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Abstract

Climate change impacts on fishery resources have been widely reported worldwide. Nevertheless, a knowledge gap remains 
for the warm-temperate Southwest Atlantic Ocean—a global warming hotspot that sustains important industrial and small-
scale fisheries. By combining a trait-based framework and long-term landing records, we assessed species’ sensitivity to 
climate change and potential changes in the distribution of important fishery resources (n = 28; i.e., bony fishes, chondrich-
thyans, crustaceans, and mollusks) in Southern Brazil, Uruguay, and the northern shelf of Argentina. Most species showed 
moderate or high sensitivity, with mollusks (e.g., sedentary bivalves and snails) being the group with the highest sensitiv-
ity, followed by chondrichthyans. Bony fishes showed low and moderate sensitivities, while crustacean sensitivities were 
species-specific. The stock and/or conservation status overall contributed the most to higher sensitivity. Between 1989 and 
2019, species with low and moderate sensitivity dominated regional landings, regardless of the jurisdiction analyzed. A 
considerable fraction of these landings consisted of species scoring high or very high on an indicator for potential to change 
their current distribution. These results suggest that although the bulk of past landings were from relatively climate-resilient 
species, future catches and even entire benthic fisheries may be jeopardized because (1) some exploited species showed high 
or very high sensitivities and (2) the increase in the relative representation of landings in species whose distribution may 
change. This paper provides novel results and insights relevant for fisheries management from a region where the effects 
of climate change have been overlooked, and which lacks a coordinated governance system for climate-resilient fisheries.
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Introduction

Climate change affects the productivity, structure, and 
composition of marine ecosystems upon which fisheries 
rely (Hoegh-Guldberg and Bruno 2010; Pinsky et al. 2013; 
Bindoff et al. 2019; Tittensor et al. 2021). Even though fish-
ing effort is commonly the main determinant of the status 
of exploited stocks, there is increasing evidence that stock 
resilience is affected by climate change through impacts 
on processes such as growth, reproduction, and also the 
behavior of organisms (Rijnsdorp et al. 2009; Brander 2010; 

Poloczanska et al. 2016; Pinsky et al. 2020). For instance, 
ocean warming has mostly exacerbated exploitation pat-
terns, leading to declining fisheries, with few exceptions 
where warming waters benefited fishing yields (Free et al. 
2019). Distributional range shifts of fishery resources, both 
latitudinally and bathymetrically, are also documented 
responses to ocean warming (Dulvy et al. 2008; Bates et al. 
2014; Robinson et al. 2015; Barange et al. 2018; Morley 
et al. 2018; Fredston-Hermann et al. 2020; Pinsky et al. 
2020). The magnitude and persistence of these responses 
are often species-specific and are modulated by habitat pref-
erences (Roberts et al. 2020; Wang et al. 2020; Champion 
and Coleman 2021) and dietary plasticity of marine species 
(Monaco et al. 2020). While ocean warming and consequent 
species responses have concentrated most research efforts, 
evidence of the impacts of diverse climate change-induced 
drivers (e.g., acidification, deoxygenation, and sea-level 
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rise) has been accumulating (Cooley and Doney 2009; 
Popova et al. 2016; Pauly and Cheung 2018).

Climate change effects manifest across spatio-temporal 
scales, ranging from changes in fishers’ and fleets’ behav-
ior (Gianelli et al. 2019a; Rubio et al. 2021) to local spe-
cies landings composition and variation in yields between 
nearby ports (Sumaila et al. 2011; Rogers et al. 2019). Even 
governance conflicts may arise from stocks shifting within 
national or between international jurisdictions (Pinsky et al. 
2018: Palacios-Abrantes et al. 2022). The concurrent and 
interrelated nature of climate-induced drivers has proven dif-
ficult to interpret, and meaningfully integrate into fisheries 
management. Regional and global models to project future 
catches that include several climate-induced drivers usually 
fail to provide species-specific information valuable to fish-
eries managers and the fishing industry (Cheung et al. 2010, 
2018). Moreover, correlational and mechanistic approaches 
for analyzing climate change impacts on exploited popu-
lations rely on long-term and extensive spatial monitoring 
programs, are data-intensive, and require considerable mod-
eling expertise (Hare et al. 2016). Consequently, exhaustive 
analysis is infeasible for all commercially important species, 
given their diversity and often limited data availability.

Methodologies for simultaneous analysis of several climate-
induced drivers that are suitable for concurrent application for 
many species are increasingly being implemented to fill criti-
cal knowledge gaps (Jones and Cheung 2018). In developing 
countries, trait-based assessments have increasingly become 
a primary approach to quantifying vulnerability to climate 
change or any of its constituent components (i.e., exposure, 
sensitivity, and adaptive capacity) (Ortega-Cisneros et al. 
2018; Cochrane et al. 2019; Pinnegar et al. 2019; Giddens et al. 
2022; Ramos et al. 2022). In developed regions meanwhile, 
such approaches have guided research and management efforts 
(Pecl et al. 2014; Hare et al. 2016; Spencer et al. 2019; Farr 
et al. 2021). Trait-based approaches can jointly assess data-rich 
and data-poor species because they draw on existing species 
knowledge and, when unavailable, use expert elicitation meth-
ods (Frainer et al. 2017). Based on the premise that biological 
attributes are effective indicators of the capacity of a species 
to respond to environmental changes (Sunday et al. 2015; Hare 
et al. 2016), trait-based assessments help increase awareness 
about possible climate-induced effects on marine fishery 
resources, detect knowledge gaps, and prioritize research and 
management efforts.

Climate change impacts on marine species have scarcely 
been documented in the Southwest Atlantic Ocean (SWAO) 
(Bertrand et  al. 2018), particularly for exploited stocks 
(Sumaila et al. 2011; Gianelli et al. 2019b; Franco et al. 
2020a, b; Costa et al. 2021). This knowledge gap is alarm-
ing, as the area is one of the largest and most fast-warming 
regions of the global ocean (Hobday and Pecl 2014; Yang 
et  al. 2020), and also holds exceptional biodiversity of 

marine vertebrates threatened by climate change (Ramírez 
et  al. 2017). Furthermore, decades of intensive fishing 
have caused several stocks to decline to unsustainable bio-
logical levels (Cardoso and Haimovici 2015; Gianelli and 
Defeo 2017; Haimovici and Cardoso 2017). Ocean warm-
ing occurs within this context where 40% of regional fish 
stocks assessed are being fished unsustainably (FAO 2022). 
Additionally, since most exploited species lack formal stock 
assessments or regionally coordinated management efforts, 
reports of unsustainable fishing may be underestimated 
(Costello et al. 2012). This intertwined reality of climate 
change and unsustainable fisheries is worrying, as it could 
undermine species’ responses to current and future envi-
ronmental changes, despite management efforts to rebuild 
stocks (e.g., CTMFM 2016). Hence, understanding which 
fishery resources are more resilient or sensitive to climate 
change is urgently needed for proper management in this 
region.

