

1 **Title: Genetic modification of the bee parasite *Crithidia bombi* for improved visualization**
2 **and protein localization**

4 Blyssalyn V. Bieber*¹, Sarah G. Lockett*¹, Sonja K. Glasser², Faith A. St. Clair¹, Neida O.
5 Portillo², Lynn S. Adler², Megan L. Povelones^{¶1}

7 *co-first authors

8 [¶]corresponding author

10 ¹Department of Biology, Villanova University, Villanova, PA 19085 USA

11 ²Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003 USA

13 **Corresponding Author:** Megan Povelones, Villanova University

14 megan.povelones@villanova.edu

16 **ORCID:**

17 Blyssalyn V. Bieber: 0009-0007-2771-8791

18 Sarah G. Lockett: 0009-0009-4751-8505

19 Sonja K. Glasser: 0000-0001-6733-8610

20 Faith A. St. Clair: 0009-0001-9794-9233

21 Neida O. Portillo: 0000-0003-3480-5336

22 Lynn S. Adler: 0000-0003-2125-5582

23 Megan L. Povelones: 0000-0003-2612-6413

25 **Abstract**

26 *Crithidia bombi* is a trypanosomatid parasite that infects several species of bumble bees (*Bombus*
27 spp.), by adhering to their intestinal tract. *Crithidia bombi* infection impairs learning and reduces
28 survival of workers and the fitness of overwintering queens. Although there is extensive research
29 on the ecology of this host-pathogen system, we understand far less about the mechanisms that
30 mediate internal infection dynamics. *Crithidia bombi* infects hosts by attaching to the hindgut via
31 the flagellum, and one previous study found that a nectar secondary compound removed the
32 flagellum, preventing attachment. However, approaches that allow more detailed observation of
33 parasite attachment and growth would allow us to better understand factors mediating this host-
34 pathogen relationship. We established techniques for genetic manipulation and visualization of
35 cultured *C. bombi*. Using constructs established for *Crithidia fasciculata*, we successfully
36 generated *C. bombi* cells expressing ectopic fluorescent transgenes using two different selectable
37 markers. To our knowledge, this is the first genetic modification of this species. We also
38 introduced constructs that label the mitochondrion and nucleus of the parasite, showing that
39 subcellular targeting signals can function across parasite species to highlight specific organelles.
40 Finally, we visualized fluorescently tagged parasites *in vitro* in both their swimming and attached
41 forms, and *in vivo* in bumble bee (*Bombus impatiens*) hosts. Expanding our cell and molecular
42 toolkit for *C. bombi* will help us better understand how factors such as host diet, immune system,
43 and physiology mediate outcomes of infection by these common parasites.

45 **Keywords**

46 trypanosomatid, kinetoplastid, *Crithidia bombi*, *Bombus impatiens*, nucleofection

47
48 **Acknowledgments**
49 This work was supported by a National Science Foundation IntBIO award number 2128223 to
50 LSA and MLP. We thank Ben Sadd and Emmanuel Tetaud for advice and reagents, and Koppert
51 Biological and Biobest for discounted or donated bumble bee colonies. *In vivo* microscopy was
52 performed in the Light Microscopy Facility and Nikon Center of Excellence at the Institute for
53 Applied Life Sciences at the University of Massachusetts Amherst with support from the
54 Massachusetts Life Sciences Center. We thank Madeline Malfara along with Lindsay Bair, Laura
55 Anastor-Walters, Gabrielle Schusler, and Nancy Peltier at Villanova University for technical
56 assistance. Many thanks to Dana Opulente, also at Villanova, for help with sequencing and
57 genome analysis.
58
59 **Introduction**
60 Trypanosomatids of the class Kinetoplastea are single-celled eukaryotic parasites [1]. While
61 some trypanosomatid species, such as *Leishmania*, can be transmitted to humans by insect
62 vectors causing considerable morbidity and mortality [2], most trypanosomatids are monoxenous
63 and exclusively parasitize insects [3]. For these parasites, fecal-oral transmission is the most
64 common mode of pathogen spread [4]. This cycle requires an infected host to defecate parasites
65 onto a food source, where they must remain viable long enough to be ingested by their next
66 susceptible host. Once in the host, parasites often accumulate in the hindgut and rectum,
67 adhering to the lining of these tissues by their single flagellum and dividing by binary fission as
68 attached cells [4]. The structure of this flagellar attachment is similar in all trypanosomatids
69 [5,6].
70
71 Some trypanosomatids infect bees such as honey bees (*Apis mellifera*) and bumble bees (*Bombus*
72 spp.), potentially contributing to pollinator decline [7]. For example, *Crithidia bombi* is a gut
73 parasite primarily known to infect multiple species of bumble bees, including *Bombus impatiens*
74 and *Bombus terrestris*, although *C. bombi* has recently been found to replicate in the solitary bee
75 species *Osmia lignaria* and *Megachile rotundata* as well [8]. In bumble bees, *C. bombi* impairs
76 learning [9], can reduce queen colony-founding success [10], and can reduce worker survival
77 under stressful conditions [11]. Other trypanosomatids, such as *Lotmaria passim*, cause similar
78 effects in honey bees [12]. The presence of the parasites triggers an immune response in the bee
79 host, including production of antimicrobial peptides (AMPs), although precisely how infection
80 impacts host fitness is unclear [13,14]. Researchers have also shown that gene expression
81 patterns in cultured parasites differ from those of parasites in the bee gut, representing possible
82 metabolic adaptations to the host environment [14].
83
84 Certain floral diets can reduce *C. bombi* infections in some bumble bee species. The secondary
85 metabolite callunene, discovered in the nectar of heather flowers (*Calluna vulgaris*), removed or
86 shortened the flagellum of *C. bombi* and dramatically reduced infection in *B. terrestris*,
87 presumably by interfering with the parasites' ability to adhere to and colonize the gut [15].
88 Similarly, pollen of sunflower (*Helianthus annuus*) and some other Asteraceae plants
89 dramatically decreases *C. bombi* infection in *B. impatiens* [16–20] but is less effective in other

90 *Bombus* species [21], suggesting that species-level variation shapes diet-mediated effects on
91 infection outcomes.

92
93 The underlying mechanisms for the antiparasitic effect of different floral products such as pollen
94 and nectar are largely unknown. Molecular genetic tools to manipulate parasites for *in vivo*
95 infections and in culture would facilitate new experimental approaches to understand how floral
96 resources impact host-pathogen dynamics. For instance, which parasite biological processes are
97 disrupted by heather nectar or sunflower pollen? Possible targets include flagellar growth,
98 attachment, and survival and division of attached cells. Discovering the effects of floral products
99 on these activities could improve our understanding of how these different aspects of parasite
100 biology contribute to productive infections. Although all trypanosomatids, including human
101 pathogens, attach to tissues in their insect hosts [6], insect parasites do so in great numbers [4],
102 meaning they could serve as a model for insect colonization by trypanosomatids more generally.
103 In addition, improved understanding of the effects of pollen and nectar diets on the mechanisms
104 underlying parasite infections could allow us to predict the impacts of floral resources on
105 pathogen load and pollinator health.

106
107 Detailed study of attachment and modes of cell division would be greatly facilitated by improved
108 visualization of parasites *in vivo*. For this, both whole cell and organelle markers would allow
109 researchers to monitor the number, location, and cellular structure of parasites at different stages
110 of the infection. Such analyses would improve our understanding of the life cycle of these
111 parasites in their insect hosts, which could reveal vulnerabilities for intervention. *In vitro* assays
112 for infection behaviors such as attachment would allow for time-resolved, quantitative studies
113 showing how attachment changes under different conditions, predicting infection dynamics in
114 the presence and absence of different floral products and compounds. Finally, genome-wide
115 transcriptomics and proteomics approaches will reveal gene products that mediate interactions
116 between parasites and their insect hosts [13]. Genetic techniques enabling functional knockout
117 and subcellular localization during the cell and life cycle of the parasite would provide important
118 insights into the mechanism of action of specific proteins.

119
120 To develop these approaches, our objectives for this study were to 1) establish *C. bomby*
121 sensitivity to antibiotics used as selectable markers, 2) introduce episomal plasmids including
122 genes for enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) into *C.*
123 *bomby* cells, 3) create markers for subcellular organelles, 4) isolate and culture parasites from *B.*
124 *impatiens* intestinal tracts, and 5) visualize fluorescently-labelled *C. bomby* cells *in vitro* and *in*
125 *vivo*.

126

127 **Methods**

128 *Parasite lines and culture*

129 To establish sensitivity to antibiotics, *C. bomby* strains 08.076 and 16.075 (provided by Ben
130 Sadd, Illinois State University) were cultured in FP-FB media supplemented with 2 µg/mL
131 hemin (Sigma, St. Louis, MO) and 10% fetal bovine serum (Atlanta Biologicals, Bio-Techne,
132 Minneapolis, MN) at 27 °C and 3% CO₂, as described [22]. For drug sensitivity tests and
133 maintaining genetically modified parasite lines, medium was supplemented with either

134 hygromycin (Hyg, catalog number 10687010, ThermoFisher) or neomycin (Neo, G418, catalog
135 number G8168, Sigma). Growth curves were performed in triplicate and drug concentrations
136 ranging from 0 to 80 μ g/ml in 2-fold increments were tested. Parasites were grown in sterile,
137 untreated tissue culture plates or 25 cm³ flasks with vented caps. Cell densities were determined
138 by removing a 25 μ L sample of the culture to a 1.5 mL tube, adding 25 μ L of 3% formalin to fix,
139 followed by 200 μ L of Gentian violet (Harleco) staining solution [23]. 10 μ L of this mixture was
140 then applied to a Neubauer hemacytometer and counted on an inverted tissue culture light
141 microscope (Zeiss Primovert). Parasites were maintained between 5 x 10⁵ and 5 x 10⁷ cells/mL
142 by diluting in fresh medium every 2-3 days. To generate attached parasites, 2 mL of log-phase
143 parasites (1-2 x 10⁷ cells/mL) were allowed to adhere to a poly-L-lysine coated dish (MatTek,
144 Ashland, MA) for 24 hours, followed by washing 3X with 1X PBS to remove non-attached cells.
145

146 *Plasmids and transfection*

147 To introduce plasmids into *C. bombi*, the pNUS series of plasmids containing sequences for
148 expression of transgenes in *Crithidia fasciculata* and *Leishmania* were used (provided by
149 Emmanuel Tetaud) [24]. The pNUS-eGFP-cH (enhanced green fluorescent protein, hygromycin
150 resistance) and pNUS-RFP-cN (red fluorescent protein, neomycin resistance) were transfected
151 unmodified into *C. bombi* strains 08.076, 16.075, or WHA1. For organelle markers, the pNUS-
152 mitoeGFP-cH was created as described [25]. To create pNUS-*Cf*RNH1eGFP-cH, the open
153 reading frame (lacking the stop codon) for the RNase H1 gene from *C. fasciculata* (*Cf*RNH1,
154 TriTrypDB accession number CFAC1_220025400) was amplified by PCR using primers 5'-
155 GCTACTAGCATATGATGAAGCCGTCGTTTATGTA and 5'-
156 GCTACTAGGGTACCCTCACTGGTCCCGTGCATACG containing NdeI and KpnI restriction
157 enzyme sites, respectively (underlined). The amplified product was cloned into pNUS-eGFP-cH
158 using NdeI and KpnI restriction sites resulting in fusion of eGFP to the C-terminus of *Cf*RNH1.
159 Plasmids were confirmed by Sanger (Eurofins Genomics, Louisville, KY) or Nanopore
160 (Plasmidsaurus) sequencing. Circular plasmids were concentrated by ethanol precipitation and
161 resuspended in sterile water at a concentration of 0.5 μ g/ μ L. For nucleofection, 1 x 10⁸ *C. bombi*
162 cells were harvested by centrifugation (5 min, 800 rcf) and resuspended in 100 μ L TbBSF buffer
163 [26]. 5 μ g of plasmid was added to the tube and the solution was mixed briefly before being
164 transferred to a Lonza cuvette. Parasites were nucleofected using program X-001 on a Lonza
165 Nucleofector 2b device. Cells were then transferred to media and allowed to recover for 24 hours
166 before addition of selecting drug to a final concentration of 40 μ g/mL. An equal number of
167 untransfected cells were resuspended in the same drug concentration as a “mock” control for
168 drug effectiveness. After 10 days of selection, surviving cells were screened by fluorescence
169 microscopy. The concentration of the selecting drug was then increased to 80 μ g/mL.
170

171 *Microscopy of cultured parasites*

172 Expression of fluorescent proteins expressed in the cytoplasm or in organelles was detected by
173 fluorescence microscopy. 1 x 10⁷ cells were harvested by centrifugation (5 min, 800 rcf) and
174 washed once with PBS. Cells were allowed to adhere to poly-L-lysine coated coverslips for 20
175 min in a humid chamber at room temperature followed by 2 washes in PBS. Cells were fixed
176 with cold 4% paraformaldehyde for 15 min then washed twice with PBS. Cells were
177 permeabilized in 0.1% Triton X-100 in water for 5 min followed by 2 washes in PBS, stained
178 with 2 μ g/mL DAPI (a 2 mg/ml stock prepared in water was diluted to 2 μ g/ml in PBS), washed
179 in PBS, and mounted in Vectashield (Vector Laboratories, Burlingame, CA). Parasites were

180 imaged on a Leica SP8 confocal microscope using the 100x objective. Z-stack images with 0.2
181 μm steps were taken for all *in vitro* fluorescent cell microscopy. Final images shown in figures
182 are max projections of the z-stack images. Pearson's coefficients for co-localization were
183 calculated using the JACoP plugin in Fiji [27,28]. Attached parasite rosettes were imaged live in
184 PBS.

