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Parallelizing code in a shared-memory environment is commonly done utilizing loop scheduling (LS) in a fork-
join manner as in OpenMP. This manner of parallelization is popular due to its ease to code, but the choice of
the LS method is important when the workload per iteration is highly variable. Currently, the shared-memory
environment is evolving in high-performance computing as larger chiplet-based processors with high core
counts and segmented L3 cache are introduced. These processors have a stronger non-uniform memory access
(NUMA) effect than the previous generation of x86-64 processors. This work attempts to modify the adap-
tive self-scheduling loop scheduler known as iCh (irregular Chunk) for these NUMA environments while
analyzing the impact of these systems on default OpenMP LS methods. In particular, iCh is as a default LS
method for irregular applications (i.e., applications where the workload per iteration is highly variable) that
guarantees “good” performance without tuning. The modified version, named NiCh, is demonstrated over
multiple irregular applications to show the variation in performance. The work demonstrates that NiCh is
able to better handle architectures with stronger NUMA effects, and particularly is better than iCh when the
number of threads is greater than the number of cores. However, NiCh also comes with being less universally
“good” than iCh and a set of parameters that are hardware dependent.
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1 Introduction

While many advanced parallel computing paradigms focus on complex tasking systems, the most
common paradigm for application programmers is loop scheduling (LS) in a fork-join manner.
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The commonality of this paradigm is due to the simplicity of coding, but the efficiency of this
method can be less than optimal due to variations in the workload (i.e., the time for computation
and memory accesses) between iterations. Because of the importance of LS, numerous coding
languages and extensions offer a parallel-for (e.g., OpenMP) and research has been conducted
on different methods (e.g., workload-aware self-scheduling) and parameters (e.g., chunk size) to
achieve reasonable performance. In this article, we define chunk size as the amount of work (i.e.,
the number of iterations) a thread takes to execute from a queue before returning for more work.
However, all of these methods require some information about the workload to select the best
method parameters. This requires an understanding of the workload or tuning that a standard
application developer might not have. A simple example of this would be a sparse matrix-vector
multiplication (SpMV) parallelized over the rows (see Listing 1). In this example, a sparse matrix
could have a variety of different non-zero patterns that are unknown before runtime and where
the workload per iteration is the number of non-zeros in a row.

The scheduling method iCh (irregular Chunk) [4] was introduced as an adaptive self-scheduling
method. The targeted workloads for this method are irregular problems where the workload per
iteration varies in time due to both the number of computations and memory accesses. iCh’s goal
is to not require workload information prior to runtime while providing reasonable performance
(i.e., close to the optimal) for common multi-core systems with a shared L3 across a wide range of
applications.

These common multi-core systems could have non-uniform memory accesses (NUMA) (i.e., the
time to access local memory is faster than non-local memory). However, within a processor (i.e.,
a socket on the motherboard), the time for two different cores to access a line in a shared L3 was
similar. Therefore, the only time that NUMA effects (i.e., the time difference in accessing local and
non-local memory) were normally large enough to consider was between sockets.

Shifting architecture trends are resulting in “chiplets” and “segmented” L3 caches (e.g., AMD
EPYC and Intel Sapphire Rapids) that have a strong NUMA effect on L3. In particular, the time for
two different cores to access a line in L3 could be different depending on the core and the location
of the line [24]. As such, the consideration of only NUMA effects at the socket level is no longer
valid and therefore may impact the performance of iCh. Therefore, this article presents a NUMA-
aware version of iCh (NiCh). As this architectural trend is just emerging, a uniform vocabulary
has not yet been adopted as it has in the past with package, socket, and core. In this work, we
will thus utilize AMD’s terminology of chiplets, as they are the first major processor producer
being highly utilized in high-performance computing with this trend. We note that this can be
applied to the newer Intel systems or even IBM’s Power series as well. This NUMA effect within
a process between the chiplets now produces levels of NUMA effects. Section 2.2 provides more
details on this trend as well as examples of NUMA access times. Even though we stick with AMD
terminology and tests on AMD chiplet-based systems, our goal is that information learned from
NiCh will be utilized across vendors as these chips become more widely available.

As this architectural trend could put iCh at a disadvantage, the following questions arise. Does
iCh still provide a best solution for irregular workloads on newer architectures? Would a NUMA-
aware version of iCh (NiCh) perform better than iCh on these new architectures? Would default
OpenMP LS methods be a better solution now? This work attempts to shed light on these questions
by providing the following:

— An introduction to NiCh and explanation of design choices

— An empirical evaluation of design choices of NiCh

— Comparison of NiCh, iCh, guided, dynamic, and static on the chiplet-based AMD EPYC 7713
(Milan)
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1 function spmv(n, rowptr, colidx, val, x, y) {

2 #pragma omp parallel for schedule(runtime)

3 for(int row = 0; row < n; row) {

4 for(int ¢ = rowptr[row]; ¢ < rowptr[row + 1]; c++) {
5 ylrow] += val[c] « x[colidx[c]];

6 }

7 }

8}

Listing 1. SpMV where the matrix is provided in compressed row format. This demonstrates the imbalance
of workload in a common kernel.

— Comparison on the more traditional Intel Xeon Platinum 8160 (Skylake)
— Comparison on Intel Xeon Phi 7250 (Knight’s Landing)
— Analysis of sensitivity parameters of NiCh.

2 Background
2.1 Loop Scheduling

The LS problem requires scheduling a set of n independent tasks (i.e., iterations) x;, where
i €{1,...,n} onto p threads t;, where j € {1,...,p} in a way that minimizes the total parallel exe-
cution time. The workload of each task x; can be different and unknown at runtime. Theoretically,
this type of problem is NP-hard [6]. However, this problem is normally even harder than what the
theoretical problem considers on modern systems, as the time to complete x; can vary between
executions as frequency scaling can be applied to cores and NUMA effects can impact memory
access time. Consider the SpMV example in C/OpenMP (Listing 1). Although the algorithm looks
simple on the surface, its memory characteristics have the potential to be highly irregular. This is
due to the irregular access of the x array. If consecutive values in colidx are vastly different, this
can result in sporadic, pseudo-random accesses in x, which results in unpredictable performance as
one access may be in an L1 cache line, whereas the next requires a traversal to main memory [14].
Making matters even worse, the memory access patterns of x are entirely dependent on the input,
meaning that they can change drastically between runs.

Broadly speaking, three different approaches can be taken to solve the problem.! The first ap-
proach is to remove the unknown aspect of workload. LS methods in this first approach try to
build some understanding about the distribution of the workload either through analysis of the
workload before runtime (e.g., via mini runs or code analysis at compile time) or by building up
a history of the workload when multiple iterations are used [16]. This approach has been shown
to be effective in some applications but normally requires some overhead for the analysis or his-
tory construction, and this approach may fail if the workload varies a lot in a manner the analysis
cannot identify. While no standard OpenMP method fits this approach, numerous packages have
studied it (e.g., COWS [19] and BinLPT [22]).

The second approach is for the method to try to adapt at runtime to the workload. The most
common pattern for these methods is to either have a shared queue where threads can take work
as needed or have threads steal work from each other as needed. However, overheads exist in
utilizing a shared data structure in a thread-safe manner and identifying where to steal. This ap-
proach is somewhat similar to the default dynamic approach by OpenMP, which utilizes a single
shared queue, and many work-stealing packages (including iCh), which utilize multiple double-end
queues (i.e., deques) to reduce thread contention.