In this study, we assessed the ecological sensitivity of 
fishery resources to climate change in Southern Brazil, 
Uruguay, and the northern shelf of Argentina, a hotspot of 
ocean warming. We applied a flexible, participatory, and 
cost-effective framework to quantify and categorize ecologi-
cal sensitivity, a synthetic measure of species’ intrinsic resil-
ience to change. We also assessed the relative importance 
of fish and shellfish landings for each country and major 
fishing ports within the study area. Finally, by combining 
these two approaches, we estimated the ecological sensitiv-
ity to climate change as well as the potential for changes in 
the distribution of the ensemble of species that comprise 
each country’s landings.

Methods

We conducted a series of concatenated methodological 
steps, divided into three discrete phases (Fig. S1): (1) study 
planning and scoping, (2) scoring, and (3) data analysis.

Study planning and scoping

Study area

To delimit the study area, we used a bioregionalization 
approach (Marine Ecoregions of the World: MEOW), 
which classifies coasts and shelves in a nested biogeo-
graphic system of realms, provinces, and ecoregions 
(Spalding et al. 2007). An ecoregion is defined as an area 
with a common set of biophysical features and the result-
ing region-specific species composition. In this study, we 
analyzed the “Río de la Plata,” “Uruguay–Buenos Aires 
shelf,” and “Río Grande” ecoregions (Fig. 1) (29–41°S), 
all belonging to the warm-temperate Southwestern Atlantic 
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province. The confluence of two western boundary currents 
(Brazil and Malvinas) with contrasting thermohaline char-
acteristics results in a strong latitudinal and longitudinal 
thermal gradient within the selected ecoregions (Franco 
et al. 2020a, 2022). Furthermore, the distribution of sev-
eral marine species is bounded by the study area (Menni 
et al. 2010) and includes high endemism of sharks and 
rays (Menni et al. 2010; Stein et al. 2018; Derrick et al. 
2020; Sabadin et al. 2020). The study area also hosts eco-
nomically important fishing ports in Southern Brazil (Rio 
Grande), Uruguay (La Paloma and Montevideo), and the 
northern shelf of Argentina (General Lavalle, Mar del 
Plata, Necochea-Quequén, and Bahía Blanca) (Fig. 1). This 
socio-economic relevance, the transitional characteristics 
in oceanography and biodiversity, and the fact that the 
ecoregions are among the most prominent marine warm-
ing hotspots worldwide make the study area particularly 
relevant for assessing the effects of climate change on key 
fishery resources.

Expert recruitment and species prioritization

We recruited experts from academia, fisheries research 
and management agencies (see co-authors’ affiliations). 
Based on their expertise within each taxonomic group, we 
divided them into four assessment working groups: bony 

fishes, chondrichthyans, crustaceans, and mollusks. Work-
ing groups were composed of 4–6 experts (16 in total) and 
included five senior researchers, three early career research-
ers, and eight Ph.D. or master’s students.

We identified the potential set of species to assess based 
on official records of landings, and discussed and ranked 
them within each working group using the following criteria: 
(1) ecological, cultural, and economic relevance for regional 
small-scale and industrial fisheries, and (2) species distribu-
tion within the selected study area. The final set of species 
for assessment was based on the prioritization of each group, 
and bounded by two limiting factors: (1) the availability of 
voluntary expert time and labor, and (2) an agreed minimum 
of three species assessments to be completed by each expert. 
Highly migratory species (e.g., tuna, billfishes, and pelagic 
sharks) were not considered, as the study area does not cover 
much of their life cycle.

Assessment framework

We applied a modified vulnerability assessment frame-
work that uses expert elicitation methods (at individual 
and group level) to quantify and categorize the expected 
sensitivity and exposure to climate change for a set of spe-
cies in a defined region (Hare et al. 2016). As one of the 
pillars of the Climate Vulnerability Assessments developed 
by the US National Oceanic and Atmospheric Administra-
tion (Morrison et al. 2015), this methodological approach 
has been widely validated and implemented (Hare et al. 
2016; Spencer et al. 2019; Farr et al. 2021; Giddens et al. 
2022; Ramos et al. 2022). We purposefully limited our 
assessment to the sensitivity component of vulnerability 
because of the currently existing high uncertainty for many 
climate exposure factors in the region (e.g., warming below 
the mixed layer, ocean acidification, and deoxygenation 
(Franco et al. 2020a, b)), and their effects on marine life, 
including species of utmost economic importance (Ber-
trand et al. 2018). Moreover, using global models to predict 
regional oceanography is challenging because of the spe-
cific oceanographic (e.g., a confluence of currents, pres-
ence of oceanic fronts) and coastal features of the study 
area (e.g., a wide estuary, coastal lagoons). 

Scoring

Using the same information collated for assessing sensitiv-
ity, we also compiled life-history synopses for each assessed 
species (Supplementary Material 2). These fact sheets also 
provided tallies distribution (“Sensitivity scoring” section) 
and data quality scores for each sensitivity attribute (“Data 
quality scoring” section), the overall sensitivity score (OSS), 
the potential for distributional change, and the certainty in 
these scores. A brief description of stock status and existing 

Fig. 1  The study area selected for the sensitivity assessment of key 
fishery resources to climate change. Ecoregions included in the 
study area and major fishing ports are denoted. The 200-m isobath 
(gray line) and jurisdictional limits (Exclusive Economic Zone: 
dashed lines, and the Argentinean-Uruguayan Common Fishing Zone 
(AUCFZ): solid black line) are shown
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management tools were also provided, along with potential 
species responses to climate change effects in the SWAO.

Sensitivity scoring

Ecological sensitivity is a measure of species’ intrinsic resil-
ience to change, which is assessed based on current biologi-
cal attributes that are indicative of their ability/inability to 
respond to potential environmental changes (Morrison et al. 
2015). For sensitivity scoring, experts used available infor-
mation (e.g., scientific and gray literature, species profiles) 
and followed the process in Morrison et al. (2015). Experts 
scored twelve sensitivity attributes (Table 1) based on a 
5-tally system that allowed each expert to distribute their 
tallies to well-defined sensitivity categories—low, moderate, 
high, and very high—based on expert certainty. For instance, 
if there was high certainty for a given attribute, an expert 
placed all their tallies into a single category; otherwise, tal-
lies were distributed among several categories. In instances 
when information was unavailable, the experts relied solely 
on their knowledge for scoring. The number of species 
scored by each expert ranged between 3 and 18 species. To 
foster robustness of individual expert judgment, we applied 
the IDEA protocol (Investigate-Discuss-Estimate-Aggre-
gate), i.e., a structured expert elicitation method that consists 
of two rounds of individual scoring (estimation) mediated 
by a group discussion held between rounds (Hemming et al. 
2018). Once the initial scoring round was completed, experts 
discussed aggregated results and were allowed to modify 
their scoring as new information was made available from 
discussions. A consensus among experts was not pursued, 
and the final results may reflect divergent opinions. This 
approach aimed to remove linguistic ambiguity and avoid 
methodological misinterpretations and individual biases 
(Hemming et al. 2018).

