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Abstract—We propose guessing random additive noise
decoding-aided macrosymbols (GRAND-AMs) as a nonorthog-
onal multiple access (NOMA) method that can detect, error
correct, and decode multiple users with imperfect channel
estimation, asynchronous transmission, and interference, which
are all topics of concern for Internet of Things. GRAND-AM is a
NOMA method that uses both joint multiuser detection and joint
error correction decoding to handle multiple access interference
(MAI). For the joint multiuser detector, we introduce the concept
of a macrosymbol, which is constructed from the combination of
all user symbols. For the error correction decoding component,
we introduce multiple access channel (MAC) codes, which are
codes that are used to split the channel rate between users
and correct errors due to MAI. In this scheme, each user has
their information bits encoded with independent MAC codes.
We use a soft detection variant of GRAND, an efficient and
practical decoding method that inverts noise effect sequences
from a sequence of symbols to arrive at a codeword, to correct
a sequence of macrosymbols, ensuring that all user codebooks
are simultaneously satisfied. The joint detection and decoding
of GRAND-AM can outperform time division multiple access
(TDMA) by 10 dB with perfect channel estimation, and by 6 dB
with imperfect channel estimation. Considering a more complete
communication chain, when additional forward error correction
is used along with the MAC code, the GRAND-AM method
performs similarly to a same rate low-density parity-check-coded
TDMA system.

Index Terms—Error correction, joint detection, multiple
access, multiuser detection, nonorthogonal multiple access
(NOMA).
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I. INTRODUCTION

THE GROWING number of users from sources such as
machine-type communications (MTCs) for the Internet

of Things (IoT) and global connectivity as well as increas-
ing data rates [3], [4], [5], [6] has led to a shift away
from traditionally used orthogonal multiple access (OMA)
techniques to nonorthogonal multiple access (NOMA) tech-
niques. In OMA, multiple users share a channel resource
such that there is no overlap in access, such as in the
case for time-division multiple access (TDMA) where users
access the channel at different assigned times, frequency-
division multiple access (FDMA) where users access the
channel with different assigned frequencies, or code-division
multiple access (CDMA) where users are assigned orthogonal
spreading codes [7]. In contrast to OMA methods, NOMA
methods allow multiple users share a channel resource simul-
taneously which increases spectral efficiency and helps address
increasing connectivity demands [8], [9].

As an example of this, consider the scenario where there are
30 000 MTC devices connected to the network, with a uniform
arrival distribution for access requests over 60 s [10]. For a
frame of length 10 ms, there will be on average five devices
that attempt to access the network over this period. With a
traditionally used OMA method such as TDMA, this will lead
to the devices experiencing long delays as only one device
can access the network at a time. This is detrimental for IoT,
especially when it is used for mission critical and ultrareliable
low-latency communication (URLLC) applications. In order
to reduce the latency, NOMA methods must be used to
simultaneously service the five requests while still achieving
target error rates such as 10−4 for frame error rates (FERs)
for mission critical services [11].

In order for NOMA methods to achieve these desired error
rates while handling the multiple users, they must first address
the multiple access interference (MAI) of the users, which
arises from the overlapping user signals. A combination of
both multiuser detection and encoding/decoding methods at
the receiver must be considered to achieve these error rates.
Some commonly investigated methods that consider both of
these aspects are power-domain NOMA (PD-NOMA) and
code-domain NOMA (CD-NOMA).

PD-NOMA handles multiple users through power control
and interference cancellation methods such as successive
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interference cancellation (SIC) [8], [9], [12]. Each user is
assigned a power or experiences different channel gains, and
at the receiver, is treated as an interferer to the other users
accessing the same channel resource. SIC takes advantage of
the different powered users by detecting the highest powered
user first while treating others users as noise, then removing its
contribution from the channel output so that the next highest
powered user can be detected with the same process. This
process iterates through all users until only noise is left in the
remaining channel output. While SIC is less complex than an
optimal maximum-likelihood (ML) detector, its iterative nature
and the treatment of other users as interferers can lead to error
propagation if an error occurs when detecting earlier users,
as well as asymmetric error rates when users are of similar
powers [13], [14], [15].

The other commonly investigated NOMA method, CD-
NOMA, handles multiple users through the usage of
nonorthogonal codes. In particular, in low-density CDMA or
sparse code multiple access (SCMA), which are variants of
CD-NOMA, the nonorthogonal codes are sparse in nature,
which helps limit the number of overlapping users per chip
of the spreading sequence used or channel resources, respec-
tively [9], [16], [17], [18], [19], [20]. Limiting the number
of users per chip or resource reduces the MAI that each user
experiences. A factor graph can be employed to represent
the structure of the error-correcting codes in low-density
CDMA and SCMA, which then allows for a message-passing
algorithm (MPA) to be used, which results in an iterative,
near-optimal detection method [17], [18], [19]. While MPA is
near optimal and less complex than a maximum a posteriori
(MAP) detector, the low density or sparse codebooks requires
a design based on the number of users, as well as the desired
load per resource, which would be challenging to orchestrate
in a dynamic environment.

PD-NOMA and CD-NOMA techniques can be used to
address the required increase in spectral efficiency necessary
to support the growing number of users and the problem
of achieving target error rates, but there are other important
aspects in multiple access channel (MAC) that should be con-
sidered for IoT applications. Factors such as asynchronicity for
grant-free access such that transmitters can transmit without
going through contention-based access, interference handling
from sources, such as heterogeneous networks and channel
reuse, and the lack of perfect channel estimation must also be
addressed [21], [22], [23].

Taking into account these additional requirements, we
propose guessing random additive noise decoding-aided
macrosymbol (GRAND-AM), which uses joint MUD and joint
decoding to handle MAI, and can handle interference and
symbol-wise asynchronicity. Our proposed method introduces
short error-correcting codes called MAC codes that split the
channel rate to handle MAI, as shown in Fig. 1. Furthermore,
the joint MUD avoids the error propagation and asymmetry
issues that interference cancellation methods such as PD-
NOMA face, while the MAC codes do not need to be designed
for the expected load and for each user such as in CD-NOMA.

For the detection component of GRAND-AM, we base
the MUD on the jointly optimal ML detector for multiple

Fig. 1. Block diagram showing how GRAND-AM is incorporated into the
communication process. A MAC code is a short error-correcting code used to
rate split and correct errors that arise from simultaneous transmission. This
is a separate code from the forward error-correcting code.

users, which performs similarly to the individually optimal
ML detector in uncoded scenarios [13], [14], [24], [25], [26],
[27], [28]. For the joint detector, we introduce the concept
of a macrosymbol, which is a symbol that is formed from
the combination of all available user symbols during that
symbol time with their channel gains applied. An example of a
macrosymbol can be seen in Fig. 2. This allows the joint MUD
to act as a single-user detector for a macrosymbol, leading to
a less complex detector compared to the per user MUD when
evaluating log likelihoods.

