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Distributed Optimal Time-Varying Resource
Allocation for Networked High-Order Systems

Yong Ding “, Wei Ren

Abstract—This article investigates the optimal dis-
tributed time-varying resource allocation problem for net-
worked high-order systems with time-varying quadratic
cost functions. Due to the coexistence of challenges
caused by nonidentical Hessian matrices and more com-
plicated agents’ dynamics, the extension from existing re-
lated results on single-integrator agents is nontrivial. First,
a centralized algorithm is proposed to address the optimal
time-varying resource allocation problem for high-order-
integrator agents. Then, based on the centralized algorithm,
two distributed algorithms are designed to achieve the ex-
act optimum tracking. The main difference between the
two distributed algorithms is whether a virtual system is
required to be constructed for each agent, which results
in a tradeoff between economical efficiency and favorable
applicability to privacy-sensitive applications during imple-
mentations. Then, by using the estimation-tracking method,
these two distributed algorithms are applied to solve the
resource allocation problem for agents with high-order dy-
namics. Finally, examples are provided to illustrate the ef-
fectiveness of the proposed algorithms.

Index Terms—Continuous-time optimization, distributed
time-varying resource allocation, high-order systems.

[. INTRODUCTION

N THE optimal resource allocation problem, a certain
I amount of resource is distributed among a group of agents
while minimizing the sum of all the agents’ local cost functions.
This problem can be found in various fields of research includ-
ing power systems [1], [2], distributed computer systems [3],
sensor networks [4], robot networks [5], and economic sys-
tems [6]. Different from optimal consensus problems (see, for
example, [7]), where each agent owns a local cost function
depending on a common decision variable, the agents own
their own local decision variables in the resource allocation
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problem. Centralized algorithms have been proposed to solve
the resource allocation problem, which requires a central unit
connected to all the agents. It is generally acknowledged that
such a centralized structure may not be suitable or effective in
large-scale systems with numerous agents. Recently, anumber of
distributed algorithms (see, for example, [2], [8], [9], [10], [11],
[12], [13], [14]) have been developed to address the optimal
resource allocation problem by using local information and
communication.

The aforementioned distributed approaches address the prob-
lem with time-invariant cost functions and a fixed amount of
resource to be distributed. In practical applications, however, the
cost functions and/or the amount of resource to be distributed
might be time varying, and hence the optimal solutions are trajec-
tories changing over time instead of fixed points. For example,
in the economic dispatch problem, a group of power generators
aims to meet a power demand and minimize the total generation
cost in the meantime. The power demand treated as resources
and the generation costs will undoubtedly change over time
in a day owing to the unpredictability of residences’ activities
and the fluctuated prices and availability of energy sources.
This results in time-varying cost functions and resources. It is
therefore of great importance to investigate the time-varying
optimal resource allocation problem.

In literature, there are a few results on the distributed time-
varying optimal resource allocation problem. In [15] and [16],
the authors proposed distributed algorithms based on prediction-
correction methods to solve the constrained time-varying opti-
mization problem. The authors in [17] addressed the distributed
resource allocation problem for open multiagent systems, where
the replacements of agents lead to variations in both the cost
functions and the budget. These results establish discrete-time
distributed approaches, and there are usually nonzero tracking
errors between the local decision variables and the optimal
ones. There is another body of literature that devotes to derive
continuous-time distributed algorithms to solve the resource
allocation problem, and the established results can be used for
robotic systems with continuous-time dynamics to accomplish
certain tasks. For example, multiple unmanned aerial vehicle
systems are becoming a promising robotic platform for aerial
transportation [18], [19]. The works [20] and [21] proposed
continuous-time algorithms to solve the resource allocation
problem with time-invariant cost functions and time-varying
resources. When implementing the results in [20], there exist
nonzero tracking errors, and the results in [21] are applicable to
the case of quadratic cost functions. In [19], [22], and [23], the
optimal time-varying resource allocation problem is solved for
the case where both the cost functions and the resource vectors
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are time varying. Specifically, in [22] and [23], it is assumed that
the cost functions have identical Hessian matrices, and in [19],
the case of nonidentical time-varying diagonal Hessian matrices
was addressed.

Notice the fact that a broad class of vehicles can be modeled
by high-order dynamics. For instance, unmanned ground and
aerial vehicles may be modeled as second-order or higher order
systems [24], [25]. Moreover, the results about the time-varying
resource allocation problem mentioned above essentially as-
sume single-integrator dynamics for the agents. These results
cannot be directly applied to high-order dynamics. To this end,
in this article, the optimal time-varying resource allocation prob-
lem with time-varying quadratic cost functions is investigated
for networked high-order systems. First, high-order integrator
dynamics are considered for the agents. A centralized approach
is established, where a central virtual system is constructed to
track the optimal Lagrange multiplier, and the central state in-
formation is used to design control inputs for each agent to track
its own optimal decision trajectory. To remove the requirement
of a central node, two distributed resource allocation algorithms
only using local information and communication are proposed to
achieve exact optimal-decision tracking. Specifically, in the first
distributed algorithm, each agent has a virtual system to track
the optimal Lagrange multiplier, and the local virtual state is
used in the controller design. The second distributed algorithm
does not require any virtual system to be constructed; instead
it needs each agent to use its gradient as a local estimate of the
optimal Lagrange multiplier. Consequently, the algorithm needs
the agents to exchange the gradients of their local cost func-
tions for controller implementation. Both distributed algorithms
have their own advantages. For instance, due to the additional
construction of virtual systems, the first one might not be as
economically efficient as the second one, and because of the
gradient information exchange, the second one might not be
as favorable as the first one for privacy-sensitive applications.
Then, these two distributed algorithms are applied to solve
the time-varying resource allocation problem for networked
nonlinear agents with parametric uncertainties. Such extensions
are inspired by the estimation-tracking method, where virtual
systems are introduced at a higher level to solve the resource
allocation problem, and then controllers are designed such that
the agents’ physical states are capable of tracking their local
virtual states.

Comparison With Related Works: The nature of the time-
varying resource allocation problem makes this article dif-
ferent from most of the existing results that focus on time-
invariant cost functions and/or time-invariant resource vectors.
In contrast to nonzero optimum-tracking errors by implement-
ing discrete-time resource allocation algorithms, the proposed
algorithms here guarantee exact tracking while taking into
account continuous-time high-order dynamics. The closest
related results are [19], [22], and [23]. Compared with those
three works, this article considers cost functions with non-
identical time-varying Hessian matrices, which is more gen-
eral and includes them as special cases. Moreover, the agents
are with high-order dynamics, which is more complicated and
general than the single-integrator systems considered in [19],
[22], and [23]. It is worth pointing out that the results ob-
tained in this article are not simple extensions from the existing
results established for single-integrator systems. The algorithm

designs in [22] and [23] rely heavily on the assumption of
identical Hessian matrices, for which the gradients of the cost
functions reduce to a decision-variable-dependent term with
an identical structure and a decision-variable-free term. When
considering nonidentical Hessian matrices, such a reduction
cannot be achieved. In [19], the authors propose to apply dis-
tributed estimators to track several averaged terms including
the average of all the inverses of the Hessian matrices. Al-
though such an idea works in [19] due to the assumption of
time-varying diagonal Hessian matrices, it might not be suitable
when time-varying nondiagonal Hessian matrices are considered
since it is too expensive and inefficient, and hence impractical,
to transmit the whole matrices through communication chan-
nels. Furthermore, implementing the method in [19] is more
computational demanding since it requires multiple virtual sys-
tems/estimators to be constructed. In addition, the complexity
of high-order (nonlinear) dynamics complicates the algorithm
design and convergence analysis when addressing the optimal
time-varying resource allocation problem. Therefore, the coex-
istence of the nonidentical time-varying Hessian matrices and
the complex dynamics makes the extension here challenging and
worthwhile.

Some preliminary results have been presented in [26], where
a special version of the algorithm in Section IV-B is tailored
to solve the time-varying resource allocation problem for net-
worked double-integrator agents. In addition to the extensions to
the case of high-order (nonlinear) dynamics, the current article
introduces another distributed approach (i.e., the algorithm in
Section IV-C) to solve the problem. Besides, this article contains
more detailed proofs and additional simulation results.

[I. PRELIMINARIES

A. Notation

Throughout this article, let R, R>o, R, and N denote the
sets of all real numbers, all nonnegative real numbers, all positive
real numbers, and all positive integers, respectively. For a set S,
|S| denotes the cardinality of S, and for a real number z € R,
|z| denotes the absolute value of x. The transpose of matrix
A is denoted by A'. For a given vector x = [z1,...,x,] €
RP, define |lz[|1 = >0, |2l [|zll2 = ]z P+ + [zp]2,
and |[|z|~ = max;—1,_p |z;|. For a symmetric matrix A €
RP*P, Jet A1(A) < --- < x,(A) denote its eigenvalues. The
Kronecker product of matrices A and B is denoted by
A® B. Let diag{A;,..., Ay} represent the block diagonal
matrix with the ith block in the main diagonal being A;,
where A; € R™*™i_For avector z = [x1,...,1,] € RP,de-
fine sgn(z) = [sgn(z1),...,sgn(z,)]", where sgn(z;) = 1 if
x; > 0, sgn(x;) =0 if 2; =0, and sgn(z;) = —1 if x; <O.
Let 0,,«4 and 1,,.4 denote the m x d-dimensional zero and
all-ones matrices, respectively, and for simplicity, let 0,, =
0,51 and 1,, = 1,,.1. I,, € R™*™ denotes the identity matrix.
The gradient of a time-varying function f(q,t) is denoted by
V f (g, t), which is the partial derivative of f(g,t) with respect
to g, i.e., %f(q7 t). The Hessian matrix of the same function
is denoted by V2 £(q,t), which is the partial derivative of the
gradient V f (g, t) with respect to ¢. For a time-varying signal x,
let the kth time derivative of = be denoted by z(®) where k is a
nonnegative integer, and in particular, 2(®) = z and z(") = 4. 1In

>
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this article, & and 2(!) are used interchangeably. For nonnegative
. s s! :

integers s and k, let (}) = Tey Where sl =1 -+ x s is
the factorial function.

