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Real-Time Melt Pool Homogenization Through
Geometry-Informed Control in Laser Powder
Bed Fusion Using Reinforcement Learning
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Abstract— This paper presents a real-time geometry-informed
control strategy to homogenize melt pool measurements in laser
powder bed fusion (L-PBF) using reinforcement learning. The
learning control strategy incorporates geometric information of
the scan path as well as in-situ melt pool measurements to
compute the laser power signal for reducing in-process melt
pool inhomogeneities. First, we design and validate a data-driven
model to train the reinforcement learning agent in simulation,
with the goal of reducing the amount of experimental data needed
for training. Using this simulation-based training approach has
the added benefit of avoiding unsafe or infeasible experiments,
an issue that is often encountered in training the reinforcement
learning agent. After training, the learned control strategy
attenuates the 1-norm error by 37% and standard deviation
by 39% in simulation. We then deploy this learned control
strategy in an experimental test bed for a new scan geometry.
In this test scenario, the policy achieves a 30% reduction in
error, and a 36% reduction in melt pool signal variation, thereby
illustrating the potential of reinforcement learning in real-time
geometry-agnostic control for L-PBF. Finally, we demonstrate
that the reinforcement learning agent delivers the same level of
performance as a model-based feedforward controller with PID
feedback, with 20 x less computational time for a single geometry.

Note to Practitioners—This work was motivated by the need to
develop a practical control algorithm for L-PBF systems. Because
L-PBF systems manufacture customized on-demand geometries,
it is critical that the control strategy is extendable to and easily
optimized for each geometry. Specifically, this effort develops
an efficient and robust reinforcement learning control algorithm
that can be used across novel part geometries, once trained. The
control strategy is designed using a simulation-to-real approach,
which is key for avoiding extensive training effort and avoids
unsafe training experiments.

Index Terms— Laser powder bed fusion (L-PBF), reinforce-
ment learning, sim-to-real learning, data-driven model, metal
additive manufacturing.

I. INTRODUCTION

q DDITIVE manufacturing (AM) technologies have devel-
oped considerably over the past decade [1]. Particularly,

Manuscript received 20 November 2023; revised 6 February 2024; accepted
6 April 2024. This article was recommended for publication by Associate
Editor H.-J. Kim and Editor J. Li upon evaluation of the reviewers’ comments.
This work was supported by NSF Civil, Mechanical and Manufacturing Inno-
vation (CMMI) under Award 2222250. (Corresponding author: Bumsoo Park.)

The authors are with the Department of Mechanical, Aerospace, and Nuclear
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
parkb5 @rpi.edu; chenal7@rpi.edu; mishrs2@rpi.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2024.3386882.

Digital Object Identifier 10.1109/TASE.2024.3386882

metal AM processes such as laser powder bed fusion (L-PBF)
have seen increasingly widespread adoption in numerous
industrial applications such as aerospace, automotive, and
medical fields [2], [3], [4]. One key challenge that the tech-
nology faces, however, is the quality of the produced parts:
the process is prone to variability that results in defects, which
can adversely affect the mechanical properties and usability of
these parts. As a result, much of current research in metal AM
focuses on addressing various aspects of this quality control
problem [3], [5], [6].

Among these studies, it is well accepted that homogeneous
melt pool properties during the process are desirable over
fluctuating melt pools [7], [8], [9], [10], [11], for superior
part quality. Accordingly, the control problem in L-PBF is
commonly formulated as the regulation of melt pool behavior,
to reduce undesirable outcomes such as dross [12] or pore [13]
formation. The deviations in melt pool behavior stem from
two main factors: process-related — process noise (e.g. spatter)
and local overheating (due to uneven powder), or process
parameter-related — geometric features of the scan (e.g. sharp
corners, overhang) and process parameters (e.g. material type
or scan parameters) [14], [15].

The compensation of these effects are either done through
reactive or predictive approaches, depending on the type
of deviation. Reactive approaches typically compensate for
layer-wise/in-layer deviations of the melt pool indicator mea-
surements using feedback strategies. Layer-wise control has
been investigated in the context of layer-wise feedback algo-
rithms [8], [16], iterative learning control (ILC) [17], [18],
[19], or predictive models (that correlate the measurements to
surface roughness) to correct the process parameters for the
subsequent layer [20], [21]. Real-time feedback control has
been investigated to a lesser extent due to the high demand
on controller response time (typically 2-5kHz), and the few
current studies employ simple feedback algorithms such as
PID [22], [23], [24]. On the other hand, predictive measures
compensate for geometry (and other process-parameter)-
related effects in an a-priori manner. The majority of these
studies use physics-based or empirical models that can predict
geometry(process-parameter)-dependent behavior of the melt-
pool [14], [25], [26]; and use these models to determine
appropriate laser power profiles and scan paths to accomplish
a desired process outcome through feedforward control [27],
[28], [29], [30], [31], [32], [33]. These studies altogether
demonstrate the efficacy and feasibility of the control strategies
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for each aspect respectively but do not combine reactive and
predictive capabilities simultaneously.