Then, for the joint decoding component of GRAND-AM,
we use a soft information variant of GRAND that can provide
near ML decodings for any moderate redundancy code of
any structure in order to recover the sequence of macrosym-
bols [29], [30], [31]. GRAND is suited for decoding the
sequence of macrosymbols, as it queries most likely to least
likely noise sequences before removing the noise sequence
that corresponds with a sequence of symbols contained within
the codebook. By inverting the digital noise effect from the
sequence of macrosymbols, and ensuring that the sequence of
macrosymbols satisfy all user codebooks simultaneously, the
joint nature of the decoding process can be preserved. Through
the joint MUD and joint decoding process in GRAND-AM,
the MAC code can be used to more effectively remove the
MAI effects from the users compared to a more conventional
per user MUD and decoding process.

This work is organized as follows. In Section II, we
introduce the MAC model, with and without an interferer, as
well as the assumptions made for the detection and decoding.
In Section III, we define the concept of a macrosymbol, and
its usage in a joint MUD. In addition, we also discuss the per
user MUD to compare the two detectors. For Section IV, we
give an overview of the GRAND algorithm used for the joint
decoding. We then discuss our results comparing GRAND-AM
versus a more conventional individual, per user detection and
decoding process and TDMA as an OMA method, as well as
show GRAND-AM’s performance in the presence of symbol-
wise asynchronicity, channel estimation error, and interference
in Section V. We show that the usage of joint detection and
decoding in GRAND-AM leads to large gains such as 10
dB over TDMA given perfect channel estimation, which can
allow GRAND-AM to achieve desired FERs at lower Eb/N0
compared to a turbo-coded TDMA user. We also consider how
GRAND-AM fits into a communication chain with additional
forward error correction (FEC) and show that GRAND-AM
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Fig. 2. Aggregate constellation is formed from macrosymbols, which are unique combinations of all users that have transmitted within the same resource
block. In this example, there are two users transmitting, which are modulated with BPSK and 4QAM, respectively. Without an interferer, there are only eight
valid macrosymbols to detect. With an interferer of size 2 modulation, there are 16 potential macrosymbols to detect, which depend on what the interferer
symbol is. Only 8 of these are the true macrosymbols.

can outperform a turbo-coded TDMA user while taking into
account overall rates and block length. Finally, we give our
conclusions in Section VI.

II. SYSTEM MODEL

For the system model, we consider only the GRAND-
AM block outlined in Fig. 1. That is, we assume that the
bits provided are already encoded with FEC and apply the
MAC code upon the channel encoded bits. Consider u users
simultaneously accessing the same channel resource, with the
possibility that the users are asynchronous, or an interferer is
present due co-channel interference, heterogeneous networks,
or adversarial interference [23], [32], [33]. Note that this
interference is different compared to MAI due to the receiver
not attempting to recover the interferer’s message.

Each user, i ∈ [1, u], transmits ni MAC coded bits, of
which ki bits are information bits. The (ni, ki) MAC codes
are independent from user to user. The ni bits for the ith user
are modulated with an mi size discrete modulation, where the
modulations are independent from user to user. We denote the
symbols associated with the ith user’s modulation as being
contained within the set Si = {xi,1, xi,2, . . . , xi,mi}. Thus, the
length of the sequence of symbols of the ith user transmits is
li = $ni/ log2(mi)%. In Fig. 3, an example can be seen where
there are u = 2 users, and each user transmits ni = 8 MAC
coded bits, which are modulated with 4 quadrature amplitude
modulation (QAM), leading to li = 4. When an interferer is
present within the system, it is denoted with subscript q, and is
modulated with an mq size discrete modulation with possible
symbols Sq = {xq,1, xq,2, . . . , xq,mq}.

Assuming a rich multipath channel such that the channel
gain can be represented with Rayleigh fading, the received
signal at time t is

y[t] =
u∑

i=1

hi[t]xi[di + oi] + hq[t]xq[t] + w[t] (1)

where xi[di+oi] is the ith user’s transmitted symbol that belongs
to the set Si and di ∈ [1, li], oi indicates the offset of the ith user
and without loss of generality o1 = 0, xq[t] is the interferer’s
transmitted symbol that is randomly sampled from the set Sq,
hi[t] and hq[t] are the channel gains experienced by the users and

the interferer and distributed such that hi[t], hq[t]
iid∼ CN (0, 1),

and w[t] is the complex additive white Gaussian noise (AWGN)

distributed as w[t]
iid∼ CN (0, 1). Note that due to the independent

MAC codes and modulations, the index symbol t ranges from
t ∈ [1, max(li + oi)]∀i ∈ [1, u]. For the ith user, in the case
where t /∈ [1 + oi, li + oi], xi[t] = 0, indicating that the ith
user has not transmitted for time t. The transmit powers of
the users and interferer are defined as Pi = E[|xi[di + oi]|2]
and Pq = E[|xq[t]|2], respectively. The absence of an interferer
can be represented by setting Pq = 0. An example of the
asynchronous transmission can be seen in Fig. 3 where there
is a symbol offset between the two users of o2−o1 = 1. Given
this offset, the 1st and 5th received macrosymbols are formed
from the d1 = 1 symbol of user 1 and d2 = 4 symbol from
user 2, respectively, while the 2nd through 4th macrosymbols
are formed from the combination of the d1 ∈ [2, 4] symbols
of user 1 and d2 ∈ [1, 3] symbols of user 2.

For this work, we make the following assumptions: The
receiver has knowledge of the users’ modulations Si, the
(ni, ki) MAC codes used, the symbol offsets oi, the transmit
powers Pi, and an estimate of the channel gains ĥi[t], which
we will shortly define. In addition, if there is an interferer
present, and the receiver has knowledge of it, then we assume
that the receiver knows the interferer modulation Sq, its power
Pq, and has an estimate of its channel gain ĥq[t]. In this case,
the receiver is an interferer aware receiver. If the receiver does
not have the above knowledge of the interferer, we define it
as an interferer ignorant receiver.

We define the estimate of the channel gain such that there is
AWGN added to the true channel gain. For generality, we use
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Fig. 3. High-level depiction of the per user and joint MUD, when the receiver
is either aware or ignorant of the interferer composition. Red corresponds
to user 1, blue corresponds to user 2, green corresponds to the interferer,
and purple corresponds to the aggregate user with the resulting macrosymbol.
When the users are asynchronous and do not overlap, the macrosymbol is
composed of one symbol, and when the users simultaneously access the same
channel resource, the macrosymbol is composed of two symbols. The presence
of green text indicates whether or not the receiver has knowledge of the
interferer if there is an interferer present. In this example, it is assumed the
channel gains are unitary.