IThere exist more than three classifications in LS taxonomy (see [4]), but only three general approaches need to be under-
stood for this work.
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Fig. 1. Two example architectures: ICL and AMD EPYC Rome. The ICL utilizes a common 2D mesh connect-
ing cores with L3 cache to memory controllers (Mem Contr.) and PCle nodes on the same chip. Rome utilizes
chiplet and uses a complex network of IF switches and repeaters to connect cores contained in CCDs with
global memory interface (FMI) and 10O.

The last approach is to construct a very simple method with a parameter that is tuneable to
the workload. The concept is that the method is so simple that any imbalance in the workload is
negligible compared to the overhead of the other approaches. Although this assumption is fine
for some workloads, it does not apply to all. Some of these methods utilize a fixed chunk size (e.g.,
static that is a default in OpenMP). Others provide a variable chunk size. Examples of these include
guided found in OpenMP and other common methods such as factoring [1] and trapezoid [23],
which have appeared often as an alternative to guided. Unfortunately, the need to keep the method
simple normally requires these non-fixed chunk size methods to use a simple method of always
decreasing the chunk size by some fixed amount. Work by Kasielke et al. [15] shows that guided is
still the best of these simple non-fixed chunk size methods. These simple methods tend to do very
well as we report in Section 6 with guided and COWS [19] reports with cyclic. We note that cyclic
is a special case of OpenMP static where the parameter is set to 1 (therefore, we also test with
this version along with the default). In the default static, the n iterations are chunked up to the p
threads in loop order. With cyclic, the n iterations are evenly distributed to the p threads in a round-
robin manner. This distribution helps to even out some of the imbalance in the workload among
the threads. However, a quick counter-example exists. Consider a for-loop where even numbered
iterations do X¢ye, amount of work and odd numbered iterations do x,474 amount of work. When
the program has an even number of total iterations and the workload is divided among an even
number of threads, there will exist an imbalance among the even and odd threads. This is but one
example where simple methods can fail, and the goal of iCh and NiCh is to be good in most cases.

2.2 Architecture Trends

Complex chiplet-based processors are becoming the norm with examples including AMD EPYC
and Intel Sapphire Rapids. These chiplet-based processors are introducing NUMA effects that have
been unseen before by traditional multi-core processors. Consider the following example compar-
ing the performance of AMD EPYC Rome and Intel Cascade Lake SP (ICL) server processors. Fig-
ure 1 provides the layout of both. The older ICL processor has the core and L3 segments laid out in
a 2D mesh on the same chip. This makes communication and memory accesses between the cores
quick and efficient, even though some NUMA effects may exist. In comparison, the layout of Rome
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is quite different but is still composed of multiple chiplets. The layout has sets of Core Complex Dies
(CCDs) that are connected via AMD’s Infinity Fabric (IF). Each CCD contains one or more Core
Complex (CCX). Each CCX contains multiple cores (normally four) along with each core’s associ-
ated L1, L2, and L3. Routing between cores in different areas requires movement through repeaters
and IF switches. In a way, the communication on the ICL is like homogeneous packet-switching
with a known route (i.e., all accesses are routed down and over). However, the communication in
Rome is closer to a heterogeneous packet-switching with an unknown route (i.e., routing is similar
to routing through switches in a local area network). Velten et al. [24] measure the latency reads
for different cores for both of these architectures. For reading the L3 cache, the ICL latency from
local to distant neighbor is less than 20 cycles difference. However, the difference in Rome from the
local to the distant core can be ~200 cycles. As such, this is a much stronger NUMA effect.? Thus,
this effect makes considering what is the best LS method very important. Moreover, as AMD tends
to have the strongest effect at the moment, NiCh is initially designed around this architecture.

3 iCh Algorithm Overview

This section provides a summary overview of the iCh algorithm with the goal of providing the
reader enough background in iCh to understand the modifications made in iCh to produce NiCh.
We invite readers to reference the original work for iCh for more insight into design decisions and
arunning illustrated example [4]. In keeping with LS literature convention, both iCh and NiCh are
explained in terms of threads. However, we assume that a particular thread is pinned to a core, as
this allows us to facilitate a conversation of NUMA effects.

The iCh algorithm is an extension of traditional work-stealing. The traditional work-stealing
algorithm evenly allocates the n iterations among the p threads into private deque (i.e., one deque
per thread). When a particular deque runs out of work, the thread randomly selects a deque to
steal half of the remaining iterations. Although relatively simple in design, the algorithm has the
ability to be 2-approximate [6]. On a relatively small set of shared-memory threads, the traditional
work-stealing algorithm performs well on irregular applications [9, 12]. However, a couple of im-
plementation details tend to get in the way of performance as the number of threads increases.
The first of these issues is that randomly selecting the thread to be stolen from can be expensive.
The reason for the expense is that a thread tries to steal from a thread that has no iterations left or
few remaining iterations. This means that the thief (i.e., the thread performing the stealing) will
have to try again, spin wait, or steal again soon if few iterations remain. Some works (e.g., [19])
have tried to build some structure to allow prediction or analysis on which thread should be stolen
from. However, most works have not shown much success because of overhead in pulling from a
shared data structure for the analysis or some pre-runtime analysis that is required. The second
issue is that the chunk size (i.e., the active set of iterations the thread is currently working on) from
its own queue is fixed. A tradeoff space exists in regard to chunk size. As the chunk size increases,
the less the thread has to come back to its private deque to get more iterations of work. However,
a larger chunk size leaves fewer iterations in the queue for a thief to steal. There have been many
works related to how to make the stealing process less likely to interfere in regard to locks on this
shared private queue to mitigate the issues with chunk size [12].

iCh has taken a different approach to the chunk size issue facing traditional work-stealing
algorithms. The approach used by iCh is to have a local adaptive chuck size that will be updated
based on the flow of iterations. In particular, the chunk size is made smaller for threads that are
processing faster, as the overhead of having a smaller chunk size would be less impactful. To

2Current non-peer reviewers have stated that the newer generation of chiplet-based processes has slightly reduced this
NUMA effect (https://www.anandtech.com/show/16529/amd-epyc-milan-review/4).
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describe this in more detail, we break iCh into three phases: initialization, local adaption, and
remote work-stealing.

3.1 |Initialization

iCh uses local deques for each thread denoted as g;, where i € {0,1,...,p — 1} is the thread ID
of the p threads. The local data structure is allocated using a first-touch allocation policy and is
memory aligned. The structure also contains a local counter (k;) and a variable used to calculate
chunk size (d;). The variables k; and d,, are initialized to 0 and p, respectively. With these variables,
the resulting initial chunk size is n/p? (i.e., chuck size = |q;|/d;). This size is picked to allow for
multiple steals from the other p — 1 threads. We note that the rationalization of utilizing one deque
per thread is threefold. First, a thread would have no contention with other threads unless being
stolen from. Second, more information from the data structure can be kept in higher levels of cache
without the need to write back to L3 for sharing with other threads. Third, work for a chunk is
always taken from the tail end of the deque, whereas iterations are only taken from the head end
during the remote stealing phase. This allows for reduced locking and better memory consistency.