Although a combination of the aforementioned feedforward
and feedback algorithms may at first glance appear a viable
option, solving an optimization problem for every geometry
(i.e., for each layer or scan path) proves to be computationally
laborious and expensive. Further, parameter design/tuning for
the feedback algorithms requires substantial engineer time.
In practical application, the vast majority of AM-produced
parts have diverse cross-sectional geometries across different
layers, along with differing rastering strategies. Furthermore,
the complex nature of L-PBF [14] requires conventional
optimization-based methods to employ substantial model order
reductions. Thus, designing a model-based control strategy
with both reactive and predictive capabilities, without the need
for substantial hand-tuning for different process parameters,
is challenging.

Data-driven algorithms such as reinforcement learning (RL)
[34] can be used to derive an appropriate control strategy,
because of their ability to directly determine a control strategy
from the input-output relationship of the system. RL algo-
rithms construct control strategies (so-called policies) through
a trial-and-error process, by repeatedly observing the effect
of actions on output of the system and updating the control
strategy until an optimal control strategy is achieved. In model-
free RL, this control strategy is developed without a formal
analytical model of the system dynamics or the need for direct
model inversion through optimization. Additionally, RL algo-
rithms, once trained, show robust capabilities in dynamically
changing conditions by learning the latent properties of the
system from data, which can improve the applicability of
the trained RL agent for varying scan paths or geometries.
These characteristics together make RL a strong candidate
in the development of an effective control strategy for
L-PBE.

Despite this potential, the development of RL-based control
strategies in L-PBF systems has challenges. First, the search
for the optimal control strategy during the learning phase
requires considerable exploration (trial-and-error) prior to con-
vergence, resulting in extensive training periods and more
importantly, posing safety issues (e.g. abnormally high/low
laser power, laser power oscillations) during experiments.
It is therefore not feasible to directly learn optimal control
strategies through experiments on the physical system. Second,
the performance of RL-based algorithms heavily relies on
appropriate feature selection and reward design [35], [36],
[37], [38], requiring meticulous commissioning and design
effort.

A. Related Work and State-of-the-Art

The application of RL for L-PBF control is a relatively
recent concept and thus has not been investigated widely,
compared to other machine learning methods [39]. While
there are several studies that use RL in other metal AM
processes (e.g. wire arc AM [40] or laser welding [41]),
there has been limited application of RL algorithms for
L-PBF control/process optimization [21], [42]. In Ogoke and
Farimani [42], deep reinforcement learning (DRL) is used
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to determine appropriate laser power and velocity values to
control the melt depth, by using consecutive images of the
cross-sectional melt pool heat maps in a simulation envi-
ronment. The cross-sectional temperature field images are
provided to the controller, in which the controller then directly
returns a corresponding laser power and speed for the next
timestep. Knaak et al. [21], proposed the usage of model-based
RL (MBRL) for layer-wise process parameter optimization
(laser power and scan velocity) to reduce deviations in the
surface roughness and defective regions (characterized by
a separate model). High dynamic range (HDR) images are
used to train a model to determine the surface roughness
and defects, which is used as the state information for the
MBRL controller. The authors showed that the algorithm was
able to effectively reduce the surface roughness. While both
studies demonstrate an effective use of RL for L-PBF process
control, the knowledge gap remains regarding: (1) a control
algorithm that exhibits predictive and reactive capabilities,
without requiring extensive tuning or optimization efforts,
(2) the experimental demonstration of a real-time learning-
control approach, and (3) the demonstration of a safely and
timely developed a learning-based approach in L-PBF.
To address this, in [43], we demonstrated a geometry-
informed RL-based approach, where the control strategy is
derived using RL in a simulation environment. This previous
study showed that the RL agent can be trained with minimal
effort and was exportable to novel geometries. However, since
noise and other unmodeled physics were not captured in the
simulation, the agent’s predictive-reactive capabilities were
not tested to their full extent for experimental demonstra-
tion. Building upon [43], in this paper we experimentally
demonstrate a strategy inspired by the simulation-to-reality
(sim-to-real) approach employed in various control appli-
cations [44], by deploying the simulation-trained control
strategy from [43] in the physical system to resolve the
issue of safely training the algorithm. Next, to demonstrate
the predictive—reactive capabilities of the control algorithm,
we experimentally evaluate the real-time control algorithm.
Through the experimental validation, we find that the
simulation-trained policy (1) demonstrates both predictive and
reactive capabilities when deployed on the physical system,
(2) does not require re-optimization upon deployment in
the physical system, and (3) can homogenize the melt pool
measurements, which ultimately leads to improved build part
quality.
The core contributions of this work (in contrast to [43]) can
therefore be summarized as:
1) Safe training and implementation of a learning-based
control strategy for an experimental L-PBF system using
a sim-to-real deployment approach.

2) Development and demonstration of a real-time RL-based
control strategy that incorporates geometric information
(in a predictive manner) along with feedback control in
L-PBF, and that is applicable to novel geometries/scan-
paths in the physical system without any further tuning
or modification once learned.

