [37s) and [36p3,2 1m;1=1/2) are the Stark states adiabati-
cally connected to the zero-field 37s and 3632 ;11,2 States.
All of the dipole moments are about 700 eay. The value of §
is determined from the numerically calculated energies of the
36p3/2,‘m/|:1/2 and 36p3/2,|m/.‘=3/2 Stark states.

All simulations are run either on a local supercomputer
with four Nvidia A100 graphical processing units or on sim-
ilar NSF ACCESS resources [74]. Linear algebra operations
are performed with the MAGMA software package [75-77].

A. Time evolution in the spp’s’ model

We start with an example that displays the typical time
evolution of the few-body interactions. We compare the time
evolution of the two-body interaction with d = 50 um to the
three-body interaction with d = 9 um, using the spp’s’ model.
For these array spacings, the field-tuned two-body matrix
elements are nearly the same as the field-tuned three-body
matrix elements. The initial state is |V (t = 0)) = |pp--- p)
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FIG. 2. The fraction of atoms excited to the upper s state nor-
malized to the predicted saturation level for the spp’s’ model as a
function of time in natural time units. The two-body case is shown
in solid black and is for 12 atoms in an array with a 50 um spacing,
using the Hamiltonian of Eq. (A1). The three-body case is shown in
dotted blue for 11 atoms in an array with a 9-um spacing, using the
Hamiltonian of Eq. (8). For these spacings, nearest-neighbor pairs
in the two-body case have a similar field-tuned matrix element as
nearest-neighbor triplets in the three-body case. The dashed red line
shows the result when the hopping interaction is artificially disabled
in the simulation for the three-body interaction.

and interactions are quenched into resonance at t = 0. Fig-
ure 2 shows the normalized fraction of atoms that end up in
the s state as a function of time, with the data displayed as a
fraction of the expected saturation level. The saturation level
is calculated under the assumption that the ETH is obeyed and
all many-body eigenstates are thermodynamically equivalent.
The two-body s saturation level is 0.326, the three-body is
0.241, and the four-body is 0.193. Even though the matrix
elements are similar, the two-body s fraction saturates quickly
compared to the three-body s fraction, which eventually ap-
proaches saturation after t = 10, beyond the plotted time.

Given that the field-tuned two-body and three-body ma-
trix elements are similar, what causes the significantly slower
evolution in the three-body case? An essential difference be-
tween the two- and three-body cases shown in Fig. 2 is the
relationship between the hopping and the field-tuned inter-
actions. In the two-body case, the field-tuned and hopping
matrix elements are approximately equal and both scale as
R73. However, in the three-body case, the field-tuned matrix
element scales as R~® and is thus significantly smaller than
the hopping matrix element, which still scales as R~>.

We can numerically test the effect of the hopping interac-
tions in the three-body case by artificially disabling them in
our simulation. The resulting time evolution of the three-body
dynamics, shown in Fig. 2, is dramatically different from
the unmodified three-body case. Since the stronger hopping
interactions have been removed, the Rabi oscillations of the
three-body interaction are now visible. By comparing the first
oscillation in the two-body case to the first oscillation in the
three-body case without hopping, it is evident that the two-
and three-body matrix elements have the same magnitude.
The greater visibility of the three-body Rabi oscillations com-
pared to the two-body case is due to the relatively smaller
number of possible triplets in the 11-atom three-body case

compared to the number of possible pairs in the 12-atom
two-body case.

Furthermore, we see that the artificially modified three-
body normalized s fraction in Fig. 2 increases just as quickly
as the two-body and reaches a higher level than the unmod-
ified three-body. We can conclude that the always-resonant
hopping interaction is an important factor in the relatively
slow dynamics of the unmodified three-body case. One might
not expect the presence of hopping interactions to slow the
dynamics; however, localization has been found previously in
systems with long-range hopping [15,17,23,78].

B. The spp’s’ model with only two-body interactions

To isolate the effect of the hopping interactions from the
three-body nature of the field-tuned energy exchange, we
can construct a model with only two-body interactions that
retains the essential feature of relatively stronger hopping
interactions. In the results of Fig. 2, we disabled the hopping
interactions to show that the two- and three-body dynamics
become more similar. However, when we tune from the two-
body to the three-body resonant field, the hopping matrix
elements remain constant while the field-tuned matrix ele-
ments become smaller. Thus, in this new model we artificially
adjust the strength of the field-tuned interactions relative to
the hopping interactions. The two-body field-tuned matrix
element is modified to be xuv/R*, where 0 < ¥ < 1 and
and v are the dipole moments coupling p <> s and p <> §/, re-
spectively. The hopping matrix elements are left unmodified.
The parameter « allows us to weaken the two-body field-tuned
matrix element relative to the hopping matrix elements, which
is analogous to the three-body case.

We can gain insight by examining the many-body eigen-
states. The local density of states (LDOS) is the overlap of
each eigenstate with the initial state, |W(r = 0)) = |pp- - - p),
as a function of energy, given by

po(E) = Y[ (Wil ¥(t = 0)) PO(E — E),  (12)

where E; are the energy eigenvalues, |i;) are the energy
eigenstates, and the delta function selects the energy. For the
unmodified case where x = 1, Fig. 3(a) shows the LDOS,
which is binned by energy. The LDOS fits well to a Gaussian
which implies rapid thermalization [19].

We also graph log,, of the overlap of each eigenstate with
the initial state as function of energy on a scatter plot as shown
in Fig. 3(b). For the unmodified two-body case where k = 1,
no eigenstate or set of eigenstates dominates and all of the
overlaps are smaller than 1072, The initial state is delocalized
and ergodically spread across the energy eigenbasis.

Figures 3(c) and 3(d) show the results when k¥ <« 1. Here,
the field-tuned matrix elements are about 60 times smaller
than the hopping matrix elements, which is an experimentally
reasonable ratio for the three-body interaction. Even though
the field-tuned interactions are so much weaker, they remain
important for the dynamics. This is because |¥(t = 0)) =
|pp--- p) so that only field-tuned interactions are initially
possible. The hopping interactions of Egs. (4)—(7) cannot
happen until a field-tuned interaction produces s and s” atoms.
In this case, the LDOS is extremely narrow compared to the
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FIG. 3. Overlap of the many-body energy eigenstates with the
initial state for 12 atoms with a 50-um spacing undergoing two-body
interactions. These results use the two-body spp’s’ Hamiltonian of
Eq. (A4), with the field-tuned matrix element modified to be k ;v /R>.
In (a)—(d), the initial state is |pp - - - p). In (a), (c), and (e), the LDOS
is shown with the overlap binned by energy. In (b), (d), and (f), the
log,, of the overlap with the initial state as a function of energy
is shown for each eigenstate as a scatter plot, with lighter colors
indicating a higher density of points. In (a) and (b), k = 1 so that the
field-tuned and hopping matrix elements are approximately equal.
The LDOS in (a) is nearly Gaussian, as shown by the dashed red fit,
and many eigenstates in (b) have similar overlap with the initial state.
In (c) and (d), the field-tuned interaction matrix elements have been
decreased by a factor of 60, a reasonable value for the three-body
case. In (d), quantum many-body scar states emerge and have large
overlap in narrow band near zero energy. In (e) and (f), the value of «
is the same as in (c) and (d) but we start in the alternative initial state
lss'p- - p). In (f), no quantum many-body scar states are visible.

unmodified case in Fig. 3(a) [note the zoomed in horizontal
scale in Fig. 3(c)]. The initial state has significant overlap
with only a few eigenstates, possibly indicating nonergodic
behavior [19].