Table 1 displays the meaning of low and high scores for 
each attribute, while the specific criteria that define the cor-
responding sensitivity categories can be found in Appendix 
A of Morrison et al. (2015).

Data quality scoring

Experts also provided input on the quality of the informa-
tion available for conducting the sensitivity assessment 
based on a 4-level system (0 = no data, 1 = expert judgment, 
2 = limited data, 3 = adequate data), following Morrison 
et al. (2015). No data means that no information to score an 
attribute was available (e.g., very little is known about the 
species or related species, and there is no basis for forming 
an expert opinion). Expert judgment means that the attrib-
ute score reflects the evaluator’s judgment and is based on 
their general knowledge of the species (or related ones) and 
its relative role in the ecosystem. Limited data means that 

information used to score the attribute may be based on 
related or similar species, come from outside the study area, 
or that the source’s reliability may be inadequate. Finally, 
adequate data means that the score is based on data that has 
been observed, modeled, or empirically measured and comes 
from a reliable source. For each species and attribute, the 
average data quality was determined as the mean of scores 
provided by experts.

Data analysis

Mean sensitivity and sensitivity categorization

We calculated a mean sensitivity for each attribute as the 
weighted average of the number of tallies in each category 
and their respective assigned value (low = 1, moderate = 2, 
high = 3, very high = 4):

where L, M, H, and VH are the total number of tallies in the 
low, moderate, high, and very high-sensitivity categories. 
Thus, mean attribute sensitivity varied between 1 and 4.

We then assigned a categorical sensitivity for each species 
based on a predefined decision rule in which the species sen-
sitivity is a function of the number of attributes with means 
above predefined thresholds (very high: four or more attrib-
utes with mean sensitivity > 3.0, high: at least two attributes 
with a mean sensitivity > 3.0, moderate: at least two attrib-
utes with a mean sensitivity > 2.5). Species not exceeding 
the moderate threshold were categorized as low sensitivity.

We also obtained a ranking of species’ OSS by summing 
the scores for each sensitivity attribute (i.e., a cumulative 
weighted score) for each of the 28 species (12 = lowest pos-
sible sensitivity, 48 = highest possible sensitivity) (Pecl et al. 
2014; Ramos et al. 2022). We refrained from estimating a 
mean sensitivity score for each species as averaging pro-
cedures tend to minimize the importance of high-scoring 
sensitivity attributes (Morrison et al. 2015).

Lastly, we used the Kruskal–Wallis (KW) and post hoc 
Dunn’s tests with Bonferroni adjustments to assess whether 
there were significant differences in OSS as a function of 
major taxonomic groups (bony fishes, chondrichthyans, 
crustaceans, mollusks) and species habitat types (benthic, 
demersal, pelagic). We also used KW and Dunn’s tests to 
assess differences between attribute sensitivities, considering 
all species grouped, and discriminated by taxonomic group.

Potential for changes in species distribution

To explore the potential for changes in species’ distribution 
(i.e., species’ capacity to expand or relocate their distributional 

(1)
((L × 1) + (M × 2) + (H × 3) + (VH × 4))

(L + M + H + VH)
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Table 1  Sensitivity attributes and the underlying rationale for their inclusion in the assessment of ecological sensitivity to climate change. Illus-
trative examples for low and very high scores are provided.  Adapted from Morrison et al. (2015)

Attribute Relation to climate change Low score Very high score

Stock size/status Healthy stocks are better prepared to cope with 
climate change. Climate resilience in overex-
ploited stocks may be compromised

High abundance (e.g., B/
BMSY ≥ 1.2)

Low abundance (e.g., B/
BMSY < 0.5)

Population growth rate Highly productive species are thought to be 
more resilient to environmental changes as 
they can rapidly recover from impacts

High productivity (e.g., von 
Bertalanffy K > 0.25/year)

Low productivity (e.g., von 
Bertalanffy K ≤ 0.10/year)

Habitat specificity Habitat specialists are likely to be more sensi-
tive as they lack compensatory habitats or 
other microhabitat options

Habitat generalist with 
abundant habitat availability 
(e.g., widespread abiotic 
habitats)

Habitat specialist on a limited 
habitat type (e.g., specific 
and/or uncommon biological 
habitats)

Prey specificity Trophic generalists are more resilient to 
changes in resource availability than those 
dependent on a few diet items. Diet breath 
increases the prevalence and establishment 
of climate-migrant species, as they can better 
adapt to novel food sources

Prey generalist (e.g., relies on 
a large variety of prey or diet 
items)

Prey specialist (e.g., dependent 
on one prey type and limited 
to switch between diet items)

Sensitivity to temperature Species with wide temperature requirements 
and/or latitudinal coverage may better toler-
ate a warming ocean

Large temperature range  
(≥ 15ºC)

Narrow temperature range  
(< 5ºC)

Sensitivity to acidification Shell-forming and oxygen-demanding organ-
isms are expected to be more affected by a 
high  pCO2. Species that depend (trophically 
and/or for settlement) on acidification-sensi-
tive taxa may be indirectly affected

Insensitive taxa to direct 
(physiological) and/or indi-
rect (food, shelter) effects of 
acidification

Sensitive taxa with demon-
strated negative direct acidifi-
cation effects

Adult mobility Sessile species, crawlers, or swimmers with 
low motility may be unable to move or shift 
range distribution when unfavorable environ-
mental conditions persist

Highly mobile adults Sessile adults

Dispersal of early stages Species with high dispersal potential of egg 
and larvae may colonize new habitats, 
replenish areas that temporarily became 
unfavorable, and increase genetic diversity. 
Dispersal potential is mediated by intrinsic 
(e.g., buoyancy, swimming capacity) and 
extrinsic limitations (e.g., currents, fronts)

High dispersal (e.g., dura-
tion of planktonic eggs and 
larvae greater than 8 weeks 
and/or larvae are dis-
persed > 100 km)

Low dispersal (e.g., benthic 
eggs and larvae, or little to no 
planktonic early life stages)

Requirements for early stages Species with several early life stages (eggs 
and larvae) that require different habitats 
and/or specific environmental conditions for 
survival and settlement are more prone to be 
affected by a changing environment

Larval requirements are rela-
tively resistant to environ-
mental change

Larval requirements are spe-
cific and likely to be impacted 
by environmental change 
(e.g., specific known biologi-
cal and physical requirements 
for larval survival)