3) Experimental validation of the developed real-time con-

trol strategy in a physical L-PBF system to show
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Geometry-agnostic control melt pool homogenization problem for L-PBF. (a) The goal of this work is to find a suitable control strategy, that

can anticipate geometric effects and respond to in-layer deviations in melt pool measurements, without having to solve an optimization for every available
geometry. (b) The objective of the controller is to appropriately harness the given geometry information /(-) and measurement information m, to yield a proper
laser power value for the next timestep, ultimately to homogenize the melt pool measurements.

reduction in melt pool deviation and error, demonstrating
an improvement in build quality; benchmarking against
a conventional feedforward+PID controller.

II. PROBLEM DESCRIPTION

We first provide a description of the experimental system
used in this study, followed by a formal statement of the L-PBF
control problem.

A. Experimental Setup

The model identification and experimental validation in
this work are based on the open architecture L-PBF system
presented in [17] (Fig. 2). This system can build parts up
to 50mm x 50mm in cross-sectional size, with commercially
available metal powders such as stainless steel. The PBF
machine is equipped with a 400W NdYAG laser, a SCAN-
LAB intelliSCAN 4,20 galvoscanner for the actuation, and a
coaxial NIR (Near-IR) camera setup (similar to [8], [22],
and [45]) to monitor the melt-pool during the process. A Basler
acA2000-165umNIR camera is used to acquire coaxial images
of the melt pool in the near-IR band (800-950 nm) at 2kHz.
All images are formatted as 8-bit intensity images, with a size
of 64 x 64 pixels in size, yielding an instantaneous field of
view of 22 um per pixel.

Low-level control of the machine (e.g. laser firing and
positioning) is handled by a SCANLAB RTCS5 control board,
while high-level control is accomplished using America Makes
software [46], supplemented with custom C++ code devel-
oped to provide auxiliary functionality. The process is initiated
by reading in a scan file, consisting of a list of straight lines,
default power value for each line, and scan speed. For an open-
loop scenario, each scan line would be executed line-by-line,
with the specified speed and default power value. Note that
the default power values can be overwritten during the control

loop, and thus the control algorithm is able to compute and
apply a new power value depending on the observation. The
image frame acquisition and power command (computation)
are synchronized, i.e., the power values of the laser are updated
after every image acquisition (500.s). Note that, based on our
previous timing studies, the time jitter of the image acquisition
was found to be 15-30 us.

B. L-PBF Control Problem Formulation

Fig. 1 illustrates the geometry-agnostic melt pool homoge-
nization problem addressed in this paper. Based on the system
described above, the objective of this research is to develop a
control strategy with both reactive and predictive capabilities,
without having to optimize for every geometry. As discussed
in Section I, because geometric effects have to be dealt with in
an a-priori manner, a feedforward controller would typically
obtain the laser power profile by solving an optimization prob-
lem. This can result in extensive development (optimization)
times, especially with part geometries with a large number
of varying layer-wise scan paths. Reactive controllers (i.e.,
feedback algorithms such as PID) require empirical tuning
of the gains, which can be time consuming and potentially
unsafe (e.g., inappropriately designed control gains may result
in abnormal power values that can damage the part and the
machine).

Here, our goal is to directly derive the predictive and
reactive control law C(l,, (-), m), which takes in geometric
information I, (-) for an arbitrary part geometry g, along with
real-time melt pool measurement information m, to effectively
drive subsequent measurements towards a reference value
and reliably homogenize future measurements, i.e., find the

mapping

Clg, (), me) = pfyy, )]
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Fig. 2. System description of L-PBF system incorporated in this study.

Laser/scanner is used for the actuation, and near-IR (NIR) camera is used to
acquire coaxial melt pool images at a rate of 2kHz.

where
T—1
P;*.H = arg 1;}1111 Z [lmip1(my, lg,, Pre1) — mref||2,
=0
s.t. Pt+1 = Pmaxs
Pt+1 = Pmin V1.
(2)
Here,t =0, 1,..., T —1 is the timestep of each point along a

given scan layer, p,; is the power value at the next timestep
t + 1, subject to lower p,,;, and upper p,, power limits.
m;4 is the measurement at time ¢ + 1 and m,.r is the target
measurement value. We note here that the signal [, (-) must be
constructed carefully for a proper representation/interpretation
of the geometry, described further in Sections IV and V.

III. PROPOSED CONTROL DESIGN METHODOLOGY

The design methodology consists of three stages, as illus-
trated in Fig. 3. In Stage 1, a data-driven spatio-temporal
model is constructed and identified from experimental data.
Next in Stage 2, the RL-algorithm interacts with the model
from Stage 1 to learn an optimal control strategy. Finally in
Stage 3, the learned control strategy is deployed in the L-PBF
machine.

Stage 1: To develop a data-driven model that replicates
geometric effects of the process (e.g. overheating during acute
turnarounds) while incorporating the sensor dynamics, NIR
image data from the process is first collected from the process.
Features indicative of the melt pool size are extracted from the
images for real-time control, to represent the data as a time
series, which are then spatially registered based on the nominal
scan path and sampling rate. The spatially mapped data is then
used to identify the parameters of a physics-inspired model,
providing an environment for the RL training.