In the scatter plot of Fig. 3(d), there are a few eigenstates
near zero energy with large overlap with the initial state. There
are also eigenstates, in bands of energies to the left and right

of zero, that have atypically high overlap for that energy.
These quantum many-body scar states have recently attracted
significant interest [7,79-91] and have been proposed as the
mechanism behind observed revivals in a Rydberg atom lattice
[7,45]. The quantum many-body scar states fail to satisfy the
ETH and form a subset of eigenstates that have strong overlap
with the initial state or other product states. The subsequent
time evolution can feature revivals as the system oscillates
between the initial state and this small subset.

The high overlap of the initial state with the scar states
presumably contributes significantly to the slow thermaliza-
tion visible for the three-body interaction in Fig. 2. We can
test this hypothesis by using a different initial state. Instead
of the initial state |pp - - - p) used in Figs. 3(a)-3(d), consider
the initial state |ss'p - - - p), in which one nearest-neighbor pair
of atoms starts in ss’. The LDOS shown in Fig. 3(e), while
not Gaussian, is only slightly narrower than in the unmodified
case of Fig. 3(a). The scatter plot of Fig. 3(f) does not show
evidence of scar states, implying faster dynamics.

This establishes two conditions under which quantum
many-body scars become relevant to the dynamics. First, the
field-tuned interactions must be much weaker than the hop-
ping interactions. Second, the stronger hopping interactions
are not possible in the initial state. We note that these are
similar conditions under which quantum many-body scars
arose in the Rydberg experiment of Bernien et al. [7,45]. In
that experiment, the weaker interaction coupled the ground
state to the Rydberg state while the strong interaction was
a van der Waals coupling between nearest-neighbor Rydberg
states. The initial state |Z,), where Rydberg and ground-state
atoms alternate along the chain, has high overlap with quan-
tum many-body scar states. Furthermore, since there are no
nearest-neighbor Rydberg states in the initial state |Z,), the
stronger van der Waals interaction is highly suppressed.

C. Quantum many-body scar states in the full spp’s’ model

Leaving our model that only includes two-body interac-
tions, we can visualize the eigenstates for the three- and
four-body interactions in the same way. A scatter plot of the
overlap as a function of energy for the three-body example of
Fig. 2, with 11 atoms and d = 9 ym, reveals similar quantum
many-body scar states, as shown in Fig. 4(a). In Fig. 4(b),
we show the results for a linear array with 11 atoms and a
7 um spacing undergoing four-body field-tuned interactions,
for which the scar states are even more apparent. The field-
tuned matrix elements are similar in magnitude for these two
cases, but the hopping interactions are significantly stronger
for the more closely spaced atoms in the four-body simula-
tion. The emergence of quantum many-body scar states in the
three- and four-body interactions is the primary driver of their
slow dynamics.

III. THE sps’" MODEL

When including the maximum number of atoms
in the spp's’ model, the dynamics have not converged
and the Heisenberg time is often too short to reliably simulate
the dynamics at long times. To address these problems, we
have developed a simplified sps’ model that involves only
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FIG. 4. Scatter plots of log,, of the overlap of each of the
eigenstates with the initial state for (a) three- and (b) four-body inter-
actions in a linear array with 11 atoms using the spp’s’ model. The
initial state is |pp - - - p). The spacings are 9 and 7 um, respectively,
for which the field-tuned matrix elements are similar in magnitude.
In each case, a narrow band of quantum many-body scar states near
zero energy with anomalously high overlaps is visible. In (a) we use
the three-body spp’s’ Hamiltonian of Eq. (8) and in (b) we use the
four-body spp’s’ Hamiltonian of Eq. (AS5).

three energy levels: an initial state p, an upper final state s,
and a lower final state s’. This model presents a similar set of
field-tuned resonant two-, three-, and four-body interactions,
as shown in Fig. 5, given by

p+p< s+, (13)
p+p+p<os+s+5s, (14)
p+p+p+pos+s+s5+5. (15)

The sps’ model retains the essential physical feature of the
spp’s’ model: three- and four-body field-tuned interactions
alongside relatively stronger hopping interactions.

We have labeled the states of the sps’ model to parallel
the spp’s’ model for easy comparison. As explained below,
the three- and four-body interactions in the sps’ model require

*
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FIG. 5. The two-, three-, and four-body interactions for the three-
level sps’ model. The horizontal axis is the applied electric field while
the vertical axis is energy. The pairs of solid red, dashed blue, and
dotted green arrows represent individual detuned steps in the three-
and four-body interactions. Open circles indicate initial states and
closed circles indicate final states. While these circles are horizon-
tally offset to allow space for the transition arrows, the individual
resonant interactions occur at only one electric field. The detuning
8 of the three-body interaction is indicated by the double-arrow at
top-center. These energy exchanges are described by Egs. (13)—(18)
and the Hamiltonians are given by Egs. (19), (A1), and (A2).

a coupling between every pair of states. A direct transition
between two ns states is forbidden by angular momentum
selection rules. However, dipole-dipole interactions have re-
cently been observed among Rydberg atoms excited to a state
in the middle of the Stark manifold [92]. These manifold
states are broad superpositions of many zero-field angular
momentum eigenstates even at relatively small electric fields.
Thus, dipole transitions are allowed between nearly every pair
of states in the manifold that satisfy the m; selection rules,
even if forbidden at zero field [93]. Three-body interactions
that would be well described by the sps’ model are likely to
play a role in this system.

Regardless, our motivation for removing the p’ state is to
create a simpler model that retains the essential dynamics
of the spp’s’ model. We have run the full set of simulations
presented in Secs. III and I'V both with and without the s <> s’
hopping interactions, and the results are essentially identical.
Thus, there are three possible hopping interactions,

p+s<s+p, (16)
p+s <5 +p, (17)
s+ <5 +s. (18)

Just as in the spp’s’ model, the three- and four-body matrix
elements for the sps’ model can be calculated perturbatively
by considering a series of detuned two-body interactions.
For example, in the three-body energy exchange of Eq. (14)
shown in Fig. 5, the initial two-body interaction p 4 p —
s + s is detuned by E, — Ey. The subsequent two-body inter-
action p+ s — s+ s accounts for this detuning and brings
the three-body interaction into resonance. Similarly, the four-
body interaction is detuned by 2(E, — Ey) and can be tuned
into resonance with two additional two-body hopping ex-
changes. The magnitude of § in the sps’ model is larger than
for the spp’s’ model. However, we artificially set § in the sps’
model to have the same value as for the spp’s’ model so as to
keep the matrix elements similar in magnitude.