ĥ[t] and h[t] without subscripts, as this channel gain estimate
is applicable to both the users and the interferer at all times,
The estimate is

ĥ[t] = h[t] + e[t] (2)

where e[t] ∼ CN (0, σ 2) is the noise added to the channel gain,
and σ 2 = P−α [34], [35], [36]. Note that P is used as a general
variable for the power of the users and interferer. By defining
the noisy channel estimate as in (2), the estimation error
is related to the power of the transmitted signal–a stronger
transmit power will lead to less estimation error, and a weaker
transmit power will lead to more estimation error. In addition,
the tuning parameter α can be used to control the quality of
the noisy estimate. When α → ∞, there will be no channel
estimation error, and when α = 0, the error is independent
from the transmit power.

III. MULTIUSER DETECTION

In this section, we discuss the multiuser detection compo-
nent of GRAND-AM. Previously, in Section I, we stated that
there are two types of MUDs, an individually optimal per user
detector, and a jointly optimal detector. Here, we discuss in
greater detail what these two detectors are, and the differences
between them. In addition, we incorporate the channel gain
estimate into the detection, which we have previously not done
so before in [1] and [2]. For the following equations, we
assume that all u users have transmitted. When a user has not
transmitted due to asynchronicity, the following estimators can
be modified by removing the user that has not transmitted.

A. Per User MUD

The individually optimal per user MUD optimizes the
probability that each user is correct, independent from the
other users [13]. Here, we define the estimator for the per user
MUD in a system where there is an interferer, and the receiver

is interferer aware. Without loss of generality, the estimate for
user 1 at time t is

x̂1[t] = argmax
x1[t]

fY|X1(y[t]|x1[t]) (3)

where

fY|X1(y[t]|x1[t])

=
mq∑

vq=1

fY|X1,Xq(y[t]|x1[t], xq,vq)p(Xq = xq,vq)

= 1
mq

mq∑

vq=1

fY|X1,Xq(y[t]|x1[t], xq,vq)

= 1
mq

1
m2, . . . mu

mq∑

vq=1

m2∑

v2=1

, . . .

mu∑

vu=1

fW

(

y[t]− ĥ1[t]x1[t]−
u∑

i=2

ĥi[t]xi,vi − ĥq[t]xq,vq

)

(4)

where fW(·) is the probability distribution function (PDF) of
the AWGN from the channel, and ĥi[t] are the estimated
channel gains. Note that under the condition that the receiver
is interferer aware and has knowledge about its modulation
and an estimate of its channel gains, the effect of the interferer
can be accounted for through marginalization. This method is
also used when accounting for the effect of the other users,
in order to maximize the probability that user 1 is correctly
detected.

Recall that the absence of an interferer can be represented
by setting Pq = 0, in which case, the estimator for the per
user MUD is simplified to

fY|X1(y[t]|x1[t]) = 1
m2 · · · mu

m2∑

v2=1

· · ·
mu∑

vu=1

fW

(

y[t]− ĥ1[t]x1[t]−
u∑

i=2

ĥi[t]xi,vi

)

. (5)

In addition, in the case of an interferer ignorant receiver, (5)
is used at the receiver. This is due to the receiver lacking
knowledge about the interferer modulation and channel gains,
and treating the interferer as part of the AWGN.

The per user MUD requires the summation of u− 1 PDFs
when there is not an interferer present. Within each of these
PDFs, there are u additions and u multiplications. When the
noise is assumed to be AWGN, this leads to the summation of∏u

i=2 mi exponential functions, which leads to high complexity
when evaluating the likelihoods of each possible estimate for
user 1. In addition, user 1 will require a total of m1 estimates
generated in this fashion. While approximations can be made
to reduce the complexity of evaluating the estimates [27], the
approximations remove the optimality of this detector.

B. Macrosymbols

Before discussing the jointly optimal MUD discussed
in [13], we first define the concept of a macrosymbol. The
jointly optimal MUD maximizes the probability that all users
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are simultaneously detected correctly. We formulate the joint
of all the users accessing the channel as a single aggregate
user, whose constellation is formed from the combination
of all user symbols and channel gains. This allows for the
visualization of the joint MUD as a single-user detector for the
aggregate user’s macrosymbols, which leads to simplifications
when calculating the log likelihood compared to the individu-
ally optimal per user MUD. The set of possible macrosymbols
is formally defined as all unique combinations of

Sµ[t] = {µ[t]} =
{

u∑

i=1

hi[t]xi,ji

}

(6)

where ji are chosen from ji ∈ [1, mi] and i ∈ [1, u]. Compared
to the ith user having a constellation of size mi, the aggregate
user instead has a constellation of size

∏u
i=1 mi.

An example of the set of macrosymbols can be seen in
Fig. 2, where there are two users modulated with binary
phase-shift keying (BPSK) and 4QAM, respectively. Before
an interferer contributes to the channel output, there are
eight macrosymbols in the aggregate constellation. After an
interferer contributes to the channel output, there are still
eight possible macrosymbols, but they have been corrupted by
the interferer such that the receiver can observe 16 possible
macrosymbols in the case where the interferer is modulated
with BPSK. If the receiver is interferer aware, it must then
take into account the interferer contribution in order to more
accurately detect the users’ transmissions.

C. Joint MUD

With the macrosymbol defined as such in (6), the estimator
for the jointly optimal MUD in a system where there is an
interferer, and the receiver is interferer aware is

µ̂[t] = argmax
µ[t]

fY|M(y[t]|µ[t]) (7)

where

fY|M(y[t]|µ[t])

=
mq∑

vq=1

fY|M,Xq(y[t]|µ[t], xq,vq)p(Xq = xq,vq)

= 1
mq

mq∑

vq=1

fY|M,Xq(y[t]|µ[t], xq,vq)

= 1
mq

mq∑

vq=1

fN
(

y[t]− µ̂[t]− ĥq[t]xq,vq

)

= 1
mq

mq∑

vq=1

fW

(

y[t]−
u∑

i=1

ĥi[t]xi,ji − ĥq[t]xq,vq

)

(8)

where fN(·) is the PDF of the AWGN from the channel, ĥi[t]
are the estimated channel gains, and ji are chosen from ji ∈
[1, mi] and i ∈ [1, u].

In the case of an interferer ignorant receiver, or a system
where there is no interferer, the estimator for the jointly
optimal MUD is simplified to

fY|M(y[t]|µ[t]) = fW

(

y[t]−
u∑

i=1

ĥi[t]xi,ji

)

(9)

which is the estimator corresponding to a single-user detector.
Unlike the per user MUD, the joint MUD can be simplified

when the noise is AWGN and there is not an interferer
present. A logarithmic operation can be performed, which
leads to the estimator only requiring u additions and u
multiplications per estimate, of which

∏u
i=1 mi are required.