Remark: While it is possible to replace Stage 1 (spatio-
temporal model development) with a different model (e.g.
high-fidelity simulation models), this model would inher-
ently be computationally expensive and time-consuming. More
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importantly, the discrepancy between the output of a simula-
tion model (typically temperature values; obtained by solving
a differential equation) and the actual measurements obtained
from the experimental system (melt-pool size index, obtained
by extracting features from NIR images) requires incorporation
of this sensor behavior.

Stage 2: Next, the model identified in Stage 1 is considered
as a black-box environment, with which the RL algorithm
interacts to learn the optimal policy. Prior to training, the
system inputs and outputs are formulated, along with a suitable
reward function to guide the RL policy to achieve a desirable
goal (i.e., a prescribed melt pool measurement reference).

Stage 3: In the final stage, the learned policy is transferred
and deployed in the physical system for control. To enable
real-time control, the NIR images are converted into the
information that the RL algorithm can interpret as the images
are acquired, while the RL actions are directly converted
into laser power values and applied to the machine. In this
stage, the trained policy is deployed in an unforeseen test
geometry, to demonstrate the geometry-agnostic capabilities
of the policy.

IV. PHYSICS-INSPIRED MODEL CONSTRUCTION

First, we describe the gray-box model used in the training
of the RL algorithm (Stage 1). A low-order model structure
was chosen because of the data-hungry nature of RL, i.e.,
a large number of trials (10*—10°) are often needed to learn an
optimal policy. Further, this model was designed to incorporate
the sensor behavior in the physical system.

A. Spatio-Temporal Registration

An overview of the spatio-temporal registration process is
presented in Figure 4. The first step of the model construction
was to extract features from the NIR images captured by the
camera. To enable a single-input single-output (SISO) repre-
sentation of the process for real-time control, we extracted a
signature indicative of the melt pool size from the images.
We denote this feature (melt pool size index) at time ¢
as m;.

The temporal signal of m, was then spatially mapped based
on the nominal scan path, assuming ideal trajectory tracking
and constant velocity of the scanner. Thus the scan path
was interpolated based on the scan speed and sampling time
(%, fs =camera sample rate) to estimate the individual loca-
tion of m,. This transformation allowed m; and m; = m(x;, y;)
to be used interchangeably in the spatial map. An example of
the resulting transformation is visualized in the lowest block
of Fig. 4.

B. Data-Driven Spatio-Temporal Model

The spatio-temporally registered data was then collected to
identify the data-driven model. To design a suitable model
structure, an autoregressive model inspired by [47] was cho-
sen, which is based on the analytical temperature solution
of the heat equation, assuming a Gaussian heat source mov-
ing over an infinite plate at constant velocity. The resulting
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Overview of the control design strategy. A data-driven spatio-temporal model is first constructed from actual process data (Stage 1). The model is

used as a simulator in which the RL controller (policy) is trained (Stage 2)). The trained policy is then deployed to the physical machine, yielding a geometry
agnostic feedback controller that can be used for various geometries (Stage 3).
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of m; to m;.

temperature field can be seen as a Gaussian heat source that
exponentially decays over time, represented as

M

~ _ 2 .

M) = Z(mtfj .e i Ad,j e A,Atz,) + f(Pz, v)’ (3)
=0

where, 71,4 is the prediction at time ¢ + 1. The measurement
at time r and M — 1 previous measurements were considered
along the scan path, where each measurement was regarded
as a point source with decaying effect over distance and time.
Ad;; denotes the distance and At;; denotes the difference in
time between the current and j" points. The model parameters
Aq and A, were identified from experimental data (from Fig. 5)
by minimizing mean square prediction error. f(p;, v) was
designed as a function that maps the laser power and speed to
a relative effect on the subsequent measurement, which was
identified through linear regression of experimental data from
a ramp input test.!

Once the model structure was defined and the parameters
were identified, we evaluated the model by comparing the
model predictions with experimental data. Fig. 5 shows a spa-
tial map of the model prediction compared with experimental
data. The experimental data was averaged over 10 identical
layers to reduce the effects of noise. Here we notice that the
model was able to replicate the overheating effects around the
turnarounds, with a similar measurement level (mean absolute
error of 5.7 and mean percentage error of 1.7%) corresponding
to a laser power value.

V. REINFORCEMENT LEARNING

Next, we recall the preliminary basics for RL design briefly.
In RL, the learner is referred to as the agent, which learns by
interacting with its surroundings, also known as the environ-
ment, through trial and error (Fig. 6). This process is repeated
until a desired control strategy is achieved.

To formulate the RL problem, the system is represented as
a Markov Decision Process (MDP), which consists of states

! Although both laser power and speed have an effect on subsequent mea-
surements, laser scan speed was kept constant during the model identification
due to the inability to modify the scan speed in real-time for the system used
in this work.
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control. The goal of RL is to train an agent such that it learns a control
strategy (policy) to perform a set of desired actions. The agent learns through
repeated interaction with the environment. During each cycle, the agent first
takes an action and obtains the subsequent observations and rewards from the
environment. The actions, observations, and rewards are then used to update
the policy towards a direction that maximizes the expectation of cumulative
future rewards.