The three-body Hamiltonian, for example, is

5 _ NN ijk
Hspsy = Z (6,67,6ps +H.c.)V;
ik

o C coiy 1
2 A A 2 A AJ 2 A Al
+ E :(/’L O-Ilzsasjlz +v G[;s’as/p +$ Usls’os’s) R3’
i#] i
19

where 6;5 is an operator that takes the ith atom from the p to
the s state and the sums are performed over distinct triplets or
pairs of atoms. We assume that we are at the resonant elec-
tric field. The second term represents the two-body hopping
interactions while the first term is the field-tuned resonant
three-body interaction with

.. 2
V;J"—g’”(1 + 1>, (20)

SRl \Ri; RS,

where R;; is the distance between atoms i and j. The detun-
ing from the two-body resonance is § and u, v, and & are
the dipole moments coupling p — s, p — ¢/, and s — s/, re-
spectively. Again, the field-tuned resonant matrix elements of
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FIG. 6. Scatter plots of log,, of the initial state overlap of the
eigenstates for (a) three-body interactions with 13 atoms and (b) four-
body interactions with 14 atoms in a linear array using the sps’
model. The initial state is |pp- - - p). The spacings are 11 and 7 um,
respectively, for which the field-tuned matrix elements are similar in
magnitude. In each case, a narrow band of quantum many-body scar
states near zero energy with anomalously high overlaps is visible. In
(a) we use the three-body sps’” Hamiltonian of Eq. (19) and in (b) we
use the four-body sps’ Hamiltonian of Eq. (A2).

the three- and four-body interactions effectively scale as R~°
and R~°, respectively. The two- and four-body Hamiltonian
operators are shown in Appendix A 1.

In Sec. II, we found that quantum many-body scar states
arise in the spp’s’ model when the matrix elements for the
three- or four-body interactions were significantly smaller
than the matrix elements for the hopping interactions. Since
the sps’ model retains the essential physical characteristics of
the spp’s’ model, one expects that it will also present quantum
many-body scar states. In fact, for a two-body interaction, the
sps’ and spp’s’ models are nearly identical. Thus, the results
shown in Fig. 3 also apply to the sps’ model.

We can also visualize the eigenstates for the three- and
four-body interactions in the same way. A scatter plot of the
log,,, of the overlap of each eigenstate with the initial state is
shown in Fig. 6 for two cases with similar matrix elements in
the sps’ model. Figure 6(a) shows the three-body interaction
for a spacing of 11 um and 13 atoms and Fig. 6(b) shows the
four-body interaction for a spacing of 7 um and 14 atoms. In
both cases, a narrow band of scar states is visible near zero
energy and the overall structure is quite similar to that of the
spp’s’ model in Fig. 4.

IV. SLOW THERMALIZATION IN THE sps’ MODEL

In order to numerically study thermalization or localiza-
tion, it is necessary to simulate the system to sufficiently long
times. The finite size of the system becomes relevant after the
Heisenberg time, so that the dynamics are partly determined
by the boundaries. Panda et al. discuss the possibility that the
time that it takes the system to thermalize might be longer than
the Heisenberg time [72]. Since one does not know a priori
if this is the case, they argue that system sizes significantly
larger than typically used are needed to simulate the dynamics
at long times.

While we are limited to including 12 atoms for two-body
interactions, 13 atoms for three-body interactions, and 14

atoms for four-body interactions, we find that t5 is typi-
cally long enough to study thermalization in the sps’ model.
When possible, we display the Heisenberg time on our plots.
For more discussion on convergence of the models, see
Appendix A 3, and for details on how the states are counted,
see Appendix A 2.

In order to study the thermalization of few-body dipole-
dipole interactions among Rydberg atoms, we examine the
following set of dynamical variables in our simulations. We
calculate the fraction of atoms excited to the s state as a func-
tion of time, which has the advantage of being straightforward
to measure in experiment [57,94,95]. We also determine the
fidelity as a function of time in Sec. IV A, the mean energy
level spacing in Sec. IV B, and the entanglement entropy as
a function of time in Sec. IV C. The latter three of these are
used widely in numerical studies to distinguish between ther-
malizing and nonergodic systems [8,9,12,13,19,43,96-101].

Disorder is added to our one-dimensional model by shift-
ing the position of the ith atom by w;d along the array
axis, where w; is a random number drawn from the uniform
distribution [—w, w]. We simulate our system for five dis-
orders ranging from w = 0.05 to w = 0.45 in increments of
0.10. For the three-body case, we examine seven linear array
spacings ranging from d = 7 ym to d = 13 ym, and for the
four-body case, five spacings from d =4 um to d = 8 um.
In both cases, the range of d was chosen to demonstrate
the entire range of behaviors while also being experimentally
realizable. For example, at the Rydberg atom densities studied
in Ref. [57], typical values for the two-body matrix elements
were a few hundreds of kHz while the three- and four-body
matrix elements were a few kHz. In our simulations, from
the largest to the smallest linear array spacings, the three-
and four-body matrix elements range from a few kHz to a
few hundred kHz. For each case we average over at least 100
samples.

The archetypal model for studying thermalization is the
disordered interacting spin chain, in which the spins are fixed
on a one-dimensional lattice and the disorder is introduced
via random on-site potentials. In such models, the disorder
and the interaction strength can be adjusted independently.
However, in our model, disorder and interaction strength are
coupled, since perturbing the positions of the atoms necessar-
ily changes the dipole-dipole matrix elements.

In Sec. IVA, we examine the initial-state fidelity and
normalized s fraction as a function of time. We analyze our
results using a method developed by Tavora et al. to predict
thermalization based on the power-law decay of the fidelity
[19]. In Sec. IV B, we estimate the mean energy level spacing,
which has been used to study the transition between thermal-
ization and localization [9,96,97]. In Sec. IV C, we study the
growth of the entanglement entropy. Finally, in Sec. IV D, we
summarize our results.

A. Fidelity and normalized s fraction

We first examine the long-time behavior of the fidelity. The
survival probability or fidelity, F'(¢), is defined as

F(t) = (W@ =0)|w@) I, 2
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FIG. 7. Alog-log plot depicting a typical case of the fidelity F'(z)
for a system undergoing three-body interactions for d = 9 um and
w = 0.45 using the sps’ model with the Hamiltonian of Eq. (19).
The lower horizontal axis is time in natural time units and the upper
is time in ps. The vertical dashed gray line represents the Heisenberg
time. The blue region shows the initial rapid exponential collapse of
F(t). A power-law fit of F(¢) at long times is shown in red, with
y = 0.2 indicating slow thermalization.

and it gives the probability of finding the system in its initial
state |W(tr = 0)) at some later time ¢. Tavora et al. have de-
veloped a method for predicting the onset of thermalization in
isolated many-body systems based on fits of the decay profile
of F(¢) at long times [19]. They apply their method to an
interacting spin-% model in a one-dimensional lattice. After
arapid exponential collapse, the fidelity is best described by a
power-law decay F () o< t~7 where the value of y is shown
to predict the thermodynamic fate. Tavora et al. find that
y > 2 indicates thermalization, y < | indicates nonergodic
evolution, and intermediate values require further analysis.

It is helpful to start by considering a typical example of
the time evolution of the fidelity. Figure 7 shows three-body
field-tuned and two-body hopping interactions with w = 0.45
and d = 9 um. Initially, the fidelity collapses exponentially.
This is followed by power-law decay at long times, in which
afitof F(r) oct77 yields y = 0.2.

The power-law decay in Fig. 7 begins to plateau around
F (t) = 0.05, near the end of the simulated time, after ¢5. This
plateau continues unchanged when we extend the simulated
time. This is consistent with our estimate of the Heisenberg
time, as one does not expect new dynamics after 5. We
can estimate the asymptotic value of F(¢) using the inverse
participation ratio, or IPR, given by

IPR = Y [ (Yl W(r = 0)) |, (22)

The IPR essentially counts the number of eigenstates that
significantly overlap the initial state, and F () should there-
fore plateau around IPR™! [18]. Indeed, for the simulation in
Fig. 7, we find IPR~! = 0.046, in agreement with the value
read from the graph.