185
186 *Episomal stability in cultured cells*
187 For experiments testing the stability of the episomal transgene, the clonal isolate *Cb-WHA1-RFP*
188 was cultured in the presence or absence of the selecting drug neomycin (3 flasks per treatment)
189 for 22 days. Every 2-3 days (9 time points total), a 500 μl sample was removed, centrifuged at
190 800 rcf for 5 min, and resuspended in 250 μl of filtered Ringer's solution. A 20 μl droplet of this
191 suspension was then added to a microscopy slide and covered with a coverslip. Live cells were
192 promptly imaged using a Nikon TiE microscope equipped with NIS-Elements 5.3 software with
193 an A1R confocal system at 20X magnification in both brightfield and red fluorescence channels.
194 This microscope was also used for *in vivo* imaging described below and is housed in the Light
195 Microscopy Facility and Nikon Center of Excellence at the Institute for Applied Life Sciences at
196 the University of Massachusetts Amherst. At least 100 cells per time point were imaged using
197 brightfield and red fluorescence. The latter was quantified using a NIS-Elements GA3 analysis
198 custom pipeline. The effect of fixed factors (neomycin presence/absence, number of trial days)
199 and their interaction with the proportion of fluorescent to total cells was assessed using a beta
200 distributed mixed model (glmmTMBfunction 'glmmTMB', [29]). The proportion of fluorescent
201 cells:total cells was averaged across images of 4-5 fields of view from each prepared slide. Flask
202 ID was included as a random effect. Collinearity between the predictor variables was assessed
203 (car function 'vif' [30]) and VIF scores were <5 confirming no collinearity between variables.
204 Model fit was validated using QQ and residual plots comparing the simulated residuals with
205 observed residuals (DHARMa functions 'simulateResiduals', 'plot' [31]).

206
207 *Isolation of parasites from Bombus impatiens*
208 *Critidia bomby* (origin, Hadley, Massachusetts: 42.363911 N, -72.567747 W) were collected
209 from the wild in 2014 and thereafter maintained as a live infection in commercial *B. impatiens*
210 colonies (Koppert Biological Systems, Howell, Michigan, USA and Biobest USA Inc., Romulus,
211 Michigan USA). We randomly selected five bees, dissected their digestive tracts, and
212 homogenized the tissue in 300 μL of isotonic Ringer's solution. After three hours, a 150 μL
213 sample was taken from the top of the homogenized solution and centrifuged (5 min, 800 rcf).
214 Pelleted material was resuspended in 5 mL of FP-FB medium and stored at 4 °C. Additionally,
215 feces from five infected bees from the same colony were collected using capillary tubes,
216 transferred directly into 5 mL of FP-FB medium, and stored at 4 °C for up to five days. We
217 modified the protocol established in [22] to isolate *C. bomby* cells from the bee digestive tracts
218 and feces. The samples were centrifuged (5 min, 800 rcf) and resuspended in 1 mL of one of two
219 different modified "Mäser Mix" media. One included 1% antibiotic [Penicillin-Streptomycin
220 (Pen-Strep), Sigma Aldrich] while the other included both 1% Pen-Strep and 1% antifungal,
221 Amphotericin B (250 $\mu\text{g}/\text{mL}$, Sigma Aldrich), both in FP-FB medium. Parasites were incubated
222 at 27 °C and 3% CO₂ overnight followed by cloning by limiting dilution in 96 well plates at a
223 calculated density of 0.5 cells/well or 0.1 cells/well. Two weeks later, positive clones were
224 identified as containing parasites without bacterial or fungal contaminants and scaled up for
225 further analysis. These 30 clonal isolates were internally named WHA1-WHE6.

226

227 *PCR and sequencing*

228 To identify our *Crithidia* strains as *C. bomby* rather than the cryptic species *C. expoeki*, total
 229 genomic DNA (gDNA) was isolated using the GeneJet Genomic DNA Purification Kit (Thermo
 230 catalog number K0721) and was used to amplify *gGAPDH* and *SSU rRNA* genes using the
 231 primers described in [32]. To isolate mitochondrial DNA, kinetoplast DNA (kDNA) networks
 232 were purified over a 20% sucrose cushion as in [33]. Isolated kDNA was used as the template for
 233 PCR reactions amplifying *Cyt B*. PCR products were amplified using Taq polymerase (New
 234 England Biolabs catalog number M0273S) according to the manufacturer's protocol. Annealing
 235 temperatures for each target were determined empirically (*gGAPDH* 52.7 °C, *SSU rRNA* 61.2
 236 °C, *Cyt B* 45 °C). Single PCR products for *gGAPDH* and *SSU rRNA* were purified using an
 237 exonuclease I/Antarctic phosphatase procedure as in [34]. These targets were sequenced by
 238 Sanger sequencing using the forward primer and the BigDye Terminator v3.1 Cycle Sequencing
 239 Kit (ThermoFisher catalog number 4337454) followed by sequencing on a SeqStudio Genetic
 240 Analyzer (Applied BioSystems, ThermoFisher). For *Cyt B*, column-purified (Promega kit) single
 241 PCR products were sequenced on both strands at Eurofins Genomics. Sequences were trimmed
 242 in Geneious software and aligned to reference sequences (*C. bomby*: GU321192, GU321194,
 243 GU321187, GU321188; *C. expoeki*: GU321193, GU321195, GU321189, GU321190) using
 244 Clustal Omega [35]. Final formatted alignments were created in Jalview [36].

245

246 *Laboratory infections of Bombus impatiens*

247 To visualize *C. bomby* infection *in vivo*, inoculum was prepared by sampling from an early log
 248 phase culture (6.5 x 10⁵-6.5 x 10⁶ cells/mL) of *C. bomby* strain WHA1 expressing either eGFP or
 249 RFP. To remove cells from media containing the selecting drug, cells were centrifuged (5 min,
 250 800 rcf), washed twice with Ringer's Solution, and then resuspended in equal parts Ringer's
 251 Solution and 30% sucrose solution (in distilled water) to create a final inoculum of 1200 cells/μL
 252 and 15% sucrose solution. *Bombus impatiens* workers were sampled from uninfected colonies
 253 (Koppert Biological Systems, Howell, Michigan, USA), transferred to individual vials, starved
 254 for 3-4 hours, then presented with two 15 μL droplets of inoculum and observed until both drops
 255 were consumed. Only bees that consumed both droplets were included in experimental trials. To
 256 allow for the infection to progress, 5-6 bees inoculated with either eGFP or RFP-expressing *C.*
 257 *bomby* infections were placed into deli cups (clear plastic cups with clear lids, 7.62 cm tall, base
 258 diameter 9.53 cm, top diameter 11.43 cm, SOLO Cup Company) and fed *ad libitum* on 30%
 259 sucrose and wildflower pollen (CC Pollen Company, Phoenix, Arizona, USA). After allowing
 260 infections to progress 7 days post-inoculation, we dissected the bees and imaged the digestive
 261 tracts using a Nikon TiE microscope with an A1R confocal system equipped with NIS-Elements
 262 5.3 software. Z-stacks with steps 5 μm apart were taken using the 20x objective and final images
 263 shown in figures are max projections of the z-stack images.

264

265 **Results**266 (1) *Crithidia bomby* is sensitive to selecting compounds

267 Genetic modification requires selection for cells that have taken up exogenous recombinant DNA
 268 molecules. In particular, the expression of fluorescent proteins facilitates detailed morphological
 269 analysis of parasites both *in vitro* and *in vivo*. Therefore, we sought to establish a protocol
 270 whereby plasmids driving expression of fluorescent proteins could be introduced into *C. bomby*.
 271 To do this, we first needed to determine sensitivity to antibiotics for which resistance genes

272 could be used as selectable markers. We monitored growth of *C. bombi* strain 08.076 [22] in 0, 5,
273 10, 20, 40 or 80 μ g/ml of either hygromycin (Hyg) or neomycin (Neo, G418) over the course of
274 four days (Fig 1). We found that *C. bombi* were sensitive to both drugs, with 40 μ g/mL being the
275 lowest concentration that completely inhibited growth after 20 hours.
276

277 (2) *Expression of cytoplasmic fluorescent proteins*

278 Next, we investigated methods for genetic modification of *C. bombi*. Some trypanosomatids can
279 maintain circular plasmids as episomes [37–41]. This approach is advantageous in that it does
280 not require stable integration by homologous recombination at a genomic locus. Using episomes
281 simplifies construct creation, does not require detailed knowledge of the genome sequence, and
282 can increase transfection efficiency. For this reason, we chose a series of plasmids originally
283 developed for the congener *C. fasciculata*, a monoxenous parasite of mosquitoes, and
284 *Leishmania*, a dixenous parasite of sand flies and mammals [24]. The pNUS-eGFP-cH plasmid
285 (Fig 2a) contains genes for eGFP and Hyg resistance flanked by 5' and 3' untranslated regions
286 (UTRs) derived from *C. fasciculata* [24]. UTRs direct processing of the mature transcript
287 required for expression [42]. Similarly, pNUS-RFP-cN contains a gene encoding RFP and the
288 Neo resistance gene (Fig 2a). We prepared each of these plasmids by ethanol precipitation and
289 introduced them into the cultured *C. bombi* strain 08.076 by nucleofection using a protocol
290 previously established for *C. fasciculata* [25]. After transfection, cells were returned to media in
291 either 24-well plates or in tissue culture flasks and were left to recover for approximately 24
292 hours before addition of 40 μ g/mL of either Hyg or Neo. For each transfection, a sample
293 containing the same number of untransfected cells was placed under selection to confirm drug
294 efficacy. After 10-12 days of selection, plates containing transfected cells had healthy, dividing
295 cells, while no wells in the mock plates contained growing cells. Screening of transfected cells
296 by fluorescence microscopy revealed eGFP or RFP expression, indicating successful transfection
297 of the episomal pNUS-eGFP-cH plasmid (Fig 2b) and pNUS-RFP-cN plasmid (Fig 2c). In a
298 separate experiment to estimate plating efficiency, we diluted parental 08.076 cells in media and
299 plated serial dilutions in 96-well plates. After two weeks of growth, 78% of the expected wells
300 had densely growing cells, so we estimate a plating efficiency of around 80%. Since every well
301 in our transfection plates recovered, it is impossible to know whether individual wells were
302 seeded with one or more transfected cells, but probably the cell lines obtained are not clonal.
303 Selection in flasks, rather than plates, also resulted in recovered transfected cells within 10-12
304 days. We did not detect any instances of spontaneous Hyg or Neo resistance, as no cells were
305 recovered from the “mock” treatment vessels.
306

307 To estimate transfection efficiency for the 08.076 cell line, we repeated the above procedure with
308 5 μ g of purified plasmid DNA and 3×10^7 total *C. bombi* cells. Following transfection, we
309 performed a series of 10-fold dilutions and plated these dilutions in 24 well plates. The next day,
310 we added selecting drug and then monitored plates for cell growth for 9-16 days. Parasites
311 transfected with the pNUS-eGFP-cH plasmid recovered after 11 days of selection. Examination
312 of two randomly selected wells confirmed green fluorescence. For this plasmid, under these
313 conditions, we estimate a transfection efficiency of 5×10^{-3} based on the number of wells scored
314 positively for cell growth as a fraction of the number of cells plated in each dilution.
315 Transfection with pNUS-RFP-cN under the same conditions resulted in an estimated transfection
316 efficiency of 8×10^{-4} . The cells took longer to recover, and plates were scored at 16 days of

317 selection. Again, a subset of surviving wells (n=5) screened for red fluorescence were all
318 positive.

319
320 We used the same procedure to introduce pNUS-GFP-cH into a different *C. bombi* isolate,
321 16.075 [43] (Fig 2b). As with 08.076, green fluorescence in transfected 16.075 cells was
322 significantly above background (autofluorescence detectable in both isolates imaged with long
323 exposures, Fig S1). Thus, our nucleofection procedure seems generalizable to more than one
324 strain/isolate of culture-adapted *C. bombi*.

325
326 One disadvantage of modification by episomal plasmids is heterogeneity of expression, since
327 each parasite can contain a different number of episomes that are imperfectly segregated during
328 cell division [24,37]. Therefore, after several passages, we increased the concentration of Hyg or
329 Neo from 40 µg/mL to 80 µg/mL to select for cells with higher episomal copy number, although
330 expression levels still varied somewhat between cells. To confirm that eGFP- or RFP-expressing
331 cells were fully drug resistant, we performed growth curves and found that, in contrast to
332 parental strains, 08.076 *C. bombi* transfected with pNUS-eGFP-cH or pNUS-RFP-cN showed
333 robust growth in the presence of 80 µg/mL of the appropriate selecting drug (Fig 2d, e).