3.2 Local Adaption

In this phase, the iCh method attempts to improve upon traditional work-stealing by locally adapt-
ing chunk size to better fit the running distribution of iterations completed across threads. In local
adaption, a thread first classifies its computational load relative to other threads as

p-1
low: k; < Z ki/p— 0, 1)
=0
p-1 p-1
normal: ij/p—ﬁ <k < ki/p+6, (2)
Jj=0 J=0
p-1
high: k; > Z ki/p+6. 3)
=0
This classification is similar to the standard range around the (u)—that is,
p=0<pu<u+é, (4)

where § is some multiple of the standard deviation (o). In particular, y = Zf;ol k;j/p, which is the
mean number of iterations complete per thread or otherwise called mean iteration throughput.

As with any distribution range around the mean, the § is important. In our case, this § attempts
to capture the essence of the variance. This variance in turn attempts to capture how dispersed the
number of floating-point operations and memory requests are from the mean. However, calculat-
ing the exact running mean and variance can be difficult. In particular, the running approximation
exists [25]:

Hivt = i+ (ki = pi)/p, (5)
ol = ol + (ki — pi)ki — pis1)s (6)

where i represents the timestep. As this approximation is too expensive, iCh estimates this value
with a fractional multiplier (€) of the running mean—that is,

p-1
§=e> kilp. (7)
j=0
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As a result, the variation or standard deviation would be a multiple of the running mean, and
this multiplier would provide a way to either tighten (i.e., make the interval smaller) or loosen
(i.e., make the interval larger). The § will also grow with iterations completed. The relationship
between ¢ and the number of iterations completed will result in iCh being more likely to adapt
the chunk size in the beginning and less likely at the end. The logic behind this decrease chance
of adapting the chunk size would fit the idea that the chunk size would not need to be updated as
often toward the end of execution when most of the information (i.e., workload) has already been
assessed. The only other parameter that needs to be considered is the user-provided parameter
€. This scaling factor (i.e., 0 < € < 1) has been shown in the past to not be very sensitive to the
input [4].

After classification into low, normal, or high, the chunk size is adapted. The parameter d; is used
to calculate the chunk size (i.e., chunk size = |q;|/d;), as follows. For a low classification, d; = d;/2,
and the chunk size increases (i.e., chunk size = |q;|/(d;/2) = 2|q;|/d;). For high classification,
d; = 2 X d;, and the chunk size decreases. The rationale for the updating d; is as follows. In the
low classification, the thread is completing fewer iterations than the mean. One reason a thread
could be completing fewer iterations is that the chunk size is too small. A second reason could be
that the thread takes more time per iteration than other threads, possibly due to dynamic voltage
and frequency scaling (DVES) variations. Based on these reasons, iCh should assign a large chunk
size to make stealing less likely and engage the thread in more work. In contrast, a high-classified
thread has completed more iteration than the mean. This thread would have more free cycles to
update chunk size or deal with stealing requests. We note that the direction in which chunk size
is updated is in opposition to the logic that one might have if optimizing to balance the average
amount of work assigned to each thread in a chunk.

3.3 Remote Work-Stealing

When the local deque runs out of work, the thread must steal from some other thread. The iCh
algorithm uses the same random stealing algorithm as other work-stealing methods to identify
the victim and steal half the remaining iterations [9, 12], namely the THE protocol. This allows
for relatively few locks, and the stolen iterations are taken from the head of the thief’s deque to
reduce interference with its current chunk and improve data locality between chunks. However,
unlike other work-stealing methods, iCh must update the parameters related to adaptive chunk
size. The iCh assumes that both sets of parameters (dnicf, kinier) and (dvictim» Kvicrim) contain
some valid information about either the workload of the iterations in the local deque or the rate in
which the thread can process (e.g., the thread is scheduled to a low-voltage core that would reduce
the speed in which computations can be executed). As such, iCh averages the information from
both the thief and the victim to update the d and k of the thief as follows:

dinief = (drnier + dvicrim)/2, 8)
kthief = (kthief + koictim)/2. ©)
The d and k for the victim remain the same. The next chunk size will be calculated using the
updated d;pjer and k;pjer in the same manner that is outlined in the local adaption phase. We note

that this is not the most elegant method for updating but can be done cost-effectively. Moreover,
the original work of iCh observed that this was better than not updating d and k.

4 NiCh Algorithm Overview

This section outlines the design and architecture of the NiCh algorithm. The NiCh algorithm is
directly based on iCh except for several modifications that aim to reduce the NUMA effect overhead.
In particular, these modifications are made with the AMD EPYC in mind, as this architecture has
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large NUMA effects and is common in high-performance computing (see Section 2 for information

on AMD Rome and Section 5 for information on AMD Milan). However, these changes could also

be made for any future chiplet-based architectures that are coming out from other vendors like

Intel. Within each phase, we provide specific guidance on why these changes were made for the

target architectures to aid changes for new chiplet-based architectures as they become available.
The changes to the iCh can be summarized as follows:

(1) Number of threads per deque (initialization). iCh utilizes one deque per thread for reasons
stated before. The chiplet structure limits the number of threads that would be accessing
the shared L3 segment and could provide a better method for sharing information. As such,
threads within a chiplet structure could share a deque. However, we note that there is some
additional overhead for this, as more locking needs to take place to ensure correctness that
the THE protocol does not address for private deques.

(2) How often chunk size is updated (local adaption). iCh updates the chunk size of a deque each
time a thread returns for more work. NiCh considers updating the chunk size less often due
to the increase in time of collecting information from all threads to update the chunk size
and due to more threads utilizing the locally shared deque.

(3) Stealing in a NUMA-aware manner (remote work-stealing). iCh randomly steals from any
other thread. NiCh utilizes a two-level stealing approach that tries to first steal from its own
chiplet region (i.e., CCD).

Details of these three changes are provided in the three phases used by NiCh.

4.1 Initialization

As in iCh, the initialization sets up deque and key parameters. The difference in NiCh is that private
deques for each thread are not utilized. A number of shared deques are set up in a NUMA-aware
manner (i.e., cores that are close share a deque). In addition to the shared deque, these threads will
also share the parameters of d; and k4, where q is the particular deque, and thus they will share the
same chunk size. The total number of iterations are evenly distributed among the deque. A shared
deque has the disadvantage of possible thread contention, but shared deques in a single NUMA
region with relatively few threads sharing would have more advantages than disadvantages. In
particular, these shared deques are designed with the following advantages in mind: shared deques
allow local threads to avoid stealing, and they can communicate some of their information into the
shared d; and k; parameters. While stealing between local threads should be fast since they are
in the same NUMA region, other overheads exist with stealing, such as possibly selecting a deque
outside of the local NUMA region and obtaining a global approximation of the mean. The number
of threads associated with a local deque (p,) is one more sensitive parameter that is added to the
algorithm (in addition to €). However, p, should be on the order with the number of threads in a
NUMA region.