The simulated timescale in Fig. 7 extends beyond t5, which
is near 400 us. This is beyond the typical lifetime of a Rydberg

time (ps)
102 10 10° 10*
10° : : - :
(a)
102t
= 104t :
R, F(t) <t
10°r 2-body —
3-body —
4-body —
108+ w = 0.05 1
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<
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FIG. 8. (a) Fidelity and (b) normalized s fraction with low
disorder (w = 0.05) for two-, three-, and four-body field-tuned in-
teractions in green, blue, and red, respectively. The results include
hopping and are for the sps’ model using the Hamiltonians of
Egs. (Al), (19), and (A2). The lower horizontal axis is in units of
natural time. The respective array spacings of 32, 8, and 6 um mean
that the field-tuned matrix elements are similar. The Heisenberg
times are shown by the dashed lines in corresponding colors; the
two-body 5 is beyond the simulated time. In (a), the solid black lines
represent fits to F(t) oc ¢t~ at long times. F (¢) for the two-body case
thermalizes too quickly to perform the fit.

state; for example, the 36p initial state studied in Liu ez al. [57]
has a lifetime of about 40 us [68,69]. Extending our simulated
time in this way was necessary to obtain a good fit to the
power-law decay region of F(#). We note, however, that the
onset of the power-law decay behavior is earlier than 10 us
and therefore accessible in experiment.

Figures 8 and 9 show plots of (a) the fidelity and (b) the
normalized s fraction as functions of time for two-, three- and
four-body interactions with similar matrix elements. The plots
in Fig. 8 are all at low disorder, while the plots in Fig. 9 are
at high disorder. The s fraction is normalized relative to the
expected saturation levels in the sps’ model, which are 0.326
for the two-body, 0.213 for the three-body, and 0.153 for the
four-body. We also show the three- and four-body Heisenberg
times; the two-body ¢y are beyond the simulated times.

For the two-body case, F () in Fig. 8(a) rapidly collapses
to nearly zero. This rapid thermalization is also evident in
the two-body normalized s fraction shown in Fig. 8(b), which
saturates. A fit of the power-law decay parameter y for the
high disorder two-body case in Fig. 9(a) yields the interme-
diate value y = 1.4. Since F(¢) in this case decreases by
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FIG. 9. (a) Fidelity and (b) normalized s fraction for the same
systems as Fig. 8, but with high disorder (w = 0.45). These results
include hopping interactions and are for the sps’ model using the
Hamiltonians of Egs. (Al), (19), and (A2) for the two-, three-,
and four-body Hamiltonians, respectively. The Heisenberg times are
shown by the dashed lines in corresponding colors; the two-body #y
is beyond the simulated time. Fits of F(t) oc t77 at long times in
(a) are represented by solid black lines.

six orders of magnitude while the normalized s fraction in
Fig. 9(b) eventually saturates, our results suggest that this case
thermalizes, albeit slightly more slowly. Indeed, we examined
two-body interactions at all five disorders for d = 32, 39, 47,
and 56 um and found that all cases thermalize.

The three-body cases shown in Figs. 8 and 9 reveal slower
dynamics. In Fig. 8(a), for low disorder, we find y = 2.5
and F(¢t) approaching zero, predicting thermalization. The
normalized s fraction in Fig. 8(b) saturates, consistent with
this conclusion. Increasing the disorder further slows the
dynamics; the three-body case with w = 0.45 in Fig. 9(a)
yields y = 0.3 and the normalized s fraction fails to saturate
before ty.

We observe the slowest dynamics in the four-body cases
of Figs. 8 and 9. The fidelity in both four-body cases fails to
reach zero before the corresponding Heisenberg times. Fits
to the long-time power-law decay yield y = 0.2 and y =
0.05 for w = 0.05 and w = 0.45 respectively, reflecting slow
thermalization. For both four-body cases, the normalized s
fraction remains significantly lower than the two- and three-
body cases.

While the field-tuned matrix elements for each of the cases
shown in Figs. 8 and 9 are of similar magnitude, the dynamics

0.0 0.5
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7 8 9 10111213 4 5 6 7 8
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FIG. 10. Intensity plots depicting the fits of the power-law decay
parameter y as a function of array spacing d and disorder w in
the sps’” model for (a) three-body interactions with the three-body
Hamiltonian of Eq. (19), and (b) four-body interactions using the
four-body Hamiltonian of Eq. (A2). The parameter y is a result of the
fit to the power-law decay of the initial-state survival probability at
long times. The color of the plot reflects the value of y; red represents
thermalization for y > 2, while the cooler colors indicate nonergodic
behavior for 0 < y < 1. For low-enough disorder (small w) and
high-enough interaction energy (small d), y > 2 and the system ther-
malizes. For larger disorders and smaller interaction energies, there
are regions where y < 1, indicating slow thermalization. The white
lines differentiate the outcome of numeric fits of the entanglement
entropy; the cases to the lower left of the white line demonstrate
faster-than-logarithmic growth, while the remaining cases grow more
slowly than logarithmically.

are considerably slower in the three- and four-body results.
The results presented in Secs. II and III show that quantum
many-body scar states slow the evolution when there is zero
disorder. We have confirmed that quantum many-body scar
states persist for all disorders for the three- and four-body
interactions. Increasing the disorder evidently further slows
the dynamics.

Having examined some representative cases, we now fit the
power-law decay for all simulated spacings and disorders. To
obtain a robust fit, we would like to satisfy two conditions.
First, there should be a sufficiently wide region of power-law
decay before or around 7y, since this estimates when we
expect the finite size of the system to play a role. Second,
there should be enough power-law decay before F (¢) plateaus
so that we can accurately determine the slope. We can usually
satisfy both conditions, as in the case of Fig. 7 and most of
the cases in Figs. 8(a) and 9(a). In some cases, particularly
for the four-body interactions, we are unable to satisfy the
first condition but can still perform a fit satisfying the second
condition. The four-body fit shown in Fig. 8(a) is an example
where the estimated 7y is earlier than the power-law decay.
For more details, see Appendix A 3.

The summarized results for the fitted values of y are shown
in Fig. 10. These intensity plots show the power-law decay
parameter y as a function of d and w for the three- and four-
body cases in Figs. 10(a) and 10(b) respectively.

For the three-body case in Fig. 10(a), only the small-
est values of d with w < 0.15 are predicted to thermalize.
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Conversely, all spacings with w > 0.35 show slow thermal-
ization. For larger array spacings where d > 11 um, we
observe slow thermalization regardless of disorder. This is
expected for large-enough d as the hopping matrix elements
are significantly greater than the field-tuned matrix elements
in the three-body case, giving rise to quantum many-body scar
states.

In the four-body case, the hopping matrix elements domi-
nate even at small array spacings; we observe in Fig. 10(b) that
thermalization is guaranteed only at d = 4 ym with w < 0.15.
Similarly to the three-body case, we see that for d > 6 um, the
system is nonergodic regardless of disorder. Since the four-
body field-tuned matrix elements effectively scale as R=%, they
are significantly smaller than the hopping matrix elements at
almost all spacings. The combined effect of scar states and
disorder leads to y < 1 for most cases and y < 0.1 for many.