Spawning cycle Protracted spawners enhance offspring sur-
vival in a changing environment. Discrete 
spawning events over short-time periods may 
be susceptible to recruitment failure due to 
asynchrony and uncoupling to environmental 
factors and food availability peaks

Year-round spawning (e.g., 
monthly)

Short spawning duration (e.g., 
yearly spawning over a brief 
period)

Complexity in the reproduc-
tive strategy

Species that rely on climate-driven environ-
mental triggers or cues to initiate repro-
ductive-related activities (e.g., migration, 
aggregation, maturation, copulation, egg lay-
ing, egg hatching) may alter their timing and 
magnitude under climate change conditions

Low complexity (i.e., no more 
than one characteristic that 
suggests a complex repro-
ductive strategy)

High complexity (i.e., four or 
more characteristics that sug-
gests a complex reproductive 
strategy)

Other stressors Stocks already affected by other stressors may 
suffer climate change effects more pro-
foundly

Low number of other stressors 
(e.g., species experiencing 
no known stress other than 
fishing)

High number of other stressors 
(e.g., species experiencing 
four or more known stressors 
other than fishing)
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range), we used a subset of attributes (Hare et al. 2016): Sensi-
tivity to temperature, Adult mobility, Early life stage dispersal, 
and Habitat specificity (Table 1). A high potential for changes 
in species distribution was assumed for species with high sen-
sitivity to warming, high mobility and dispersal capacities, 
and low specificity to habitat types (Table 1).

Certainty in sensitivity scores

We used Bootstrap analysis to estimate the certainty of both 
the sensitivity scores and the potential for changes in distribu-
tion scores (Hare et al. 2016). For a given sensitivity attribute, 
scores across all experts were randomly drawn 1000 times with 
replacement, and the sensitivity score was recalculated follow-
ing Eq. 1. Applying the same logic as in the “Mean sensitivity 
and sensitivity categorization” section, we estimated categori-
cal sensitivity for each iteration and species. Results from each 
iteration were allocated to their respective sensitivity category 
(low, moderate, high, and very high). Certainty was estimated 
as the fraction of bootstrapped iterations that matched each 
species’ original sensitivity category (Ramos et al. 2022). Fol-
lowing Hare et al. (2016) and Ramos et al. (2022), we classi-
fied certainties as Very high (> 95%), High (91–95%), Moder-
ate (70–90%), and Low (< 70%). An analogous procedure was 
applied for the four attributes that constitute a proxy for poten-
tial for changes in species distribution (“Potential for changes 
in species distribution” section). Finally, we used leave-one-out 
analysis to assess the importance of each sensitivity attribute 
in determining overall species-specific sensitivity.

Combining sensitivity scores and landings at the country/

state level

We compiled landings statistics and combined those with 
the results for ecological sensitivity and potential distribu-
tion changes for each country/jurisdiction within the study 
area. In doing so, we obtained two annual time series of the 
ensemble of species in each country’s landings according to 
their ecological sensitivity to climate change and potential for 
change in distribution. This procedure allowed us not only to 
focus on the species level, but also on the potential effect of 
climate change on each country’s combined landings.

For Brazil (State of Rio Grande do Sul), official statistics 
were only available from 1997 to 2011. Therefore, we relied 
on long-term landings statistics systematically collected by 
the Federal University of Rio Grande (FURG) for 16 species 
from 1989 to 2019.1For Uruguay, we used official landings 

statistics from 1989 to 2019. Finally, for Argentina (Buenos 
Aires Province), we used landing statistics from 1989 to 2019 
of marine fisheries published by Sánchez et al. (2012) and 
Navarro et al. (2014, 2019). We filtered landing statistics to 
match species included in the ecological sensitivity assess-
ment (Fig. S2) and to those landed by the industrial fishing 
fleets in major fishing ports within the study area (Fig. S4, 
Fig. S5). It is noteworthy that Brazilian and Argentinean 
landings only include catches landed at Rio Grande state 
and Buenos Aires province, respectively, whereas landings 
statistics from Uruguay included total industrial landings.

Results

A final set of 28 species (bony fishes = 10, chondrichthy-
ans = 8, crustaceans = 4, mollusks = 6), representing 49% of 
the initial set of 57 species were prioritized for assessment of 
their ecological sensitivity (Table S1). All selected species 
represent key fishery resources—in economic, ecological, 
and/or cultural terms—to the industrial and/or small-scale 
fisheries sub-sectors in at least one of the countries involved 
(Table S2). For instance, only considering the industrial sub-
sector, the species assessed here represent 69% of official 
reported landings for Brazil (Rio Grande, 1997–2011), 94% 
for Uruguay (1989–2019), and 70% for Argentina (Buenos 
Aires, 1989–2019) (Fig. S1).

Species’ ecological sensitivity to climate change

Two sciaenids, Micropogonias furnieri and Cynoscion 

guatucupa, and a merluccid, Merluccius hubbsi, ranked 
highest among bony fishes (OSS range = 25.1–25.9) 
(Fig. 2A). Conversely, the forage fish Engraulis anchoita 
was ranked to have the lowest sensitivity to climate change. 
Umbrina canosai, Urophycis brasiliensis, and Macrodon 

atricauda were ranked in the range of 21.6–23.4 OSS.
Within chondrichthyans (Fig. 2A), guitarfishes (Zap-

teryx brevirostris and Pseudobatos horkelii) ranked highest 
(OSS = 26.3 and OSS = 26.7, respectively), and Carcharias 

taurus ranked third. Squatina guggenheim and Mustelus 

schmitti scored similarly in the middle-low range of OSS 
(23.0–23.6), along with Galeorhinus galeus (OSS = 22.9). 
Squalus acanthias showed the lowest ecological sensitivity 
(OSS = 21.9).

Within crustaceans (Fig. 2A), the pink shrimp (Penaeus 

paulensis) showed the second-highest sensitivity across 
groups (OSS = 31.2).

Finally, within mollusks (Fig. 2A), two sub-groups of 
species were differentiated based on their contrasting life 
histories (e.g., mobility, specialization of habitats), i.e., 
bivalves-gastropods (Amarilladesma mactroides, Zidona 

dufresnei, Mytilus spp., and Zygochlamys patagonica) and 

1 Yet, to assess the proportion of landings of the species evaluated 
here over total landings, we used official Rio Grande landings statis-
tics for 1997–2011 published by IBAMA/CEPERG. Landing cover-
age during this period is more comprehensive than in subsequent and 
previous years.
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squids (Doryteuthis sanpaulensis and Illex argentinus). 
The yellow clam (A. mactroides) had the highest sensitivity 
(OSS = 31.8) among mollusks and across groups.