There is necessary processing required when generating the
macrosymbols, however, they also only require additions and
multiplications, unlike the estimator for the per user MUD.
To generate a macrosymbol, u sums and u multiplications are
required, leading to a total number of operations needed for
the set of macrosymbols being 2u

∏u
i=1 mi.

IV. MULTIUSER DECODING

In this section, we discuss the multiuser decoding compo-
nent of GRAND-AM. In particular, we go into further details
of the decoding algorithm used, and its ability to handle joint
decoding across all users. We compare the process of a per
user versus a joint decoding and highlight their difference.
We also discuss ways of reducing the complexity of the joint
decoding process if there are many points in the aggregate
constellation and a long aggregate codebook.

A. Decoding With GRAND

Recall that each user i ∈ [1, u] is coded with an (ni, ki)

MAC code that is used for correcting errors due to MAI.
In addition, there is the requirement that the users must be
decoded jointly, in order to maintain the properties associated
with the joint MUD process. Considering that the joint of the
users results in a joint codebook that has a different structure
from a single code, we use a decoding algorithm based on
GRAND, which is a universal decoder that queries noise
sequences from most to least likely and removes them from
the received sequence of symbols or bits [30], [37].

In particular, we use symbol-level ordered reliability bit
GRAND (ORBGRAND), which is a near ML variant of
GRAND that queries noise sequences based on symbol-level
reliabilities [30]. Below, we give a brief overview of symbol-
level ORBGRAND. A list of symbol-level reliabilities is
generated from the estimator when detecting user symbols.
The reliabilities of the detected symbols are removed from the
list, leaving a list of potential symbol-level reliabilities, which
will be used for correcting the detected sequence of symbols
if the sequence is not contained within the codebook. A list
of potential symbol swaps is generated using the symbol-level
reliabilities. The list is rank-ordered using a logistic weight
principle, which is defined as the sum of the indices associated
with the rank-ordered symbols that will be swapped. Note
that when ranking the possible symbol swaps, any symbol
swaps that duplicates the symbol to be swapped is excluded
from the list. Symbols are then swapped with the originally
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detected symbols based on the ordering of the alternative
symbol list. The resulting sequence of symbols is then checked
for membership within the codebook. If it is not contained
within the codebook, the process continues until a sequence
of symbols satisfies the codebook.

Here, we give a simple example of the logistic weight
ranking process. Consider a symbol sequence of length 4,
which we will denote as (s1, s2, s3, s4), and the symbol
modulation is binary. Assume that the order from least to
most reliable is (s3, s4, s1, s2), with corresponding weights
of (1, 2, 3, 4). Then, the ranking of symbol swaps based on
logistic weights is {s3, s4, s1, (s3, s4), s2, (s3, s1), . . .}. Note
that both (s3, s4) and s1 swaps have weights of 3, where the
weight for (s3, s4) comes from the sum of the original weights
of s3 and s4, and s1 is originally weighted as a 3. Thus, both
symbol swaps have equal priority, and order does not matter.
In addition, observe that the (s4, s4) swap is removed from the
list despite being logistic weight rank 4 due to the requirement
that the same symbol cannot be swapped multiple times.

Symbol-level ORBGRAND is well suited for both indi-
vidual and joint multiuser decoding. As it works on a
symbol-level basis, it will also work for the macrosymbol,
allowing for joint decoding in addition to the joint MUD.
The process differs slightly between a per user and a joint
decoding. For the receiver that utilizes per user MUD and
decoding, symbol-level ORBGRAND will be used to correct
each user’s associated symbol sequence that has been encoded
with the MAC code. Thus, symbol-level ORBGRAND must
be used u times, and will directly give each user’s corrected
codeword. For the receiver that utilizes joint MUD and
decoding, the symbol-level ORBGRAND process will differ
slightly. Symbol-level ORBGRAND will be used once, in
order to correct the macrosymbol sequence. The requirement
is that for a corrected sequence of macrosymbols to be found,
all u MAC codebooks must be simultaneously satisfied. Then,
the resulting sequence of macrosymbols will be decomposed
to each of the users’ symbol sequence. An example of the
difference between the individual and joint error correction
processes is illustrated in Fig. 4, which shows how each user
has its own errors to correct with its own MAC code for per
user GRAND, while the aggregate user has the combination
of errors across both users with the combined MAC code for
GRAND-AM. Pseudocode for the joint MUD and decoding
process in GRAND-AM is found in Algorithm 1, and further
outlines this process.

B. Reducing the Complexity of Decoding

As the numbers of users in the MAC increase, both the size
of the aggregate constellation and the size of the aggregate
codebook increase. There are two aspects of complexity
associated with the decoding—generating the symbol swap
lists based on the likelihoods associated with each possible
aggregate constellation point and the number of queries it
takes until all user codebooks are simultaneously satisfied [29].
We will discuss methods of reducing the complexity of both
aspects if in an SNR regime that necessitates it.

Fig. 4. Example of bit errors due to the detection component of GRAND-
AM. In a per user decoding, each user independently corrects their own errors,
while in a joint decoding, the users’ bits are combined into the aggregate user’s
bits which are corrected and decoded according to combined codebook across
all users. Correction and decoding with the combined codebook requires all
users be simultaneously satisfied. Note that when there is asynchronicity, the
received bits are composed of a single user’s bits, and when both users transmit
simultaneously, the received bits are the combination of the two users.

Algorithm 1 GRAND-AM
Input: Received signals y[t], macrosymbols set Sµ[t], MAC

codes (ni, ki) with codewords {Ci} for i ∈ [1, u], k ∈
[1, $ni/ log2(mi)%]

Output: Corrected codewords ĉi
1: a = 1
2: for a ≤ max($ni/ log2(mi)%) do
3: Detect µ̂[t] from y[t]
4: Save list of likelihoods per macrosymbol excluding µ̂[t]

as {LL[t]}
5: end for
6: Construct macrosymbol sequence +m← (µ̂[1], µ̂[2], · · · )
7: Separate macrosymbol sequence +m into user symbol

sequences +xi∀i ∈ [1, u]
8: Generate symbol swap list Q according to logistic weight

principle from lists ({LL[1]}, {LL[2]}, ...)
9: b = 1, +r = +m

10: while +xi does not satisfy all {Ci} simultaneously do
11: Swap symbols of +d according to Q[l]
12: Separate +r into user symbol sequences +xi
13: Check +xi ∈ {Ci}∀i
14: b = b + 1, +r = +m
15: end while
16: return corrected symbol sequences +ci = +xi

In [29], it is stated that the landslide algorithm used to
generate the symbol swap lists is efficient and will not
bottleneck the decoding process. However, considering the
multiple users combining to form an aggregate constellation
and codebook, we will discuss how to reduce the length
of the likelihood lists, which will reduce the complexity
necessary for a large number of symbol swaps. Recall that the
aggregate constellation contains

∏U
i=1 mi points. For simplicity

of analysis, assume that the number of symbols per codeword
for each user, li, are the same, which we will simplify to
l. Then, the length of the likelihood list used for corrected
the aggregate user will equal l

∏U
i=1 mi. Indeed, as either
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Fig. 5. Length of the likelihood lists can be reduced by only taking into
account the q nearest neighbors, where d = 3 for the above figure, instead of
all
∏U

i=1 mi points in the aggregate constellation.

the number of users, the size of the users’ constellation, or
number of symbols increases, the length of the likelihood list
will grow large. When multiple symbol swaps are required
for large logistic weight ranks, which tends to occur in low
SNR regimes, generating the symbol swap list may become
intensive.