B. Mean level spacing

We next consider the mean level spacing, a computational
metric developed by Oganesyan and Huse in which the dis-
tribution of nearby energy levels predicts system behavior
[8,9,96,97]. For adjacent many-body energy levels, the gap is
0n = Eny1 — E, > 0 with eigenvalues E, listed in ascending
order. The ratio of two consecutive gaps is defined as

mil’l{&,,, 8}171}
— <1 23
max{8,, 8,1} @)

For nonergodic dynamics, Poissonian statistics best describe
the energy spectrum with the average value (r,) =~ 0.386. A
Poissonian distribution for this uncorrelated phase is expected
as nearby energy levels show no level repulsion and thus
are nearly randomly distributed. Conversely, for the delocal-
ized, thermalizing phase in which level repulsion is present, a
Wigner-Dyson distribution in the Gaussian orthogonal ensem-
ble best describes the energy spectrum, with (r,) &~ 0.5295.
We plot (r,) as a function of array spacing and disorder
for all three- and four-body cases in Figs. 11(a) and 11(b),
respectively.

For the three-body cases plotted in Fig. 11(a), the values
of (r,) range from 0.531 to 0.450. Increasing disorder has the
strongest effect on the level spacing statistics, as (r,,) begins to
deviate from a Wigner-Dyson distribution for all d with w >
0.35. It is interesting to compare Fig. 11(a) with Fig. 10(a).
The mean level spacings are very close to Wigner-Dyson for
all w < 0.25. However, particularly for w = 0.25, in many
cases fits are consistent with y < 1. This combination points
to a delocalized phase that nonetheless thermalizes slowly. A
similarly intermediate many-body critical phase was recently
discovered and analyzed by Wang et al. [20,102].

The four-body cases shown in Fig. 11(b) are more consis-
tent with the values of y shown in Fig. 10(b). When d =7
or 8 um, we have both y < 0.1 and (r,) approaching Poisso-
nian statistics. Together, these indicate that an MBL phase is
possible for the four-body interactions.

o<r=

C. Entanglement entropy

Finally, we calculate the entanglement entropy (EE) as
a function of time. We divide the linear array into two
subsystems, the left and right halves, and calculate the
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FIG. 11. Computed mean level spacing (r,) as a function of
array spacing and disorder using the sps’ model for (a) three-body
interactions and (b) four-body interactions using the three-body
Hamiltonian of Eq. (19) and the four-body Hamiltonian of Eq. (A2).
Red reflects (r,) consistent with a Wigner-Dyson distribution, while
purple indicates a Poissonian distribution. In (a), we observe that
(r,) = 0.53 for all values of d when w < 0.25. This suggests a de-
localized and thermalizing phase. In (b), this is true only for smaller
values of d. Elsewhere, (r,) < 0.53, indicating possible slow ther-
malization and generally nonergodic behavior. In particular, in (b),
we see that (r,,) approaches 0.386, and thus a Poissonian distribution,
for larger d and larger w. The regions to the lower left of the white
lines are cases with faster-than-logarithmic growth of the EE.

bipartite Von Neumann EE, which measures the degree
of entanglement between the two subsystems. The EE is
— > . A;In}; where A; are the eigenvalues of the reduced
density matrix of one half of the system.

The EE has been found to grow only logarithmically
in the MBL phase for short-range systems [12,13,98] and
algebraically for the MBL phase in long-range systems
[43,99,100], while it grows faster for thermalizing systems
[101]. The interactions 1/R? are short-range if B is greater
than the dimension of the system, as in our case. Figures 12
and 13 depict plots of the normalized EE for the same cases
shown in Figs. 8 and 9, respectively. The EE has been scaled
to the numerically determined maximum values for two-,
three-, and four-body cases, which are 5.95, 5.21, and 5.55,
respectively.

On the left portion of Figs. 12 and 13, the entanglement
entropies of the three- and four-body cases initially outpace
that of the two-body. This is because the spacing in the three-
and four-body cases is much smaller and therefore the hop-
ping matrix elements are significantly larger. Once a single
field-tuned interaction has entangled a small cluster of atoms,
the resulting s and 5" atoms are now able to hop and entangle
more distant parts of the system.

For all three cases, the EE first grows rapidly before settling
into slower growth near r = 1 in Figs. 12 and 13. We fit the
EE curves to determine their growth rate before they plateau
at long times. Both the two- and three-body cases with w =
0.05 in Fig. 12 grow faster than logarithmically, indicating
thermalization. This is consistent with the results of Fig. 8(a),
as both have y > 2. Only the four-body case with low disorder
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FIG. 12. Normalized entanglement entropy as a function of time
for the same systems with low disorder (w = 0.05) shown in Fig. 8,
in which the field-tuned matrix elements are similar in magnitude.
The two-body case with an array spacing of 32 um is shown in green,
the three-body with 8 um in blue, and the four-body with 6 um in
red. These results use the sps’ model with the two-, three-, and four-
body Hamiltonians of Eqs. (A1), (19), and (A2), respectively. The
timescale is broken in two with early times on the left, and times
near the end of the simulation on the right. Following a short period
of rapid initial growth, numeric fits determine that the two- and three-
body cases thermalize as both grow faster than logarithmically and
approach the maximum value. The four-body case is consistent with
slower-than-logarithmic growth thermalizes slowly if at all.

in Fig. 12 grows slower than logarithmically, consistent with
the corresponding fit of y < 1 in Fig. 8(a).

When the disorder is increased to w = 0.45, we find that
the speed of the dynamics is further inhibited. The EE of both
the three- and four-body cases in Fig. 13 slowly thermalize
as both have slower-than-logarithmic growth with y < 1 in
Fig. 9(a). Only the two-body case in Fig. 13 grows faster than
logarithmically.

One might expect the long-time EE to saturate when the
growth profile is consistent with thermalization. Both the two-
and three-body cases with w = 0.05 in Fig. 12 indeed ap-
proach their respective maximum values, while the remaining
cases, including that of the thermalizing two-body case with
w = 0.45, fail to do so. When disorder is added by varying
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FIG. 13. Normalized entanglement entropy as a function of time
for the same cases shown in Fig. 9, or the same systems undergoing
two-, three-, or four-body interactions for the sps’ model shown
in Fig. 12 but with high disorder (w = 0.45). Numeric fits deter-
mine that only the two-body case grows faster than logarithmically,
whereas both the three- and four-body cases and display slower-than-
logarithmic growth.

the positions of the atoms within the lattice, we create close
clusters of atoms. The atoms in these clusters interact strongly
and partially decouple from the rest of the system, inhibiting
the spread of entanglement [13,43,103].

In the two-body example of Fig. 13, the growth of the EE
can provide insight regarding the thermodynamic fate of a
system with an intermediate value of y. This case, as shown
in Fig. 9(a), has y = 1.4. However, F(t) collapses to nearly
zero in Fig. 9(a) and the normalized s fraction approaches near
saturation in Fig. 9(b), both of which suggest thermalization.
Furthermore, the EE in for this case grows faster than logarith-
mically. We conclude, therefore, that this case thermalizes.

We fit the growth of the EE for all of our simulations
and summarize the results in Figs. 10 and 11. The cases to
the lower left of the white boundary line grow faster than
logarithmically, while the remaining cases above and to the
right of the white line grow slower than logarithmically. These
results are consistent with the results of y on Fig. 10; when
y > 2, the EE grows faster than logarithmically, and when
y < 1, the growth is logarithmic or slower.