AMD Milan Target. For AMD Milan, the target is to allow a shared deque between every set
of four cores. This results in two shared deques per CCX and CCD, and four shared deques per
quadrant. Stealing between the two shared deques on a CCD is fast because all eight cores in a CCX
have near-uniform access to a shared pool of L3 cache. Stealing between the queues on the same
quadrant across CCDs would be significantly slower because a request must be made from one
CCD across the data fabric, through the IO die, and to the other CCD on that quadrant. Then, the
requested data must make the trip back to the requesting CCD. Requesting anywhere else would
be even slower, as there is a significant physical distance that must be traveled through the IO die
to get to other quadrants.
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1 function next:

2 label retry:

3 if try_local_work()—>start ,end:
4 return start ,end

5 if stealing: //check local thread stealing
6 goto retry

7 else:

8 stealing = true

9 do_steal ()

10 stealing = false

11 goto retry

12 function try_local_work:

13 chunksize = get_chunk_size

14 //remove from the tail end

15 lock(local)

16 start = local.start

17 local.start = local.start + chunksize
18 end = local.start

19 local .update_count++

20 local.icount += chunksize

21 unlock (local)

22 if local.update_count > KUpdate:
23 local_adaption ()

24 function local_adaption:

25 sum = sum_all_icount ()

26 sum /= local.nlocals

27 alpha = sum x local.epsilon

28 if local.icount < sum-alpha:

29 local . ki << 2

30 elif local.icount > sum+alpha:
31 local . ki >> 2

32 local .update_count = 0

Listing 2. Pseudocode for Nich local adaption phase. The next function tries to retrieve the next chunk
of work by returning the start and end of the chunk. The try_local_work function calculates the current
chunksize and tries to get the next chunk of work. The local_adaption function updates the chunksize.
Key user parameters are bolded (e.g., KUpdate and epsilon).

4.2 Local Adaption

The algorithm for the iteration and local adaption is provided in Listing 2. The same general selec-
tion of cases (i.e., low, normal, and high) and change to chunk size are implemented in NiCh as in
iCh (lines 24-32). Originally in iCh, the chunk size is updated after every chunk of iterations that
is completed (lines 22 and 23, i.e., local.update_count = @ for iCh). However, the question of
how often the chunk size should be updated arises due to two factors. The first of these factors is
the overhead of producing the approximation of a mean. The shared queues reduce the number of
k4 that need to be globally summed, but in most cases, the calculation will be very expensive due
to NUMA effects. The second of these factors is that the chunk size could “ping-pong” between
completed chunks as it becomes biased to the last thread that was completed. For example, con-
sider the case of a shared queue with two threads. One thread could be very fast due to workload
or frequency, and the other thread could be very slow. As the fast thread gets done, it will keep
updating the shared chunk size into smaller pieces. However, when the slow thread is done, it will
most likely have to take a small chunk even though it is not the best choice. This introduces one
more sensitivity parameter, KUpdate—a parameter indicating the number of times the local queue
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chunk size should be used before updating. Additionally, we note that locks (lines 15 and 21) are
required in NiCh as we share the deque but not required in iCh.

AMD Milan Target. Due to the target thread per queue count of four, the parameter KUpdate
is also set to four. In essence, if all four threads in a queue complete their work, the last one to
complete will update the d;.

1 function do_steal:

2 victim = pick_victim () //in a NUMA-aware manner
3 size = (victim.end — victim.start) << 2

4 lock (victim)

5 victim_list = steal_from_head(victim , size)

6 unlock (victim)

7 lock(local)

8 add_to_head(local , victim_list)

9 local.icount = (local.icount + victim.icount) << 2
10 local . ki = (local.ki + victim.ki) << 2

11 unlock(local)

Listing 3. Pseudocode for the Nich remote work-stealing phase. The pick_victim function will randomly
pick victims in a hierarchy-based manner where the hierarchy is defined by the NUMA regions. In
particular, it tries to steal from close NUMA regions first before moving to other NUMA regions. The
steal_from_head function removes the iterations from the victim’s deque from the head.

4.3 Remote Work-Stealing

The algorithm utilized for remote work-stealing is provided in Listing 3. In iCh, a victim is selected
at random among all threads (line 2). The method is modified to use hierarchical stealing where the
hierarchy is constructed in a NUMA-aware manner (i.e., levels are constructed based on NUMA
distance) for NiCh. The concept of utilizing hierarchical stealing for work-stealing is not new [9].
However, the use of it for works stealing LS in the past has not had much of an impact on a single
processor due to the flat cache access structure [9]. The values of d and k are updated in the same
manner as with iCh with the thief averaging the value from the victim (lines 9 and 10). Additionally,
we note that in comparing the algorithm for iCh and NiCh, more locks are needed to be in place
(e.g., line 7) because of the shared deques that are used.

AMD Milan Target. For targeting AMD Milan, the following local is utilized for hierarchical
stealing: because the two queues per CCX share quick access to the same L3 when a queue first
attempts a steal, it will try to steal from the other queue on the same CCD for a low-latency steal. If
this fails, it will randomly attempt to steal from queues across the processor without discrimination
until it is successful. Upon a successful steal, the state is reset and a further steal would attempt to
steal from the other queue on the same CCD, repeating this process. Therefore, only a two-level
hierarchy is utilized for picking the victim (line 2).

5 Testing Setup

In this section, we lay out our testing setup.

5.1 Computer Architecture

The original work of iCh is evaluated on two Intel Xeon E5-2695 v3 (Haswell) processors each with
16 cores and 128 GB of DDR4-2133 [4]. Although this system demonstrates NUMA effects, they are
relatively mild compared to some of the architectures of interest in high-performance computing.
As such, we test on three systems listed in the following with stronger NUMA effects.
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AMD Milan. The first system contains the third-generation AMD EPYC 7713 (Milan), which we
denote as AMD in Section 6. Figure 1(b) provides the layout of the second-generation AMD Rome
as an example. The system is located at the Alabama Supercomputing Authority in the Dense
Memory Cluster.® These chips have a chiplet construction in the following manner. The base unit
is a CCX, and each CCX contains eight cores and shares an L3 cache. A CCD contains one cCcx A
A bi-directional ring bus connects the CCDs, and the bus allows up to 32 bytes of data per cycle
when receiving or 16 bytes of data per cycle when sending.’ The L3 cache is not shared between
CCXs and is only shared within a CCX.® As for AMD Rome, if a core needed to access a cache line
in the shared state that resided in a different CCX, the core would instead request the data from
main memory [24]. It is safe to assume that this behavior continues for Milan. This indicates that
inter-CCX communication is primarily for cache coherence, but since the ring bus also carries data
to and from main memory, there is the potential for contention over the bus. As this is the newest
and most extreme in regard to NUMA effects, it is our primary architecture when tuning NiCh
originally. For our particular processor, the base clock speed is 2.0 GHz with a max clock speed of
3.675 GHz. This large difference in clock speed is one of the issues that a workload scheduler must
deal with, as different threads may be running at different rates. Although the system supports up
to 128 threads, we do not test above 64, as results became incomprehensible for all runtimes. Part
of this may be due to the fact that inter-CCX communication on socket 1 has twice the latency
of inter-CCX communication on socket 0 [7]. Therefore, we restrict testing to socket 0 only. The
total L3 size is 256 MB. All codes were compiled with GCC 8.2.0.