One method that can be used to reduce the length of the
likelihood list is to consider the µ nearest neighbors to a
received point, instead of considering all

∏U
i=1 mi aggregate

constellation points. This is shown in Fig. 5, where µ = 3 and
only the three nearest neighbors will be used for the symbol
swaps. These constellation points are far more likely to be
the original transmitted symbol than the other five aggregate
constellation points. Using this technique will allow for the
overall likelihood list to be reduced from length l

∏U
i=1 mi

to length lµ. In addition, using the µ nearest neighbors will
prevent the likelihood list from growing exponentially with the
users in the MAC and the size of the users’ constellations.

The other aspect of decoding complexity that should be con-
sidered is the number of queries symbol wise ORBGRAND
requires until a codeword that satisfied the aggregate codebook
is reached. For a codebook of size (n, k), on average, at most
2n−k queries are required before there is an erroneous decoding
for the codeword [37]. For the aggregate codebook, then n =∑U

i=1 ni and k = ∑U
i=1 ki. The erroneous decodings happen

most often at low SNR regimes, implying that decoding in
these regimes will be more complex. Thus, it can be seen that
the number of users increases or the as the number of parity
bits per user codebook increases, the decoding complexity will
increase. One method of controlling the number of queries
required is to use an abandonment threshold [37]. Once the
number of queries has passed this threshold, decoding will
halt. This will help prevent scenarios where the number of
queries to reach a codeword that satisfies all codebooks is
exceedingly high. While this method will increase the error
rates in low SNR regimes, it should be noted that the regimes
of interest, such as FERs of 10−4 for mission critical services
will rarely reach this abandonment threshold.

V. RESULTS AND DISCUSSION

We first consider the performance of GRAND-AM in
comparison to other methods, such as treating the other user

Fig. 6. Performance of a single user modulated with 4QAM and without an
(8, 4) CRC MAC code when TDMA is used versus two users simultaneously
accessing the channel with or without MAC codes. There are no interferers,
and the users are perfectly synchronized.

as noise as the worst case scenario, TDMA as an example
of an OMA method, using only MUD as a NOMA method,
and using per user MUD and GRAND when a MAC code
is used to split the channel for NOMA. The results for two
users modulated with 4QAM and with equivalent powers and
perfect synchronization are shown in Fig. 6, with independent
(8, 4) CRC codes with hexcode 0x9 used as MAC codes when
splitting the channel in 1/2 for each user. It is assumed that
there are no additional interferers other than users, and in the
scenario where the users are not treated as noise, there is
perfect channel estimation available at the receiver.

The worst case scenario for NOMA, where one user is
recovered while treating the other as noise when the two users
are equal power, leads to high symbol error rates (SERs). This
is due to the high signal to interference and noise ratio (SINR
= Pu/(Pq + N0))—as the powers of the two users increase,
the SINR approaches 0 dB, leading to poor recovery of the
user of interest. Thus, signals should not be treated as noise,
especially if information can be obtained about them due to
them having high power. This is further discussed later, where
an interferer has been added to the system, and where both
low- and high-powered interfering signals are considered. This
detection method is the upper bound on the SER, as it assumes
no information about other users sharing the channel other
than their power.

While it is important to discuss this worst case scenario
upper bound, in MACs, this method will not be used unless
in combination with other techniques such as SIC, which
we have already discussed in the introduction. Thus, we will
primarily focus on comparing GRAND-AM’s results with the
results when TDMA, only MUD, and per user MUD and
GRAND are used for MACs. For these methods, (5) and (9)
are used as the estimators for the detection component, with
the NOMA methods computing the estimators with two users,
and TDMA computing the estimator with one user. When
only MUD is used, both the joint MUD and the per user
MUD perform very similarly, as noted in [13] and as seen in
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Fig. 7. Comparison between GRAND-AM versus NOMA when SIC is used
for detection when there are two users modulated with 4QAM and coded with
(8, 4) CRC codes as MAC codes.

Fig. 6, where both versions of the blue dotted lines overlap.
The MUD detection without a MAC code “overloads” the
channel, as both users share the channel without splitting
the channel nonorthogonally, thus leading to the MUD only
method performing worse than TDMA by ∼3 dB. However,
once the channel is split, using rate 1/2 MAC codes for both
users to have the same channel “occupancy” as TDMA, the
combined MUD and detection methods outperform TDMA.

In comparison to TDMA outperforming the MUD only
method by ∼3 dB, incorporating the MAC codes for the
channel splitting results in per user MUD and GRAND outper-
forming TDMA by ∼7 dB and GRAND-AM outperforming
TDMA by ∼10 dB. The addition of the MAC code used
for handling MAI from the simultaneous channel usage and
splitting the channel nonorthogonally leads to great gains over
an OMA method. In particular, the GRAND-AM method,
where joint MUD and joint GRAND are used, leads to greater
gains compared to the per user method.

The difference in performance between the joint and per
user methods is due to the requirement that all users must be
simultaneously satisfied when the users are jointly decoded
when using GRAND-AM. For the individual decoding pro-
cess, the GRAND algorithm separately decodes each user
such that the resulting sequence of symbols for each user
has no impact on the results of the other users. Due to
this independence, the scenario where the recombination of
all users’ symbol sequences is far away from the original
received signal may arise. In contrast, GRAND-AM maintains
the jointness of the decoding process by ensuring that the
sequence of macrosymbols being tested against the users’
codebooks must simultaneously satisfy all codebooks before
ending the algorithm, which is similar to the sequence of
macrosymbols being required to satisfy a (

∑u
i=1 ni,

∑u
i=1 ki)

length code. The larger number of parity bits helps improve
the SER. Furthermore, unlike the case with the per user MUD
and decoding process, GRAND-AM minimizes the distance
between the resulting sequence of macrosymbols, and the
received sequence of macrosymbols, leading to a lower error

Fig. 8. Performance of per user GRAND and GRAND-AM when recovering
2, 3, or 4 users modulated with 4QAM and with (8, 4) CRC codes as MAC
codes without an interferer present and with perfect channel estimation and
synchronicity.

rate for all users once the separation of the macrosymbols into
user symbols is completed.