334
335 (3) *Expression of fluorescent proteins with distinct subcellular localizations*

336 *Critidia bombi*, like other trypanosomatids, are complex eukaryotic cells with a variety of
337 compartments and a distinctly polarized subcellular organization [44,45]. In related species,
338 subcellular organization can change as the parasite undergoes morphological and metabolic
339 adaptation to different environments [45–48]. In addition to changes in cell and organelle shape,
340 the localization of individual proteins can also vary during the cell and life cycle [45,49].
341 Determining the location of a particular protein can provide important clues to its function. For
342 these reasons, it is useful to have markers for various subcellular compartments to monitor these
343 organelles and to compare to the localization of uncharacterized proteins. For example, the
344 mitochondrion of trypanosomatids is typically an elaborate branched network that extends
345 throughout the cell. The dixenous trypanosomatid *Trypanosoma brucei* dramatically alters both
346 mitochondrial shape and function as it alternates between mammalian and insect hosts [50]. The
347 branched mitochondrial network can resemble other organelles, such as the endoplasmic
348 reticulum, making colocalization with a known marker required to confirm the subcellular
349 location of a protein [45]. Organelle-specific dyes, such as MitoTracker, can be useful for co-
350 localization but they are dependent on membrane potential and dye toxicity, which can
351 complicate imaging of live cells. Mitochondria are metabolic and signaling hubs whose function
352 requires the post-translational import of hundreds of nuclear-encoded proteins. The function and
353 proper localization of many of these proteins are likely required for survival and replication of *C.*
354 *bombi* parasites.

355
356 To label the mitochondrion, we introduced a variation of pNUS-eGFP-cH in which a
357 mitochondrial targeting signal from the related parasite *T. brucei* was fused to the open reading
358 frame (ORF) of eGFP to produce pNUS-mitoeGFP-cH (Fig 3a) [25]. As observed in *C.*
359 *fasciculata*, introducing this plasmid into *C. bombi* labels the branched tubular mitochondrion,
360 which we verified by co-localization with MitoTracker (Fig 3b, Pearson's coefficient 0.829).

362 While alterations in mitochondrial shape could indicate changes in parasite metabolism,
363 fluorescent nuclei would provide a clear identification of dividing cells. Determining the
364 frequency of dividing cells in different insect tissues and at different stages of the infection
365 would inform models for rates of colonization and infectivity of the insect host. To label the
366 nucleus, we created a plasmid in which the ORF for the RNase H1 gene from *C. fasciculata*
367 (*CfRNH1*) was fused to eGFP at its C-terminus in pNUS-eGFP-cH to create pNUS-
368 *CfRNH1eGFP-cH* (Fig 3c). Introduction of this plasmid into *C. bombyi* followed by Hyg selection
369 resulted in cell lines expressing GFP in the nucleus as evidenced by co-localization with the
370 DNA stain 4',6-diamidino-2-phenylindole, (DAPI) (Fig 3d). In *C. fasciculata*, earlier work
371 showed that the gene for *CfRNH1* contains alternate start codons allowing for two versions of
372 the protein, one of which contains a mitochondrial targeting signal [51]. In *C. bombyi*, the
373 *CfRNH1eGFP* signal is concentrated in the nucleus, indicating that the dual localization of this
374 enzyme may not occur. However, our construct included only the ORF (including both possible
375 start codons) of *CfRNH1* but not the native 5' processing signal, which may be important for
376 stability of the longer transcript [51]. DAPI stains both the nucleus and kinetoplast. The
377 Pearson's coefficient for co-localization of *CfRNH1eGFP* with DAPI was 0.392 reflecting
378 overlap of nuclear signal only.
379

380 In order to colonize their insect host, *C. bombyi* cells must attach via their flagella to the lining of
381 the hindgut [5]. This allows the parasites to replicate as attached cells without being eliminated
382 by defecation. In *C. fasciculata* and other species, this distinct developmental stage can also
383 occur *in vitro* through contact with tissue culture plastic [23,48,52–56]. To see if this was the
384 case for *C. bombyi*, we allowed log-phase parasites to adhere to a plastic dish for 24 hours,
385 followed by washing with 1X PBS to remove non-adherent cells. As in *C. fasciculata*, some cells
386 attached and divided, producing attached groups of cells called rosettes. These rosettes could be
387 imaged by live-cell fluorescent microscopy, allowing for visualization of fluorescent markers in
388 both swimming and attached parasites (Fig 3e).
389

390 (4) Visualizing parasites in *Bombus impatiens*

391 While genetic modification of *C. bombyi* will enable morphological and functional studies *in*
392 *vitro*, it also has the potential to improve visualization of host-parasite interactions and the
393 progress of infections in the natural host under different conditions. Both 08.076 and 16.075
394 parasite strains were isolated from *B. impatiens* and were culture adapted for sequence analysis
395 and other studies [22,43]. However, mixed infections containing multiple distinct strains of *C.*
396 *bombyi* are common, and some variability between isolates might be expected [22,57]. In
397 addition, extended passaging in culture could fundamentally change the biology of the organism.
398 Therefore, we sought to modify a clonal isolate of *C. bombyi* that had been recently obtained from
399 a laboratory colony of *B. impatiens*. We dissected guts from infected bees, homogenized the
400 tissue, transferred parasites to medium, and obtained clones by limiting dilution in 96-well plates
401 in the presence of antibiotics and antifungals.
402

403 We selected one of these clones, WHA1, for further analysis. Since *C. bombyi* and *C. expoeki* are
404 distinct species with a high degree of morphological and genome conservation, we isolated DNA
405 from WHA1 as well as our cultured 08.076 line to confirm species identity. Using the primers
406 described in [32], we PCR amplified three gene targets: glycosomal glyceraldehyde phosphate
407 dehydrogenase (*gGAPDH*), small subunit ribosomal RNA (*SSU rRNA*), and cytochrome B (*Cyt*

408 *B*). We purified these PCR products and performed Sanger sequencing. We then aligned the
409 resulting reads to the reference *C. bomby* and *C. expoeki* sequences in GenBank (Fig S2). For the
410 *Cyt B* region, we also amplified and sequenced DNA from the 08.076 *C. bomby* strain. Across the
411 three target genes, there are 76 positions where the nucleotide sequence differs between *C. bomby*
412 and *C. expoeki*. In 75 of these instances, the WHA1 sequence has the same nucleotide as the *C.*
413 *bomby* sequence. Therefore, we conclude that the WHA1 isolate is *C. bomby*, and we will refer to
414 it as *Cb*-WHA1. At one position, in the SSU rRNA gene, the WHA1 sequence was missing a
415 nucleotide found in both the *C. bomby* and *C. expoeki* sequences, probably indicative of minor,
416 within-species genetic variation.

417
418 We next used nucleofection to separately introduce the pNUS-eGFP-cH and pNUS-RFP-cN
419 plasmids into WHA1 as described above. Following selection of drug-resistant lines, we
420 confirmed fluorescence of cells cultured *in vitro* by microscopy. We then used these parasites
421 (*Cb*-WHA1-GFP and *Cb*-WHA1-RFP) to infect commercial *B. impatiens* (Fig 4) and visualized
422 fluorescent cells *in vivo*. As a negative control, microscopy was also completed on digestive
423 tracts of uninfected *B. impatiens*. While there is some autofluorescence of the bumble bee tissue
424 (Fig S3), particularly in the green channel, fluorescent parasites were clearly seen in the guts of
425 the infected bees, attached as clusters to the lining of the hindgut and rectum.

426
427 Since antibiotic selection for episomal plasmids could not be maintained during infections *in*
428 *vivo*, we tested the stability of the plasmid in the absence of selection in cultured cells. *Cb*-
429 WHA1-RFP cells were passaged into media with or without 80 µg/ml neomycin (three identical
430 flasks per treatment). Over a period of 22 days, we monitored fluorescence intensity by imaging
431 live cells from each flask every 2-3 days and scoring cells with signal above or below a set
432 threshold. Removal of neomycin was associated with a minor decrease in the number of cells
433 above the fluorescence threshold (62% fluorescent in the presence of neomycin versus 53%
434 fluorescent in the absence of neomycin, $\chi^2 = 3.8839$, $p = 0.048$). However, the number of days in
435 each treatment ($\chi^2 = 0.4649$, $p = 0.495$) and the day by neomycin treatment interaction ($\chi^2 =$
436 0.1524, $p = 0.696$) did not affect variation in fluorescence. Thus, while expression of RFP was
437 lower overall in the absence compared to presence of neomycin, expression did not decrease
438 over a period of 22 days in either treatment, indicating stability over time (Fig S4).

439
440 **Discussion**
441 We present a method for introducing plasmids into *C. bomby* and selecting modified parasites
442 with two different selectable markers. We have shown that 5' and 3' UTRs containing transcript-
443 processing signals derived from *C. fasciculata* function for stable expression in *C. bomby*. In
444 addition, introduction of transgenes bearing localization signals from other trypanosomatids
445 direct similar subcellular localization patterns in *C. bomby*. These modifications improve
446 visualization of cellular morphology of swimming and attached developmental forms, both of
447 which can be generated *in vitro* under standard culture conditions. Genetically modified parasites
448 also retained the ability to infect *B. impatiens*, facilitating detailed studies of host-pathogen
449 interactions.

450
451 We successfully modified three independent isolates of *C. bomby*, one of which was isolated
452 directly from a laboratory colony of *B. impatiens* as part of this study. Since the method appears
453 to be both robust and generalizable, it might also be applied to the modification of other

454 pollinator pathogens, such as *Lotmaria passim*. The introduction of plasmids as episomes means
455 that genome sequence data is not required, transfection efficiencies are relatively high, and the
456 same series of plasmids may be used for different species and strains.

457
458 The transfection efficiency of *C. bombi*, which we estimate to be between 10^{-4} and 10^{-3}
459 depending on the selection marker used, is higher than what we have measured for *C. fasciculata*
460 under similar conditions (10^{-6} - 10^{-5} , M.L. Povelones, unpublished results), and is comparable to
461 or higher than what has been reported for other trypanosomatids, including procyclic (10^{-5}) and
462 bloodstream (10^{-4}) form *T. brucei* [58] and *Leishmania* (10^{-3}) [59].

463
464 We observed that RFP-expressing *C. bombi* displayed much brighter fluorescence than eGFP-
465 expressing cells, allowing for greater sensitivity *in vivo*. This could be due to variation in the
466 amount of correlation between resistance to a particular drug and the average episomal copy
467 number per cell of the selectable marker. Neomycin may select for parasites with larger numbers
468 of episomes per cell, leading to a greater proportion of cells above the threshold for detection.
469 The GFP construct, in contrast, was selected using hygromycin, which may require only a few
470 copies of the resistance gene per cell to allow for growth. The difference in measured
471 transfection efficiencies between Hyg and Neo-containing plasmids also supports this
472 conclusion.

473
474 While we have focused on the production of fluorescent parasites to improve sensitivity and
475 resolution for describing infection dynamics *in vivo*, we believe that there are many exciting
476 applications of molecular genetic approaches in these parasites. For example, genome-wide gene
477 expression data obtained through RNA sequencing has revealed transcripts that may enable
478 parasite survival in the host [14]. Labeling these genes with epitope or fluorescent tags would
479 enable researchers to follow their dynamic localization during infection and colonization of the
480 gut. Such tagged proteins could also be used to purify protein complexes that allow parasite
481 adaptation to host microenvironments or that function at the host-parasite interface. In strains for
482 which a genome sequence is available, plasmid constructs could be created to modify genomic
483 loci. This would allow for tagging a gene at its endogenous locus or, compellingly, creating
484 stable genomic knockouts to evaluate gene function in parasite growth and host interactions.

485
486 Future research focused on the development of a reliable and quantitative attachment assay for
487 parasites *in vitro* will allow investigators to examine the effects of culture conditions, including
488 floral products, on growth and the developmental switch between swimming and attached forms,
489 a transition that is likely critical for effective colonization of the bee gut. This attachment assay
490 will permit rapid and mechanistic testing of hypotheses that can then be extended to the
491 laboratory infection model and the interpretation of findings in field conditions. We believe that
492 the introduction of molecular genetic tools for manipulation of *C. bombi* will enable integrative
493 approaches across disciplines and scales to begin to bridge the knowledge gaps for how parasites
494 impact bee pollinator health.

495
496 **Figure Legends**
497 **Fig. 1** Cultured *Crithidia bombi* cells are sensitive to selecting drugs. Growth curves of *C. bombi*
498 parental strain 08.076 [22] grown in FP-FB medium with increasing levels of **a)** hygromycin

499 (Hyg) or **b**) neomycin (Neo) to determine optimal concentration for selection. Each graph shows
500 the mean of three independent replicates. Error bars are standard error.