Regarding the extreme NUMA effects between CCDs, we note that besides the large physical
distance that must be traveled, one of the primary reasons that inter-CCD communication is slow
is that AMD uses a central hub for all communication. In essence, the CCDs can only communicate
via routing through the IO die [24]. The newer Intel Sapphire Rapids systems opt instead to use an
all-to-all bus for inter-die communication [20]. Even though being all-to-all can be advantageous
for inter-die communication, it fundamentally limits how many tiles can be glued together and as
such contributes to the peak core count of 56 cores. This is in contrast to the centralized approach
of Milan and other AMD architectures, which leads to easier scaling of processor dies at the cost
of slower and higher latency inter-die communication.

Intel KNL.. The Intel Xeon Phi 7250 (KNL) has a unique architecture that was popular for a
short time in high-performance computing. The KNL has 68 cores with a base frequency of 1.4
GHz. Each core can support up to four hardware threads (although all four threads are rarely used
in practice). It has a private L1 and a 1-MB L2 per two-core tile. In place of a standard L3, the KNL
has a 16-GB MCDRAM that can be set up in several different modes. The most common mode
for the MCDRAM is a direct-mapped L3, which is the mode used in this work. Despite waning
interests in the architecture and removal of it from Intel’s line, the unique architecture is ideal for
testing such a runtime scheduler. The reason for this is because of the large number of cores that
communicate with the MCDRAM in a 2D mesh interconnect, which results in a NUMA effect based
on location in the 2D mesh. In addition, the MCDRAM is separated into quadrants, meaning that
certain groups of cores can access particular memory regions in MCDRAM faster than other cores
based on which MCDRAM quadrant a core lies within. All codes on this system were compiled
with GCC 7.3.0. This system was utilized on Stampede2 at TACC [3].

Shttps://www.asc.edu/service-area/high-performance-computing

“The fact that a CCD only has one CCX differs from the older Rome architecture that had two CCXs per CCD.
SInformation obtained via correspondence with AMD.

SThis fact about the shared L3 is normally glossed over in the marketing and technological manuals for this processor,
although the next generation is marketing their stacked cache for L3.
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Intel Skylake. The last system considered is an Intel Xeon Platinum 8160 (SKX). This system
does not have as interesting a design as the AMD and KNL, but it is a newer Intel chip than used
by the original iCh work with more cores and different architecture. This system has 48 cores
in two sockets (24 cores/socket), and each core can support up to two hardware threads. The
clock rate is 2.1 GHz but can be adjusted to 1.4 to 3.7 GHz depending on the instruction set and
number of active cores. Therefore, testing on this system while utilizing more than one hardware
thread would provide various computing power that would be ideal for testing various scheduling
methods. Each core has a private L1, a private 1-MB L2, and a shared 33-MB L3 per socket. All codes
on this system were compiled with GCC 7.3.0. This system was utilized on Stampede2 at TACC [3].

5.2 Tested Runtimes

Both iCh and NiCh are implemented inside of GNU libgomp under the GPL v3 License. The choice
of compilers outlined in the previous section is done to align the closest with the original iCh work
that was available on the system through the module system. OpenMP threads are bound to cores
with OMP_PROC_BIND=true and OMP_PLACES=cores. The OpenMP schedules of static, dynamic,
and guided are tested against iCh and NiCh. Chuck size parameters for dynamic and guided include
1, 2, and 3, and only the best result is reported in Section 6. We note that the original work of iCh
compared against a generic work-stealing algorithm, OpenMP’s taskloop, and BinLPT, in addition
to dynamic and guided. We chose to leave off the first three, as only generic stealing did well overall,
and iCh normally outperformed generic work-stealing. Moreover, we added static (i.e., default and
cyclic scheduling with parameter 1), as this is more likely to be used by an application user [19]
and has surprising results for our test systems.

5.3 Applications

We consider seven applications for testing iCh, NiCh, and the other OpenMP runtimes. Four of
these applications are used in the original work for iCh [4], although the sizes and parameters
need to be adjusted to compensate for our current larger test systems. The applications are as
follows, and we provide a table of estimated work per iteration for each application in Table 1.
We note that since the type of work done for each application varies (e.g., memory access, integer
operations, floating-point operations), comparison of the exact numbers between applications is
difficult, but the numbers do provide some insight into the application’s irregularity. More details
on how these are computed per application are given in the following.

Synthetic. The first application is a synthetic application that was first presented in the work for
the OpenMP runtime BinLPT [22]. This application is also presented in the original work of iCh [4],
where iCh is tested against BinLPT. We do not provide timings for BinLPT, as iCh has already been
proven to outperform BinLPT [4], but the synthetic application is well fitted for testing workloads
with different distributions. We consider three different workloads. These workloads are Uniform
(Syn Uni), exponential increase (Syn Exp Inc),and exponential decrease (Syn Exp Dec). Workload
calculations provided in Table 1 count the number of integer operations that are done.

miniTri. This application (Tr1i) is part of the Exascale Computing Project proxy application in
Mantevo [10, 21]. The goal of the application is to use triangle enumeration with a calculation of
specific vertex and edge properties. As such, the application is a proxy app for standard graph-
based data analytics such as Graph 500. The input of the proxy app is hugetrace-00000, which
is a DIMACS10 [17] undirected graph with 4,588,484 vertices and 13,758,266 edges. The workload
calculations provide in Table 1 are based on the number of non-zeros in the triangular enumeration
matrix form in the first step of the algorithm.
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Table 1. Estimate Work Per Iteration of Applications

Application | Mean | Variance | Range
Syn Uni 2E+0 0E+0 0E+0
Syn Exp Inc | 1E+5 9.9E+9 1E+6
Syn Exp Dec | 1E+5 9.9E+9 1E+6
Tri 6.3E+0 5.9E+0 8.4E+1
BFS Uni 4.8E+1 8.2E+1 1.1E+2
BFS Pow 8.3E+1 2.2E+4 1.2E+2
Kmeans 2.6E+2 1.1E+6 1.1E+6
LavaMD 8.8E+8 | 7.8E+17 | 1.9E+5
Path 6E+0 2E+-8 1E+0
LUD 5.4E+4 2.4E+7 1.6E+4

Breadth-First Search. The breadth-first search (BFS) in the Rondinia [5] benchmark suite is
used. The Rodinia benchmark suite has several benchmarks for large heterogeneous systems. Two
different distributions were utilized to generate graphs for the BFS utilizing a modified version
of the graph generator that comes with the benchmark. The first distribution utilizes nodes that
have a uniform distribution of the number of neighbors (BFS Uni), and this is the standard distri-
bution generated for this benchmark. The second distribution utilizes the power-law distribution
to generate a scale-free network (BFS Pow), and this distribution was added to the modified graph
generator. Scale-free networks are those where the fraction of P(k) nodes in the network having
k connections is P(k) ~ k™" , where y = 2.3 in our tests. These networks are common in areas
such as social networks, computer networks, and protein interactions. Moreover, BFS tends to be
a fundamental kernel in many graph analytic applications. For both workloads, approximately 16
million vertices are generated. We note that this can result in significantly more work because of
the number of edges for the graph generated with the power distribution. The workload calcula-
tions in Table 1 are based on the number of edges that are generated for each node.

K-Means. The Kmeans (Kmeans) benchmark from Rodinia [5] is used because it is a common
machine learning algorithm. The original iCh work utilizes the KDD Cups dataset related to net-
work packets. However, a larger dataset is needed for this scaling study. For this study, a set of 1
million data points with 128 clusters is generated from the data generator provided by the bench-
mark. This benchmark is highly irregular in that the workload distribution in the innermost loop
changes per outermost loop iteration. The workload calculations in Table 1 are based on the num-
ber of floating-point distances calculated, compared, or summed.