While we have shown that GRAND-AM outperforms
TDMA with the usage of the MAC codes, the question arises
how it compares when other NOMA methods are used. We
compare GRAND-AM’s results versus a method that uses an
iterative detection method such as SIC, such as in PD-NOMA.
We consider the scenario where the multiple users accessing
the MAC are provided a total power budget, and for SIC-based
detection and decoding methods, the users are allowed to have
disparate transmit powers. Fig. 7 shows the case when there
are two users, each modulated with 4QAM, and given (8, 4)

CRC codes for error correction. When SIC detection is used,
the user powers differ by 0, 10, or 20 dB, while for GRAND-
AM, the user powers are equal, that is, with a 0-dB difference.
It can be seen that regardless of the power difference between
the users, the usage of SIC as a detector leads to disparate error
rates between users 1 and 2. One user will have better error
rates than the other, and as the power difference increases, the
difference in performance between user 1 and user 2 increase
further. While one user with the SIC detection may outperform
GRAND-AM when the power difference is set to 20 dB, the
other user greatly suffers in comparison. In addition, note that
SIC-based methods must have some power difference between
the users—when the users have similar transmit powers, all
user error rates suffer as a result. These downsides show that
iterative detection and decoding methods such as SIC, which
are vital to PD-NOMA methods, should be avoided.

A concern with IoT scenarios and NOMA is how many
users can be simultaneously supported, and how much load
can the channel support. We consider the what happens when
the number of users is increased while the MAC code rate
remains the same, which will increase the channel load. Fig. 8
shows this scenario, where there are 3 or 4 users with the same
powers in the NOMA group, each modulated with 4QAM and
with independent (8, 4) CRC codes as MAC codes. Indeed,
as MAI increases due to the increase in the number of users,
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Fig. 9. Comparison between GRAND-AM and per user MUD and GRAND
when there are two users modulated with 4QAM versus two users modulated
with 16QAM and coded with (8, 4) CRC codes as MAC codes.

performance degrades. When per user MUD and GRAND are
used, the error rates greatly increase, while for GRAND-AM,
the error rates slightly increase. For three users, GRAND-AM
outperforms per user MUD and GRAND by ∼7 dB, while
for four users, GRAND-AM outperforms per user MUD and
GRAND by ∼9 dB. Despite the increased MAI and size of
the aggregate constellation, the aggregate codebook of size
(
∑u

i=1 ni,
∑u

i=1 ki) helps to offset these factors, leading to the
slight degradation in performance for GRAND-AM compared
to the large degradation in performance for per user MUD and
GRAND.

While the TDMA curve is not shown in Fig. 8, note that
due to the orthogonality of TDMA, it will result in the
same performance as the curve in Fig. 6. However to account
for three users transmitting information, each user can only
transmit 1/3 of the time, leading to a reduction in throughput
per user. Similarly, with four users, the throughput per user is
reduced even more. Meanwhile, with GRAND-AM, all users
can transmit simultaneously, even with the channel overloaded
with 3 and 4 users. While there are increases in error rates,
GRAND-AM can still outperform TDMA with 3 or 4 users
accessing the MAC. Thus, GRAND-AM shows great promise
as a NOMA method, as even when the number of users grows
and the sum of the codebook rates of the users is greater than 1,
it can still reliably recover user information.

For the previous results, we have considered the case where
all the users are modulated with 4QAM. While the aggregate
constellation size does increase exponentially with the number
of users, as in the case with Fig. 8, it can be seen that the
increase in size of the aggregate codebook helps offset the
increased number of errors due to the exponentially growing
aggregate constellation. However, when the number of users
remains fixed while the size of each users’ constellations
increases, there is no corresponding growth in aggregate
codebook size. Fig. 9 shows the impact of increasing the
user constellation size from 4QAM to 16QAM for two users
while the MAC code remains fixed. With this, the aggregate
constellation sizes are 16 and 256, respectively, while the

Fig. 10. Impact of imperfect channel estimation on the performance of per
user GRAND and GRAND-AM when recovering two users modulated with
4QAM and with (8, 4) CRC codes as MAC codes without an interferer present
and with perfect synchronicity.

aggregate codebook is of size (16, 8) for both cases. As
the user modulation goes from 4QAM to 16QAM, there is
∼6–7 dB loss when GRAND-AM is used, versus the ∼9-dB
loss when only per user MUD and GRAND is used. This
indicates that while the error rates do increase as expected
when higher order constellations are used, the joint MUD and
decoding process may help to mitigate some of the losses
compared to the per user MUD and decoding process.

Note that in the case of the two users modulated with
16QAM in Fig. 9 versus the four users modulated with 4QAM
in Fig. 8, the overall size of the aggregate constellation is equal
at 256 points in both cases. The primary difference is that for
the 2 user scenario, the aggregate codebook is only size (16, 8)

versus for the 4 user scenario, the aggregate codebook is size
(32, 16). As a result of the increased number of parity bits,
despite having the same aggregate constellation, the scenario
where there are four users with 4QAM modulation performs
better. The implication is that for higher order aggregate
constellations, aggregate codebooks with a larger number of
parity bits are required, whether these parity bits are obtained
through the combination of more users with short MAC codes
versus less users with longer MAC codes.

While GRAND-AM performs well when there is perfect
channel estimation, it is an impractical requirement, especially
in IoT scenarios. Thus, we consider the performance of our
proposed method when there is channel estimation error that
scales with the transmit power of the signal, as described
in (2). Fig. 10 shows how GRAND-AM and per user MUD
and decoding perform once channel estimation error is intro-
duced when there are two users modulated with 4QAM and
with (8, 4) CRC codes as MAC codes. In this figure, two α

terms are included for comparison—α = 1, which indicates
that the power of the channel estimation error is inversely
proportional to the user power, and α = 1/2, which will lead
to a higher channel estimation error. Here, we see that given a
large enough α term, GRAND-AM is robust against channel
estimation error. For α = 1, the performance of GRAND-
AM degrades by 4 dB, and when α = 1/2, the performance
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Fig. 11. Impact of symbol-level asynchronicity when recovering two users
modulated with 4QAM and with (8, 4) CRC codes as MAC codes without an
interferer present and with perfect channel estimation. Note that #o = o2−o1
is the symbol wise offset value between user 1 and user 2.

degrades by 15 dB at larger Eb/N0. Thus, it is important
that some accurate channel estimate is acquired for GRAND-
AM to work. However, note that when α = 1, even with
the degradation of 4 dB due to the channel estimation error,
GRAND-AM still outperforms TDMA by ∼6 dB at larger
Eb/N0. This shows that GRAND-AM is a powerful technique,
as even with channel estimation error, it can still outperform an
OMA method with perfect channel estimation. In addition, it is
reasonable to assume α = 1, considering that this corresponds
with the scenario where the channel is reciprocal, that is, the
uplink and downlink channels can use the same channel state
information, though some error will be introduced due to the
channel not remaining completely static [35].