S, € S, actions A, € A, rewards R, € R, and transition prob-
abilities Pr(S;41]S;, A;). S is the set of possible observations
(measurements), A is the set of feasible actions, R is a
set of scalar values assessing the current circumstance, and
P(S;+11S;, A;) is the probability of transitioning from S; to
S;+1 taking action A;. In a model-free learning scheme, the
transition probabilities are unknown. Based on the MDP, the
control strategy, known as the policy m, is a function that maps
states S to actions A, i.e., 7 : S — A. The objective in RL is
to find a policy that maximizes the cumulative future rewards
G, = Z/E:zﬂ ykrk, where y € [0, 1] is the discount factor on
future rewards, r is the reward value.

For feasibility of real-time implementation of the algorithm,
in this paper we use a value-based algorithm (Q-learning [48])
in its tabular form. Value-based algorithms [34] find the
optimal policy by learning a value function, defined as
the expectation of G,, i.e., E;[G,]. The value function
with respect to a given state-action pair (s,a), Q7 (s, a)
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(state-action value function), which is written as
Q" (s,a) =E;[G, | S, =5, A = al. 4)

In tabular Q-learning, this value function Q(s, a), is repre-
sented in matrix from, where the rows and columns represent
the discrete and finite state/action spaces. Therefore both the
states and actions of the RL must be formulated accordingly,
as discussed below.

A. MDP Formulation

1) State Definition: The discrete states were designed to
capture two pieces of information: the value of the current
measurement to predict its effect on the subsequent point,
and the path information (Fig. 7). We accomplish this by
assigning two state elements k; and k; to represent each piece
of information. k; € {0, 1} was defined as the path information
element, in which determines whether an upcoming point
is located at an acute turnaround. This was accomplished
by evaluating the Euclidean distance to the subsequent point
(denoted by d = ||m(x;, y;) —m(x;+1, ¥i+1)]|)- Because for all
points along a straight path d is equal to the sampling distance
85 (defined as scan speed / sampling rate), any point such that
d < §; was considered to have an upcoming turnaround (non-
straight path). Thus k; was assigned a value of 1 for d < §;
and O for all other nominal cases.

if d < é;,

1
ki = [ )
0 ifd=24,. 5)

Next, the measurement-related state element k, €
{0, 1,2,3} was assigned a value based on discrete binning
of the error m,,, = m,.r —m;. A total of 4 discrete bins were
used, in which the thresholds for each bin were determined
heuristically from experimental data. The number of bins were
empirically determined to represent the cold, nominal, slightly
hot (due to slight heat accumulation), and hot measurements
(due to turnarounds and extreme heat accumulation), respec-
tively. The final state s, was then represented as the Cartesian
product of the two parameters, i.e., s = [k, k»], resulting in a
total of 8 possible states.
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Reward function

Reward value
r
o

Reference

10 20 30 40 50 60 70
Measurement

Fig. 8.  Visualization of reward function with respect to a given example
reference m,.r = 44. Constructed as a piece-wise linear function with varying
slopes, to provide higher rewards for smaller errors. Asymmetric design was
chosen to discourage overheating more than undermelting.

2) Action Definition: To discretize the action space,
we defined a set of discrete power values centered around
the constant open loop power value por. A total of 16 val-
ues ranging from pop — 50 to pop + 30 with increments
of 5SW were chosen. The increment value was heuristically
determined as the minimum value to produce a perceptible
change through melt pool measurement variance, yet with-
out excessively expanding the action space. Unlike function
approximation methods (e.g. DQN, Policy gradients), tabular
Q-learning does not explicitly define the similarity between
states. Hence each state-action pair is treated independently
in the Q-function, and the algorithm relies on exploration to
encounter and update the Q-values for different state-action
pairs.

3) Reward Construction: Finally, we constructed the reward
function to guide the policy towards a strategy to minimize
error, in which an analogous structure was chosen (Fig. 8). The
reward function was designed as piece-wise linear function,
with varying slopes to incentivize minimizing the error. These
slopes were computed from heuristically assigned reward
values at different points, e.g., +15 at m,.r. Measurements
within a certain vicinity of the reference were all rewarded
with positive reward values, whereas measurements outside
the vicinity were penalized with negative reward values. Note
that an asymmetric reward design was chosen to discourage
overheating more than undermelting.

Based on the formulation of the MDP, the measurements
and actions from the model were transformed into MDP
states and actions, respectively. The states s,, actions a;,
and rewards r, were correspondingly used to update the
value function Q(s, a) through the Q-learning algorithm (6)
[48].

Qi ar) <= Qlsi, a) +alr +y max Q(si41, )
— Q(s1, ar)), (6)

where « is the learning rate for the Q function update.