D. Summary

Our results from the fidelity fits, the mean level spacing,
and the EE broadly agree and predict slow thermalization
for the three- and four-body interactions for cases with high
disorder and larger array spacings. As d increases for these in-
teractions, the ratio of field-tuned to hopping matrix elements
decreases rapidly. Like that of the zero spatial disorder cases
studied in Secs. I and III, this results in quantum many-body
scar states that slow the dynamics. The addition of disorder
further slows the dynamics and, for high disorder, we observe
very slow thermalization or even failure to thermalize.

We observe that for all simulations in which y > 2, the EE
and (r,,) are consistent with thermalization. For the interme-
diate regime, with 1 < y < 2, we find that most cases have
faster-than-logarithmic EE growth and (r,,) is more consistent
with Wigner-Dyson statistics. Thus, we conclude that these
cases also thermalize, though more slowly than the y > 2
regime. We find that for the majority of simulations that fit
y < 1, the EE and the mean level spacing statistics point
toward slow thermalization or failure to thermalize entirely.
These slowly thermalizing systems are excellent candidates
for future studies of MBL and nonergodic behavior. For ex-
ample, in the four-body case of Fig. 13 with w = 0.45 and
d = 6 um, we find y = 0.05, (r,,) = 0.423, and slower-than-
logarithmic growth of the EE.

V. CONCLUSION

We have presented simulated results for one-dimensional
chains of Rydberg atoms exchanging energy via few-body
dipole-dipole interactions. We analyzed the dynamics by
studying the properties of the energy eigenstates, the decay
of the initial-state fidelity, the energy level spacing statistics,
and the growth of entanglement entropy. While our model was
motivated by ultracold Rydberg experiments, our results give
broader insight into the rich dynamics of few-body interacting
systems.
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By studying a linear array of atoms with no spatial disorder,
we found numerical evidence for quantum many-body scar
states when the hopping matrix elements were significantly
larger than the field-tuned matrix elements. This condition is
met for a wide range of experimentally typical interatomic
spacings for the three- and four-body interactions; thus, we
expect that scar states play an important role in slowing their
dynamics.

When spatial disorder is added to the linear array of atoms
by randomly perturbing their positions, we find that thermal-
ization is further inhibited. Power-law fits to the decay of
the initial-state fidelity, the mean energy level spacing ratio,
and the slow growth of entanglement entropy all point to the
possibility of many-body localization in our model. While we
would need to include more atoms in simulation to draw a
definitive conclusion about MBL, the three-body interactions
in the spp’s’ system are readily accessible in experiment.

Density-matrix renormalization group [104] and matrix
product state simulation methods [105] can be effective for
one-dimensional lattice systems if the EE spreads slowly. This
condition is true for much of the parameter space we explored
for three- and four-body interactions. If the positions of the
atoms are fixed in our model, then such methods may allow
for larger system sizes to be simulated in the future.

We plan to further explore the dynamics of these few-body
interactions in experiment. For lower values of the principal
quantum number, the three-body resonance is well-resolved
from the two-body resonance so that they can be compared
in experiment. Using an initial state that does not map so
closely to a quantum many-body scar state may result in
significantly altered dynamics for the three-body case. Ad-
ditionally, varying the dimensionality of the excited sample
of Rydberg atoms should produce different dynamics for the
two- and three-body interactions.
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APPENDIX

In this Appendix, we provide additional details of the
spp's’ and sps’ models and compare them side by side. While
the two models are not in exact numerical agreement, they
share the same fundamental dynamics. In particular, both
models have few-body dipole-dipole field-tuned resonant in-
teractions that exist side by side with relatively stronger
two-body hopping interactions.

In Appendix A 1, we show the Hamiltonian operators for
the two- and four-body interactions for both the spp’s’ and

sps’ models. The Hamiltonian operators for the three-body
interactions were previously shown in Eq. (8) for the spp's’
model and Eq. (19) for the sps’ model. In Appendix A 2,
we provide details on counting the number of states for each
model, including the analytical formulas for the three-body
cases. Finally, in Appendix A 3, we compare the spp’s’ and
sps’ models for some generic cases.

1. Hamiltonians for two- and four-body cases

The three-body dipole-dipole Hamiltonian operators for
the spp's’ and sps’ models are given in the main text by
Egs. (8) and (19), respectively. We write the two-body dipole-
dipole Hamiltonian operator for the sps’ model as

ﬂZ(spx’) = Z (Al AI .+ H.c. ):31)
i#]

1
2 AJ
+Z I’L psasjla+v l’o-fp)R_S’
i#] i

(AD)

using the same notation as in Eq. (19), where the first term
is the field-tuned interaction and the second term represents
the hopping interactions. The four-body dipole-dipole Hamil-
tonian operator for the sps’ model, at the resonant electric
field, is

]‘?4(51”/) = Z (6’1 6j 5 /U .+ H.c. )Vljkz

s ps' Pé
i kA
+ Y (u?6)60, + V261,60 + 6L ”)1
M ps sp ps s'p Os50y's R3’
i#j

(A2)

where the second term again represents the hopping interac-
tions and the first term is the field-tuned interaction with

ikt _ v 1 1 n 1
4 - 3 3
8 | R \RR? R?kR}k

ik
. L( L, ;>
CAGTE T
+i< - )} (A3)
B\, KR,
Just as for the three-body interaction in Eq. (20), V” * results

from summing over all possible paths from the 1n1tlal state
|pppp) to the final state |ss's’s’).

The £2 terms in Eqs. (A1) and (A2) represent the hop-
ping interaction s <> s’. As explained in the main text, this
transition is nominally forbidden by dipole selection rules.
However, dipole-dipole energy exchange has recently been
observed among atoms excited to Stark manifold states [92],
and those interactions can involve dipole transitions among all
energy levels. In particular, three-body interactions like those
in the sps” model likely play a role. In our simulations, we find
that the £% term does not significantly affect the results.
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The two-body dipole-dipole Hamiltonian operator for the
spp's’ model is

A i J7aY;
HZ(SPP/S') = Z( rlu 1?\' +H.c. )R3
i#] i
1
N 2Ai A
+ 3 (0sl + ool ) g, A0

i#]

using the same notation as in Eq. (10), where the first term is
the field-tuned interaction and the second term represents the
hopping interactions.

Finally, the four-body dipole-dipole Hamiltonian operator
for the spp’s’ model, when at the resonant electric field, is

A _ Al AJ & ijkt
Huspps) = § : (Opsapr py pp +HC)V
i kA
Al Aj 240 AJ
+ E 650y + V76,067,
i#j

(A5)

1
)

i

+Ol A;né—sp_‘_ﬁ py
where the second term is the hopping interactions and the first
term is the field-tuned interaction where V” k€ is determined
by a sum over all paths from the initial state |pppp) to the
final state |ss’p’p’) and has the value

(v + B2uvd +2aBuv?) (1 N 1 (A6)
R wR, )

2. Counting states

In all cases, we only consider states that are near resonance
with the initial state. Then we can count the states for the sps’
model in the following way, using the three-body interaction
as an example. Consider »n total atoms and choose m of them
to interact, where m is a multiple of three. Of the m interacting
atoms, choose one third of them to be in the s state since the
interaction takes p+ p+ p — s+ s’ + s'. Multiplying these
two combinations, (') x (m"/’3), yields the total number of
states when m atoms interact. All that remains is to sum over
all possible values of m so that

- n m
o o)
o3\ m/3

where N,y is the total number of states. The calculations for
two- and four-body interactions proceed similarly.