B. Nonsmooth Analysis

Some concepts from nonsmooth analysis are introduced in
this subsection, which are exploited in the convergence analysis
later.

Definition 1 (Filippov Solution) ([27]): Consider the vector
differential equation

T = f(l}t) (1

where f:R? xR — R? is a vector field. A vector func-
tion x(-) is called a Filippov solution of (1) on [to,t1]
if x(-) is absolutely continuous on [tg,t;] and for al-
most all ¢ € [to,t1], &€ K[f](z,t), where K[f](z,t):=
MNaso Nus)=o o f[B(z,A) — A", 1]} is the Filippov set-
valued map of f(x,t), co denotes closed convex hull, B(x, A)
is the open ball centered at z with radius A > 0, and () ,,(_4—o
denotes the intersection over all sets .4~ of the Lebesgue measure
Zero.

Lemma 1 ([28]): Consider the vector differential equa-
tion (1), and let f(z,t¢) be measurable and locally essentially
bounded, that is, bounded on a bounded neighborhood of every
point excluding sets of measure zero. Then, for any zo € R,
there exists a Filippov solution of (1) with the initial condition
z(0) = xo.

Definition 2 (Clark’s Generalized Gradient): Given a locally
Lipschitz function V(z) : R? — R, the generalized gradient of
the function V' at z is given by 9V (z) = co{lim VV (z) | z; —
x,xz; ¢ Qv }, where Qy is the set of measure zero where the
gradient of V' is not defined.

Lemma 2 (Chain Rule) ([27]): Letx(+) be a Filippov solution
of the vector differential equation (1) and V (z) : R — R be a
locally Lipschitz continuous function. Then, for almost all ¢,

V]z(t)] € V, where V is the set-valued Lie derivative defined
as V= ﬂgeav é_TIC[f]((E, t)

C. Graph Theory

For a multiagent system consisting of N agents, the inter-
action topology can be modeled by an undirected graph G =
{V,E}, whereV = {1,...,N}and & C V x V denote the node
set and edge set, respectively. An edge denoted by (i,7) € &,
means that agent ¢ and j can obtain information from each other.
In an undirected graph, the edges (7, ) and (j, i) are equivalent.
It is assumed that (i,47) ¢ £. The neighbor set of node i is
denoted by N; = {j € V| (j,4) € £}. By arbitrarily assigning
an orientation for every edge in G, let B = [B;;] € RN €]
denote the incidence matrix associated with graph G, where
B;; = —1 if edge e, leaves node i, B;; = 1 if it enters node
i, and B;; = 0 otherwise.

An undirected path between node i; and ¢ is a sequence
of edges of the form (iy,i2), (i2,i3), ..., (k—1,%%), Where
i; € V,j=1,...,k. Aconnected graph means that there exists
an undirected path between any pair of nodes in V.

Assumption 1: The graph G is connected.

[ll. PROBLEM STATEMENT

Consider a multiagent system consisting of N high-order-
integrator agents, and the agents’ dynamics are described as

g™ ieV 2)

= Uyq,
where n € N, ¢™ € R? is the nth time derivative of the
decision variable g;, and u; € R? denotes the control input of
agent 4. In Section IV-D, heterogeneous high-order nonlinear
dynamics are considered. In the distributed resource alloca-
tion problem, each agent aims to cooperatively track its op-
timal trajectory determined by the group objective function
and the coupled equality constraint. Let ¢ = [q],...,qx]"
fi(gi,t) : R? x Ry — R be the local cost function associated
with agent i € V, and c¢;(t) € R? be agent i’s time-varying
resource vector. It is assumed that f;(g;,¢) and ¢;(t) are only
available to agent 7. The optimal trajectories for the agents,
() = [qf " (t),...,q5 " (t)]" € RN are defined as

N
q*(t) = arg minq{ Z fi(qi,t)} 3)
i=1

N N

subject to Z ¢ = Z ci(t). 4

i=1 i=1

[l

The objective is to design control inputs for the agents such
that the agents cooperatively determine and track the optimal
trajectories defined in (3) and (4), i.e., ¢;(t) — ¢ (t) Vi€V
subject to local information and communication. We present
two examples to clarify the problem setting.

Example 1: The cooperative multirobot systems are becom-
ing a promising robotic platform for transportation given a
single robot has limited load capacities. In practice, a group of
unmanned aerial vehicles are used for slung or cable-suspended
load transportation [18], [19], [29], [30], [31], [32] and, to
be energy-efficient, unmanned aerial vehicles are to cooper-
atively determine their own thrusts required to sustain flying
height and forward speed. Take the application of multiquadro-
tor hose transportation in [19] as an example. There are a
team of N quadrotors transporting hoses in a spraying sys-
tem and it is to determine the optimal thrust to be generated
by each quadrotor and minimize the total power consumption
of the team. From [19], the power consumption of the ith
quadrotor can be represented by P;(Th;,t) = Th;{v; sin(s;) +

2Th; . }, where Th; is the generated
L \/[m cos(s;)]2+[vi sin(s;)+vin]?
thrust, v; is the total free steam speed (including translational
velocity and wind velocity), ¢; is the angle of attack for steady
flight, 7; is a known function of the density of the surrounding
air and the number and diameter of rotors, and v;,, is the induced
velocity. For a quadrotor to sustain the flying height and forward
velocity, its thrust is required to counter the gravity and drag
forces due to the translation motion and air flow [19], i.e.,
Th; . =
the quadrotor and payload and Fj ;, is the drag force caused by
the airflow in the horizontal direction. See [19], [33], and [34]
for details. Then, the thrusts generated by the quadrotors should

equal the total required thrusts, i.e., Zfil Th; = va:l Th; ..

\/ F2, 4 F2y, where Fj,, is the gravity induced by
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Therefore, to optimize the total power consumption of a team of
N quadrotors transporting a hose, it is to solve the time-varying
resource allocation problem of the form (3) to (4) [19]. Once
the optimal thrust trajectories are obtained, the desired flying
positions can be determined by using the methods presented
in [35] and [36].

Example 2 (Economic dispatch problem of the power sys-
tems): Consider N turbine generators that supply power to some
regions. The power generated by the N generators should meet
the total power demand of these regions D, which are usually time
varying, i.e., Zf\[: 1 P; = D(t). Without loss of generality, there
are IV regions and the ¢th generator observes the demand of the
ith region D;(¢). That is, Zf\il P, = Zivzl D;(¢). In the mean-
time, it is to minimize the total generation cost. The generation
costs are represented by quadratic functions [37]. In addition,
due to the heterogeneity of the generation systems and time-
varying nature of the costs, the resulting quadratic functions
are given by f;(P;,t) = a;P? + b;P; + m; with time-varying
cost coefficients a;, b;, and m; : R>g — R. These coefficient
functions and demand functions can be empirically fitted to
k times continuously differentiable functions and the value of
k depends on the orders of the system dynamics. Thus, this
problem can be expressed as (3) and (4). Assume that all the
generators are run at synchronous speed without relative speed
and neglect the mechanical and electromagnetic losses, then
the dynamics of the ith generator can be represented as [38]
Tmsz = —P, + Kmixei and Teixei = —Xei + U4, where Tmz
and K,,; are, respectively, the time constant and gain of the
machine’s turbine, 7; is the time constant of the machine’s
speed governor, X.; is the valve opening of the generation sys-
tem, and P; and v; are, respectively, the output electrical power
and control input of the generation system. Since the dynamics
are not exactly high-order integrators, to solve the economic
dispatch problem, one can follow the results in Section IV-D.

‘We make the following assumptions on the cost functions and
resource vectors.

Assumption 2: For any i € V, the cost function f;(g;,t) is
twice continuously differentiable with respect to ¢; for all ¢.
Moreover, it is also uniformly strongly convex with respect to
q; for all t > 0, i.e., there exists some positive constant 1m such
that Ak(V2fz(ql,t)) >m,k=1,...,d.

Assumption 3: The nth derivatives of the resource vectors
¢i(t), i € V, exist. There exists a positive constant ¢ such that
SuPsefone) e (t)ll2 <& Yk =0,1,...,n VieV.