501
502 **Fig. 2** Genetic modification of *C. bombi* cells. **a**) Plasmid map of pNUS-eGFP-cH [24]. The
503 open reading frames for enhanced green fluorescence protein (eGFP), hygromycin resistance
504 (HygR) and ampicillin resistance (ampR, for propagation of plasmids in *E. coli*), as well as 5'
505 and 3' UTRs from the phosphoglycerate kinase (PGK) and glutathione synthetase (GSS) genes
506 including sequences for transcript processing are shown. Plasmid map of pNUS-RFP-cN [24]
507 showing open reading frames encoding red fluorescence protein (RFP), neomycin resistance
508 (NeoR), and ampR as well as 5' and 3' UTRs. **b**) *C. bombi* strains 08.076 [22] and 16.075 [33]
509 nucleofected with the pNUS-eGFP-cH plasmid. BF, brightfield (visible light); eGFP, enhanced
510 green fluorescent protein signal visible in the green channel; DAPI, DNA stain. Mitochondrial
511 DNA (kinetoplast, K) and the nucleus (N) in a single cell are indicated with arrowheads.
512 Fluorescent images are z-stack maximum projections. Scale bar is 5 μ m. **c**) *C. bombi* strain
513 08.076 harboring the pNUS-RFP-cN plasmid imaged in brightfield (BF), red fluorescence
514 channel (RFP), and with DAPI. K, kinetoplast DNA; N, nucleus. Scale bar is 5 μ m. **d**) Growth
515 curve of *C. bombi* strain 08.076 bearing the pNUS-eGFP-cH plasmid in 0 or 80 μ g/mL Hyg. For
516 each condition, the mean of three replicates is shown. Error bars are standard error. **e**) Growth
517 curve of *C. bombi* strain 08.076 bearing the pNUS-RFP-cN plasmid in 0 or 80 μ g/mL Neo. For
518 each condition, the mean of three replicates is shown. Error bars are standard error.
519

520 **Fig. 3** Organelle markers for mitochondria and nuclei in *C. bombi*. **a**) Plasmid map of a construct
521 for episomal expression of a mitochondrion-targeted eGFP [25]. 5' and 3' UTRs for transcript
522 processing and stability are shown in gray. PGK, phosphoglycerate kinase; GSS, glutathione
523 synthetase; MTS, mitochondria targeting signal; eGFP, enhanced GFP; HygR, hygromycin
524 resistance; ampR, ampicillin resistance. Some relevant restriction enzyme sites are also shown.
525 **b**) *C. bombi* strain 16.075 [33] nucleofected with pNUS-mitoGFP-cH. BF, brightfield; eGFP,
526 mitochondrial eGFP fluorescence; MitoTracker, membrane potential dependent mitochondrial
527 red fluorescent dye; DAPI, DNA stain (N, nucleus; K, kinetoplast). Merge shows overlay of
528 fluorescent channels. Scale bar is 5 μ m. **c**) Plasmid map of pNUS-*Cf*RNH1eGFP-cH. *Cf*RNH1,
529 RNH1 gene from *Crithidia fasciculata*. Other abbreviations as in (a). Some relevant restriction
530 enzyme sites are shown. **d**) Swimming *C. bombi* strain 08.076 [22] nucleofected with the pNUS-
531 *Cf*RNH1eGFP-cH plasmid showing nuclear expression of eGFP-tagged *Cf*RNH1 (eGFP); DAPI,
532 DNA stain (N, nucleus; K, kinetoplast); brightfield (BF); and merge of fluorescent channels.
533 Scale bar is 5 μ m. **e**) 08.076 *C. bombi* cells growing as attached rosettes on a MatTek dish and
534 expressing pNUS-*Cf*RNH1eGFP-cH were imaged live in brightfield (BF) and in the green
535 channel to show nuclear localization of *Cf*RNH1eGFP. Scale bar is 5 μ m.
536

537 **Fig. 4** Visualizing fluorescent parasites *in vivo*. **a**) The ileum of bees infected with parasites
538 expressing pNUS-eGFP-cH (panels 2-4) were compared to the ileum of uninfected bees (panel
539 1). Arrowhead indicates a cluster of eGFP-positive parasites (panel 2). The dotted box in panel 3
540 shows the area of enlargement in panel 4. Panel 4 shows fluorescence in the green channel only.
541 Panels 1-3 are merges of red and green fluorescence plus brightfield. Scale bars are as shown. **b**)
542 The ileum of an uninfected bee (panel 1) compared to sections of the ileum from bees infected
543 with *C. bombi* parasites expressing pNUS-RFP-cN (panels 2-4). The dotted box in panel 3 shows

544 the area of enlargement in panel 4. All images are z-stack max projections and merges of red
545 fluorescence, green fluorescence, and brightfield. Scale bars are as shown.

546
547 **Fig. S1** *Crithidia bombi* parental strains do not show fluorescence. **a)** Parental strain *C. bombi*
548 08.076 imaged for brightfield (BF), green fluorescence (eGFP) and DAPI. K, kinetoplast; N,
549 nucleus. **b)** Parental strain *C. bombi* 08.076 images for brightfield, red fluorescence, and DAPI.
550 **c)** Parental strain *C. bombi* 16.075 imaged for brightfield, green fluorescence, and DAPI. All
551 images are z-stack maximum projections. Scale bar is 5 μ m.

552
553 **Fig. S2** Confirmation that *Cb-WHA1* is a *Crithidia bombi* strain. **a)** *gGAPDH* amplified from
554 *Cb-WHA1* and sequenced using primers described in [32] is shown aligned with the same region
555 from *C. bombi* (Cb, GenBank accession number GU321192) and *C. expoeki* (Ce, GenBank
556 accession number GU321193). **b)** A region of the *SSU rRNA* gene amplified from *Cb-WHA1*
557 and sequenced is aligned to the corresponding regions of *C. bombi* (Cb, GenBank accession
558 number GU321194) and *C. expoeki* (Ce, GenBank accession number GU321195). **c)** Cyt B was
559 amplified and sequenced from cultured *CbWHA1* and 08.076 strains and compared to the same
560 region in two strains of *C. bombi* (GenBank accession numbers GU321187 and GU321188) and
561 two strains of *C. expoeki* (GenBank accession numbers GU321189 and GU321190).

562
563 **Fig. S3** *Crithidia bombi* expressing fluorescent transgenes can be imaged *in vivo*. The ileum of
564 uninfected *B. impatiens* (**A-C**) and *B. impatiens* infected with either GFP (**D-G**) or RFP (**H-K**) -
565 expressing *C. bombi* were imaged by confocal microscopy for green fluorescence (GFP), red
566 fluorescence (RFP) and brightfield (TD). In G clusters of parasites are indicated by arrows. Some
567 autofluorescence is detectable in both green and red channels that is distinguishable from
568 fluorescent parasites. Scale bars are as shown.

569
570 **Fig. S4** Episomal fluorescence is stable in the absence of selection. Triplicate flasks were grown
571 in the absence (orange) or presence (green) of neomycin selection for 22 days. Every 2-3 days, a
572 sample was removed and cells scored for red fluorescence using live cell fluorescence
573 microscopy. Values show the number of cells with red fluorescence as a proportion of total cells
574 as a function of the number of days cultured. Cells were passaged as usual in the appropriate
575 media (without or with neomycin).

576
577 **References**

578 1. Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in
579 kinetoplastid flagellates. Molecular and Biochemical Parasitology. 2014;195: 115–122.
580 doi:10.1016/j.molbiopara.2014.05.007

581 2. Horn D. A profile of research on the parasitic trypanosomatids and the diseases they cause.
582 Buscaglia CA, editor. PLoS Negl Trop Dis. 2022;16: e0010040.
583 doi:10.1371/journal.pntd.0010040

584 3. Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect
585 trypanosomatids: all that is hidden shall be revealed. Trends in Parasitology. 2012;29: 43–
586 52. doi:10.1016/j.pt.2012.11.001

587 4. Frolov AO, Kostygov AY, Yurchenko V. Development of Monoxenous Trypanosomatids
588 and Phytomonads in Insects. *Trends in Parasitology*. 2021;37: 538–551.
589 doi:10.1016/j.pt.2021.02.004

590 5. Vickerman K, Tetley L. Flagellar Surfaces of Parasitic Protozoa and Their Role in
591 Attachment. In: Bloodgood RA, editor. *Ciliary and Flagellar Membranes*. Boston, MA:
592 Springer US; 1990. pp. 267–304. doi:10.1007/978-1-4613-0515-6_11

593 6. Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach
594 to insect tissues. *PLOS Pathogens*. 2023;19: e1011854. doi:10.1371/journal.ppat.1011854

595 7. Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress
596 from parasites, pesticides, and lack of flowers. *Science*. 2015;347: 1255957.
597 doi:10.1126/science.1255957

598 8. Ngor L, Palmer-Young EC, Nevarez RB, Russell KA, Leger L, Giacomini SJ, et al. Cross-
599 infectivity of honey and bumble bee-associated parasites across three bee families.
600 *Parasitology*. 2020;147: 1290–1304. doi:10.1017/S0031182020001018

601 9. Gegear RJ, Otterstatter MC, Thomson JD. Bumble-bee foragers infected by a gut parasite
602 have an impaired ability to utilize floral information. *Proceedings of the Royal Society B:
603 Biological Sciences*. 2006;273: 1073–1078. doi:10.1098/rspb.2005.3423

604 10. Brown MJF, Schmid-Hempel R, Schmid-Hempel P. Strong context-dependent virulence in
605 a host–parasite system: reconciling genetic evidence with theory. *Journal of Animal
606 Ecology*. 2003;72: 994–1002. doi:10.1046/j.1365-2656.2003.00770.x

607 11. Brown MJF, Loosli R, Schmid-Hempel P. Condition-dependent expression of virulence in a
608 trypanosome infecting bumblebees. *Oikos*. 2000;91: 421–427. doi:10.1034/j.1600-
609 0706.2000.910302.x

610 12. Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé
611 C, et al. Experimental evidence of harmful effects of *Critidium mellificae* and *Lotmaria
612 passim* on honey bees. *International Journal for Parasitology*. 2020;50: 1117–1124.
613 doi:10.1016/j.ijpara.2020.06.009

614 13. Deshwal S, Mallon EB. Antimicrobial peptides play a functional role in bumblebee anti-
615 trypanosome defense. *Dev Comp Immunol*. 2014;42: 240–243.
616 doi:10.1016/j.dci.2013.09.004

617 14. Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the
618 transcriptome during infection and modifies honey bee physiology. *Commun Biol*. 2020;3:
619 1–8. doi:10.1038/s42003-020-0775-x

620 15. Koch H, Woodward J, Langat MK, Brown MJF, Stevenson PC. Flagellum removal by a
621 nectar metabolite inhibits infectivity of a bumblebee parasite. *Current Biology*. 2019;29:
622 3494-3500.e5. doi:10.1016/j.cub.2019.08.037

623 16. Figueroa LL, Fowler A, Lopez S, Amaral VE, Koch H, Stevenson PC, et al. Sunflower
624 spines and beyond: Mechanisms and breadth of pollen that reduce gut pathogen infection in
625 the common eastern bumble bee. *Functional Ecology*. n/a. doi:10.1111/1365-2435.14320

626 17. Fowler AE, Stone EC, Irwin RE, Adler LS. Sunflower pollen reduces a gut pathogen in
627 worker and queen but not male bumble bees. *Ecological Entomology*. 2020;45: 1318–1326.
628 doi:10.1111/een.12915

629 18. Giacomini JJ, Leslie J, Tarpy DR, Palmer-Young EC, Irwin RE, Adler LS. Medicinal value
630 of sunflower pollen against bee pathogens. *Sci Rep*. 2018;8: 14394. doi:10.1038/s41598-
631 018-32681-y

632 19. LoCascio GM, Aguirre L, Irwin RE, Adler LS. Pollen from multiple sunflower cultivars
633 and species reduces a common bumblebee gut pathogen. *Royal Society Open Science*.
634 2019;6: 190279. doi:10.1098/rsos.190279

635 20. Malfi RL, McFrederick QS, Lozano G, Irwin RE, Adler LS. Sunflower plantings reduce a
636 common gut pathogen and increase queen production in common eastern bumblebee
637 colonies. *Proceedings of the Royal Society B: Biological Sciences*. 2023;290: 20230055.
638 doi:10.1098/rspb.2023.0055

639 21. Fowler AE, Giacomini JJ, Connon SJ, Irwin RE, Adler LS. Sunflower pollen reduces a gut
640 pathogen in the model bee species, *Bombus impatiens*, but has weaker effects in three wild
641 congeners. *Proceedings of the Royal Society B: Biological Sciences*. 2022;289: 20211909.
642 doi:10.1098/rspb.2021.1909

643 22. Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing Mixed-Genotype
644 Infections I: Extraction and Cloning of Infections from Hosts of the Trypanosomatid
645 *Crithidia bombi*. Hughes W, editor. *PLoS ONE*. 2012;7: e49046.
646 doi:10.1371/journal.pone.0049046

647 23. Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, et al. Dramatic
648 changes in gene expression in different forms of *Crithidia fasciculata* reveal potential
649 mechanisms for insect-specific adhesion in kinetoplastid parasites. Acosta-Serrano A,
650 editor. *PLoS Negl Trop Dis*. 2019;13: e0007570. doi:10.1371/journal.pntd.0007570

651 24. Tetaud E, Lecuix I, Sheldrake T, Baltz T, Fairlamb AH. A new expression vector for
652 *Crithidia fasciculata* and *Leishmania*. *Molecular and Biochemical Parasitology*. 2002;120:
653 195–204. doi:10.1016/S0166-6851(02)00002-6

654 25. DiMaio J, Ruthel G, Cannon JJ, Malfara MF, Povelones ML. The single mitochondrion of
655 the kinetoplastid parasite *Crithidia fasciculata* is a dynamic network. López Lluch G,
656 editor. *PLoS ONE*. 2018;13: e0202711. doi:10.1371/journal.pone.0202711

657 26. Burkard GS, Jutzi P, Roditi I. Genome-wide RNAi screens in bloodstream form
658 trypanosomes identify drug transporters. *Molecular & Biochemical Parasitology*. 2011;175:
659 91–94. doi:10.1016/j.molbiopara.2010.09.002

660 27. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light
661 microscopy. *Journal of Microscopy*. 2006;224: 213–232. doi:10.1111/j.1365-
662 2818.2006.01706.x

663 28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
664 open-source platform for biological-image analysis. *Nat Methods*. 2012;9: 676–682.
665 doi:10.1038/nmeth.2019

666 29. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.
667 glmmTMB balances speed and flexibility among packages for zero-inflated generalized
668 linear mixed modeling. *The R journal*. 2017;9: 378–400. doi:10.3929/ethz-b-000240890

669 30. Fox J, Weisberg S. *An R Companion to Applied Regression*. SAGE Publications; 2018.