Other than target error rates and channel estimation error,
another aspect that is important to consider for IoT applica-
tions is the issue of synchronization and grant-free access.
Considering that IoT transmissions may be interrupt-based due
to power saving modes being used, not every user can be
synchronized such that they always simultaneously transmit
their frames together. In addition, synchronization requires
coordination between the transmitters and receiver, which
would further add to the overhead required. Therefore, we
should consider asynchronicity and explore how it impacts
the performance of GRAND-AM, with the assumption that a
timing lock has been obtained or maintained such that there is
only symbol-wise asynchronicity, as exhibited in Fig. 3, where
there is a single symbol offset asynchronicity.

Fig. 11 shows how symbol-wise asynchronicity impacts the
error rates of per user MUD and GRAND and GRAND-AM,
using the same parameters as in the previous figures with
two users. We consider three cases of symbol-wise offsets—0
offset, also known as, full synchronicity; 2 offset for partial
asynchronicity; and 4 offset, also known as full asynchronicity.
The case of full asynchronicity is similar to TDMA, as the
user transmissions are orthogonal, though there is still the
(8, 4) CRC MAC code applied on each user. The symbol-
wise asynchronicity improves the SERs for both the per user

MUD and GRAND method and GRAND-AM, though there is
a greater impact on the per user MUD and GRAND method.
The offset leads to user symbols being detected by themselves,
which leads to lower SER for the offset symbol compared
to the case when two user symbols overlap, which leads to
an overall decrease in SER. In particular, this is useful for
the per user MUD and GRAND method, as it is heavily
dependent per user—when the error rate associated with the
per user MUD decreases, the overall SER will decrease. In
comparison, GRAND-AM does not experience such gains with
the asynchronicity. While the asynchronicity does improve
GRAND-AM’s SERs, the improvement is minor. Unlike the
per user MUD and GRAND method, as GRAND-AM relies
on jointly detecting and decoding the users, it can effectively
correct errors that arise from the macrosymbols. Thus, there is
less to gain from the lower error rate associated with individual
symbols. This behavior can be seen when comparing the two
extremes of full synchronicity and full asynchronicity. For per
user MUD and GRAND, there is a ∼5 dB improvement, while
for GRAND-AM, there is a < 1 dB improvement. This shows
that assuming that a timing lock is obtained or maintained
such that there is only symbol-wise asynchronicity, SERs
will improve, whether or not per user MUD and GRAND
or GRAND-AM is used. Regardless of the synchronicity,
GRAND-AM will perform well.

For the previous results, we have considered the case where
there is only MAI from the multiple users simultaneously
accessing the same channel resource. However, there can be
other interferers in the channel that arise from transmissions
from sources not of interest. We consider similar parameters as
in the previous parts of the discussion, but with an additional
interferer in the system. To handle the interferer, we consider
two types of receivers, the interferer aware receiver, which
corresponds to the estimators in (4) and (8), and the interferer
ignorant receiver, which corresponds to the estimators in (5)
and (9). We consider the case where there is and is not channel
estimation error for both the users and the interferer, as well
as what happens when the interferer has a higher channel
estimation error compared to the receiver.

Fig. 12 shows how interference aware and ignorant receivers
perform with GRAND-AM when recovering two users modu-
lated with 4QAM and coded with (8, 4) CRC MAC codes, as
well as the performance of an interference-aware TDMA user,
when in the presence of an interferer modulated with 16QAM.
We assume that there is perfect channel estimation available
for both the users and the interferer. The users have a fixed
power of 21.8 dB, while the interferer has a power ranging
from the AWGN power to the user power. This range allows
for a look into the performance of these NOMA methods in
low to high interference regimes. Note that for the MUD only
methods, only the joint MUD is shown, as the per user and
joint MUDs will perform similarly as discussed earlier.

Similar to the case of Fig. 6, TDMA outperforms the
MUD only NOMA methods, while performing worse than the
interference-aware per user MUD and GRAND method and
GRAND-AM. At larger SINRs, the TDMA user outperforms
the MUD only NOMA methods by 5 dB, which is more
than in the case without an interferer. The TDMA user only
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Fig. 12. Comparison between interference ignorant and interference-aware
receivers when using per user GRAND or GRAND-AM to recover two users
modulated with 4QAM and with (8, 4) CRC codes as MAC codes with an
interferer present, perfect synchronization, and perfect channel estimation.

has a single interference source to account for, while the
MUD only NOMA methods must account for both the MAI
and the interferer, which leads to the larger difference. Thus,
a MAC code should be used to handle the MAI. With a
MAC code, the interference-aware per user MUD and GRAND
method outperforms TDMA by ∼8 dB, while the GRAND-
AM outperforms TDMA by a factor that is too large, in terms
of dB, to illustrate in the figure. Even when the receiver
is interference ignorant and treats the interferer signal as
noise, the usage of MAC codes can still allow for good
performance. While in low SINR regimes, the interference
ignorant per user MUD and GRAND method and GRAND-
AM perform worse than the interference-aware TDMA user,
as the SINR increases, the addition of the MAC code allows
the interference ignorant methods to outperform TDMA. The
interference ignorant per user MUD and GRAND method
begins performing better than TDMA at ∼10 dB, while
interference ignorant GRAND-AM begins performing better
at ∼6 dB. This shows that when there is both MAI and an
interferer present, MAC codes and GRAND-AM are powerful
tools that can handle both of these effects.

In the beginning of this section, we briefly mentioned
that the worst case scenario for NOMA is when one user
is recovered while treating the other user as noise. This is
analogous to the interference ignorant receiver being used
under the assumption there is only a single user accessing
the channel when there are actually two users present. As
seen in these results, interference ignorant receivers perform
poorly at low SINRs, which was exactly the case discussed
earlier. Given that the power of the interferer is on par with the
user power, there should be obtainable information about the
interferer that can be used to improve the error rates. However,
when the SINR is large, that is, the power of the interferer
is small relative to the power of the users and on par with
the AWGN power, having information about the interferer is
less crucial for good performance. Indeed, in Fig. 12, as the
SINRs increase, the performance of the interference ignorant

Fig. 13. Impact of imperfect channel estimation on the performance of per
user GRAND or GRAND-AM when the receiver is interferer aware.

and interference-aware receivers approach each other. Thus,
interference aware or ignorant receivers should be chosen
based on the expected interference, if this information is
available beforehand, and the receiver can afford to use
interference-aware detection.