Assumption 4: For any ¢ € V), the gradient of the cost func-
tion f;(g;,t) can be written as V f;(q;,t) = H;(t)q; + g:(t),
where H; : R~y — R and g; : R>o — R? are time-varying
functions. The nth derivatives of H;(t) and g¢;(¢) exist. In
addition, there exist positive constants H and g such that
supc o, [ (1) 2 < H and supefo o llgt” (t)]]2 < g hold
forany/ =0,1,...,nandany: € V

Remark 1: Note that Assumptions 2—4 are related to and can
be satisfied in many real-world applications, especially, robotic
systems, e.g., Examples 1 and 2. In addition, the distributed
average tracking problem, which has found several applications
in region following formation control [39] and coordinated
path planning [40], can be transformed to a distributed time-
varying optimization problem by formulating the cost functions
as fi(qi,t) = ||¢: — gs(t)||3, and hence it can be solved by
time-varying optlmlzatlon algorithms. These assumptions

ensure the convergence analysis of the exact optimum track-
ing. Similar assumptions have been applied in recent works
on distributed time-varying optimization [41], [42], [43], espe-
cially on time-varying resource allocation [19], [22], [23], and
Assumption 4 includes the case considered in all aforementioned
results as special cases. Although Assumption 4 seems restric-
tive, in Section V-C, the proposed algorithms are empirically
validated on a broad class of functions (e.g., nonquadratic) such
that agents’ decision variables track the optimal ones.

V. RESOURCE ALLOCATION FOR NETWORKED HIGH-ORDER
AGENTS

In this section, first, we design a centralized algorithm to
solve the optimal time-varying resource allocation problem for
high-order integrators, which necessitates the existence of a
central server. Inspired by the centralized algorithm, we then
develop two distributed algorithms, which can be implemented
by using only local information and interaction. Then, we extend
the distributed algorithms to solve the time-varying resource
allocation problem for networked nonlinear systems with para-
metric uncertainties by using the estimation-tracking method.
Before moving on to the algorithm design, we first provide basic
results on the optimality condition of the optimal time-varying
resource allocation problem by using the Lagrange function.

Define the Lagrange function associated with the optimization
problem in (3) and (4) as

Zfz it +,u

where p(t) € R? is the Lagrange multiplier. From
Assumption 2, it follows that the Lagrange function (5) is
strongly convex in ¢(t) and concave in p(t). Then, by the linear
constraint (4) with full-row-rank coefficient matrix, the optimal
primal-dual pair {¢*(¢), x*(¢)} is unique at all time ¢ > 0 [44,
Sec. 5] and satisfies the following Karush—Kuhn—Tucker (KKT)
condition:

Mz
7

L(q,p,t) 5

i=1

0

8q£(q Th lZfz g )| +1n @ p* = Ong
(©)

P N

3 L@ i) =) lai —at) = 0a (M

i=1

Define z = [¢', "] ". The Lagrange function (5) can be rewrit-
ten as L(z,t), and the conditions (6), (7) can be rewritten
as 2 L(z*,t) = Oy 41y, Where z* = [¢* ", i~ ']". Then, we
have the following lemma adapted from [45].

Lemma 3: Suppose that Assumption 2 holds. If
2 L(2,t) = O(ny1)a as t — oo, ie., Vfi(gi,t) + pu(t) — 04
and SN [qi(t) — ¢i(t)] = 0q4, then q;(t) — i (t) VieV
and pu(t) — p*(t) ast — oo.

A. Centralized Algorithm

We establish a centralized algorithm for (2) and assume
that there exists a central server that can exchange information
with all the agents. On the central server’s end, we construct a
dynamical system that estimates the optimal Lagrange multiplier
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using the cost function and state information obtained from
the agents. In the meanwhile, we design the controllers on
the agents’ end by using the generated Lagrange multiplier
estimate . such that the agents can determine and track their
own optimal trajectories. Specifically, construct a virtual system
for the central server as

_ S an (u““’ _ ﬁ(k—n) Y (8)
k=1
where oy, . .., a,_1 are positive constants to be determined
1y
ﬁ5u+{z [V2£i(gj,t) 1} Z{ﬂ(qjcj')éj
j=1 j=1

-1 0
S [ A B 7t | | e
and [ is a positive constant to be determined. Design the control
input for agent ¢ € V as

n—1

> [ ® 4 gk 1)((11',/17!1»15)]
k=1

- Fi(nil) (qi7 s /:['? t)

where the vector-valued function F : R? x R? x R? x R5o —
R? is defined as

U; =

(10)

Fi(qi, p, f1,t) = [V2fi(qz',t)]fl [gtvfz‘(%t)

+5Vfi(qz‘,t)+/3/$+ﬂ} (1)
By Assumption 2, it holds that the Hessian matrices,
V2fi(q,t), i €V, are positive definite, which implies that all
[V2fi(q:,t)]7t, i €V, exist and are positive definite. Then,
the matrix Zj-vzl[Vij(qj,t)]’l is also positive definite, and
hence invertible. Thus, the definition of 1 in (9) is justified. By
Assumptions 2—4, it holds that 7i*), k = 0,1,...,n — 1, exist.
Then, F* (qi, i, i1, t), k=0,1,....n
the controller (10) is well defined.

The virtual system (8) and the controller (10) are designed
to drive 4 and ¢; to g and F;(q;, i, f1,t), respectively. The
terms Fj(q;, i, (1, ), © €V, and p collectively produce de-
sired stable linear systems (of the form & = —fx) with states
V fi(gi, t) + p(t) and SN i (t) — ci(t)] resulting in the fact
that V fi(gi, t) + p(t) — 04V € Vand 3N [qi(t) — ci(t)] —
0, as t — o0, and hence serve as the changing rates of the de-
sired decision and Lagrange multiplier estimate trajectories that
converge to optimal decisions and optimal Lagrange multiplier
(by Lemma 3), respectively. As a result, such design collectively
ensures %L(z,t) — O(n41)q» Which, by Lemma 3, implies
exact optimum tracking. See the following result for detailed
explanation.

Proposition 1: Suppose that Assumptions 2—4 hold and let
B € Ry and aq,...,a,_1 be positive constants chosen such
that the polynomial AP, A2 4.+ aq =0is Hur-
witz. Using (10) with pd, j=0,1,...,n, generated/given by

— 1, exist, and hence,

(8) for the high-order-integrator agents (2) solves the resource
allocation problem, i.e., ¢;(t) = ¢;(t) Vi€ Vast — oo.
Proof: From (2) and (10), it follows that

" n—l . (n— :

:—Zak [ W+ R g, u,t)}

which is a stable system. This means that ¢; + F;(q;, i, f1,t) —
04VieVast — oo.
It follows from the definition of ; ; that

[V fi(qi, )] + o= V2 filqi, t)ds + %vfi(th) +n
0
= V2 fila, ) Fi(qin s 1 t) + avfi(%t) + 1

—BIV fi(qit) + p + V2 filair t) [di + Filqis s fi, t)(]12)

where the definition of Fj(g;, u, ft,t) in (11) has been used
to obtain the last equality. Note that [V fi(q;,t)]™") + =
—B[V fi(qi,t) + ] is a standard exponentially stable linear
time-invariant (LTI) system. Recall that ¢; + F;(q;, u, i, t) —
0,4 as t — oco. Then, it follows from the property of the input-
to-state stability [46, p. 175] and Assumption 4 (i.e., the ex-
istence of the upper bound of ||[V2f;(q;,t)|l2 Vi € V) that
Vfi(gi,t) +n— 04 Vi€V ast— oco. Hence, it holds that
S%L‘(q,u, t) = Ong ast — oo.
By (8), it holds that

n—1
u D = 3", (Mac) _ ﬁUH)) (13)
k=1
which is a stable system. It then holds that p(*) — (=1 —
04Vk=1...,n—1last — oo.
By the definition of g in (9), it holds that

SV filan )] [ZV filaist) + BY filgs, t)+But7i] =
B 2511(% —¢) — Zf;l ¢;. Then, it follows from (11) that

N N N
_ZFi(Qiauvﬂat):_ﬁZ(q CZ)+ZCL
1=1 =1 =1

N
- Z [Vin(qzvt)]il (f—p). (14)
i=1
It then follows that
N N N
Z (Qi - éi) = —/BZ (Qi - ci) + Z [Qi + Fi(Qi,M,ﬂ,t)]
i=1 i=1 i=1
al 1
=S [V aan )] G- ). (15)
i=1

Recall that ¢; + F;(qi, p, ft,t) - O0gand ot — p — 0y Vi€V
as t — oo, and note that Zj.V:l(q,- —¢)=-0 vazl(qi —¢)
is a standard exponentially stable LTI system. It then follows
from the property of the input-to-state stability [46, p. 175]

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 00:55:16 UTC from IEEE Xplore. Restrictions apply.