The state counting for the spp’s’ model is not too different.
Again using the three-body interaction as an example, we
choose m interacting atoms and m/3 of them to be in the s
state. However, now we must choose m/3 of the remaining
2m/3 atoms to be in the p’ state since p+p+p —> s+ p +
s’. This yields

B n n m 2m/3
Nesppsy = ,71:%3: <m> <m/3> < m/3 >

for the number of states.
In practice, it is easiest to generate the list of states nu-
merically. This is accomplished by computationally listing all

(A7)

(A8)

3.0 T T : . . .
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FIG. 14. Number of states as a function of the number of in-
cluded atoms for the spp’s’ model, shown with red triangles, and
the sps’ model, shown with blue circles. The three-body interaction
is shown in (a) and the four-body interaction in (b). The dashed gray
horizontal line is the maximum number of states that we can simulate
on our hardware.

possible combinations of the energy levels for a given number
of atoms. States that do not conserve energy are removed from
the list. The number of states generated in this way agrees with
the calculations in Egs. (A7) and (AS).

Figure 14(a) compares the number of states N for the two
models as a function of the number of atoms included in the
simulation for the three- and four-body interactions. On our
hardware, using exact diagonalization, we can simulate up
to about 140000 states. The spp’s’ model only allows us to
include 11 atoms for the three- and four-body interactions.
However, we can include more atoms using the sps’ model:
thirteen atoms for the three-body interaction and 14 atoms for
the four-body interaction.

3. Comparison of the sps’ and spp’s’ models

The spp’s’ model is defined by the energy level diagram of
Fig. 1, the energy exchanges of Eqs. (1)—(7), and the Hamilto-
nians of Eqs. (A4), (8), and (AS5). It includes all four relevant
energy levels for the experiments described in Liu e al., where
it was shown to provide accurate numerical predictions for the
s fraction at short times [57]. Current hardware limits us to
including at most 12 atoms for the two-body interaction or 11
atoms for the three- and four-body interactions due to the size
of the Hilbert space.

The sps’ model is defined by the energy level diagram
of Fig. 5, the energy exchanges of Egs. (13)-(18), and the
Hamiltonians of Egs. (A1), (19), and (A2). In the sps’ model,
we have dropped the p’ energy level, which reduces the size
of the Hilbert space and therefore allows us to include more
atoms: thirteen atoms for the three-body case and 14 atoms
for the four-body case.

Since we have eliminated a relevant energy level, we no
longer expect to accurately predict the state fractions as a
function of time. However, we do retain the essential physi-
cal features of the more realistic spp’s’ model: the few-body
nature of the interactions and the differential scaling with
interatomic distance of the hopping versus the field-tuned
interactions. To the extent that these features determine the
dynamics, and particularly the long-time thermodynamic evo-
lution, we expect that results from the sps’ model should be
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FIG. 15. (a) s fraction and (b) fidelity as a function of natural
time (lower axis) and real time in us (upper axis) for two-body
field-tuned interactions in the sps’ model, using the Hamiltonian of
Eq. (A1). Each curve is colored for the number of atoms included
in the simulation, as indicated by the legend. The vertical dashed
lines show the corresponding Heisenberg time for each case. The s
fraction in (a) suggests that the results have converged, as all curves
approach the expected saturation value of 0.326. The F'(¢) curves in
(b) do not converge. Rather, since the system thermalizes, each curve
should approach the asymptotic value given by the reciprocal of the
Hilbert space size, as discussed in the main text. More importantly,
the slopes of the long-time power-law decay do converge. In both the
11 and 12 atom cases, a fit to the slope of the long-time power-law
decay F(t) o< t~7 yields y = 1.4. The results for the two-body spp’s’
model are essentially the same.

generally applicable to the experimental spp’s’ system and
other similar systems. The comparisons below support this
assertion. For each of these comparisons, we focus on the
maximum disorder of w = 0.45 as that represents the worst-
case scenario in terms of the shortness of the Heisenberg
times.

We start by examining the results for the field-tuned two-
body interactions. In this case, the spp’s’ and sps’ models are
nearly identical. The only difference is the presence of the &2
term in the Hamiltonians of Eq. (A1) as compared to Eq. (A4).
This term represents the s 4+ 5" <> 5" + s hopping interaction,
which does not exist in the spp’s’ model. In our tests, this term
leads to only small differences in the results.

Figure 15 shows the fidelity and the s state fraction as a
function of time for two-body interactions for the sps’ model
for w = 0.45 and d = 40 ym. Examining the s fraction in
Fig. 15(a), it is plausible that the results have nearly con-
verged, as most cases approach the expected saturation level
of 0.326 with only slight differences at long times. Note that
Fig. 15(a) shows the unnormalized s fraction, as opposed to
the normalized s fraction shown earlier in Figs. 8 and 9 when
comparing two-, three-, and four-body interactions.

The fidelity shown in Fig. 15(b) reveals more interesting
trends as the number of included atoms increases. First, note
that beyond #y the curves tend to flatten. This is because the
ty gives the timescale on which we expect the finite size of the
system to lead to periodic behavior; beyond that time no dy-
namical evolution is possible and we expect only oscillations
around a steady state.

For the cases with eight atoms and more, ¢y is long enough
that we can see the system enter the long-time power-law de-
cay phase of its evolution. For thermalizing systems like this,
the initial state is spread across the many-body eigenstates,
as shown previously in Fig. 3(a)-3(b). If we assume that the
initial state is uniformly spread, then we can estimate the long-
time average of the fidelity to be the reciprocal of the Hilbert
space dimension [18,19]. This estimate works well for the
data of Fig. 15(b). For example, the Hilbert space dimension
for eight atoms is 1107, yielding 9 x 10~* as an estimate of
the asymptotic value of the fidelity. The actual value from the
graph is around 7 x 107, as shown by the eight-atom line
at late times. Likewise, the Hilbert space dimension for six
atoms is 141, yielding 7 x 1073 for the asymptotic value of
F (t). The actual value from the graph is also about 7 x 1073,
as shown by the six-atom line at late times.

Considering this fact, one would not expect the fidelity
curves in Fig. 15(b) to overlap at long times as they are
each asymptotically approaching a different value due to the
different sizes of their Hilbert spaces. If ¢4 is not sufficiently
long, then it is difficult to accurately fit the slope of the long-
time power-law decay F(t) o« t~7, as the curve must bend to
meet the asymptotic value. For example, for the seven-atom
case, there is a region of power law decay before t5. The
slope of that decay is artificially smaller than for the 12-atom
case, since the seven-atom fidelity plateaus at a higher value.
However, if 75 is long enough, then the slopes of the curves
should converge. This is, in fact, the case for the 11 and 12
atom data. Even though the curves do not overlap, a fit of the
slopes yields y = 1.4 in both cases.

Taken together with the general agreement in the s frac-
tion, the similar power-law decay fits for 11 and 12 atoms in
Fig. 15(b) indicate that our results for the two-body interaction
case should be trustworthy. While we cannot claim that the
models have converged at 12 atoms, it is plausible that we are
near convergence. Furthermore, the Heisenberg times at 11
and 12 atoms are long enough that we can predict thermaliza-
tion.