VI. SIM-TO-REAL EXPERIMENTAL DEPLOYMENT
OF LEARNED CONTROL STRATEGY

After Q*(s,a) was found, we transferred Q*(s, a) to the
physical machine (Stage 3). Q*(s, a) was implemented as a
look-up table such that a desirable action is returned for a
given state under a greedy policy (7), i.e., the action with the

a) Training geometry b) Test geometry

A

Hatch spacing

0.1mm
A E
E
o
£ o s
: port
@ Scan path
L4 Y
< > -+ >
16 mm 18 mm
Fig. 9.  Part geometry used for RL training and testing. (a) A triangular

geometry was used, with hatch spacing set as 0.1 mm. (b) A relatively
more complex geometry was used for deployment performance evaluation
and experimental validation. Hatch spacing and scan pattern was identical to
that of the train geometry.

highest Q value was chosen for a given state §;, i.e., the laser
power update is determined by

7(S;) =a= argmaz( Q*(S;, a). @)

For real-time implementation, the feature extraction from
the NIR images and corresponding state conversion were
integrated into the supervisory machine control codes. Note
that the spatio-temporal registration only needed to be exe-
cuted once at the beginning of the layer, hence the spatial
map was generated in a layer-wise manner. Similar to
the states, the actions a were converted back into corre-
sponding power values, based on the constant open loop
power Por.

VII. SIMULATION AND EXPERIMENTAL RESULTS

The training of the RL algorithm was done with the geom-
etry shown in Fig. 9 (a). Here we first analyzed the training
results and the performance of the trained policy within the
simulation. We next analyzed the policy and action decisions
yielded by the controller and compared with a relatively more
complicated RL algorithm to show that the tabular Q-learning
can produce comparable results. Finally, we evaluated the per-
formance of the simulation-trained controller when deployed
in a physical system, applied to a novel scan geometry to show
geometry-agnostic capabilities.

A. Training Results

The RL algorithm was trained for 200 iterations, converging
at approximately 100 iterations (Fig. 10). The geometry shown
in Fig. 9 (a) was used for the training, and an entire layer was
considered a single iteration (episode). We designed the scan
path with 0.1mm hatch spacing and 800mm /s scan speed, and
used an open loop power value of 250W. Py, = 250W was
heuristically determined from prior tests to ensure adequate
performance. The hyperparameters for the RL algorithm were
empirically tuned as the following: the discount factor y = 0.7
and the learning rate o = 0.2.

1) Note on Computational Time: The training time for the
geometry-agnostic RL algorithm was 17 seconds. The training
was executed on an Intel i7-9700K CPU with 16 GB of
memory. Note that the time required to derive a model-based
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Fig. 10. Reward history during training. RL algorithm was trained for
200 iterations (episode) on the training geometry shown in 9 (a). The
cumulative rewards per episode converged at approximately 100 iterations.

feedforward controller for the training geometry (single geom-
etry) was 340 seconds. The optimization of the model-based
feedforward was demonstrated to emphasize the need for a
geometry-agnostic controller, as the development time would
linearly grow with layer number/part-geometry. Experimental
results for the model-based feedforward combined with feed-
back will be discussed in Section VII-D.

We next evaluated the performance of the trained policy
within the simulation and analyzed the policy. Here, we visu-
alized the inputs (power profile), resulting melt pool indicator
measurements, and 1-norm error with respect to m,.; of the
open-loop and RL-controlled cases (Fig. 11). The visualization
is based on the spatial registration discussed in Section IV-A,
and the color of each point represents a proportional value
in each category. We notice that the RL-controlled case
learned to effectively reduce the power along the edges where
the turnarounds occur, and additionally adjusting the power
value in adjacent points. Such a strategy resulted in a more
uniform measurement map. The overall error and melt pool
signal variation? were reduced by 37% and 39%, respectively,
showing that the RL was able to learn an effective strategy
within the simulator.

B. Comparison With Other RL-Algorithms

To ensure that the tabular setup can achieve an opti-
mal policy similar to that of a more complex RL
algorithm, we compared the trained policy against a function
approximation-based RL algorithm. The algorithm used for
comparison was REINFORCE [49], a policy-based algorithm
that uses a function approximator to directly learn the policy.
We used a neural network with 2 hidden layers, each with
100 nodes for the function approximator. As function approx-
imator methods are capable of handling high-dimensional
continuous state-action spaces, instead of discretizing the
states, we directly used the normalized values of the mea-
surement m, and distance to the subsequent point d in the
states, i.e., spg, = [m,, d]. On the other hand, the same set of
actions were used, for a fair comparison.

Spatial maps of the power profiles from each algorithm are
compared in Fig. 12. We noticed that both algorithms learned
similar strategies, by lowering the laser power values along the
edges, albeit the Q-learning being relatively more aggressive

2Variation is defined as standard deviation; ./ ﬁz lm; — umlz‘
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Fig. 11.  Performance evaluation in training geometry. Performance of
the proposed RL algorithm is compared against open-loop. Spatial maps of
the power profiles, measurements, and absolute errors are compared. The
reference melt pool signal was set to m,.; = 82, derived as the mean
nominal (in-line value without overheating) value of the open-loop test. The
RL reduced melt pool signal variation by 37% and 1-norm error by 39%,
compared to the open-loop case.
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Fig. 12.  Policy comparison with another RL algorithm. A function approx-
imation policy-based algorithm (REINFORCE) was used as comparison.
Similar policies are derived, both of which lower the power along the edges
where the turnarounds occur.

in lowering the power in the edges. For instance, the policy
trained with Q-learning lowered power values for all points
with d < &, whereas the policy trained with REINFORCE
lowered the power only at points where d < &,. This can
be attributed to the fact that the distance information was
directly provided to the states in REINFORCE, such that an
appropriate distance threshold for lowering the power was
heuristically determined. Nonetheless the overall policies were
similar in terms of performance, suggesting that the Q-learning
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Fig. 13. Part geometries used in geometry-informed capability test.
A total of 10 geometries were tested with the same policy, learned in
Section VII-A.