670 31. Hartig F, Hartig M. Package ‘DHARMA.’ R Package Available online: <https://CRAN.R-project.org/package=DHARMA> (accessed on 5 September 2022). 2022.

672 32. Schmid-Hempel R, Tognazzo M. Molecular Divergence Defines Two Distinct Lineages of
673 *Crithidia bombi* (Trypanosomatidae), Parasites of Bumblebees. *Journal of Eukaryotic
674 Microbiology*. 2010;57: 337–345. doi:10.1111/j.1550-7408.2010.00480.x

675 33. Pérez-Morga D, Englund PT. The structure of replicating kinetoplast DNA networks.
676 *Journal of Cell Biology*. 1993;123: 1069–1079. doi:10.1083/jcb.123.5.1069

677 34. Spurley WJ, Fisher KJ, Langdon QK, Buh KV, Jarzyna M, Haase MAB, et al. Substrate,
678 temperature, and geographical patterns among nearly 2,000 natural yeast isolates. *Yeast*.
679 2022;39: 55–68. doi:10.1002/yea.3679

680 35. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and sequence
681 analysis tools services from EMBL-EBI in 2022. *Nucleic Acids Res*. 2022;50: W276–
682 W279. doi:10.1093/nar/gkac240

683 36. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a
684 multiple sequence alignment editor and analysis workbench. *Bioinformatics*. 2009;25:
685 1189–1191. doi:10.1093/bioinformatics/btp033

686 37. Roberts SC. The genetic toolbox for *Leishmania* parasites. *Bioeng Bugs*. 2011;2: 320–326.
687 doi:10.4161/bbug.2.6.18205

688 38. Patnaik P k., Kulkarni S k., Cross G a. Autonomously replicating single-copy episomes in
689 *Trypanosoma brucei* show unusual stability. *The EMBO Journal*. 1993;12: 2529–2538.
690 doi:10.1002/j.1460-2075.1993.tb05908.x

691 39. Bellofatto V, Torres-Muñoz JE, Cross GA. Stable transformation of *Leptomonas seymouri*
692 by circular extrachromosomal elements. *Proc Natl Acad Sci U S A*. 1991;88: 6711–6715.

693 40. Biebinger S, Clayton C. A Plasmid Shuttle Vector Bearing an rRNA Promoter Is
694 Extrachromosomally Maintained in *Crithidia fasciculata*. Experimental Parasitology.
695 1996;83: 252–258. doi:10.1006/expr.1996.0072

696 41. Kelly JM, ward HM, Miles MA, Kendall G. A shuttle vector which facilitates the
697 expression of transfected genes in *Trypanosoma cruzi* and *Leishmania*. Nucleic Acids
698 Research. 1992;20: 3963–3969. doi:10.1093/nar/20.15.3963

699 42. Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic
700 transcription. Open Biol. 2019;9: 190072. doi:10.1098/rsob.190072

701 43. Palmer-Young EC, Calhoun AC, Mirzayeva A, Sadd BM. Effects of the floral
702 phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci
703 Rep. 2018;8: 2074. doi:10.1038/s41598-018-20369-2

704 44. Gull K. The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology.
705 1999;53: 629–655. doi:10.1146/annurev.micro.53.1.629

706 45. Halliday C, Billington K, Wang Z, Madden R, Dean S, Sunter JD, et al. Cellular landmarks
707 of *Trypanosoma brucei* and *Leishmania mexicana*. Mol Biochem Parasitol. 2019;230: 24–
708 36. doi:10.1016/j.molbiopara.2018.12.003

709 46. Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis,
710 maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys
711 Acta. 2016;1863: 1038–1048. doi:10.1016/j.bbampcr.2015.09.015

712 47. Wheeler RJ, Gluenz E, Gull K. The cell cycle of *Leishmania*: morphogenetic events and
713 their implications for parasite biology. Molecular Microbiology. 2011;79: 647–662.
714 doi:10.1111/j.1365-2958.2010.07479.x

715 48. Yanase R, Moreira-Leite F, Rea E, Wilburn L, Sádlová J, Vojtkova B, et al. Formation and
716 three-dimensional architecture of *Leishmania* adhesion in the sand fly vector. Zamboni DS,
717 Akhmanova A, editors. eLife. 2023;12: e84552. doi:10.7554/eLife.84552

718 49. Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, et al. Genome-
719 wide subcellular protein map for the flagellate parasite *Trypanosoma brucei*. Nat Microbiol.
720 2023;8: 533–547. doi:10.1038/s41564-022-01295-6

721 50. Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, et al. Malleable
722 Mitochondrion of *Trypanosoma brucei*. Elsevier Ltd; 2015.
723 doi:10.1016/bs.ircmb.2014.11.001

724 51. Engel ML. The *Crithidia fasciculata* RNH1 gene encodes both nuclear and mitochondrial
725 isoforms of RNase H. Nucleic Acids Research. 2001;29: 725–731.
726 doi:10.1093/nar/29.3.725

727 52. Maraghi S, Mohamed HA, Wallbanks KR, Molyneux DH. Scratched plastic as a substrate
728 for trypanosomatid attachment. Annals of tropical medicine and parasitology. 1987;81:
729 457–458.

730 53. Hommel M, Robertson E. In vitro attachment of trypanosomes to plastic. Experientia.
731 1976;32: 464–466.

732 54. Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, et al. Extensive
733 flagellar remodeling during the complex life cycle of *Paratrypanosoma*, an early-branching
734 trypanosomatid. Proceedings of the National Academy of Sciences. 2017;114: 11757–
735 11762. doi:10.1073/pnas.1712311114

736 55. Scolaro EJ, Ames RP, Brittingham A. Growth-Phase Dependent Substrate Adhesion in
737 *Critidium fasciculata*. Journal of Eukaryotic Microbiology. 2005;52: 17–22.
738 doi:<https://doi.org/10.1111/j.1550-7408.2005.3315r.x>

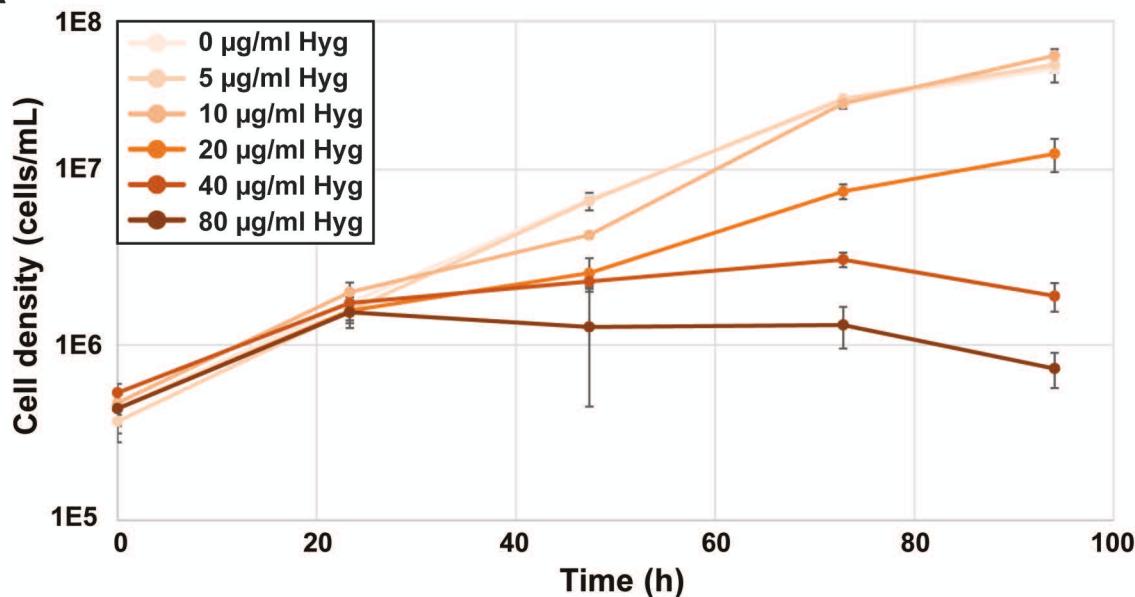
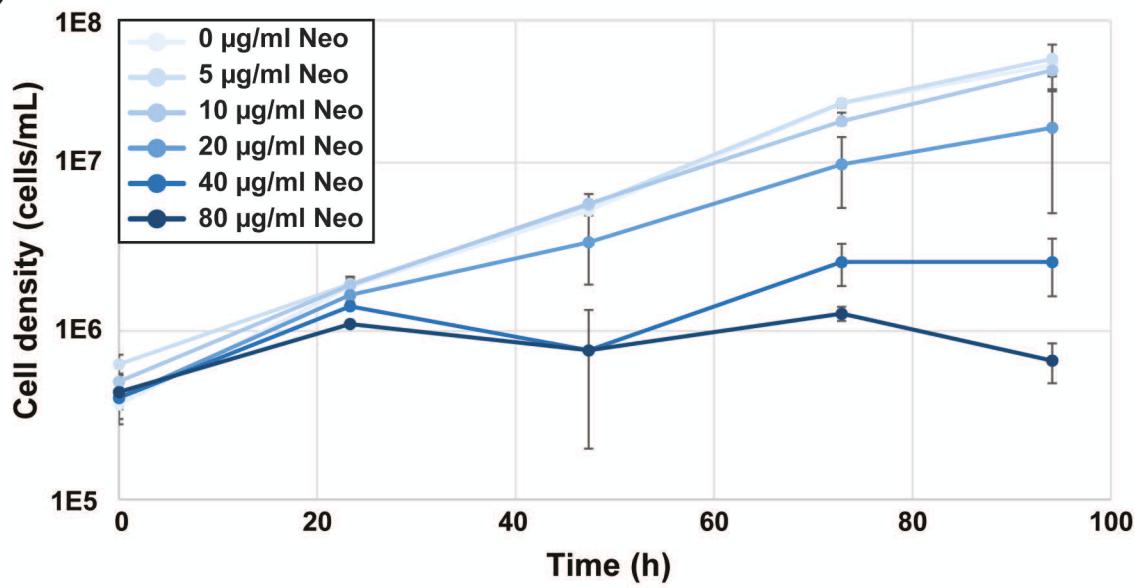
739 56. Wakid MH, Bates PA. Flagellar attachment of *Leishmania* promastigotes to plastic film in
740 vitro. Experimental Parasitology. 2004;106: 173–178. doi:10.1016/j.exppara.2004.03.001