Species’ OSSs were not biased by data quality. The qual-
ity of information used to assess species sensitivity was 
considered mostly adequate and, to a lesser extent, limited 
(Fig. 2B). Only a minor fraction of the scores were based 
solely on expert judgment, and a marginal proportion was 
assigned without any scientific basis (Fig. 2B). Data-defi-
cient species included a bathydemersal species (Helicolenus 

dactylopterus), a coastal fish (U. brasiliensis), an offshore 
demersal ray (Zearaja brevicaudata), and a benthic snail 
(Z. dufresnei). In contrast, A. mactroides, P. paulensis, M. 

furnieri, and C. guatucupa showed the highest data quali-
ties. Sensitivity to ocean acidification and the effect of other 
stressors were the attributes with the greatest uncertainty 
among species (Fig. S3).

No significant differences were found when comparing 
OSS across major taxonomic groups (H(3) = 3.39, p = 0.33). 
The range of OSS shown by chondrichthyans and bony fish 
groups were similar (Fig. 3A), but the latter included spe-
cies with lower sensitivities (Figs. 2 and 3A). Crustaceans’ 
sensitivities were species-specific and scattered through-
out the entire range of estimated values (Figs. 2A and 3A). 
Even though four of the five most sensitive species were 

mollusks (Fig. 2A), high intra-group variability was found 
due to contrasting life histories of sedentary mollusks and 
squids (Fig. 3A). On the other hand, significant differences 
were found when aggregated by habitat type (H(2) = 13.13, 
p < 0.01) (Fig. 3B). Fishery resources with benthic habits 
showed the highest sensitivities (median = 28.5; IQR = 1.57) 
and significantly differed from demersal (benthic vs. demer-
sal: p = 0.01) and pelagic fishery resources (benthic vs. 
pelagic: p < 0.01). Sensitivities of demersal fishery resources 
(median = 24.0; IQR = 2.35) did not differ from pelagic ones 
(median = 20.3; IQR = 2.32) (benthic vs. demersal: p = 0.07).

The disaggregation of species sensitivity by attribute 
and the leave-one-out analysis allowed for visualizing the 
role of each attribute in determining final species sensitiv-
ity scores (Fig. 4A, Table S3), and the particular combina-
tion of attributes and species that warrant further attention. 
Almost 40% of the species assessed were classified into the 
high-sensitivity category, and 32%, 21.4%, and 7% into the 
moderate, low, and very high-sensitivity categories, respec-
tively (Fig. 4B). The attribute that contributed most to spe-
cies sensitivity was the current status of populations (stock 
status/size) (Fig. 4A, Tables S3 and S4), particularly in chon-
drichthyans (Tables S3 and S5). Within this group, the slow 
population growth rates and the complexity of reproductive 
strategies also contributed to high-sensitivity values (Fig. 4A, 

Fig. 2  A Rankings of sensitivity 
(cumulative weighted scores) of 
key fishery resources (n = 28) to 
climate change in the warm-
temperate Southwest Atlantic 
Ocean. B Relative frequency of 
data quality per fishery resource
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Tables S3 and S5). Therefore, almost all chondrichthyans 
assessed showed high sensitivities, except for S. guggenheim, 
whose sensitivity was moderate (Fig. 4B). The current stock 
status of bony fishes, such as M. furnieri, M. hubbsi, and U. 

canosai, was of concern. The latter was also true for sessile 
and sedentary mollusks (i.e., A. mactroides, Z. dufresnei, 
Mytilus spp., and Z. patagonica), whose sensitivities were 
also affected by expected impacts from ocean acidification 
(Fig. 4A, Table S3). Consequently, these four species showed 
high to very high sensitivities (Fig. 4B). Crustacean sensi-
tivities to climate change were mainly driven by stock status 
and complexity in the reproductive strategy (Fig. 4A). The 
pink shrimp (P. paulensis) also showed high sensitivity to 

their attributes related to ontogenetic changes (e.g., habitat 
requirements in early life stages), which contributed to an 
overall very high sensitivity (Fig. 4B).

Certainty assessment of species sensitivities showed that 
25% of the species assessed were classified with very high 
certainty (> 95%), 7% with high certainty (91–95%), 18% 
with moderate certainty (70–90%), and 50% with low cer-
tainty (< 70%; Fig. 4B, Table S6).

Species’ distribution change potential

A total of 48.6% of the species assessed exhibited moderate 
potential for changing their distribution, whereas 28.6% had 

Fig. 3  Overall sensitivity score 
by (A) major taxonomic group 
(bony fishes, chondrichthyans, 
crustaceans, mollusks) and (B) 
habitat type (benthic, demersal, 
pelagic). The medians and the 
interquartile range (IQR) are 
represented by horizontal solid 
black lines and boxes, respec-
tively. Whiskers extend up to 
1.5 × IQR

Fig. 4  A Ecological sensitiv-
ity per individual attribute 
(n = 12) for each assessed 
species (n = 28), separated by 
taxonomic group. Attributes and 
species are ranked from highest 
to lowest overall sensitivity 
scores. B Ecological sensitivity 
expressed in discrete categories 
(very high, high, moderate, low) 
predefined by a decision rule. 
Certainty from the bootstrap 
analysis is indicated by the 
number of asterisks: very high 
certainty (****): > 95%; high 
certainty (***): 91–95%; mod-
erate certainty (**): 70–90%; 
low certainty (*): < 70%
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a high potential for adjusting their distribution, including key 
regional fishery resources such as M. hubbsi, U. canosai, E. 

anchoita, and M. schmitti (Fig. 5). A commercially important 
cephalopod (I. argentinus) and a by-catch shark species (S. 

acanthias) presented a very high potential to change their 
distribution range. However, 18% of the species had a low 
potential to adjust their distribution in response to climate 
change. These fishery resources included benthic species and/
or habitat specialists in any or all life stages (A. mactroides, 
Mytilus spp., P. paulensis), low mobile snails with egg-
attaching strategy (Z. dufresnei), and a bathydemersal spe-
cies with preferences for rocky bottoms (H. dactylopterus).

Certainty assessment of the species’ potential for changes 
in distribution showed that 29% of the species assessed were 
classified with very high certainty (> 95%), 11% with high 
certainty (91–95%), 53% with moderate certainty (70–90%) 
and 7% with low certainty (< 70%; Fig. 5, Table S7).

Landings and sensitivity to climate change

In Rio Grande (Brazil), landings were comprised mainly of 
demersal sciaenid fishes with moderate (M. furnieri, U. canosai, 
M. atricauda) and low sensitivity (C. guatucupa), and penaeid 
shrimps with very high (Penaeus spp.) and moderate (Artemesia 

longinaris) sensitivities to climate change. Small tunas (Scom-
bridae) and other bony fishes (e.g., Mugil sp., Pomatomus sal-

tatrix), whose sensitivities were not assessed, also accounted for 
a substantial fraction of total landings (Fig. 6).