5904

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

and Assumption 2 (i.e., the existence of the lower bound of
V2 fi(gi,t)]l2 Vi € V)that¢ — 0gast — oo. Hence, itholds
that %L’(q,,u,t) — 04 as t — 00

From the analysis above, it holds that %ﬁ(z, t) = O(N+1)d
as t — oo. Therefore, the statement in Proposition 1 follows by
Lemma 3. u

From the proof of Proposition 1, it holds that
Zﬁil[qi(t) —¢i(t)) = 04 as t— oo, which implies that
feasibility is achieved asymptotically. Note from (13)
that p® @) —p*Dt)=04 Vt>0 Vk=1,....,n—1
it u®™0) - p*D0)=04 Vk=1,...,n—1. From
(14), (10), and (2), it follows that ZZ g™ =My =
—Bon Sy (gi — i) — (a1 + fa) Sy (af — V) -
~ (@n-2 + Pan-) L, (0" — ") = (ans + )

N n—1 n—1
Ei:1(q§ )_Cz(‘ )) Zk 0 2ul= 0( ){Ez 1[V filai,
)71 30 (u® — G¢=1)_ It then follows that SN [¢\) (1) —
=049t >0 VE=0,1,...,n—1it N g™ (0) -
M(0)) =04 Vk:O,l,...,n—l and 1D (0) —
=0y =04 VI=1,. — 1. Therefore, if the initial
decision variables satisfy ZZ 1[ (k)( 0) — cZ(-k)(O)] =04 Vk=
0,1,...,n—1, one can select appropriate values for p(*),
k=0,1,...,n—1,suchthat, forany [ =1,...,n — 1,

N -1 N (k-1)
p (0 ({ > IV filairt } > et )
=1 =1

N -1 N
({ > V2 filait) } > IV filgist)
=1

i=1

t=0

) (k-1)
X [mei(qi, t) + vii(Qia t)] >

t=0
- Bu1(0)

then the decision variables are feasible all the time, i.e.,
Zf\il[qi(t) —¢;(t)] =04 ¥t > 0. Specifically, one can first
select a value for 1(0), then use (16) to derive the values of
u(l), l=1,...,n—1,iteratively.

Remark 2: Note that from the centralized algorithm, the
optimal Lagrange multiplier is estimated by g, and it re-
quires global information, especially all the Hessian ma-

trices V2fi(gi,t) Vi €V, to calculate the terms G(k)
GY . k=0,1,...,n—1, where Gy = YN [V2f;(q;,1)]

and G =37 {H; (a5, )[BY fi(a5,1) + 55V fi(az, )] +
¢; — B(gj — ¢;)}. To derive the distributed counterpart, one can
use distributed average tracking algorithms to estimate those
terms in a distributed manner, which is done in this way in [19]
to address the time-varying resource allocation problem with
diagonal Hessian matrices. However, when it comes to nondi-
agonal Hessian matrices, exchanging matrices (e.g., inverses of
the Hessian matrices) among the agents is expensive and not
practical. In the following, we propose distributed algorithms
for networked high-order-integrator agents (2) to cooperatively
solve the time-varying resource allocation problem without ex-
changing matrices.

(16)

B. Estimator-Based Distributed Optimal Time-Varying
Resource Allocation Algorithm

Inspired by the centralized algorithm in Section IV-A, we
design a local virtual system [see (17)] for each agent 7 € V to
estimate the optimal Lagrange multiplier ;+* (or the central esti-
mate y of the optimal Lagrange multiplier) instead of requiring
a central virtual system as (8). Then, such local virtual states
are used to design the controllers (22) for the agents, as in (10).
Construct agent ¢’s local virtual system as

=S ()

V2 filgit) Y piy +Ti(n) a7
JEN;
where a1, ...,a,_1, and -y are positive constants to be deter-
mined
i = —Bui + BV fi(ai,t) (g — ¢i) — V2 filqi, )¢
0
- avfi(%"t) — BV fi(qi,t) (18)
Pij = sgnlzak ( (k 1) Iu;szl)> ‘| (19)
n—1
Ti(n) = =) ae1i(s) (20)
s=1
s—1 ) L (s—k)
Qi(s) = sz(bv Z(){vfz%a)] }
=0
x (w0 — ) @1)

and 3 and «,, are positive constants to be determined. Design
the control input for agent 7 € V) as

n—1

Jj=1

- Fi(nil) (Qi, Hisy /.j/i7 t)

where the function F;(-, -, -, -) is given in (11). From (19), each

(22)

agent exchange ,ugk ,k=0,1,...,n — 1, with its neighbors.
Similar to the design of the centralized algorithm in
Section IV-A, f1; and F;(q;, 4, f15,t) sever as the changing rate
of agent ¢’s local desired signals that converge to the optimal
solutions, and the virtual systems (17) and controllers (22)
are designed such that i; and ¢; track ; and F;(q;, pg, fii, t),
respectively. Compared with (8), the virtual system (17) has two
additional terms, —yV? fi(qi, 1) > c v, pi.jand T's(n). The term
V2 fi(qi,t) >_jen; Pi,j is used to force all the local Lagrange
multiplier estimates 1;, ¢ € V, to follow the same trajectory, i.e.,
limy o0 (i (t) — ()] = 0q Vi, j € VandyV?2fi(q;,t) is the
Hessian-dependent gain guaranteeing the convergence under
nonidentical Hessian matrices. The term I';(n) is introduced
to compensate the existence of nonidentical Hessian matrices.
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1) Selections of o, ..., a,: Once the order of the system
(2), i.e., the value of n, is determined, one can set c,, = 1 and
obtain a set of a, k = 1,...,n — 1, by the following steps.

1) Define
0,2 ! I
o [
Dy
Dip1=[-01 —az —m-1] - (23)
Construct a matrix 7' € R(»~1*("=1) py following
o fIion] k=0
MAT\ T, (D1 + Brlny), k=1,...,n—2
(24)
where T}, is the kth row of T, and fy,...,[3,_o are
positive constants.
2) Solve
Tp1 (D14 Bu1ln1) =0, (25)
for s, ..., a,_1, where 3,1 is a positive constant.

The resulting values of «j,...,q, are some functions of
B1,...,Bn-1.One can verify that T}, , = 1 fork =1,...,n —
1, where T}, ; is the jth entry of T}.

Lemma 4: Letx = [z{,..., 2}

,z) 4]7 with z; € RY. The LTI
system & = (D; ® I4)x is stable, where D is given in (23) with
517' . '7677,71 € R+-

Proof: Note from (24) and (25) that T,D1 = T41 — BTk
fork=1,2,...,n—2,and that T,, 1Dy = —f3,,_11,,_1. De-
fine yr, = (T ® Ig)x for k=1,2,...,n — 1. It then follows
that

(26)
27)

yn—l = _Bn—lyn—l

yk:_ﬂkyk+yk+1a k:n_2, n_]-v"‘,]-'

From (26), it holds that y,,_1 — 04 as t — oco. Then, it fol-
lows from (27) that y, — 04 for k=n—2,n—1,...,1 as
t—oo.Lety=[y/,...,y, ;]". Itholds thaty = (T ® I )x,
and hence = = (T' ® 1)y, which implies that 2 — 0(,_1)q
ast — oo. |

For the sake of notational and analytical simplicity, we set
B1,...0n_1 to 3 and let

-1

ak:<z_1)5”k, k=1,....n. (28)

In addition, the (k, j)th entry of T is given by

ORI ik <
T, = { Gr)Bt itk < 29
o { 0, ifk>j (29)
and hence, the kth row of T is given by

o= [(5)8 o (D8 1o ] 6o

Define I := Dy + BI,,_1. One can verify that Tj, 1 = T} 115,
k=1,...,n—2and T, 1II; = 0] ; hold. By using a similar
analysis to the proof of Lemma 4, the following result holds
straightforwardly.

Corollary 1: Given any positive integer m, let x =
[z],...,2) ] with x; € R%. The LTI system & = (A ® I;)x

) m

is stable, where

Am = [=(5)8™ =(T)™ ~(n1)B-

Note that such a setting/procedure is just an example to
determine the values of oy, . .., o, and there are other ways to
find appropriate values for ay, ..., a,, such that the following
convergence analysis holds by minor revisions.

2) Convergence Analysis: Before moving on to the con-
vergence analysis, a preliminary lemma is presented.

Lemma 5: Assume that V2 f;(g;,t) is invertible and its nth
order derivative exists. It holds that fors = 1,...,n — 1

S

HOESDY (j) (V2 filai )] e @D

-1
Jj=0

where e; 1 = [V fi(qi, t)] " (1 — Fia)-

Proof: For notational simplicity, let H; = V2 f;(g;,t). Since
H; is invertible, H, I exists. Then, for any j = 1,...,s,itholds
that Ogcq = 1) = (H;H; 1)) = S _ (D) HE ™ (1, 1)®),
Then, it holds that

_ il .
() =Y <£>Hi(]k) (H®.

k=0

(32)

For nonnegative integer k, define

j -1\ (k)
= {0,
' dedv

ifk <
if k> j.

By the definition of e;, it holds that el =321 _ By

(" = i) Note that () (7) = =it = (1) (1)

holds for! =0,...,s — k — 1. Then, foranys =1,...,n — 1,

andany k =0,1,...,s— 1, itholds that

s—1 s ) s—1 s . . -
Z () H;/(S*J)Ej’]C — Z (> Hqgsfj) (]) (Hifl)(gfk)
=0 — \j k
j=0 =k

s—k—1 S S k ( ) 0
= - H.Sikil H.ﬁl

lz:% <k> ( l > g ( % )

(33)

— (Z) (7)™

where the definition of E; ; and (32) have been used to obtain
the second and third equalities, respectively. Then, it holds that

s—1
=Y ()
j=0

J

Il
I
w
L
<o
<
i
3/,
=

k+1)  ~(k
k(/ing)_Ng ))

Dy (w0 -

I
|
> "3
Il |
o -
= w
I |
(o) -
VRS
Sl ow
~__
=
w
S
S
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S (@me
where the fact that I; ;, = 04,4 for any £ > j has been used to
obtain the second equality, and (33) has been used to obtain the

)(s k) (u§k+1) _ ﬁgk))

last equality. This implies that (31) holds. ]
Fork=1,...,n,and s =1,...,n — 1, define
Gik(t) = lai(t) — cs()* (34)
-1 (s—1)
eie®) = {[V2ilat)] " (=)} . G9)

It follows from Assumptions 2 and 4, (17), and (22) that (34) and
(35) are well defined. The following theorem shows the exact
convergence of the proposed algorithm in this subsection to the
optimal trajectories.