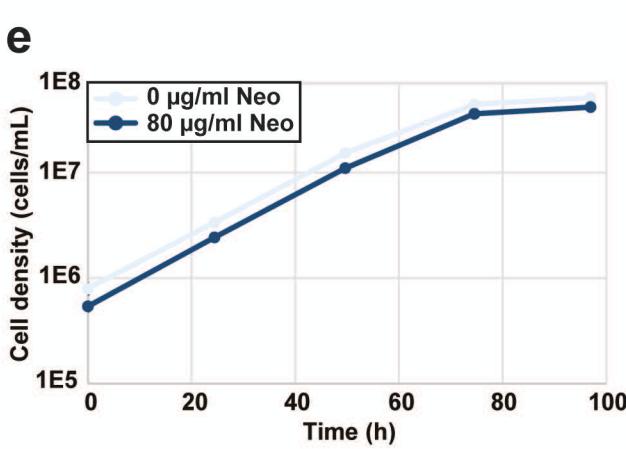
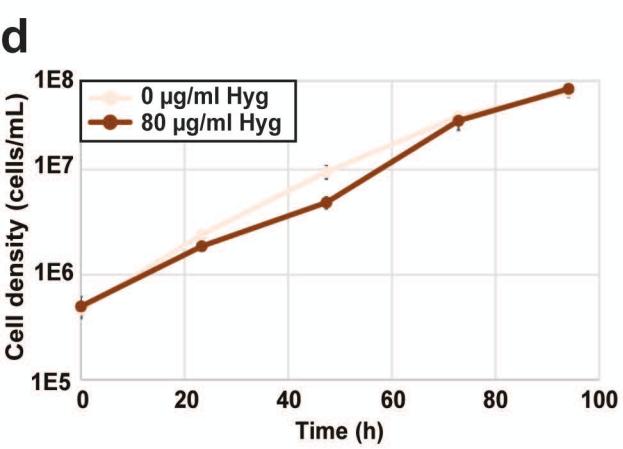
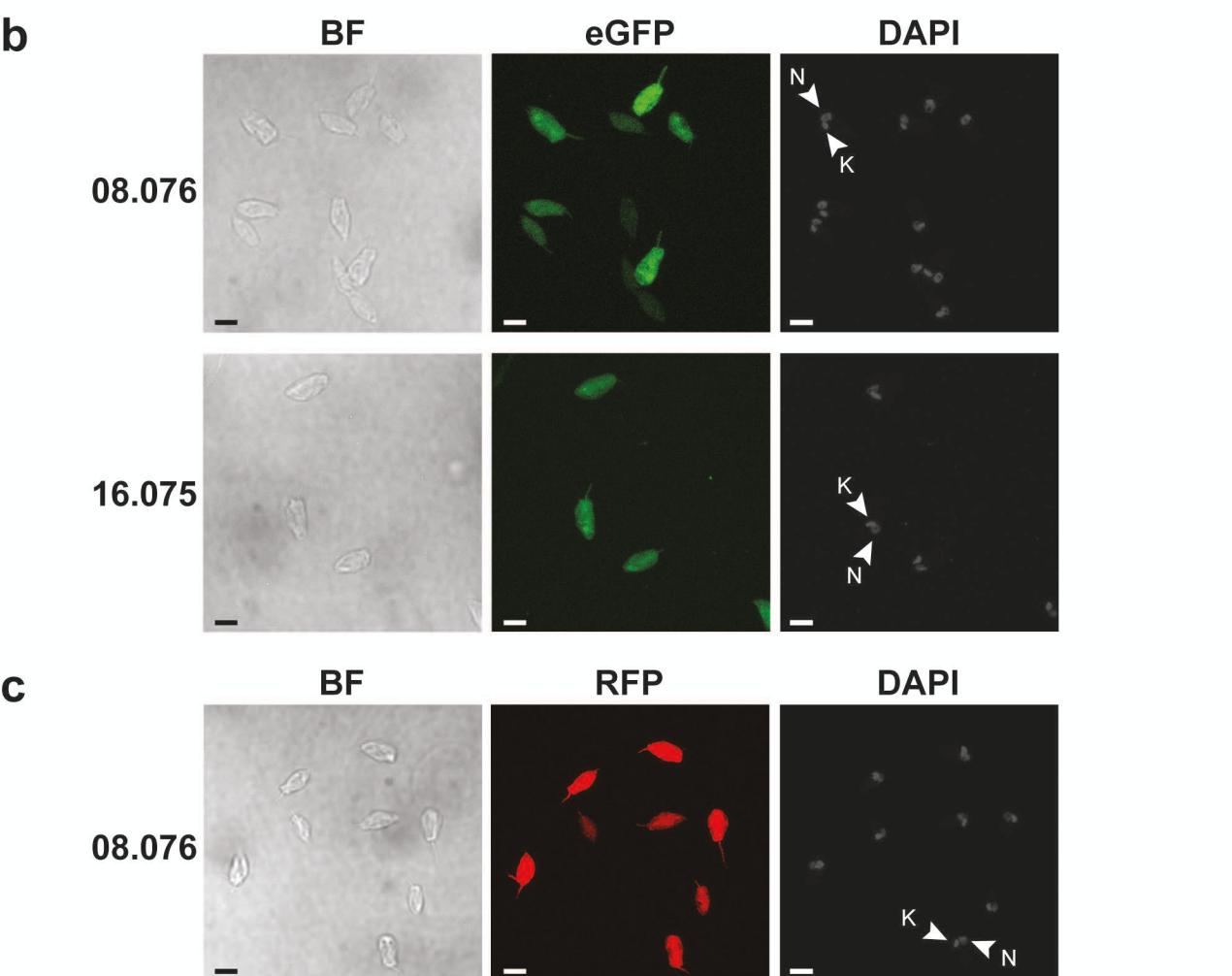
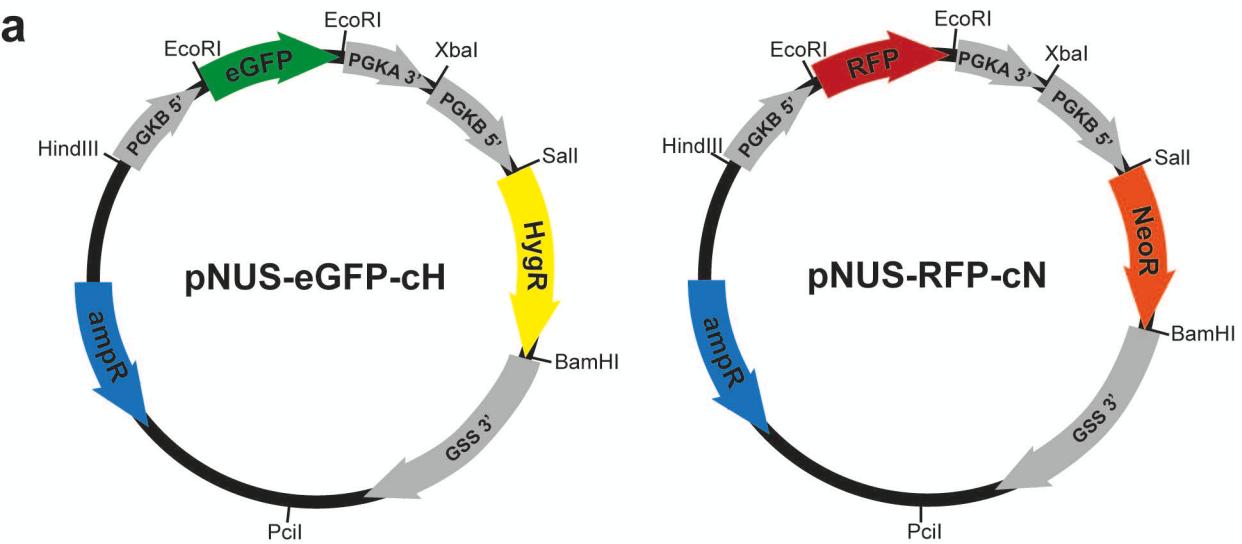
741 57. Schmid-Hempel P, Reber Funk C. The distribution of genotypes of the trypanosome
742 parasite, *Critidium bombi*, in populations of its host, *Bombus terrestris*. Parasitology.
743 2004;129: 147–158. doi:10.1017/s0031182004005542

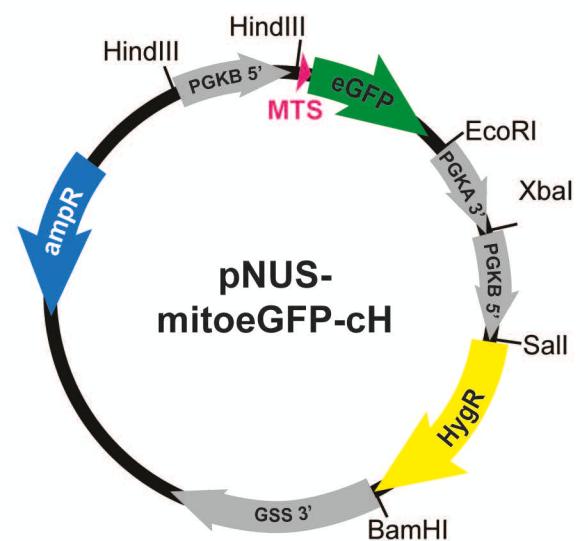
744 58. Burkard G, Fragoso CM, Roditi I. Highly efficient stable transformation of bloodstream
745 forms of *Trypanosoma brucei*. Molecular & Biochemical Parasitology. 2007;153: 220–223.
746 doi:10.1016/j.molbiopara.2007.02.008

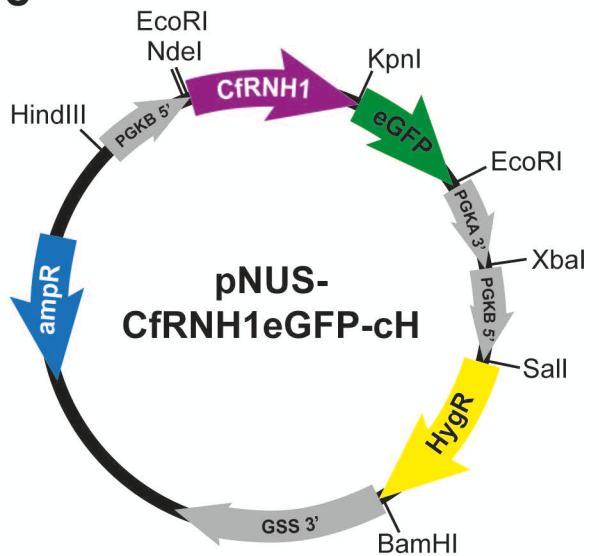
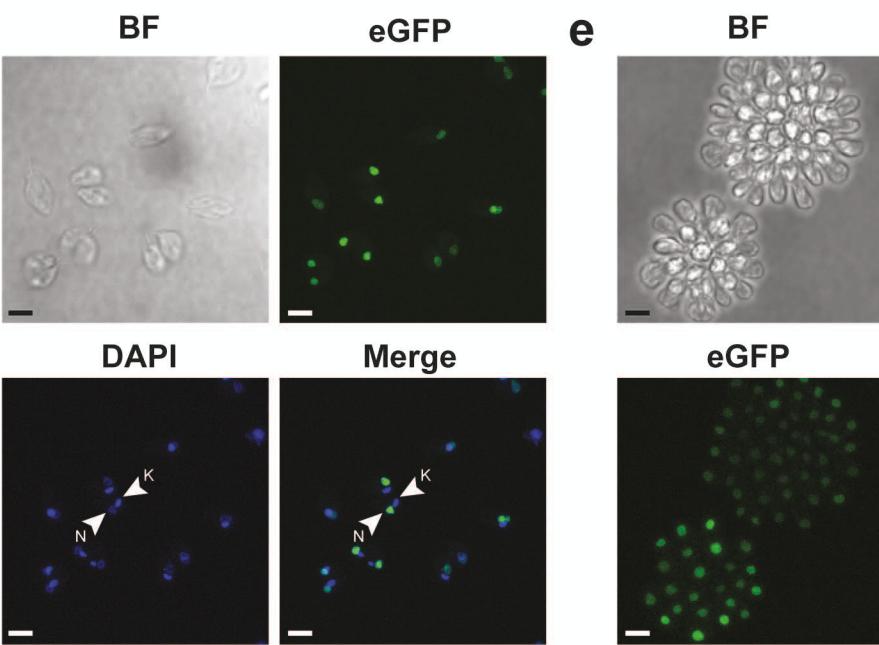
747 59. Robinson KA, Beverley SM. Improvements in transfection efficiency and tests of RNA
748 interference (RNAi) approaches in the protozoan parasite *Leishmania*. Molecular &
749 Biochemical Parasitology. 2003;128: 217–228. doi:10.1016/s0166-6851(03)00079-3