Uruguayan landings were largely dominated by three 
bony fish species, two with moderate sensitivity (M. furnieri 
and M. hubbsi) and one with low sensitivity (C. guatucupa) 
(Fig. 6). Invertebrate landings were mostly represented by 

the short-fin squid (I. argentinus) and the red crab (Chaceon 

notialis), with moderate and high sensitivity, respectively.
In Argentina, most catches were landed in Mar del Plata 

fishing port (95%, Fig. S4) and were largely dominated by 
two species with moderate sensitivity: M. hubbsi (catches 
reported north of 41°S) and I. argentinus (Fig. 6 and Fig. S5). 
M. schmitti (high sensitivity), S. guggenheim (moderate sen-
sitivity), and other chondrichthyans such as Squaliformes and 
Rajiformes (mostly Bathyraja spp.), whose sensitivities were 
not assessed, also contributed to landings (Fig. 6). Macruro-

nus magellanicus, Genypterus blacodes, some notothenioid 
fishes, and species of the order Rajiformes were a substantial 
fraction of landings reported for northern Argentinean fishing 
ports (Fig. 6). However, these species were probably caught 
further south and may therefore not be representative of spe-
cies assemblage and landings composition of the study area 
considered here. Hence, these species were not considered for 
assessment of their sensitivity to climate change.

Our results showed that, regardless of the country or 
jurisdiction, the vast majority of landings consisted of 
species with low or moderate ecological sensitivity to 
climate change (Figs. 6 and 7A). Brazilian (Rio Grande) 
landings were primarily species with low to moder-
ate sensitivity, the latter category increasing slightly 
through time (Fig. 7A). A single species (P. paulensis) 
targeted by small-scale and industrial fleets, contributed 
with a very high sensitivity to the species landed in Rio 
Grande. Landings composition of Uruguay and Argentina 
remained stable over time when classified by sensitivity 
to climate change (Fig. 7A).

When landings were combined with the species’ poten-
tial for changes in distribution, contrasting patterns were 
observed between jurisdictions (Fig. 7B). Brazilian (Rio 
Grande) landings were primarily species with moderate and 
high potential for changes in their distribution, the latter cat-
egory steadily increasing through time. Uruguayan landings 
were mainly composed of species with high and moderate 
distribution change potential. Finally, in Argentina (Buenos 
Aires), a significant proportion of landings had a very high 
distribution change potential (almost entirely represented by 
I. argentinus caught in the study area).

Discussion

This assessment represents a stepping stone toward better 
understanding and prediction of climate change impacts 
on fishery resources in the warm-temperate SWAO. Most 
species showed moderate or high sensitivities, with related 
life-history traits explaining similar sensitivities within 
taxonomic groups and life habits (e.g., pelagic vs. benthic 
species). Above all, the worrying stock and/or conservation 

Fig. 5  Distribution change potential expressed in discrete categories 
(very high, high, moderate, and low) for each species assessed based 
on scoring four attributes (adult mobility, dispersal of early stages, 
habitat specificity, and sensitivity to temperature). Certainty from the 
bootstrap analysis is indicated by the number of asterisks: very high 
certainty (****): > 95%; high certainty (***): 91–95%; moderate cer-
tainty (**): 70–90%; low certainty (*): < 70%
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status of fishery resources (several of them unmanaged) 
was the attribute that mainly contributed to high-sensitivity 
scores. Regardless of the jurisdiction analyzed, landings 
were mostly comprised of species with low and moderate 
sensitivities, a finding consistent with global-scale vulner-
ability assessments (Jones and Cheung 2018). Furthermore, 
a considerable fraction of landings consisted of species with 
high or very high potential to change their current distribu-
tion. These results suggest that, even though the bulk of past 
landings were from relatively climate-resilient species, future 
catches may be jeopardized by the recent increases in land-
ings of species whose distribution may change. In addition, 
many benthic fishery resources showed high sensitivities and 
low potential to change their distribution, making them more 
susceptible to climate-induced changes.

Bony fishes support the most important regional fisheries 
and have received more research and management attention 
than other fishery resources (e.g., Cardoso and Haimovici 
2015; Jaureguizar et al. 2016), but climate change impacts 

remain poorly understood (Franco et al. 2020a, b). Species 
that comprise this group (primarily coastal and demersal 
fishes in our assessment) are relatively climate-resilient, as 
estimated sensitivities were low or moderate, whereas the 
potential for changes in distribution was moderate-high. 
Other trait-based assessments support similar findings for 
these types of bony fishes (Hare et al. 2016; Ortega-Cis-
neros et al. 2018; Giddens et al. 2022; Ramos et al. 2022). 
Evidence of climate impacts on bony fishes within our study 
area primarily come from catch-only data and information 
about species’ thermal preferences (e.g., Gianelli et al. 
2019b; Verba et al. 2020). For instance, the increase in SST 
implies a trend towards unfavorable thermal conditions for 
M. hubbsi, a cold-water affinity species with moderate sen-
sitivity and a high potential for distribution change. A past 
poleward climate-mediated distribution shift in M. hubbsi 
supports this hypothesis (Bas et al. 2020). A recent study 
for the warm-temperate SWAO showed that under climate 
change scenarios, SST would determine future fish larvae 

Fig. 6  Fishery resources landed 
(fraction of total landings) by 
the industrial fishing sub-sector 
in southern Brazil (Rio Grande: 
1997–2011), Uruguay (1989–
2019), and northern Argentina 
(Buenos Aires: 1989–2019). 
Species were classified based 
on their sensitivity to climate 
change. Species with less than 
0.005 of total landings were 
excluded
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distribution, whereas surface salinity and bathymetric gradi-
ents better predict fish adult stages distribution (Costa et al. 
2021). Even under moderate climate change scenarios, fish 
larvae and adult stages distributions were predicted to move 
polewards (Costa et al. 2021). Another fragmentary evi-
dence of climate-induced impacts stems from studies that 
assess variability in the distribution, abundance, and popu-
lation structure of coastal-estuarine fishes (e.g., M. furnieri, 
C. guatucupa) in response to mid-term environmental vari-
ability and change. Without long-term research programs, 
these studies provide an indirect approach to inferring 
potential climate-related impacts on species (Jaureguizar 
et al. 2015, 2016, 2021) and local coastal fishing communi-
ties (Camiolo et al. 2019). Pelagic fish in our assessment 
were represented only by E. anchoita, a low-sensitivity spe-
cies with a high potential to change its distribution. Low 
sensitivities were also estimated for other small pelagic 
species in other parts of the world (Pecl et al. 2014; Hare 
et al. 2016; Jones and Cheung 2018; Ortega-Cisneros et al. 
2018; Bueno-Pardo et al. 2021). Yet, early and adult life 
stages of forage fish are particularly susceptible to changes 
in circulation and productivity, mediated by climatic varia-
bility and change (Chavez et al. 2003; Checkley et al. 2009). 
This incongruence could stem from the fact that trait-based 
assessments hardly consider climate-induced changes in 

primary productivity (Hare et al. 2016; Jones and Cheung 
2018), a limitation that could have underestimated the sen-
sitivity of E. anchoita.