Theorem 1: Suppose that Assumptions 1—4 hold and let pos-
itive constants 3 and -y be selected to satisfy that

~H > 2|€|doV/Nd (36)
where
n—1n-—1 _ n—k—1
b=He), <n 1)(1+€)k+g(1+ﬁ)"
k=1s=k s ﬁ
e~ =1\ (L) n
H ~ T 4 He?2
+ CI; 2 <s _ k> s + He(2 + B)
+ HyNVd (1 + ;) - 1] (37)
C=mae{ max {0 _ ] }} 69)
e M T N Y

and (; ,, and e; ;, are given in (34) and (35), respectively. Using
(22) with ugk), k=0,1,...,n, generated/given by (17) for the
integrator agents (2) solves the distributed resource allocation
problem, i.e., ¢;(t) — ¢ (t) Vi€ Vast— oc.

Proof: The proof is divided into four steps.

In Step 1, it is proved that Vf;(¢;,t)+p; — 04 i€
V as t—oo. For k=1,...,n—1, define x; :ql(k)—&-
Fi(k_l)(qi, i, f1i, 1), andlet x; = [XiT,l, ce infl]T. It follows
from (22) that

= (D1 ® 1ag)xi (40
where D; is given in (23) with
n—1 n— n—1 n— n—1
Dina = [*( 0 )5 ! *( 1 )B : 7(n—2)5]'

It follows from Lemma 4 that the system (40) is stable. Hence,
it holds that x; — O(,—1)q Vi € Vast — oo.

Define ¢; := Vfi(q;,t) + p;. By (12), it holds that v; =
—ap; + H;(qi, t)xi,1- Recall the fact that x; — 0¢,_1)q Vi €
V as t — oo. Then, it holds that ¢»; — 04 Vi € V as t — oo,
which completes Step 1.

In Step 2, it is proved that SV | [gi(t) — ci(t)] = Ogas t —

oo. From (11), it holds that
E(qiv i /:l/i’ t)

= (V2 )] = i) + [V (g t)] {aatvmqi,t)

+ BV fi(qi t) + B + ﬁz}

=ein+B(q— ) — ¢

where ¢e; ; is defined in (35), and the definition of 7z; in (18)
has been used to obtain the second equality. It follows from the
definition of (; j in (34), (2), (22), and (41) that

;L n—1 " el n—1 n—1 n—k
Cm—-( 0 )5 Ci,l_; (k1>+( i ) g

n—1
n n
X i k+1 —Z (k )5” F (k R 51 Y

k=1

(41)

n

_ Z <k T_L 1> Bn+1fk<i7k _ Z <Z : 1) ankel(fflfl)

k=1 k=1

where (28) and the fact that (Z D+ (") = () have been

used. By the definition of e; . in (35), (17), (20), and (21), it
holds that

n—2

in-1= Z (n ; 1) {szi(q%t)]q}(nflfk) (M§k+1)

k=0

= i) + [V3filas 0] (" =)

n—1
n—
S ()T @
k=1 JEN;
where p; ; is given in (19). Hence, it holds that
Lo n+1—k
lim=—>_ <k >B G+ Y Py @3
k=1 JEN;
Define xj:=>0,Gx for k=1,....,n, and =
[{,...,2]]". It then holds that
T = (DQ@Id)JZ (44)
where
On—l ' In—l
Do — |---0T. T
’ { D2 }
Do = [-(G)8" —(1)B"" ~GMBL @

and the fact that Zf\il > jen, Pi,j = 0q according  to
Assumption 1 has been used. It follows from Corollary 1 that
(44) is stable. Then, it holds that x — 0,,4 as ¢ — co. That is,
Zﬁil Ci,1 — 04 as t — oo, which completes Step 2.

In Step 3, it is proved that p1; — p1j — 0q Vi, j € Vast —
oo. It follows from the definition of 7z; in (18) that the system
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(17) can be rewritten as From Lemma 5, it follows that
n n—1 s—1
n k-1 n—1 n—1—s S s—j j
W =30 () rw =3 (" D)o X (0) 19t 0) )
k=1 s=1 =0 M
2 n—1
=V filgi, 1) Z pij + wi(gist) (46) k
GEN; [Vin(int)]( )Sk
k=1
where w;(g;,t) = P;(n) + [;(n), Pi(n) =S 1, (*Hpn* .
(k—1) (2.1 2 ) ). 7l )2 Zk_l.(kfl)a where Sy = 377, (".1) (ka)ﬂ’b_l_se;l M Fork=1,...,
B Bi=BVEfiqs, ) (g — ¢i) = VEfila, )¢ — 53V i 1 it holds that
(¢i,t) — BV fi(qi, t), and T';(n) is given in (20).

Define e; = [ezl, ce eznfl]—r. It follows from the defini-

tionsof ¢; ., k =1,...,n — 1, and (42) that

éi = (D1 @ la)e; — { Oz QQdXd }

D pii

FEN;

(47)

::Al

Define y; 1, := (Ty,-1 ® Ig)e;, k=1,...,n— 1, where T},
are given in (30). Note from (29) that T,,_1 ,—1 = 1. Then,
it holds that (75,—1 ® I4)Ay = T—1,n—1 ® Ig = I4. It follows
from (42), (47), and (55) that

Yim-1 = (Tnh-1 @ Iq)é;

= (Tn1D1® la)es =7 Y pij
JEN;
= —BYin-1—7 Z Pij- (48)
JEN;
Similarly, it holds that
yi,k} = _6yi,k+yi,k+1a k= 1,...,71—2. (49)

It follows from (48) that

eiﬂtyi,nfl (0) — /

Note that for any i€V, it holds that ||} ..y, pijll2 <
e lpigllz < VAL, 1 jlloe < NV/d. It follows that

1yin—1(®)ly

B(t—T) Z pz,j

JEN;

Yim-1(t) =

t
< | gm0, + 7 / TS prs(r)dr
0

L JeN 2

: o
_ (&
< O, + (VV) S ]

0

YNVd
B

where the fact thate " <1 V¢ € R has been used to obtain
the last inequality. Similarly, it follows from (49) that

1 YNVd

n—1-k—j ”yzn 1— j( )HQ Bn_k

(G

< Yi,n-1(0)]], + (50)

n—1-k

lyik@ < Z -

k=n-—1,...,1

n—2
_ S n— nlq(s k) n—1
BT ()
n—2
n—k—=1\ 1 s (s—k)
X[yi,nk_z< s—k )6 €i1 ]

s=k
_ n—1
- n—1—k Yin—k

where the definition of y;,_; has been used to obtain the
first equality, and the second equality follows by noting

that (,*,) (") = Gy = (0 (") fors =

k,...,n — 2. Hence, it holds that
n—1 _
n—1—k)Ymr

v2f1( i, ) (k)
= X (vsan]

Then, it follows from (51) that

n—1

b
I

n—1 n-l
i)l < B3 i 4Ol 3 ()7
— ! n— 1 1
ey () 4 (52)
k=1

Define ¢; = [¢/}, ..., ¢/ ,] " It follows from (43) that

v Z Pi,j

JEN;

(i=(D2a®1a) (i + { -Ogn:ﬁildfd— } (53)

=As

where Dy is given in (45). Define a matrix 7 € R™*", whose
jth row is given as

0T iy
[7};_:107173‘]17 g—jl?é n,2 n—1
Ti= [( 0 )an ( 1 )ﬁﬂi (ﬁ&)ﬁ 1 } (54)
if j =n.
Define a matrix Il := D5 + (51,,. It can be verified that
77€H2:77€+1, k:17...7TL—1
| TmiE 2

Define z;, = (7, ® I4)¢;, and it follows from (53) and (43)
that

= —Bzin+7 Z Pij-
JEN;
By using a similar analysis to that for system (48), it holds that
Iz Oll2 < |z (0)]]2 + 25, Define i := (i @ La)G;
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fork =n —1,...,1. It holds that

Zig = _/BZi,k+Zi,k+1, k=1,....,n—1. (56)

It then holds that ||z 5 (t)]l2 < >°7_ (’fﬁn 5 12in—3 (0) ]2 +
"/N\[ k _1
n—k+19

_From Assumptlon 4, it follows that P, = —H;c; —
H;qi — g; — Bg;. Then,

Pi(n) = w1+ wig (57)