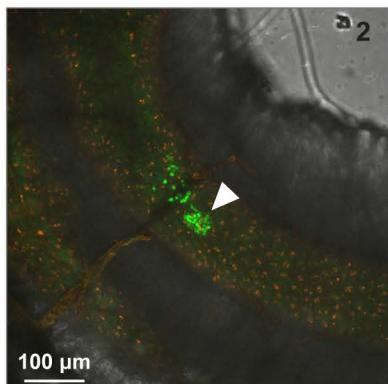
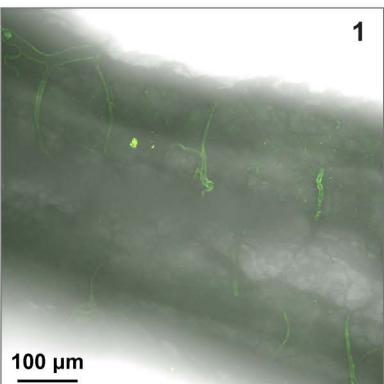
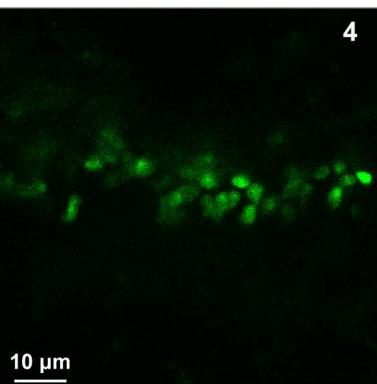
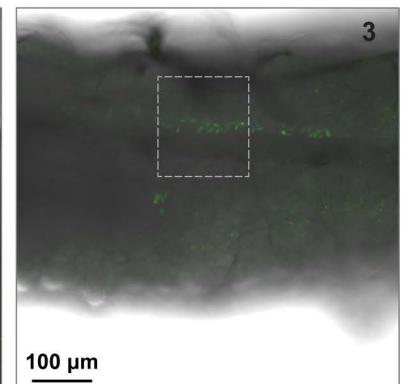
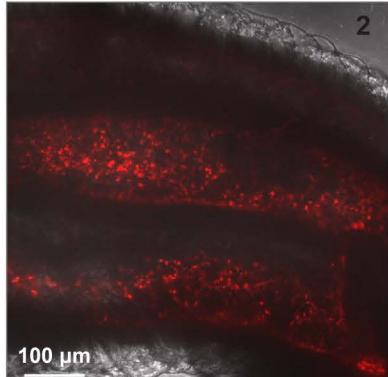
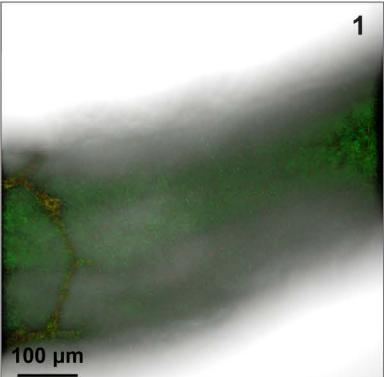
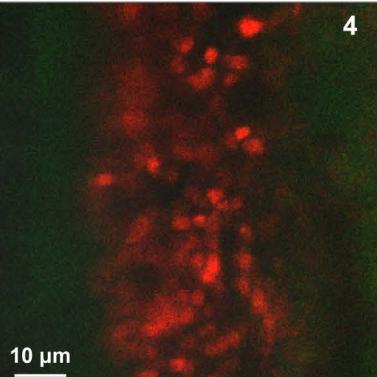
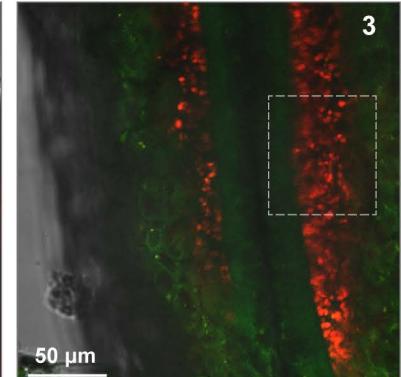
750
751 **Statements and Declarations**

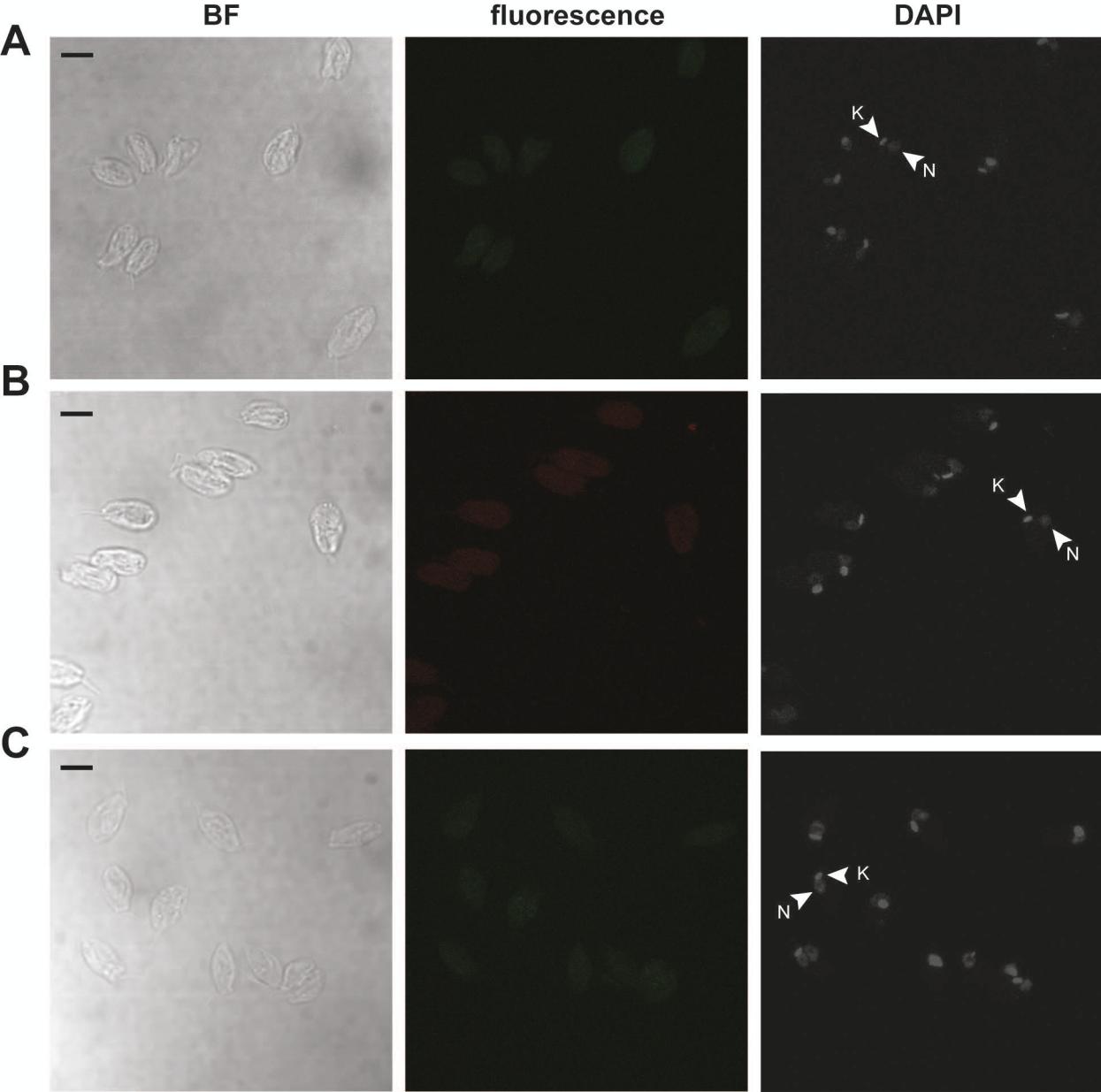


752 **Funding** This work was supported by a National Science Foundation IntBIO award number
753 2128223 to LSA and MLP. This work was also supported by a Lotta Crabtree Fellowship from
754 the University of Massachusetts Amherst as well as the CAFE Hatch Award to SKG. This
755 material is based upon work supported by the National Institute of Food and Agriculture, U.S.
756 Department of Agriculture, and the Center for Agriculture, Food and the Environment at
757 University of Massachusetts Amherst, under project number NE2001. The contents are solely the
758 responsibility of the authors and do not necessarily represent the official views of the USDA or
759 NIFA.





760 **Competing Interests** The authors declare no competing interests.





761 **Author Contribution** BVB, SGL, SKG, LSA, and MLP conceived of the ideas and designed
762 experiments. BVB, SGL, SKG, FAS, and MLP implemented the experiments and collected the
763 data. BVB, SGL, FAS, SKG, and MLP contributed to visualization. BVB, SGL, SKG, and MLP









764 wrote the first draft of the manuscript. All authors contributed critically to manuscript edits and
765 gave final approval for publication.

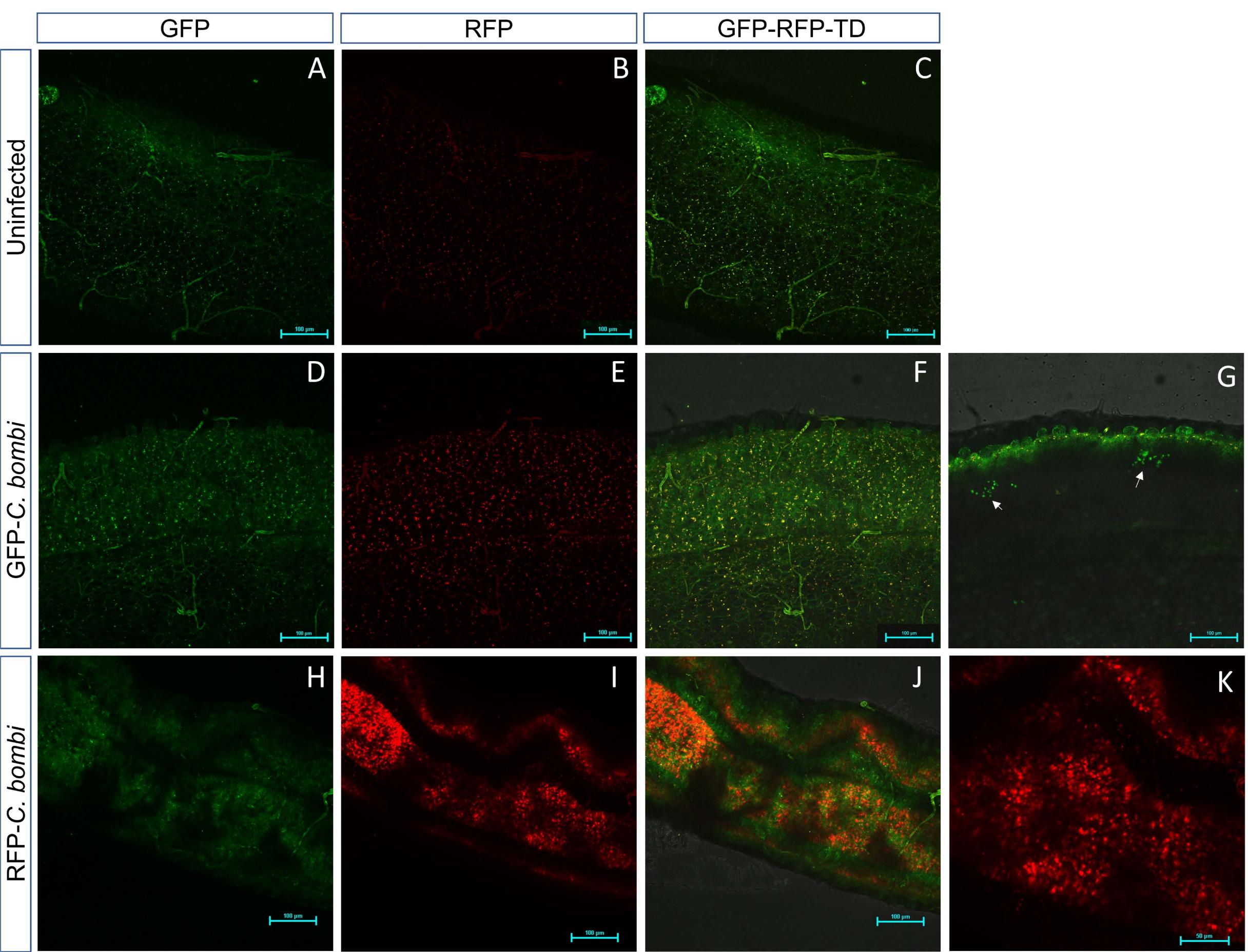

766 **Data Availability** Data from this study have been made publicly available at the Dryad Digital
767 Repository (doi:10.5061/dryad.hqbzkh1qt). Additional data, including plasmid sequences, are
768 available upon request.