Chondrichthyans are most threatened by overfishing 
(Dulvy et al. 2014; Pimiento et al. 2020). Hence, the main 
individual attribute that contributed to their high sensitiv-
ity was stock or conservation status. Other life-history traits 
such as low population growth may render them susceptible 
to climate-induced changes (Ortega-Cisneros et al. 2018; 
Giddens et al. 2022), further jeopardizing this group (Dulvy 
et al. 2021; Santos et al. 2021). Chondrichthyans distribution 
(endemic or cosmopolitan) could broadly explain species 
sensitivity patterns (Jones and Cheung 2018). For instance, 
two endemic guitarfishes (P. horkelii and Z. brevirostris), 
both with conservation concerns and subject to high fishing 
pressure (either as target species or by-catch), presented the 
highest ecological sensitivities, while cosmopolitan sharks 
presented low sensitivities (G. galeus and S. acanthias). 
However, this relation does not hold for C. taurus (cosmo-
politan with high sensitivity) and S. guggenheim (endemic 
with moderate sensitivity) due to the critical population 
status of C. taurus in the region (Cuevas et al. 2021) and 
the relatively stable stock status of S. guggenheim in the 
Argentinean-Uruguayan Common Fishing Zone (CTMFM 
2018; Oddone et al. 2019).

Fig. 7  Temporal trends of annual landings according to (A) species’ 
ecological sensitivity to climate change and (B) species’ distribution 
change potential within the study area. In (A) and (B), landing statis-
tics include only those species covered in the present ecological sen-

sitivity assessment and landed by the industrial fishing sub-sector in 
fishing ports within the study area. Both attributes were expressed by 
discrete categories (Very High, High, Moderate, and Low) and dif-
ferentiated by country
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Mollusks, particularly benthic ones, were ranked the 
most sensitive. Benthic calcifying mollusks are exception-
ally responsive to climate-induced changes (Hare et al. 2016; 
Giddens et al. 2022; Ramos et al. 2022) due to the detrimen-
tal effects of acidification (Kroeker et al. 2013) and their lim-
ited movement capacity in adult stages. The yellow clam (A. 

mactroides), an endemic species that inhabits exposed sandy 
beaches, provides a compelling example of well-documented 
climate-induced impacts (e.g., SST increase) on species’ per-
formance and abundance (Ortega et al. 2016) and ultimately, 
in its small-scale fishery (Defeo et al. 2021; Gianelli et al. 
2019a, 2021). On the other hand, deep-sea benthic species, 
such as Z. patagonica (depths up to 200 m: Gutiérrez and 
Defeo 2003), could be relatively unaffected by SST changes. 
Yet, it may be susceptible to benthic-pelagic decoupling pro-
cesses (i.e., sedimentation of phytoplankton blooms: Franco 
et al. 2020b). Considering its high sensitivity and moderate 
potential to adjust its distribution, assessing climate change 
impacts will be critical to sustaining this scallop fishery in a 
changing SWAO (Pérez-Ramírez et al. 2016).

Life-history strategies (short-lived and semelparous) and 
their high sensitivity to environmental factors render ceph-
alopods challenging to study under a climate change lens 
(Doubleday et al. 2016). Interestingly, the two squid species 
assessed were classified with low sensitivity. Similar studies 
also classified cephalopods as fishery resources of low or 
moderate sensitivity (Hare et al. 2016; Ortega-Cisneros et al. 
2018; Cochrane et al. 2019). This discordance between trait-
based assessments and climate change expectations deserves 
further attention, as cephalopods’ abundance fluctuations are 
expected to be both climate change indicators and drivers of 
ecosystem change (André et al. 2010). Evidence of climate-
induced changes in cephalopods inhabiting the SWAO is 
negligible. However, a recent long-term study suggested that 
increasing temperatures on hatching grounds of I. argenti-

nus during key life-history stages would adversely affect the 
abundance and proportion of mature females (Chemshirova 
et al. 2021).

Crustaceans are probably the least understood group in 
the region concerning climate-induced changes. Establish-
ing general patterns of climate-induced changes in survival, 
growth, or calcification in this group has proven difficult 
(Kroeker et al. 2013), partially because of buffering capaci-
ties against detrimental impacts (e.g., osmoregulation, cycli-
cally replaceable biogenic covering, mobility, and plastic-
ity in energy allocation) (Boenish et al. 2022). The broad 
ecological sensitivities estimated for crustaceans suggest 
species-specific responses to potential climate impacts. 
For instance, the single migratory stock of the penaeid 
shrimp P. paulensis ranked second in our sensitivity assess-
ment because of its ontogenetic specificity for abiotic and 
biotic factors, and its dependence on environmental driv-
ers for recruitment success (Haimovici and Cardoso 2017). 

Additionally, interdecadal precipitation regimes and the 
intensification of climate interannual oscillations (i.e., 
ENSO) were identified as other potential stressors to which 
P. paulensis may be sensitive (Möller et al. 2009; San-
tana et al. 2015; Gasalla et al. 2017). On the other hand, 
P. muelleri—which notably is not so abundant within our 
study area—was classified with low sensitivity. However, 
this result must be revisited when analyzing the impacts of 
climate change further south of the study area, where the 
red shrimp fishery is of utmost socio-economic importance 
(Góngora et al. 2012).

Even though we purposefully decided to assess only the 
sensitivity component of vulnerability, our results are useful 
for developing more refined and holistic future assessments. 
Nevertheless, the inclusion of the exposure component (of 
vulnerability) would likely result in different outcomes com-
pared to our sensitivity ranking. For instance, other trait-
based vulnerability assessments showed that in high-climate 
exposure regions, species sensitivity matched vulnerability 
in 60–68% of the cases (Hare et al. 2016; Ramos et al. 2022), 
whereas, in low-climate exposure regions, sensitivity is a 
poor predictor of species vulnerability (28% of matches: 
Spencer et al. 2019). Our study area encompasses a warm-
ing hotspot (Hobday and Pecl 2014) and a region where 
a considerable increase in freshwater runoff is projected 
(Franco et al. 2020a, b). Therefore, a corresponding pattern 
between sensitivity and vulnerability may be expected, simi-
lar to other high-climate exposure regions. If this would be 
the case, vulnerability could outweigh sensitivity for species 
where the former and the latter do not match. We advocate 
for extending our approach to include not only exposure 
factors but also integrate the social, economic, and insti-
tutional components of fisheries. Social-ecological vulner-
ability assessments are instrumental for identifying adapta-
tion capacities and strategies to minimize the vulnerability 
of fishing industries and communities. Notably though, 
institutional vulnerability assessment is another immediate 
need in the SWAO where existing fisheries management and 
governance frameworks are based mainly on the premise 
that population distributions remain fairly static over time 
(Franco et al. 2020a, b). These assessments should help 
identify factors that can boost, or hamper, the adaptation of 
institutions to changes in the abundance and availability of 
stocks (Pinsky et al. 2018).