)Bn kzk 1 (k 1)H(k s)ql(s) and

)ﬂn k[zk 1 (k 1)H(k 1- s)(ﬁcgs)_i_
]. Note that

where w; 1 = — (T

=2 k=1 (i-

+gi” + B
I A (A VY C R A WES
wz’l__z ‘ Z s—1 s— k)%
k=1 s=k
n n—1
-1 s—1 —
_ H(k) n n—s (5 k)
S Dol () EE B

s=k

n—1
n—1 n—k s
< ) [Zi7nk+l - —~ <S _ k)/Bn

S

« (ql(s k) (sfk)> +C§nk)]}

n

k) [T — 1

=-> u" <n - k) Zin—k+1 +Wi3
k=1

Wi =
(s+1)
= )

(58)

where  w;3=—->,_; H k (2—}1) Y (n—k)ﬁn—scl(sfk),
and the definition of 7, 5.1 and the fact that (” 1) (s 1) —

s—k
% = ("})("_F) have been used to obtain

the second and third equalities, respectively. It follows from
Assumption 4 that

n k
llwi,2ll; éZ(Z:Dﬂ”’“ (B+1)H Z( _1)

k=1
+(B+1)g
=He(B+1)(B+2)" 1 +g(B+1)" (59)
Similarly, it holds that
lwi,slly, < He(B+2)"" (60)
It also follows that
= n—1
Z Hz'(k) (n . k) Zin—k+1
k=1 2
< FIZ 125 n—k+1(0)[ Z ( )571 .
k=1
1
+ HVN\/ﬁZ ( >5k (61)

From the definition of y; ., it holds that ||y; ,—%(0)|l2 =

13021 Tk gei(0)l2 < X021 Tk jllen; (0)]2 <
e|T—x|l1 = e(1 + B)"*~1, where €is given in (39). Similarly,

Izim-k41(0)]l, < C(1 4 B)"*
where E is given in (38). In addition, it holds that

mzm:g (") +H7N\/(32( N

= HyNVd KH ;)n - 1} .

Thus, it follows from (52), (57)—(61) that

wi (i, )l < llwi (g3, )l <@ (62)
where @ is given in (37).
~ ' n-T]"
Let p; = [uj,ui e ] . Define 0; = (7, ®

Ip)fh;and 6 = [§],..., 5;,]T
o =—B5 —yH(t)(B®Is)sgn [(B" @ 14) 8] + w(g,t)

. Then, it holds that

(63)
where H(t) = diag{H1(t),...,Hy(t)} and w(q,t) =
[wi (q1,t),...,wh(gn,t)]". Since the signum function is

measurable and locally essentially bounded and w(q,t) is
bounded, by Lemma 1, the Filippov solutions of (63) exist
and are absolutely continuous, that is, ¢ is continuous. Hence,
K[-B68) = {—Bd} and K[w(q,t)] C [~@,o]V4, where & is
given in (37). It holds that IC[(S] C Fs, where

Fs={-B8}+Kw(q,t)]— vH(B®14)K [sgn [(B' ®14)5]] .
Note that, for any r = [rq,...,r4] € R% it holds that
Kl[sgn(r)] = K[sgn(r1)] x --- x K[sgn(ry)] and Klsgn(r;)] =
{1} if r; > 0, K[sgn(r;)] = {—1} if r; < 0, and K[sgn(r;)] =
[-1,1] if r; = 0. Consider the Lyapunov function candidate

V[§(#)] = ||(BT @ I4)8||1. Note that V is locally Lipschitz con-
tinuous but nonsmoot.h at some points. Then, by Lemma 2, it

holds that V[3(t)] € V. The generalized gradient of V' is given
by

OV = (B® 1)K [sgn [(B' ® 14)d]] .
From Lemma 2, the set-valued Lie derivative of V' is given by

VC N

£elsen[(BT®14)d]]

¢ (BT ® 1) Fs. (64)

By (64), it holds that if 1% # () and assume that a € V, then
there exist 7 € K[sgn[(B'" ® 14)d]] and @ € K[w(q,t)] such
that a = " (B' ® I4)[—36 — vH (B ® I4)7] + &] holds for
any ¢ € K[sgn[(BT ® I;)6]]. Define p = sgn[(B" ® I,)6], and
for such 7 and @, one can choose § = ¢ € K[sen[(BT ® 14)4]]
such that & = p; if p; #0 and & = 7; if p; = 0, where &,
pi, and 73; denote the ith element of the vectors &, p, and 7,
respectively. Note that p; = 0 if and only if X; = 0, where X;
is the ith element of the vector X = (B' ® 1,)d. Then, it holds
that —3¢T (BT @ 1;)6 = —f||(BT @ 1,)d]|;. It also holds that
—7¢T (BT @ Iq)H(B © 13)i) < =YAmin(H) [ (B © I1)€][3

< H[(BeL)él;  and  (B'e L)< |[(B®
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Lo)¢2ll@llz < @VNd[|(B @ Ia)é]l < 2|€|dovVNd|[§]le <
2|&|dwv/ Nd. If there exists an edge (i, j) € € such thatd; # J;,
then ||(B ® I4)||2 > 1. Then, it holds that

a<—B|(B" ®1,)d|, — vH + 2||doVNd.

Hence, if 3 and ~ are selected to satisfy (36), th_en it holds that

a < —B||(BT ® I;)d|),. Therefore, forany & € V, if there exists
an edge (i,;) € € such that 6; # §;, a < —B||(B" @ I4)d]|;.
Hence, it follows from that (B ® I4)6 — 0j¢|4 as t — oo. That
is, 6; —9; = 04 V(i,j) € € as t — oo. It then follows from
Assumption 1 that §; — d; — 04 Vi,j € V ast — oo. Define
0;,; = pi — pj. From the definition of d;, it follows that

_ ’7;1729.1.7], . — ’7;7”“7292(3—3)

- 77L,n719gz-72) +0; — 0.

Then, it holds that 6, ; — 04 Vi,j € V as t — oo, which im-
plies that Step 3 is complete.

In Step 4, the statement of Theorem 1 is finally proved.
From Step 1, it holds that V f;(¢;,t) + p; — 04 Vi€V as
t — co. From Step 3, it can be derived that there exists
a signal p(t) such that p;(t) — u(t) - 04 Vi€V as t —
co. Note that Vfi(gi,t) + pi = Vfi(qi, t) +p+ pi — p —
0, Vi € V. Then, it holds that V f;(¢;,t) + 1 — 04 Vi€V
as t — oo, which implies that a%iﬁ(q,u,t) — 04 YVi,j eV
as t — oco. Combining with Step 2, it holds that %E(@ t) —
O(n+1)d as t — oo. Then, by Lemma 3, the statement in
Theorem 1 is proved. |

In the proof of Theorem 1, if the systems, e.g., (40) and (44),
have continuous right-hand sides, there is no need to use the
concept of the Filippov solution to avoid symbol redundancy,
since the Filippov set-valued map is a singleton and the Filippov
solution becomes the classical solution [47].

(n—1)
91‘7]‘ = - n,lei,j

C. Virtual-System-Free Distributed Optimal
Time-Varying Resource Allocation Algorithm

In order to remove the virtual systems used to estimate the La-
grange multiplier in this subsection, inspired by the centralized
algorithm and (6), we treat the agents’ local negative gradients
as the estimates and propose a virtual-system-free distributed
algorithm.

Design control input for agentz € V as

Z o (6 =)+ +0a (650
pi = =V fi(qi,t) (65b)
zsgn[z(xk( )| e
JEN; k=1
where 01,...,0,, O1,...,Qy, and 7y are positive constants to

be determined. From (650) each agent exchange u( ) k=
0,1,...,n — 1, with its neighbors.
- n—1 (k) o (k) (n)
In (65a), the term —Y ;_;okt1(g ¢ ) +e
is designed to establish Zﬁil[qi(t)—ci(t)]%od, that
is, to drive %E(q,u,t) to zero. Note from (5) that
52 L(q, 1) = V fi(gist) + u(t). By (6), it then holds

that p* = -V fi(¢r,t) Vi€V, where p* is the optimal
Lagrange multiplier. This implies that —V f;(q;,t) [or w;
from (65b)] can act as an estimate of the optimal Lagrange
multiplier. Note that, by Lemma 3, the existence of () such
that V fi(q;,t) + p(t) — 04 Vi€V as t — oo, implies that
w(t) — p*(t) as t — oco. The term ~u; in (65a) is designed
to establish V f;(g;,t) + pj — 04 for any 4,5 € V), that is, to
drive all the agents’ Lagrange multiplier estimates —V f;(q;, t)
(or p;) to p*(t).

1) Selections of oy, ...,0,, ay,...,«a,: First the values of

a1, ..., a, can be determined by following the procedure pre-
sented in Section IV-B1. For the values of o1, ..., 0,, set
01 = Bnay, and ap = a1 + Pnag, k=2,....n

where [3,, is a positive constant to be determined. For the sake
of notational and analytical simplicity, we set vy, ..., oy, as in

(28) and
_ n n+l—k _
O'k—(k_l)ﬂ s k—l,...,n

where [ is a positive constant to be determined.

2) Convergence Analysis: Theorem 2: Suppose that As-
sumptions 1-4 hold. Select the positive constants 5 and -y to
satisfy (36), where

WZHCTiri(SZl)

k=0 s=k

(66)

+ B)nfk—l

Bk +g(1+p)"

_ 1\" _
+H7N\/g{<1+5> —1} + He(2+ B)" (67)
and E is defined in (38). Using (65) for integrator agent (2)
solves the distributed resource allocation problem, i.e., ¢;(t) —
g;(t) VieVast— oo.