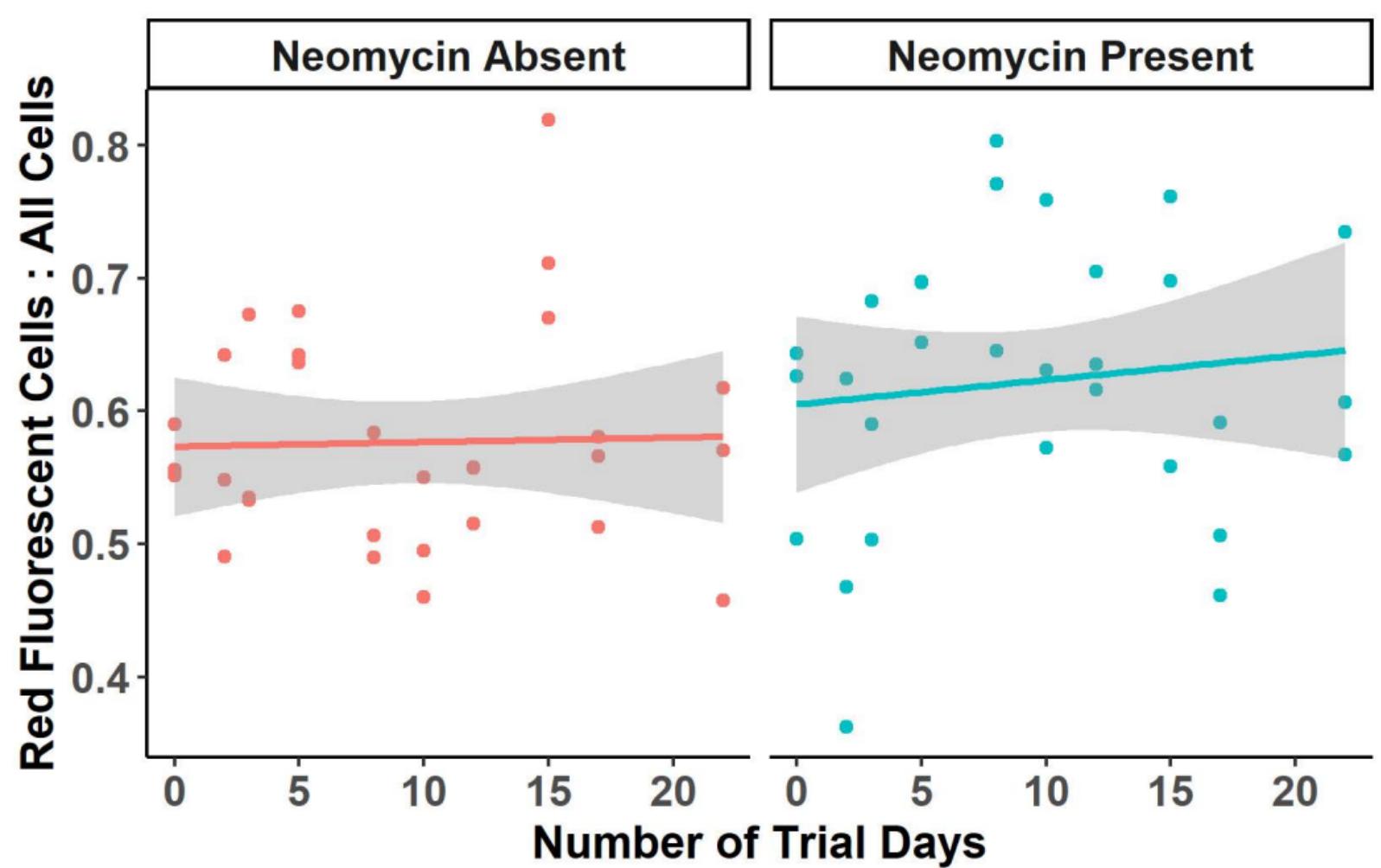
A**B**

a**b****c****d****e**

a**Uninfected****Infected with *Cb-WHA1-GFP*****b****Uninfected****Infected with *Cb-WHA1-RFP***

A


WHA1_GAPDH	11	GAGATCGACGTGGTCGCCGTGGTGATATGAGCACGGACGCCGAGTACTTCGCGTACCAAGATGAAGTTTGTATACGGTGC	89
Cb_GAPDH	1	GAGATCGACGTGGTCGCCGTGGTGATATGAGCACGGACGCCGAGTACTTCGCGTACCAAGATGAAGTTTGTATACGGTGC	79
Ce_GAPDH	1	GAGATCGACGTGGTCGCCGTGGTGATATGAGCACGGACGCCGAGTACTTCGCGTACCAAGATGAAGTTTGTATACGGTGC	79
WHA1_GAPDH	90	ACGGTCGCCCCGAAGTACACGGTGGAGGTTGCCAAGAGCTCCCGGGTGTGAAGAAGCCGGATGTGTTGTGTTGAACGG	168
Cb_GAPDH	80	ACGGTCGCCCCGAAGTACACGGTGGAGGTTGCCAAGAGCTCCCGGGTGTGAAGAAGCCGGATGTGTTGTGTTGAACGG	158
Ce_GAPDH	80	ACGGTCGCCCCGAAGTACACGGTGGAGGTTGCCAAGAGCTCCCGGGTGTGAAGAAGCCGGATGTGTTGTGTTGAACGG	158
WHA1_GAPDH	169	CCACCGCATCCTGTGCGTGAAGGCCAGCGAACCCCTGGGACCTGCCGTGGGCAAGCTGGGTGTGACTACGTGATC	247
Cb_GAPDH	159	CCACCGCATCCTGTGCGTGAAGGCCAGCGAACCCCTGGGACCTGCCGTGGGCAAGCTGGGTGTGACTACGTGATC	237
Ce_GAPDH	159	CCACCGCATCCTGTGCGTGAAGGCCAGCGAACCCCTGGGACCTGCCGTGGGCAAGCTGGGACTACGTGATC	237
WHA1_GAPDH	248	GAGTCGACGGGTCTGTTCACGAACAAGCGAAGGCTGAGGCCACGTGAAGGGTGGCGCGAAGAAGGTGGTATCAGCC	326
Cb_GAPDH	238	GAGTCGACGGGTCTGTTCACGAACAAGCGAAGGCTGAGGCCACGTGAAGGGTGGCGCGAAGAAGGTGGTATCAGCC	316
Ce_GAPDH	238	GAGTCGACCGGCTGTTCACGAACAAGCGAAGGCCACGTGAAGGGTCACTGAAGGGCAGCGCGAAGAAGGTGGTATCAGCC	316
WHA1_GAPDH	327	CTCCGGCGTCCGGGTGCCAAGACGATCGTATGGCGTGAACCAGCACGAGTACAACCGGGGACGCCACACGTGGT	405
Cb_GAPDH	317	CTCCGGCGTCCGGGTGCCAAGACGATCGTATGGCGTGAACCAGCACGAGTACAACCGGGGACGCCACACGTGGT	395
Ce_GAPDH	317	CTCCGGCGTCCGGGTGCCAAGACGATCGTATGGCGTGAACCAGCACGAGTACAACCGGGGACGCCACACGTGGT	395
WHA1_GAPDH	406	GTGG	409
Cb_GAPDH	396	GTGG	399
Ce_GAPDH	396	GTGG	399


B

WHA1_ssRNA	1	GCGCTTGACGGGAGGGGGATTAGCGTTGATCCGGAGAGGGAGCCTGAGAAATAGCTACCACTTCTACGGAGGGCA	79
Cb_ssRNA	12	GCGCTTGACGGGAGGGGGATTAGGGTTGATCCGGAGAGGGAGCCTGAGAAATAGCTACCACTTCTACGGAGGGCA	90
Ce_ssRNA	12	AGCGTTGACGGGAGGGGGATTAGGGTTGATCCGGAGAGGGAGCCTGAGAAATAGCTACCACTTCAACGGAGGGCA	90
WHA1_ssRNA	80	GCAGGGCGCAAATTGCCAATGTCAAAACAAAACGATGAGGCAGCGAAAAGAAAATAGAGTTGTCAGTCCATTGGATT	158
Cb_ssRNA	91	GCAGGGCGCAAATTGCCAATGTCAAAACAAAACGATGAGGCAGCGAAAAGAAAATAGAGTTGTCAGTCCATTGGATT	169
Ce_ssRNA	91	GCAGGGCGCAAATTGCCAATGTCAAAACAAAACGATGAGGCAGCGAAAAGAAAATAGAGCACTGAGTCCATTGGATT	169
WHA1_ssRNA	159	GTCATTTCAATGGGGATATTAACCCATC-CATATCGAGTAACAATTGAGGACAAGTCTGGTGCAGCACCGCG	236
Cb_ssRNA	170	GTCATTTCAATGGGGATATTAACCCATCCTAATATCGAGTAACAATTGAGGACAAGTCTGGTGCAGCACCGCG	248
Ce_ssRNA	170	GACTTTCAATGGGGATATTAACCCATCCTAATATCGAGTAACAATTGAGGACAAGTCTGGTGCAGCACCGCG	248
WHA1_ssRNA	237	TAATTCCAGCTCCAAAAGCTATATAATGCTGTTGTTAAAGGTTCTGAGTTGAACTGTGGTTGTTAGGTT	315
Cb_ssRNA	249	TAATTCCAGCTCCAAAAGCTATATAATGCTGTTGTTAAAGGTTCTGAGTTGAACTGTGGTTGTTAGGTT	327
Ce_ssRNA	249	TAATTCCAGCTCCAAAAGCTATATAATGCTGTTGTTAAAGGTTCTGAGTTGAACTGTGGTTGTTAGGTT	327
WHA1_ssRNA	316	TTCTGGTGTCCCAGTGGGATTGGGCCAGCCCTTGAGCCGTGAACATTCAAAGAAACAAGAACAG	394
Cb_ssRNA	328	TTCTGGTGTCCCAGTGGGATTGGGCCAGCCCTTGAGCCGTGAACATTCAAAGAAACAAGAACAG	406
Ce_ssRNA	328	TTCTGGTGTCCCAGTGGGATTGGGCCAGCCCTTGAGCCGTGAACATTCAAAGAAACAAGAACAG	406
WHA1_ssRNA	395	GGGAGTGGTCTTTCTGATCTACGCATGTCATGCATGCCAGGGGGCTCCGTGA	450
Cb_ssRNA	407	GGGAGTGGTCTTTCTGATCCACGCATGTCATGCATGCCAGGGGGCTCCGTGA	462
Ce_ssRNA	407	GGGAGTGGTCTTTCTGATCTACGCATGTCATGCCAGGGGGCTCCGTGA	462

C

WHA1	46	ACTGTTCATATTTGTTTACGTATTATTATTTTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	124
08.076	1	AGTGTTCATATTTGTTTACGTATTATTATTTTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	79
CbombyBJ08.85	24	AGTGTTCATATTTGTTTACGTATTATTATTTTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	102
CbombyAK08.053	24	AGTGTTCATATTTGTTTACGTATTATTATTTTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	102
CxpoekiBJ08.85	24	AGTACCCATATTTGTTTACGTATTATTGTTTTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	102
CxpoekiAK08.209	24	ACGACCCATATTTGTTTACGTATTATTGTTTATTCTATGTAACATATTAAAGCACTGTTTAATTATAT	102
WHA1	125	TATTTGATACTCATATTTAGTGTGGCTGTTGGATTCTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	203
08.076	80	TATTTGATACTCATATTTAGTGTGGCTGTTGGATTCTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	158
CbombyBJ08.85	103	TATTTGATACTCATATTTAGTGTGGCTGTTGGATTCTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	181
CbombyAK08.053	103	TATTTGATACTCATATTTAGTGTGGCTGTTGGATTCTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	181
CxpoekiBJ08.85	103	TATTTGACACTCATATTTAGTGTAAACACTCGGTTTATTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	181
CxpoekiAK08.209	103	TATTTGACACTCATATTTAGTGTAAACAGTTGGGTTTATTTATTTATTTATTTGTTGAAATAGGTTTATAGGTTA	181
WHA1	204	TGTTTACCGTGTACAATGATGTCATTGAGGATTAAACAGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	282
08.076	159	TGTTTACCGTGTACAATGATGTCATTGAGGATTAAACAGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	237
CbombyBJ08.85	182	TGTTTACCGTGTACAATGATGTCATTGAGGATTAAACAGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	260
CbombyAK08.053	182	TGTTTACCATGTACAATGATGTCATTGAGGATTAAACAGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	260
CxpoekiBJ08.85	182	TGTATTACCATGTACTATGATGTCATTGAGGTTAACTGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	260
CxpoekiAK08.209	182	TGTATTACCATGTACTATGATGTCATTGAGGTTAACTGTTTTACTAATATTGGCCACTGTACCACTTATTGGT	260
WHA1	283	TTATGATTGTGTTATTGAATTGAGGAACGTCAATTATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	361
08.076	238	TTATGATTGTGTTATTGAATTGAGGAACGTCAATTATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	316
CbombyBJ08.85	261	TTATGATTGTGTTATTGAATTGAGGAACGTCAATTATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	339
CbombyAK08.053	261	TTATGATTGTGTTATTGAATTGAGGAACGTCAATTATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	339
CxpoekiBJ08.85	261	TTATGATTGTGTTATTGAATTGAGGTTAGTGAATTATTAAATGATTTACTGAAATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	339
CxpoekiAK08.209	261	TTATGATTGTGTTATTGAATTGAGGTTAGTGAATTATTAAATGATTTACTGAAATTAAATGATTTACGTTACTGAAATTACATGTTGTCATGTT	339
WHA1	362	TATTGCCATTGTTATTAAATTTAGTTATTGTAATGCATTCTTTGTTACATTATTATGAGTTCAAGATGGTTT	438
08.076	317	TATTGCCATTGTTATTAAATTTAGTTATTGTAATGCATTCTTTGTTACATTATTATGAGTTCAAGATGGTTT	393
CbombyBJ08.85	340	TATTGCCATTGTTATTAAATTTAGTTATTGTAATGCATTCTTTGTTACATTATTATGAGTTCAAGATGGTTT	416
CbombyAK08.053	340	TATTACCCATTGTTATTAAATTTAGTTATTGTAATGCATTCTTTGTTACATTATTATGAGTTCAAGATGGTTT	416
CxpoekiBJ08.85	340	TATTGCCATTGTTATTGATTGTTAAATAAATCATGCATTAAATTGTTACATTATTATGAGTTCAAGACGGTTT	416
CxpoekiAK08.209	340	TATTGCCATTGTTATTGATTGTTAAATAAATCATGCATTAAATTGTTACATTATTATGAGTTCAAGACGGTTT	416