Trait-based assessments are rapid, simple, and efficient 
for addressing climate-induced changes in multiple species, 
but their usefulness is conditioned by their comprehensive-
ness. We identified two main caveats to our approach. First, 
inferring potential changes in species distributions based 
on a subset of sensitivity attributes may be an overly bold 
approach because it could be considered too vague and 
controversial (Beissinger and Riddell 2021), particularly 
for predicting species range shifts (see Sunday et al. 2015; 
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Pinsky et al. 2013; Schuetz et al. 2019). Other factors, such 
as diet breadth (Bates et al. 2014; Monaco et al. 2020) and 
seascape topography (Champion and Coleman 2021; Costa 
et al. 2021), are also documented as critical mediators of 
changes in marine species distribution ranges. Therefore, 
our results related to the potential for changes in distribution 
should be considered with caution and as preliminary work-
ing hypotheses. Second, trait-based frameworks often fail 
to address climate-driven changes in primary productivity 
(Hare et al. 2016) and potential trophic cascade effects on 
marine biota. Thus, we call for species-specific mechanis-
tic evidence and correlational studies, as well as ecosystem 
models, to explore the effects of multiple exposure factors 
on key fishery resources in the SWAO.

The quality and lack of data were not major limitations 
for our sensitivity assessment. However, the sensitivity of 
regional fishery resources to some attributes, such as ocean 
acidification, remains largely unknown, but may include 
potential direct detrimental impacts for shell-forming organ-
isms (Kroeker et al. 2013) and oxygen-demanding organ-
isms such as squids (Seibel 2016), as well as indirect effects 
propagated through food webs. We did not find any relation 
between data quality and estimated sensitivities, suggesting 
that sensitivity is not overestimated for data-poor species. 
As opposed to the strategy used in other studies where the 
highest scores of sensitivities were given when information 
was lacking (Ramos et al. 2022), we opted for distributing 
tallies between sensitivities categories as suggested by Hare 
et al. (2016). This strategy could explain the low to moderate 
levels of certainty estimated by bootstrap analysis for many 
species when classifying sensitivity to climate change.

Landings for this study came from industrial fisheries due 
to limitations in retrieving long-term databases for small-
scale fisheries. Thus, future assessments may benefit from 
including small-scale fisheries, which are particularly threat-
ened by climate-induced changes (Gianelli et al. 2021; Short 
et al. 2021). Data gaps in official statistics were partially 
compensated for by relying on landing monitoring efforts 
made by the Federal University of Rio Grande. However, 
data coverage in the State of Rio Grande do Sul (Brazil) dur-
ing 2012–2019 was far lower than in previous years (Oceana 
2021), limiting the scope of our conclusions for this par-
ticular region. Finally, future assessments could be comple-
mented by including additional species, particularly those 
relevant to Brazil (e.g., Pomatomus saltatrix, Mugil sp.) and 
Argentina (e.g., Rajijdae spp., Pagrus pagrus, Pseudopercis 

semifasciata), where the fraction of unassessed landings is 
around 30% of total landings.

The potential for changes in the distribution of a par-
ticular species or the ensemble of species that comprise a 
country’s landings is, in principle, value-neutral. The direc-
tional effects depend on several factors, such as the location 
of fishing ports or jurisdiction boundaries relative to the 

geographic distribution of the species. Species with a high 
potential for redistribution may be more climate-resilient 
from a biological perspective (Hare et al. 2016), but may 
result in both winners and losers among nearby fishing com-
munities or neighboring jurisdictions (Rogers et al. 2019).

Even if climate-induced changes in regional fishery 
resources are not fully understood, the fundamental ques-
tion is no longer whether marine ecosystems are affected, 
but how stakeholders can prepare for and adapt to forth-
coming changes (Lindegren and Brander 2018). Stock and/
or conservation status was the attribute that contributed 
the most to higher sensitivities of fishery resources in the 
SWAO. As the single driver that can be endogenously 
managed by governmental fisheries authorities or coor-
dinated regional efforts for transboundary stocks, fishing 
effort optimization creates an opportunity to increase fish-
ery resources’ resilience to climate change. Benefits of 
fisheries management improvement and stock rebuilding 
efforts include potential increased future catch of target 
species and spillover effects to by-catch species, even 
accounting for climate change effects (Gaines et al. 2018; 
Free et al. 2020; Sumaila and Tai 2020).

Accounting for species sensitivity and climate-induced 
uncertainty could assist fisheries sectors in reducing risks 
by balancing a fishing portfolio of potentially sensitive 
and resilient fishery resources (Rogers et al. 2019). Few 
species have historically dominated landings in the region, 
particularly in Uruguay. Thus, relying on a few stocks and 
fishing gear types could impair adaptive capacities (Ojea 
et al. 2020), particularly if targeted species have high or 
very high sensitivities and a low or very high potential for 
changing their distributions. Diversifying fishing gears and 
vessels to target underexploited fishery resources with low 
to moderate ecological sensitivity (e.g., E. anchoita, Per-

cophis brasiliensis, and Nemadactylus bergi) may foster 
adaptive capacity in the industrial sub-sector. However, 
most small-scale fisheries cannot undertake such changes 
due to scarce assets and lack of financial capacity (Ojea 
et al. 2020). Furthermore, the low-range mobility of small-
scale vessels limits access to new fishing grounds and, 
therefore, resource diversification. Thus, small-scale fish-
ing communities that depend on highly sensitive fishery 
resources (e.g., A. mactroides, P. paulensis) would be par-
ticularly threatened by climate-induced changes.

Our results are helpful for fishery managers, decision-
makers, and researchers for identifying highly sensitive 
species and to guide potential anticipatory and deliberate 
adaptive responses in local and regional fisheries. Unilateral 
efforts are being explored to adapt to climate change effects 
in fisheries in Uruguay (PNA-Agro 2019) and Argentina 
(Buratti et al. 2022). Yet, the scale, scope, and magnitude 
of environmental changes in the SWAO will require an 
integrated regional strategy, and therefore coordination and 



 Regional Environmental Change (2023) 23:49

1 3

49 Page 14 of 18

cross-linkages between regional and national governance 
levels are critical to foster climate-resilient fisheries.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10113- 023- 02049-8.
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