LavaMD.. LavaMD (LavaMD) is a computational fluid dynamics (CFD) code from the Rodinia [5]
benchmark suite. This code utilizes an N-Body simulation to simulate the interactions of solidifi-
cation of molten tantalum and quenched uranium. We use an input size of 16 X 16 X 16 to construct
the domain. Force calculations are done for particulars within the box at each step. Calculations
done between boxes are based on a cut-off ratio of about the size of a box. Therefore, interaction
calculations are only done with neighboring boxes. The workload calculations in Table 1 are based
on the number of elements computed. The high variance comes from the difference in the number
of elements computed in an interior block with many neighbors and an edge or corner block with
few neighbors.

Pathfinder. Pathfinder (Path) is a graph transversal that utilizes a dynamic programming ap-
proach to find a path on a 2D grid with the smallest total weights. This benchmark is again from
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the Rodinia benchmark suite. The Path benchmark takes in the parameters of the width for the
2D grid and the number of steps for dynamic programming. We use a grid width of 100 million
and a step of 10, which tends to be the normal parameters for larger systems. This program is
of particular interest because it is not embarrassingly parallel out of the box (unlike Kmeans) due
to the dynamic programming elements. However, the work tends to be perfectly balanced as you
walk the grid, as seen in the work calculation of Table 1 that considers the work done per grid
element.

LUD.. Dense LU factorization (LUD) is highly optimized, as it is a key dense linear algebra kernel.
Again, this benchmark is taken from the Rodinia benchmark suite. The normal algorithm for this
tiles the matrix and computes the dense factorization of the diagonal block and sends updates
to backsolve the off-diagonal blocks. While the work per block tends to be uniform in the dense
case, the number of blocks updated changes for every outer iteration. This benchmark is chosen
because even though it may be grouped into the category of regular kernels, the imbalance can
still be ideal to show off the flexibility of iCh and NiCh. To demonstrate the irregularity of work,
the work calculation in Table 1 is the number of blocks available to schedule instead of the work
per block.

6 Results

In this section, we present the empirical testing of iCh and NiCh as reported as speedup compared
to the other standard OpenMP LS methods for our test applications. Here, the speedup is defined as

time(app, sys, static, 2)
time(app, sys, sched, p)’

speedup(app, sys, sched, p) = (10)
where time(app, sys, sched, p) is the time for the application (app) to run on the system (sys) using
the LS method (sched) with p threads. The time that is reported is the best time for the sched over
all parameters tried. We use speedup over two threads, as some of the schedulers performed quite
oddly under one thread, and thus we consider the results with one thread to be unusable. We define
the base of comparison to be the best static method, as static is the default method in OpenMP.

Figure 2 provides the speedup figures for the Synthetic and Tri applications. Each plot provides
the speedup for the application on the three different systems. From left to right, the systems
are KNL, SKX, and AMD. The three Synthetic applications give a good sense of how well the
scheduling methods work on well-known discrete distributions of workload. We note that the
goal of both iCh and NiCh is really for applications that have irregular distributions of workload.
The uniform distribution (Syn Uni) provides a good indicator of any scheduling overheads that
might exist, and we would expect static scheduling to be ideal for this case. For this distribution, we
observe that all scheduling methods do about equally well. The only points of diversion are at the
ends when the number of threads is either greater than the number of cores (i.e., KNL and SKX) or
full utilization of the cores (i.e., AMD). In these endpoints, NiCh is able to slightly outperform the
others. In contrast, the Syn Exp Inc application demonstrates a case where NiCh does significantly
worse than all LS methods. However, the less intelligent method of iCh does better than NiCh when
the number of threads is equal to the number of cores for KNL and SKX. This trend continues into
the Syn Exp Dec application with the addition that guided also does slightly worse than NiCh.
In the previous iCh work [4], iCh has about the same trend for the Synthetic application on the
Intel Haswell system.

In contrast to the Synthetic application that has a very well defined distribution, the Tri
application in Figure 2(d) has a very irregular distribution of workload. The LS for this application
is known to be difficult to scale. We observe that both iCh and NiCh do equally well on this
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Fig. 2. Speedup for the Synthetic and Tri applications. Most LS methods do about the same on the
Synthetic application; however, NiCh has less than desirable performance that matches guided for more
complex distributions. The Tri application demonstrates where dynamic does poorly.

application. Additionally, we start to see a case where dynamic (for KNL, SKX, and SKX) and
static (for SKX and AMD) are slightly worse.

Figure 3 presents the speedup performance on the BFS application with graphs generated with
the number of edges from two distributions (i.e., BFS Uni and BFS Pow). This application scaled
very well on KNL for iCh, NiCh, and guided. For BFS Uni, the off graph values for KNL are
(guided {63.3, 102.2, 70.1}), (iCh {60.5, 91.3, 61.1}), and (NiCh {61.5, 92.7, 71.2}). Therefore, guided,
iCh, and NiCh do about the same in terms of performance on KNL (with NiCh doing slightly
worse than the other two). This is not the same story for SKX and AMD. For these two systems,
NiCh does slightly better on SKX and guided does slightly better on AMD. Both NiCh and guided
do better than iCh at the endpoint. When the distribution of edges becomes less uniform (BFS
Pow), the trend with guided, iCh, and NiCh is about the same except that NiCh does not do as
well on SKX. The off graph KNL values for BFS Pow are (guided {77.9, 132.9, 93.8}), (iCh {74.6,
117.2, 84.5}), and (NiCh {75.24, 117.2, 88.7}). The reason that static and dynamic scheduling do so
poorly is because of KNL’s architecture. The lack of a low-latency L3 cache and the poor single-
core performance mean that schedulers with a lot of inter-thread communication (like dynamic)
or schedulers that result in low cache coherence (like static) perform very poorly on this sys-
tem. Because NiCh does so well on KNL, we are therefore able to deduce that it provides bet-
ter cache coherence and less inter-thread communication than static or dynamic at the tested
chunk sizes.
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Fig. 3. Speedup for the BFS application. We note that for SKX and AMD, dynamic may have a speedup < 1.
For BFS, NiCh allows scaling past the point of one thread per core that limits iCh on SKX and AMD.
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Fig. 4. Speedup for Kmeans and LavaMD applications. For Kmeans, NiCh allows better scaling than iCh past
the point of one thread per core. However, LavaMD does not have the same impact, and simpler methods like
static and iCh are better than NiCh.

The speedup results for Kmeans and LavaMD are presented in Figure 4. For Kmeans (see
Figure 4(a)), we notice very different performance scaling among KNL, SKX, and AMD. Although
most methods (besides dynamic) scale well on KNL and AMD, SKX does not scale well and guided
does not scale past 16 threads. iCh and NiCh are able to at least continue to maintain their speedup
for thread counts over 16 on SKX. We notice a slightly similar trend for LavaMD in which the ap-
plication does not scale as well on SKX. However, in the case of LavaMD, all LS methods do about
equally well, with iCh being slightly better at the endpoint.