TABLE I
SUMMARY OF GEOMETRY-INFORMED CAPABILITY TEST

Part number | Error reduction (%) | Variation reduction (%)
Gl 49 61
G2 30 44
G3 50 62
G4 42 57
G5 45 57
G6 49 61
G7 45 56
G8 26 42
G9 36 47
G10 37 50

algorithm can learn an equivalently effective control strategy
despite its lower computationally complexity. It is worth
noting that the target L-PBF machine currently is not capable
of parallel computing, and thus the REINFORCE algorithm
cannot be executed in real-time in the target machine. For
such reasons, experimental validation was demonstrated for
Q-learning only.

C. Validation of Geometry-Informed Capabilities

Prior to the experimental validation, we validated the
learned policy with respect to 10 novel geometries (Fig. 13)
within the simulator. All scan paths were serpentine paths
starting from the left of the geometry and ending at the right.
Note that the same policy was used for all geometries, to show
that a single policy is applicable to unknown geometries,
as long as the scan path is provided.

The assessment of the performance in each geometry was
done with respect to the same performance metrics from
Section VII-A, i.e., error and melt pool signal variation
reduction values (Table I). For all geometries, the trained
policy exhibited noticeable error and signal variation reduction
capabilities, demonstrating the geometry-informed capabilities
of the RL policy.

D. Experimental Validation of Learned RL Policy

The trained policy was finally deployed in the physical
system (Stage 3 of Fig. 3) for the experimental validation.
The test geometry shown in Fig. 9 (b) was used. Multiple
features from the geometry-informed test set were compiled
to design a challenging test geometry, with narrow channels
and varying scan-lengths, as opposed to the relatively simple
training geometry (Fig. 9 (a)). Scan parameters such as hatch
spacing and open-loop laser power were identical to that of

the training case. The deployment of the simulation-trained
policy in the physical system with respect to the test geometry
confirmed the following: (1) the algorithm is applicable to
novel scan-paths/geometries without further modification once
the policy is learned, and (2) the demonstration shows the
feasibility of a simulation-learned control strategy executable
in real-time, in a physical system.

As shown for the training case, we visualized the spa-
tial maps of the power profiles, measurements, and 1-norm
errors (Fig. 14). For the implementation, due to the higher
levels of noise in the actual system, we incorporated an
exponential filter to smooth the measurements acquired in
real-time. For similar reasons, the visualization is based on
averaged values across 10 layers (as demonstrated in Fig. 5).
Notably, the simulation-learned policy appropriately adjusted
the power values along the edges and narrow regions of
the scan part, resulting in a smoother measurement map
even in the physical system. More importantly, the controller
mitigated local overheating throughout the narrow channels
through feedback, as this effect was not adequately captured
in the data-driven model. This effect can also be found in the
regions with shrinking scan length, i.e., the power is gradually
lowered in the -5 to -lmm and 2 to 6mm region in the
x-axis (Fig. 14 (c), power profile). This strategy effectively
eliminated most of the overheating measurements through-
out the narrow channels and edges (where the turnarounds
occur).

The same reference value m,.,, = 82 from the simula-
tor was chosen. No further efforts were made to resolve
the discrepancy between the simulation and physical-system,
as apposed to the majority of literature that investigate sim-
to-real training approaches. This is mainly due to the fact
that the data-driven model was already identified to replicate
the dynamics of the process in terms of setpoints, i.e., the
model parameters were chosen such that m, ~ m, for a
given laser power value and scan path, avoiding additional
tuning efforts. The experimental validation of the controller
showed a 30% reduction in error and 36% reduction in melt
pool signal variation in an unforeseen geometry, well demon-
strating the geometry-agnostic capabilities of the proposed
algorithm.

Benchmarking Against Feedforward-Feedback Control

In addition to the comparison with open loop results,
we compared the RL to a conventional feedforward(FF)-
feedback(FB) controller (Fig. 14 (b)). The FF controller was
derived by framing an optimization problem based on the
model developed in Section IV-B, with respect to a given
scan geometry, i.e., a layer-wise power profile P* was derived.
Denoting the model as G, ;,(p,), the optimal power profile
was found by solving

T-1
P*=argmin > [|Gy,, (Pir1) — Meer |,
P t=0
St. pit1 < Puax,
Pr+1 > Pmin vt (8)
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Fig. 14. Experimental validation of performance in novel test geometry. Proposed RL algorithm is compared against open loop and feedforward+feedback
control. The feedforward controller was derived through model-based optimization, and an empirically tuned PID was used for the feedback control. Reference
melt pool size index value was set as m,.; = 82, identical to that of the simulation. The same spatial maps (as Fig. 11) are shown for the experimental validation,
averaged across 10 layers due to high levels of noise. The RL reduced the absolute error by 30% and the variation by 36%, whereas the feedforward+feedback
reduced the error by 32% and the variation by 35%. The RL was able to achieve comparable results to the feedforward+feedback despite having a substantially

shorter optimization time.