Proof: From Assumption 4, (2), (65a), and (65b), it follows
that

u§")=—2(> (b (b)
S

n—1

n—k (k) _ (k)Y
#32 (3)omvm (a - )

By Assumption 4 and (65b), it holds that ¢; = —H, "
gi(t)],andfork=1,...,n—1

k—1 k
k k—s s k
NE)+Z(3> HE9g@) 1 g®)|.
s=0

~ Hig" — g

K2

— Hycl") — yH;ti; — g\

K2

() [ +

qz(k) — —H71

Then, it holds that

n—

1
n
(k> BN — oy Hit + wi (gint)  (68)
k=0

o (et
( ) g k=s) (S).

where  w;(g;,t) = —w;1 —wi2, Wil =
[Hic™ + g andw;n =3 (1) 8 * S0
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From Assumption 4 and the definitionsof 0, j = 1,...,n + 1,

it holds that

lwinll, < (Fe+ 9) Z()w (fe+9) (1+ 6"
k=0

(69)

Define (. : *q(k D _ (k D for k=1,...,n and

Gi=| ll,...,(ﬁ 1. Define zig = (T ®14)¢;  for

k=1,...,n, where 7T, is given in (54). Note that
n s n! n\ (n—

(s)(sfk) = i) (k)R — (k)(sfllj) holds ~ for  any

k=1,...,n and s =k,...,n. Then, it holds that w;» =
ZZ 1 H k)Zs k( )Bn S(ésk) = Zk 1() z(k)
n n Sk? k) n— s
S (R B oa Y = GV HY I ()8

1(5)‘ Note from the definition of 7j in (54) that z; ,,_f41 =

Toki1G = S8 ("R grh=s (g — ¢{¥)). Hence, it holds

that
- n
wiz =) (k) H 2 kg1 +wig
k=1

where wig = 2221 (Z)H(k) Z;L;(]; (n;k) 671,—]@—361(_3). From

7

Assumption 4, it holds that

lwizll, < cH Z( ) 1+p"
k=1

From (65a) and the definitions of 7 and z; ;, it holds that

(70)

Zz n — ﬂzz n+ Vaz
Zzn 1= 757;2” 1+Zln
(71)
Zi1 = —Bzi1 + 22
By following a similar analysis as in (50), it holds

that | i ()2 < Y78 5 1205 (0) |2 + F254 . Then, it
holds that

" /n
Z <k:) Hi(k)zi,nfkﬂ

k=1

2

n—1 n—1
_ n 1
<HY 0L Y () 5
k=0 s=k s+ 1 BS

=1
n—1n-1 .
sy (1)
+ HyNVd Kl + ;) — 1] (72)
where ( is given in (38). Note that
CHZ( > 1+ 3" F + mHe(1 + B)"
= He(2+ B8)™. (73)

Then, it follows from (69), (72), (70), and (73) that
lwi (qi, t)||oo < |lwi(gi,t)]|2 < @, where @ is given in (67).

Let [i; = [MZ,NEI)T,...,ME" n’ |". Define 6; = (7, ®
Iy)fi; and & = [6,,...,8%]". Then, (63) holds. By following
the same analysis as in Step 3 of Theorem 1, it holds that
wi(t) — p;(t) = 0q Vi, j €V as t — oo, which implies that
there exists a signal x(t) such that p;(t) — p — 0q Vi €V as
t — 0.

Define = = Zf;l Ci,1- It follows from (65a) that z™ =
DY I (e D DRI DI (5 1 L
where the second equality holds by following Assump-
tion 1. By Corollary 1, this system is stable. Hence, z —
0,4 as t — oo. That is, vazl[%‘ —¢i(t)] = 04 as t — oo.
From (65b), it holds that V f;(q;,t) + p; = V fi(qi,t) + p+
Wi — =04 Yi,j € V. Hence, it holds that Vfl(qi7 t)+p=
—(p; — ) — 04 Vi € V. Then, it holds that —,C(q Wy t) —

04 Vi€V as t — oo. Therefore, aazﬁ(z t) = O(n41)q as
t — oo. Then, by Lemma 3, the statement in Theorem 2 holds.
|

Remark 3: Both distributed algorithms in Sections IV-B and
IV-C solve the time-varying resource allocation problem in a
distributed manner for networked integrator agents. However,
each algorithm has its own merit. For the algorithm in Sec-
tion IV-B, each agent has an extra virtual system to estimate the
central Lagrange multiplier, which might not be computationally
efficient compared with the other distributed algorithm. For
the algorithm in Section I'V-C, the requirement of constructing
virtual systems for the agents is removed, but each agent needs
to exchange the exact gradient information with its neighbors,
and sometimes, the agents would prefer not to give out such
information because it might be sensitive and private.

Remark 4: While implementing either the algorithm in Sec-
tion IV-B or the one in Section I'V-C, it is worth pointing out that
one can always find positive constants 3 and -y satisfying (36).
For instance, consider the algorithm in Section IV-B, and one
can choose /3 and 7 such that

1
B> 7 (74)
S -1
(2\5\d2N\/ﬁ+ )
2|E|dv Ndw (75)

> n

1- 20NV [(1+4)" - 1]
where &= He o) Snog () S ACS
S (o “;{f# + (14 B)" + He(2 + B)". From the
proofs of Theorems 1 and 2, the value of the 5 has an essential
effect on the convergence rate of the proposed distributed
algorithms and the value of + is closely related to the ultimate
optimum-tracking errors. Specifically, a larger 3 results in a
faster convergence of the decision variables to the optimal
solutions. However, from (75), one has that a larger v is
required to guarantee the exact optimum tracking if a large
value of (5 is chosen. The performance comparison of the
proposed distributed algorithms for different values of the

design parameters 3 and ~ is illustrated in Fig. 3 later.
Remark 5: Note that the values of ¢ and € in (38) and (39),
respectively, depend on the initial conditions. These values can
be estimated by using maximum consensus algorithms [48]. It
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is worth pointing out that the design parameters 3 and ~ are
constants that can be determined off-line. One can be conserva-
tive and choose a large enough value for 5 and then choose a
relatively larger value for . Then, one can embed these chosen
values into the agents.

Remark 6: The proposed distributed algorithms in Sections
IV-B and IV-C can be implemented in a sampled-data setting,
where the systems have continuous-time dynamics while the
inputs are based on zero-order hold and the interactions with the
neighbors are made at discrete sampling times. Then, the choices
of 3 and ~ depend on the value of the sampling period 7" and
the ultimate optimum-tracking errors are proportional to 7'.

D. Application to Nonlinear Dynamics With Parametric
Uncertainties

In this section, by the estimation-tracking method, we apply
the results obtained in Sections I'V-B or IV-C to solve the optimal
time-varying resource allocation problem for networked nonlin-
ear agents with parametric uncertainties in a distributed manner.
Different from the high-order integrators (2), the dynamics of
the ith agent are given as

2™ = 005 + ¢, t)0; + di(t) (76)

where m € N, z;; € R?, and v; € R? are, respectively,
the decision variable and control input of agent i, z; =
T

[le, xg)ll)—r, . ,xgqu%l)—r
rection, ¢;(z;,t) € R¥Pi is a known bounded Lipshitz contin-
uous function, ¥; € RP is the constant but unknown parameter
vector of agent 7, and d; (t) € R? is the disturbance vector satis-
fying ||d;||2 < dmax- It is assumed that ; can be either positive
or negative for all the agents and 0 < Opin < [0;] < Orax-

The main idea of the estimation-tracking method is described
as follows. First, each agent constructs a high-order integrator
virtual system of the form (2) with the order n > m and u;
given as in (22) or (65), and consequently, the virtual systems
solve the optimal time-varying resource allocation problem and
the virtual states estimate the optimal trajectories. Then, tracking
controllers are designed for the agent such that the physical states
track their local virtual states, and hence the optimal trajectories.

Therefore, the distributed time-varying resource allocation
algorithm designed for networked nonlinear systems (76) is
summarized as follows:

virtual system (2) with (22) or (65),

8i = Tiym + Y _peq ik Tik

v; = N (k;) [ai,lsi + ¢ivi + Z;l_ll A
~a™ + disgn(s)]

,0; € R is the unknown control di-

0,14, 141

ki = aiq HSzHg + 5] (@32 + Z?Ill i g 141 77)
—g™ )+ |lsil,

'{/9\1 Qi 29 s;

di = aiz|silly

where .4(-) is an even Nussbaum-type function [49], T; k=

(k1) _ (k=1)

Ty =g for k=1,..., ,Ai,m—1 are pos-

itive constants selected such that the polinomial ¢™~! +

m, )\.i)l,...

)\i,m,lgm’Q + -+ Ai 26 + Ai 1 = OisHurwitz, and oy 1, oy 2,
and «; 3 are positive constants.