Figure 5 presents the speedups for the Path and LUD applications. The Path application scales
well on KNL with the speedup going off the graph. The values off the graph are (guided {80.9,
126.4}), (iCh {80.6, 121.5}), and (NiCh {78.5, 116.9}). We notice that guided, iCh, and NiCh are the
clear choices for Path. For the LUD application, again the top three are guided, iCh, and NiCh. This
performance of LUD demonstrates our conjecture that even LUD (which may be considered a regular
application by many) can still be handled by iCh and NiCh.

6.1 Discussion

Overall, we can conclude that guided, iCh, and NiCh are all likely good choices. The original work
for iCh [4] demonstrated that iCh may be a better choice than guided because of applications such
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Fig. 5. Speedup for Path and LUD applications. For Path, NiCh is normally better than iCh. For LUD, the more
regular nature of the application generally allows iCh to do better than NiCh for KNL.

as Syn Exp Dec. In these cases, guided does not scale well, but iCh seems not to be impacted
nearly as significantly. However, this research poses the following question: is NiCh necessary for
modern systems? We believe the answer to be maybe. For systems like KNL and SKX, iCh does as
well as NiCh except in several cases where the number of threads is greater than the number of
cores (e.g., BFS Uni, Kmeans, and Path). The other main place where iCh does not seem to scale
as well is when fully utilizing AMD, which is arguably the system architecture with the highest
NUMA impact. However, NiCh does seem to also be negatively impacted by some distributions
like guided (e.g., Syn Exp Dec). Therefore, the general recommendation from our observations is
to continue to utilize iCh in cases where we do not have a good understanding of the workload
distribution and not trying to fully utilize the whole processor. Despite this recommendation, the
merit of NiCh can be seen in AMD with better on more extreme NUMA cases and when the thread
count is higher than the number of cores. From this observation, we project that the merit of NiCh
will improve as more architectures follow this design direction.

In the short term, the question arises if any of the adaptations of NiCh (e.g., variable chunk size,
NUMA located deques, and NUMA distance-based stealing) would benefit other LS methods and
other architectures. Our primary test system was AMD Milan due to its chiplet structure; however,
there are many other systems that are following this pattern, as we pointed out previously. We
believe that these systems, along with upcoming heterogeneous systems, will benefit the most. As
such, we plan to continue to test NiCh on emerging systems, whereas testing the integration of
the exact adaptation will depend on the method and architecture. An example of this is the shared
NUMA located deques. Although they work well for our system and we show in Section 7.2 the
sensitively to the number of threads sharing, more classical task-based work-stealing has shown
that individual deques may still be ideal for the NUMA environment if implemented correctly [8]
(i.e., which includes random stealing with NUMA bias). We do believe that there may be room to
reconsider common traditional LS methods like factoring and trapezoid that have fallen from favor
due to overheads with distributed queues and even factoring ratios that are adaptive on runtime
information.

7 Sensitivity

The use of NiCh introduces three user parameters. These parameters are as follows. The parameter
€ is used as a percentage of the range around the mean for categorizing low, normal, and high. The
parameter p, determines the number of threads per shared deque. Last, the parameter KUpdate
determines the number of chunks to be completed before the chunk size is updated.
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Fig. 6. Deque sensitivity (pg). In most cases, using four threads per queue is better. Only in a couple of cases
(i.e., the negative values) does a different number of threads per queue provide better performance.

7.1 Interval around the Mean ¢

This parameter is also shared with iCh, and a detailed study of the sensitivity is provided in the
original work [4], where we observe that there is little sensitivity of € when € is selected from the
set of {.25, .33, .5}. We see in this study the same pattern that e did not have a large impact for both
iCh and NiCh when selected from the same set of values. Therefore, we continue to recommend
simply utilizing € = .33.

7.2 Deque Size p,

To gauge the impact of p,, we consider how adjusting the number of threads per deque would
affect the performance of NiCh on Milan. The logic of why we selected four threads per queue is
stated in the algorithm. Therefore, we will consider the base performance to be the implementation
that utilizes four cores per queue (i.e., 4;). We define the metric for comparison as

time(app, pq, p) — time(app, 44, p) y

time(app, 44, p)
where time(app, pq, p) is the time for running with NiCh on the benchmark application (app) paral-
lelized with p threads and utilizing a shared queue of size p,. Therefore, percentages greater than
zero are times that are worse, and percentages less than zero are times that are better. Figure 6
presents the sensitivity of the deque for our benchmark applications in comparing the base size
of four threads per deque to {14,24,8,}. We note that we do not include LUD in this comparison
because runtimes for this benchmark are very large and different deque sizes can make this too
large to complete in a reasonable amount of time. Overall, the trend demonstrates that deque sizes
other than 4, normally decrease the performance. In most cases, this decrease is only small and
on the order of the noise (e.g., Syn Uni, Tri, and Kmeans). However, there are a couple of bench-
marks whose performance is greatly improved by the selection of the queue size (e.g., Syn Exp
Dec, Syn Exp Inc, BFS Uni, BFS Pow, and Path). There exist only a couple of places where a
different deque size resulted in better performance. In these cases, it is normally the reduction of
two threads per deque that seems to increase performance marginally (e.g., Syn Exp Dec, Syn Exp
Inc, and LavaMD).

pq_sensitivity(app, pqy, p) = 100, (11)

7.3 Delay in Update KUpdate

Next, we study the sensitivity related to how often the chunk size should be updated. In NiCh, we
suggest that the chunk size be updated after four accesses to the shared queue (K4), unlike iCh
which updates every access of the queue. This suggestion is due to the overhead of utilizing more
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Fig. 7. Update sensitivity (KUpdate). In only a very small number of cases (i.e., negative values for BFS Pow),
updating the chunk size less often than after four accesses (i.e., K4) improves performance. In most cases,
either the number does not matter (e.g., Syn Exp Dec or low thread counts for Kmeans) or K4 is ideal.

threads per queue and not wanting the pace of one thread to dominate the changes to the shared
chunk size. We define the sensitivity in a similar manner as with queue size—that is,

time(app, K, p) — time(app, K4,p)
time(app, K4, p)

KUpdate_sensitivity(app, K, p) = X 100, (12)

where time(app, K, p) is the time for running with NiCh on the benchmark (app) parallized with p
and utilizing K accesses to the shared queue before chunks size update. Again, a percentage greater
than zero is the times when the particular mixture is worse, and a percentage less than zero is the
times when the particular mixture is better. For our experiments, we fix p, = 4 and only consider
using more than eight threads (as fewer than eight threads would not really have much of an
impact). Figure 7 presents the KUpdate_sensitivity for the benchmarks of Syn Exp Dec, BFS Pow,
and Kmeans. We only present the data for these three because they are the benchmarks where NiCh
is the most interesting. For Syn Exp Dec, we observe that the choice of update does not matter.
Similarly, Kmeans is not very sensitive to the update choice, although K4 is overall better than the
other options. For BFS Pow, the choice of the update matters with K1 and K2 being up to ~37%
and ~11% worse. The only case where a different choice is significantly better (i.e., >5%) is on BFS
Pow at 64 cores where K8 is ~8% better.