Next, we compare the fidelity and s fraction for three-body
field-tuned interactions for the spp’s’ and sps’ models, shown
in Figs. 16 and 17, respectively, for w = 0.45 and d = 9 pm.
There is no evidence that the s fraction for the spp’s’ model
has converged in Fig. 16(a). The s fraction at long times for
the maximal case of 11 atoms is noticeably different from
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FIG. 16. (a) s fraction and (b) fidelity as a function of natural

time (lower axis) and real time in us (upper axis) for three-body
field-tuned interactions in the spp’s’ model, using the Hamiltonian
of Eq. (8). Each curve is colored for the number of atoms included
in the simulation, as indicated by the legend. The vertical dashed
lines show the corresponding Heisenberg time for each case. By
the end of the simulated time, none of the s fractions have reached
the expected saturation value of 0.241. In (b), the fidelities do not
collapse to near zero as they do in the two-body interaction results
shown in Fig. 15(b). This is because the system thermalizes slowly
due to a combination of quantum many-body scar states and disorder,
as described in Sec. IV. Rather, the asymptotic value of the fidelity is
given by the reciprocal of the inverse participation ratio. While these
results have not converged, we can still fit the slope of the power-law
decay in the maximal case of 11 atoms. This yields y = 0.2, in
agreement with the results shown in Fig. 7.

the s fraction for 10 atoms. However, in the case of the s
fraction for the sps’ model in Fig. 17(a), it is plausible that
we are nearing convergence. The 12 and 13 atom cases predict
nearly the same s fraction, especially for times less than the 12
atom Heisenberg time. Since the number of possible triplets
of atoms is much less than the number of possible pairs of
atoms at a given total number of atoms, it is reasonable to con-
clude that more atoms are necessary to achieve convergence
for the three-body interactions as compared to the two-body
interactions.

In Figs. 16(b) and 17(b), the fidelities do not collapse to
near zero as in the two-body case of Fig. 15(b). This is,
of course, because these systems thermalize slowly due to
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FIG. 17. (a) s fraction and (b) fidelity as a function of natural
time (lower axis) and real time in us (upper axis) for three-body
field-tuned interactions in the sps’ model, using the Hamiltonian of
Eq. (19). Each curve is colored for the number of atoms included in
the simulation, with their respective Heisenberg times shown by the
vertical dashed lines. In (a), it is plausible that the s fractions for the
12 and 13 atom cases have converged. By the end of the simulated
time, none of the s fractions have reached the expected saturation
value of 0.213. In (b), the fidelities do not collapse to near zero as
they do in the two-body interaction results shown in Fig. 15(b). For
13 and 14 atoms, the fidelities also appear to have converged, in part
because the asymptotic values are similar. There is also a sufficient
region of power-law decay to attain a robust fit, yielding y = 0.2.
This result agrees with the spp’s’ model of Fig. 16.

a combination of quantum many-body scar states and disorder
as discussed in Sec. IV. The initial state is not uniformly
spread over the eigenbasis, as shown in the scatter plots of
Figs. 4(a) and 6(a). Rather than using the reciprocal of the size
of the Hilbert space to estimate the asymptotic value of the
fidelity, one can use the reciprocal of the inverse participation
ratio, or IPR, defined in Eq. (22). This estimate works very
well for the three-body data. For example, in Fig. 16(b), the
estimated asymptotic value of F'(¢) for the eight atom case
is 0.33 and the graph plateaus near 0.35. Similarly, for the
eight atom case in Fig. 17(b) the estimate is 0.37 and the graph
plateaus around 0.33.

For the 11 atom case in the spp’s’ model in Fig. 16(b), the
estimated asymptotic value for the fidelity is 0.11. The fidelity
has not yet reached this value, so it is possible that the slope of
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FIG. 18. (a) s fraction and (b) fidelity as a function of natural
time (lower axis) and real time in us (upper axis) for four-body
field-tuned interactions in the spp’s’ model, using the Hamiltonian of
Eq. (AS). Each curve is colored for the number of atoms included in
the simulation, as indicated by the legend. The vertical dashed lines
show the corresponding Heisenberg time for each case. By the end of
the simulated time, none of the s fractions have reached the expected
saturation value of 0.193. In (b), the fidelities do not collapse to
near zero as they do in the two-body interaction results shown in
Fig. 15(b). Given the values of the Heisenberg times and the fact that
all of the fidelities at least begin to plateau, it is difficult to find a
region to fit the slope of the power-law decay even for the 11 atom
case. Regardless, the slopes are at least consistent with the four-body
results presented in Sec. [V, with y < 1.

the long-time power-law decay region has not been too greatly
affected. However, not much of the power-law decay occurs
before the Heisenberg time and, furthermore, we know from
the s fraction analysis that the dynamics have not converged.
Nevertheless, we can fit the power-law decay to obtain y =
0.2. This can be compared to the result shown in Fig. 7, which
shows the details of the fit for the corresponding three-body
sps’ result with 13 atoms and also obtains a value of y = 0.2.
This agreement is encouraging.

We can also compare the 12 and 13 atom cases for fidelity
in the sps’ model shown in Fig. 17(b). In both cases, there is
a large region of power-law decay before t5. The asymptotic
values for the fidelity are 0.08 for the 12 atom case and 0.05
for the 13 atom case, which have nearly been reached at the
last simulated time. Thus, there is a wide region to obtain a
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FIG. 19. (a) s fraction and (b) fidelity as a function of natural
time (lower axis) and real time in us (upper axis) for four-body
field-tuned interactions in the sps’ model, using the Hamiltonian of
Eq. (A2). Each curve is colored for the number of atoms included
in the simulation, with the vertical dashed lines representing their
respective Heisenberg times. By the end of the simulated time, none
of the s fractions have reached the expected saturation value of 0.153.
In (b), the fidelities do not collapse to near zero as they do in the
two-body interaction results shown in Fig. 15(b). For both the 13 and
14 atom cases, there is a wide region of power-law decay that allows
for a fit prior to or near #. In both cases, the fit yields y = 0.05.

robust fit for the slope. As is visually evident, the two slopes
agree and yield the previously calculated value of y = 0.2.
Given this agreement and the possible convergence of the s
fraction, our three-body sps’ results also seem trustworthy.
Next, we compare the fidelity and s fraction for four-body
field-tuned interactions for the spp’s’ and sps’ models, shown
in Figs. 18 and 19 for w = 0.45 and d = 6 um. The s fraction
for the spp’s’ model, shown in Fig. 18(a), shows only modest
evidence of convergence. The s fractions when including nine
or more atoms agree fairly well out to about r = 0.1, near ty
for the nine atom case. It is not surprising that they do not
converge at longer times, as the number of possible quadru-
plets of atoms is greatly restricted even with the maximal case
of 11 atoms. In Fig. 18(b), the F () begin to plateau near the
asymptotic value estimated from the IPR. Even for 11 atoms,
it is not clear that we can obtain a clean fit for the slope of
the power-law decay before it plateaus. However, the slopes
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at least yield y < 1, in agreement with the results presented
Sec. IV A for the four-body interaction.

The s fraction for the four-body interaction in the sps’
model, shown in Fig. 19(a) shows slightly better, though still
modest, evidence of convergence. The s fractions for cases
with 12 or more atoms agree fairly well out to about ¢ = 1,
near ty for the 12 and 13 atom cases. Given the two- and
three-body results for the sps’ model, it is at least plausible

that convergence could be achieved with only a few more
atoms. In Fig. 19(b), the fidelities for all of the cases up to 13
atoms begin to plateau. However, for 13 and 14 atoms there is
a significant region of power-law decay before the Heisenberg
time and well before the asymptotic plateau of fidelity. Fitting
the slopes of these regions, we obtain y = 0.05 for both cases.
This agreement suggests that the sps’ model can reliably sim-
ulate the long-time evolution of the four-body interactions.
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