Similar to the case where there isn’t an interferer, it is
impractical to assume perfect channel estimation for the
users and interferers. In addition, because the receiver must
obtain information about the interferer, instead of being given
information as in the case of the users, it is reasonable to
assume that the channel estimation for the interferer will at
most be as good as the channel estimation for the users.
We consider the scenario where αu = 1, which corresponds
to a reciprocal channel for the users, and αq = 1/2 and
αq = 1 for the interferers. Fig. 13 shows how the channel
estimation error for both the users and the interferer impacts
the error rates. In the high SINR range, the SERs converge,
indicating that the error introduced by the channel estimation
originates from the channel estimation error for the users,
with less impact from the change in αq for the interferers
due to the power of the interferer being similar to the power
of the noise. However, when the SINR grows small and
approaches 0, the change in αq impacts the SERs of the
users more heavily, as it is important to have accurate channel
estimation for the interferer when its power is large. However,
even with inaccurate channel estimation, the interference-
aware receiver can still outperform the interference ignorant
receiver when the SINR is small, especially with GRAND-AM
being used. The interference-aware receiver using GRAND-
AM with inaccurate channel estimation for both αq = 1 and
αq = 1/2 can outperform the interference ignorant receiver
using GRAND-AM up to an SINR of 9 dB. In contrast, the
interference-aware receiver using per user MUD and decoding
can outperform the interference ignorant receiver up to an
SINR of 7 dB for both αq = 1 and αq = 1/2. This shows that
a receiver using GRAND-AM in a scenario with both user
and interferer channel estimation error is more robust against
errors compared to a more conventional per user MUD and
decoding process.
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Fig. 14. Comparison of FERs when overall code rates of ∼ 1/3 are used for
both a TDMA user with LDPC coding, and per user GRAND and GRAND-
AM with CRC codes as inner and outer codes.

Now that we have shown that GRAND-AM performs well
and is robust in the presence of channel estimation error,
asynchronicity, and interferers when it comes to NOMA,
we should also consider how well GRAND-AM can be
incorporated to the overall system, when we take into account
the FEC block. Typically, only a single code such as a low-
density parity-check (LDPC) code is used for error correction.
However, recall from the block diagram in Fig. 1 that there
are two codes being used for our proposed method, the MAC
code used to deal with MAI from NOMA, and the FEC
code used to deal with other errors. For a comparison with
the traditionally used FEC, the product of the rates of the
MAC code and FEC code used in GRAND-AM should be
considered the overall coding rate. If rate 1/3 LDPC codes are
used for IoT applications, the outer FEC code for GRAND-
AM should be rate 2/3 if a rate 1/2 inner code for MAI
is used. Considering the importance of URLLC in many IoT
applications, we use a payload size of 40 information bits,
leading to a (120, 40) LDPC code generated using the ETSI
published standards [38]. While CRC codes are not used for
FEC in the standards due to the lack of an error correction
decoder, let us consider them, as they have flexible codeword
lengths and the recent development of the GRAND algorithm
allows the usage of them for error correction [39], [40]. For
GRAND-AM and per user MUD and GRAND, we consider
a (60, 40) CRC code for the FEC. In combination with
the (8, 4) MAC code that has been used for the previous
results, this will lead to an overall code of size (120, 40) with
rate 1/3.

Fig. 14 shows a comparison between the FERs when there
is a TDMA user with the (120, 40) LDPC code, versus per
user MUD and GRAND and GRAND-AM where a (8, 4)

CRC code is used as the MAC code and a (60, 40) CRC
code with hexcode 0xd41cf is used as the FEC code. Both
users are modulated with BPSK modulation. For simplicity,
we consider only the case where there is perfect channel
estimation available to the receiver. The LDPC coded TDMA

user outperforms GRAND-AM with two users at low Eb/N0,
but as the Eb/N0 increases, GRAND-AM with two users
begins to outperform by ∼0.5 dB. Both the TDMA user
and the GRAND-AM users reach an FER of 10−4 at 9 dB,
showing that using the LDPC code for the TDMA user
and the GRAND-AM method of a MAC code and an FEC
code are similarly reliable. However, recall that as shown
in Fig. 8, when the number of users increases, GRAND-
AM can mitigate the number of errors through the aggregate
codebook, which grows in size with the number of users. As
a result, increasing the number of NOMA users will slightly
increase the FER, allowing for all NOMA users to freely
transmit. In contrast, while the TDMA users will maintain the
same FER due to the orthogonality of TDMA, as the number
of users increases, the transmit duration per user decreases.
Thus, GRAND-AM as a NOMA method has the potential to
support higher throughput for each user compared to OMA
method.

VI. CONCLUSION

In this work, we have proposed GRAND-AM, which
uses joint ML MUD and joint decoding, as a method for
handling NOMA. For GRAND-AM, there are three crucial
components involved with the joint MUD and decoding—
the macrosymbol, the MAC code, and the GRAND decoding
algorithm. The macrosymbol is a concept that combines all
user symbols and channel gains into a single macrosymbol
that is then detected with the ML receiver. The detection of
the macrosymbol directly corresponds with detecting the joint
of all users. The MAC codes are short codes used to split the
channel rate between users, and correct errors that arise due
to MAI. In order to jointly decode across all users, we use the
macrosymbol, and the combination of all users’ MAC codes to
form a joint codebook that a GRAND algorithm then uses to
jointly decode across all users. For the joint decoding process,
the algorithm does not halt until all user codebooks are
simultaneously satisfied, unlike individual decoding methods,
where each user codebook can be independently satisfied. This
leads to the aggregate user, which is formed from all possible
combinations of the individual users, having a codebook that
has a larger number of parity checks compared to an individual
user, resulting in lower error rates.

We have considered GRAND-AM under various cir-
cumstances, such as with imperfect channel estimation,
symbol-wise asynchronous transmissions, and interference.
The use of a MAC code for handling MAI allows for GRAND-
AM to outperform TDMA by 10 dB in the ideal scenario, and
even with imperfect channel estimation, the use of the MAC
code can lead to better performance by 6 dB. In particular,
the combination of the joint MUD and joint decoding via
GRAND for GRAND-AM can outperform both the per user
MUD and GRAND method as well as conventional OMA
techniques such as TDMA in these circumstances, even when
the channel is overloaded. When FEC is taken into account,
GRAND-AM as a NOMA method results in FERs similar to
a TDMA user for a given rate. The ability of GRAND-AM
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to handle these scenarios shows GRAND-AM’s potential in
IoT applications, such as in grant-free multiple access or for
URLLC applications.
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