where T is the total number of timesteps in a scan layer,
and P £ [p1, p1s--., pr] is the vector of power values for a
scan layer. Since there are no suitable ODE models available
for feedback design, the FF controller was combined with an
empirically-tuned PID controller. We noticed that the FF+FB
yielded similar power profiles to the RL, by lowering power
values along the edges and narrow channels. The reduction in
error and variation was 32% and 35%, respectively. Although
there was no notable difference in performance between the
FF+FB and RL, the slightly higher error reduction can be
attributed to the fact that continuous power values were
used for the FF+FB, allowing a slightly finer adjustment.
In contrast, the variation, was further reduced in the RL case.
This is mainly due to the slight difference in power reduction
strategies along the edges — because the RL lowers the power
for all points categorized as a turnaround (according to the
state definition), the edges tend to overheat less, resulting in
a slightly lower variation.

Although both the RL and FF+FB exhibited similar per-
formance, the key advantage of RL lies in the development
time (Table II). The model-based feedforward required approx-
imately 340 seconds to optimize for a given geometry in the
same hardware used for RL (Section VII-A), implying that
build parts with larger layer numbers can require an extensive
development time. On the other hand, the RL required only
17 seconds to learn a geometry-agnostic control strategy that
is applicable to any geometry. While it would be possible
to reduce the optimization time for the FF, the fact that the
optimization time for each scan pattern is non-zero, implies
that the total time would grow with varying scan paths and

TABLE II
SUMMARY OF EXPERIMENTAL RESULTS

Controller Error Variation Optimization/Development

type reduction (%) | reduction (%) time (sec)
FF + FB 32 35 340

(per geometry)
RL 30 36 17
(once)

geometries. These results altogether, further support the effi-
cacy and feasibility of the proposed method in L-PBF control.

E. Note on Build Quality

Although no direct quantification of the material properties
was done in this study, we observed that the homogenization
of the measurements resulted in a relatively more uniform
surface finish. Fig. 15 shows two example regions of the actual
build part, for the open-loop case (Fig. 15(a)) and the RL case
(Fig. 15(b)). We can observe a bead-like structure in the open-
loop case, which is less noticeable in the RL-controlled case.
The higher measurement maps also seemed to have induced
higher walls in the narrow channel, in which we find that the
RL was able to attenuate the inhomogeneity in surface height
as well.

Remark: Note that because the inputs (actions) are bounded
(Sec.V), the output (measurements) of the system is expected
to be bounded as the system is open-loop stable. Hence
the controller is regarded as bounded-input bounded-output
(BIBO) stable, and for such reasons, additional stability anal-
ysis was omitted from the scope of this study.
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a) Open-loop
Bead-like structure

b) AL

Measurements

Higher walls

Fig. 15.  Qualitative analysis of build quality. (a) Part produced without
control. A bead-like structure is observable in the tapered region of the
validation geometry. Similar effects are found in the narrow channel. Note
that both regions exhibit uneven melt pool measurements. (b) Part produced
with RL control. Homogenization of the measurements resulted in a relatively
more uniform surface profile. Bead-like structure and higher walls are less
noticeable.

VIII. CONCLUSION

In this study, we developed and tested an RL-control
strategy for an L-PBF system that can anticipate geomet-
ric effects while responding to in-situ measurements, for
the homogenization of melt pool measurements during the
process. This is, to our knowledge, the first demonstration
of a geometry-agnostic RL-trained control strategy deployed
to a physical L-PBF system for real-time control, that is
applicable to novel scan-paths and geometries without fur-
ther tuning or modification. Although being a preliminary
study, we have confirmed that the simulation-trained strategy
demonstrated a mitigation of training efforts and elimination
of safety issues during the development. Moreover, the inter-
mediate results show that from the experimental validation,
the simulation-trained algorithm was able to reduce up to
30% in error and 36% in signal variation, well supporting the
feasibility of a new approach for geometry-agnostic L-PBF
control.

Future work will address the following issues: first, no direct
evaluation on the mechanical properties was conducted, as the
main scope of this study was focused on a methodology to
homogenize the in-situ melt pool measurements. Although
there are supporting studies that suggest the correlation
between melt pool behavior and mechanical property of the
built part, future work will address this issue by directly

assessing the improvement in terms of mechanical properties.
Second, this work does not address the potential usage of
improved hardware in the target (L-PBF) machine, such as
the usage of field-programmable gate arrays (FPGA). Usage
of advanced hardware can increase the amount of available
computational resources, and thus a more complex algorithm
with enhanced capabilities can be implemented for the real-
time execution. Finally, the SISO representation of the melt
pool image through feature extraction exhibited relatively high
levels of noise, requiring additional filters to be implemented
for the algorithm to run in real-time. Features that are more
robust to such fluctuations are of interest and thus will be
investigated as a part of future work.
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