From Theorems 1 or 2, under Assumptions 1-4, the virtual
state ¢; estimates the optimal decision trajectory ¢, i.e.,
q;(t) — ¢*(t) as t — oco. From the definition of sz, it holds
that $; = [0, (k;) + 1][ou, 18 + ¢ﬂ9 +>00 1
qgm) + c@sgn(si)} — 18; — b:0; — [d sgn(s;) — d;], where
¥; = 31» —19;. Let d = d dmax. Consider the Lyapunov
function W; = 3s]s; + 5=/, + 7-d;. The derivative
of W; is given as Wi = [0, (k;) + 1]k — ai1||sil|3 —
d?,HSzul + S;rdi < [0,,/V(k7) + 1]]61 — ai,1||si||%.1 By [49,
Lemma 1], it can be shown that Fk;(¢), W;(¢t), and
J540;A [ki(7)] + 1}k (7)d 7 are bounded on [0, ). Then, no
finite-time escape phenomenon may happen and ¢y = oo. Then,
it holds that lim;_,, fot @; 18, (1)s;(T)dT < oo, which implies
that s; is integratabtle. By Barbalat’s lemma [46, p. 175], it
holds that s; — 04, and hence x;:(t) = ¢;(t) Vi€V as
t — oo. Therefore, it holds that z;1(t) = ¢/ (t) Vi€V as
t — o0.

Remark 7: From the analysis above, it can be verified that
the dynamics in (76) can be extended to the case of hetero-
geneous orders. That is, if all the agents (76) have different
orders (e.g., the order of agent 7 is m;), then the agents can
cooperatively determine the highest order m = max;ey{m;}
and then the orders of the virtual systems (i.e., n). Moreover,
since the time-varying resource allocation problem for nonlinear
systems is transferred to a tracking problem by utilizing the
estimation-tracking method and the algorithms in Sections IV-B
or IV-C, then the dynamics given in (76) can be made more
general. For instance, let agent ¢’s dynamics be described in
strict feedback form

Tk = 0 kPi k (Ti k> )T g1 + ik (Tig, )ik + di g (t)
k=1,...,m—1,
Tim = 0im®@im (Ti )i + Qi (T4, 8) i m + dim (t)

A ATq1+1 —

where T; j, = [le, e ,xzk]T, 0;.r € R is unknown constant,
;.1 € RPx isavector of unknown parameters, and ¢; k(% k., t)
and ¢; 1 (Z; x,t) are known functions with compatible dimen-
sions. Each agent has a virtual system (2) with n > m. Define

Fiw=air—q" Y k=1,... m.It then holds that
(9)

Tig = 0i ki kTi k1 + i pWik + dik — q;

k=1,...,m—1,
Zim = 0im®i mUi + QimWim + dim(t) — qu)

where 3i x = [, dikay ] and Ui = [9; 1 0; 1]. By follow-
ing the design procedures introduced in [50], one can derive the
controllers for all the agents.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide examples to illustrate the results
in this article and the communication graph among the agents is
described by a ring topology.

In the analysis, since the Lyapunov function W; is continuously differ-
entiable, then the generalized gradient of W; is singleton. Note also that
x " K[sgn(z)] = ||z||1. Then, the analysis still holds and nonsmooth analysis
is not used to avoid symbol redundancy.
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Fig. 1. Decision trajectories of double-integrator agents (2) generated
by using the algorithms in Section IV-B (left) and Section IV-C (right).

nnnnn

)
S 8888 .

Fig. 2. Trajectories of pn; generated by using the algorithms in Sec-
tion IV-B (left) and Section IV-C (right).

A. Fourth-Order Integrators

Consider a group of N = 10 fourth-order integrators de-
scribed by (2) withn = 4 and d = 2, and assume that each agent
i € V has a cost function f;(q;,t) = ¢ H;(t)q; + g:(t) "q; +

~— [10+0.1i 10+ 0.14
hi(t), where H;(t) = {10+0.1§ 13+0.1icos(t)1+0.1i » 9i(t)

[icos(t),isin(t)]", and h;(t) is a time-varying function. The
agents aim to cooperatively solve the resource allocation
problem defined in (3)—(4), where ¢;(t) = [0.5icos(t) + i +
45,0.5isin(t) 4 4 + 20] ". In the simulations of this subsection,
the initial values of agents’ decision variables and their deriva-
tives are chosen randomly. In Figs. 1 and 2, the solid and dashed
lines are the trajectories generated by using the distributed algo-
rithms (in Sections IV-B and I'V-C) and the centralized algorithm
(in Section IV-A), respectively. The dash-dotted lines are the
optimal solutions of ¢; and p*, ¢ € V.

First, we validate the distributed algorithm in Section IV-B.
The values of 11;(0) and /¢; (0) are generated uniformly randomly.
We select 8 = 1 and v = 20. The trajectories of ¢; and p; are
presented in Fig. 1 (left) and Fig. 2 (left), respectively. It can
be seen that ¢; and p; are able to track the optimal ¢ and p},
respectively.

Then, we validate the distributed algorithm in Section I'V-C.
We select 8 =1 and v = 17. The trajectories of ¢; and u; are
presented in Fig. 1 (right) and Fig. 2 (right), respectively. It can
be seen that ¢; and p; are able to track the optimal ¢ and pu],
respectively.

We show in Fig. 3 how the total optimum tracking error
SN llgi — ¢} ||l2 changes when different values of ~ and S
are selected while implementing the distributed algorithms in
Section IV-B and IV-C. From Fig. 3, it can be seen that the
value of 3 determines the convergence speed of the proposed
distributed algorithms and that the value of y affects the ultimate

300

2 250
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L 00k
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300

2 250 N,
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L T00f
=
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Fig. 3. Total optimum tracking error Zfil lg: — g ll2 with time for
the fixed initial conditions and various values of 3 and ~ by using the
distributed algorithms in Sections 1V-B (top) and IV-C (bottom).

Fig. 4. Trajectories of n; and P; generated by using the algorithms (77)
with (22) (left) and (65) (right).

optimum tracking errors, which coincides with the statement in
Remark 5.

B. Economic Dispatch Problem of the Power Systems

Consider Example 2 with ten generators. The generator i’s
dynamics can be rewritten as [38]

(2) Toni + Tei (1) 1 K
P\ = — P\ — P; + V; (78)
! TmiTe; " ToniTe: ToniTe
which have the form of (76) with 0; = TKT'{,E -, U; =

[— 7, — =T, and ¢; = [P;,P"]. In the simulation,
letT)n; = 0.34 +0.02(i — 1),T.; = 0.12 + 0.02 * (i — 1), and
K, = 1.13 +0.01(¢ — 1), which are unknown and not used
in the algorithm design. We also add d;(t) = icos(t) on the
right-hand side of (78). By [38], the time-varying cost coefficient
functions of the ith generator are assumed to be a;(t) = 16.78 +
isin(t), b;(t) = 18.3391 + i cos(t), and m; = 1.24 + isin(t),
and the resource is given as D; = 10 + 0.2¢sin(¢). The con-
trollers can be designed by following Section IV-D. In the simu-
lation, we set n = m = 2. Construct a virtual system q§2) = u;
for generator ¢ with u; given in (22) or (65) and design control
v;, as in (77) such that P; tracks ¢;. Select o; 1 = a0 = v 3 =
Ai1 = P =1,y =10. The simulation results are presented in
Figs. 4, where the dash-dotted lines are the optimal solutions of
qf and p*, i € V. It can be seen that P;(t) — P7(¢) as t — oo
foralli € V.
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i or =V fi(gi, t)
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Fig. 5. Trajectories of u; or —V f;(qi, t) [defined in (65b)] and ¢; gen-
erated by using the distributed algorithm in Section IV-B (dashed lines)
and Section IV-C (dot-dashed lines).
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Fig. 6. Trajectories of Zi\[:l(fh —¢;), where ¢; is generated by using
the distributed algorithm in Section IV-C.

C. Simulation Results With Nonquadratic Cost Functions

Although the Assumption 4 indicates that the cost func-
tions are assumed to be quadratic, the algorithms proposed
in this article can be used for nonquadratic cost functions.
In the following, we provide an example with nonquadratic
cost functions. Consider ten single-integrator agents with d = 1
and assume that the gradient of the ith cost function is given
as Vfi(qgi,t) = [0.5sin(t) +i]¢d + ¢ +icos(t). In Fig. 5, it
shows that the two distributed algorithms ultimately produce
the same p; and —V f;(qi, t), @ € V. It can also be seen that the
decision trajectories generated by both distributed algorithms
for each agent converge to the same one. From Fig. 6, it shows
that Zfil [q:(t) — ci(t)] — Oast — oo by using the distributed
algorithm in Section IV-C. Recall from (65b) and Fig. 5 that
wi + V fi(gi,t) = 0 and p; — p; Vi, j € V, and it can be im-
plied that the agents’ decision trajectories in Fig. 5 converge to
optimal ones.

VI. CONCLUSION

The distributed time-varying resource allocation problem has
been investigated for networked high-order agents. Two dis-
tributed algorithms have been proposed for high-order integrator
agents to track the optimal decision trajectories with zero errors.
There is a tradeoff between economical efficiency and favorable
applicability to privacy-sensitive applications while implement-
ing these two algorithms. By using the estimation-tracking
method, these two distributed algorithms have been used to
solve the resource allocation problem for networked high-order

nonlinear agents. Finally, simulation results have been presented
to validate the effectiveness of the proposed algorithms.
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