7.4 Number of Updates and Sensitivity to DVFS

To better understand the irregularity and how that impacts the adaptation of chunk size, we con-
sider the number of times the chunk size is updated for each application on AMD. Table 2 provides
the mean, variance, and range for the number of times the chunk size is updated across all shared
deques. We provide the values for when the frequency is fixed to 2.0 GHz with cpupower (i.e.,
Fixed) and running with standard dynamic frequency scaling. We provide this number for both
32 cores and 64 cores. We notice that less irregular applications (e.g., Syn Uni) have much fewer
updates than more irregular applications (e.g., Tri). However, this observation does not hold for all
application and thread counts. An example of this inconsistency is Path, which ends up being very
regular (see Table 1) but has as many updates to chunk size as Kmeans on 64 cores. We also notice,
even though this is not reflected in the table, that a higher choice of € results in fewer chunk size
updates. This is expected behavior, as a higher e implies that a greater deviation from the mean is
necessary before a chunk size update occurs.
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Table 2. Number of Updates with Fixed (Fixed) Frequency and Dynamic Frequency Scaling

32 Cores 64 Cores
Application Mean | Variance | Range | Mean | Variance | Range
Syn Uni Fixed 0.0E+00 | 0.0E+00 0.0E+00 | 5.0E-01 | 2.7E-01 1.0E+00
Syn Uni 8.8E-01 | 1.3E-01 1.0E+00 | 8.8E-01 | 3.8E-01 2.0E+00
Syn Exp Inc Fixed | 3.1E+01 | 8.8E+02 5.8E+01 | 2.7E+01 | 7.7E+02 5.8E+01
Syn Exp Inc 3.1E+01 | 8.3E+02 5.5E+01 | 2.8E+01 | 7.9E+02 5.9E+01
Syn Exp Dec Fixed | 3.1E+01 | 9.3E+02 6.1E+01 | 3.1E+01 | 8.3E+02 6.3E+01
Syn Exp Dec 3.8E+01 | 8.7E+02 6.1E+01 | 3.1E+01 | 8.2E+02 5.9E+01
Tri Fixed 7.0E+01 | 7.4E+01 2.8E+01 | 8.5E+01 | 4.5E+03 2.3E+02
Tri 7.0E+01 | 7.4E+01 2.8E+01 | 8.5E+01 | 4.5E+03 2.3E+02
BFS Uni Fixed 2.4E+01 | 5.7E+02 5.4E+01 | 1.5E+02 | 1.9E+04 4.1E+02
BFS Uni 2.4E+01 | 5.7E+02 5.4E+01 | 1.5E+02 | 1.9E+04 4.1E+02
BFS Pow Fixed 1.4E+01 | 8.6E+01 2.4E+01 | 1.6E+02 | 2.2E+04 3.7E+02
BFS Pow 1.4E+01 | 8.6E+01 2.4E+01 | 1.6E+02 | 2.2E+04 3.7E+02
Kmeans Fixed 2.7E+01 | 1.1E+03 8.9E+01 | 2.1E+01 | 9.9E+02 1.1E+02
Kmeans 2.7E+01 | 1.1E+03 8.9E+01 | 2.1E+01 | 9.9E+02 1.1E+02
LavaMD Fixed 1.6E+00 | 1.2E+01 1.0E+01 | 6.4E+00 | 2.6E+02 4.8E+01
LavaMD 1.6E+00 | 1.2E+01 1.0E+01 | 6.4E+00 | 2.6E+02 4.8E+01
Path Fixed 3.3E+00 | 8.5E+00 8.0E+00 | 3.4E+01 | 2.9E+03 2.2E+02
Path 3.3E+00 | 8.5E+00 8.0E+00 | 3.4E+01 | 2.9E+03 2.2E+02
LUD Fixed 3.8E+02 | 7.1E+04 7.7E+02 | 5.1E+02 | 2.7E+05 1.7E+03
LUD 3.8E+02 | 7.1E+04 7.7E+02 | 5.1E+02 | 2.7E+05 1.7E+03

In terms of fixing the frequency, we notice that the performance scaling is about the same and
therefore we do not include the raw scaling study. A more detailed way of studying the effects is
based on the changes in the number of updates. Ideally, we would not want the number of updates
to increase dramatically with the introduction of a dynamic frequency, as this would increase
overhead. At the same time, we would want to see a small number of changes to compensate for
the dynamic frequency. What we observe is that the number of updates is about the same. There is
a very small change in the mean (i.e., <1%). Normally, this change is a small increase in the number
of updates for the dynamic case (i.e., Syn Uni).

8 Related Work

There have been numerous LS methods throughout the years proposed because of the importance
of finding one that works on a wide range of applications with little to no user input. NiCh sits at
the intersection of three design techniques: work-stealing, non-fixed chunk size, and NUMA-aware
methods.

In regard to work-stealing, one of the most popular work-stealing loop schedulers is imple-
mented in Cilk [12]. Both iCh and NiCh use the THE protocol from Cilk-5, which allows for lock-
less work-stealing by observing if a queue has been modified mid-steal and rolling back changes
without corrupting data. Cilk uses task-based scheduling, which is common among work-stealing
schedulers. For example, the NET Task Parallel Library (TPL) applies a similar approach to par-
allelism [18]. In regard to non-fixed chunk size, most work fits into two categories. The first is
simple decreasing methods, such as guided, factoring [1, 13], and trapezoidal [23], that are not
really learned from the input but are generic enough that they work with most inputs. These have
trailed off in recent years, as guided has become the de facto standard. The second is those that base
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their chunk size on some pre-runtime analysis of the code and workload. This category has been
more recently studied as the penalties for imbalance are higher due to increasing core frequency
relative to the cost of memory miss penalties. Recent work related to this includes BinLPT [22] and
COWS [19]. BinLPT takes a direct approach to analyzing sample inputs and abstracting a schedule
of chunk size. This works very well on simulation data where the sample can abstracted out in a
meaningful way from the input but fails on more complex data inputs [4]. However, COWS uses
a more complex method that analyzes the code at compile time and uses dynamic information at
runtime to modify the method. This dynamic information is the number of iterations remaining
that is stored in a very cache-friendly data structure. Although COWS does well on some appli-
cations, it does not do well on all their benchmarks, and in particular, they conclude that “cyclic”
(i.e., static with a chunk size of 1, which is also tested in this work) is the best method overall.

There has been a lot of work related to NUMA-aware methods for particular applications [11]
and with complex runtimes [2, 12]. However, there have been few that have tried to implement
NUMA-aware methods into simple LS like OpenMP. Kappi [9] explored the concept of NUMA-
aware thread stealing more than two decades ago in a very primitive way (i.e., a hierarchy stealing
of those within the same socket and those across sockets). The result of this work inspired NiCh
stealing even though Kappi’s improvements were only marginal due to the architectures of the
time.

9 Conclusion

In this work, we proposed the question of if the NUMA effects of more modern shared memory
processors require a new NUMA-aware approach to LS. We constructed a new NUMA-aware LS
method (NiCh) based on iCh, which is an adaptive chunk size LS method that has been demon-
strated to provide near-optimal performance with little user input and tuning. We tested NiCh
against iCh and other standard OpenMP LS methods on three different systems. We conclude that
NiCh does have merit for systems with more extreme NUMA effects if the number of threads uti-
lized is close to or over the number of cores. However, NiCh comes with the negative impact of not
being as universally good as iCh (e.g., the performance on the Syn Exp Dec application) and not
being as idiot-proof (i.e., it requires addition sensitivity parameters that are most likely hardware.
although not application, dependent).
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