

1 MeV Electron Precipitation during Radiation Belt 2 Dropouts

3 **Domenique Freund¹, Lauren Blum¹, Sergio Vidal-Luengo¹, Alessandro
4 Bruno^{2,3} Ryuho Kataoka⁴**

5 ¹Laboratory for Atmospheric and Space Physics, Boulder, Colorado, USA

6 ²Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

7 ³Department of Physics, Catholic University of America, Washington, DC, USA

8 ⁴National Institute of Polar Research, Tachikawa-city, Tokyo, Japan

9 **Key Points:**

- 10 MeV electron dropouts with and without associated precipitation show dependen-
11 cies on solar cycle and seasons.
- 12 An increase in precipitation occurrence and intensity during MeV dropouts aligns
13 with the decline in SYM-H and B_z , and the peak in P_{dyn} .
- 14 Dropouts with MeV electron precipitation, on average, spread over a wider radial
15 extent, with occurrences related to SYM-H.

16 **Abstract**

17 To gain deeper insights into radiation belt loss into the atmosphere, a statistical
 18 study of MeV electron precipitation during radiation belt dropout events is undertaken.
 19 During these events, electron intensities often drop by an order of magnitude or more
 20 within just a few hours. For this study, dropouts are defined as a decrease by at least
 21 a factor of 5 in less than 8 hours. Van Allen probe measurements are employed to iden-
 22 tify dropouts across various parameters, complemented by precipitation data from the
 23 CALorimetric Electron Telescope instrument on the International Space Station. A tem-
 24 poral analysis unveils a notable increase in precipitation occurrence and intensity dur-
 25 ing dropout onset, correlating with the decline of SYM-H, the north-south component
 26 of the interplanetary magnetic field, and the peak of the solar wind dynamic pressure.
 27 Moreover, dropout occurrences show correlations with the solar cycle, exhibiting max-
 28 ima at the spring and autumn equinoxes. This increase during equinoxes reflects the cor-
 29 relation between equinoxes and the SYM-H index, which itself exhibits a correlation with
 30 precipitation during dropouts. Spatial analysis reveals that dropouts with precipitation
 31 penetrate into lower L-star regions, mostly reaching $L\text{-star} < 4$, while most dropouts with-
 32 out precipitation don't penetrate deeper than L-star 5. This is consistent with the larger
 33 average dimensions of dropouts associated with precipitation. During dropouts, precip-
 34 itation is predominantly observed in the dusk-midnight sector, coinciding with the most
 35 intense precipitation events. The results of this study provide insight into the contribu-
 36 tion of precipitation to radiation belt dropouts by deciphering when and where precip-
 37 itation occurred.

38 **Plain Language Summary**

39 The outer radiation belt encircles Earth, trapping energetic electrons due to the
 40 planet's magnetic field. Under certain conditions, such as during geomagnetic storms,
 41 there can be a significant loss of these trapped electrons over a short period, known as
 42 a dropout. One reason for this can be particles reentering Earth's atmosphere, leading
 43 to their removal from the outer radiation belt. This is referred to as precipitation. This
 44 study investigates the role of precipitation for dropouts, focusing on when and where pre-
 45 cipitation occurs during those events. To accomplish this, data from the Van Allen Probe
 46 spacecraft, measuring electron density, and the CALorimetric Electron Telescope instru-
 47 ment aboard the International Space Station, measuring precipitation, are utilized. The
 48 findings reveal a correlation between dropouts, whether aligned with precipitation or not,
 49 and the solar cycle and seasons. Seasonal variations are likely connected to the inten-
 50 sity of disturbances in the magnetosphere, consequently raising the probability of pre-
 51 cipitation. Spatial investigations reveal that dropouts accompanied by precipitation pen-
 52 etrate deeper into lower regions of stably trapped particles. Furthermore, precipitation
 53 predominantly occurs on the dusk and midnight side of Earth, where the strongest pre-
 54 cipitation measurements are also recorded.

55 **1 Introduction**

56 The inner magnetosphere is comprised of torus-like regions encircling Earth, known
 57 as radiation belts, within which charged particles are trapped along Earth's magnetic
 58 field lines. This domain is divided by the slot region into two components: the inner ra-
 59 diation belt ($L \sim 1 - 2$) and the outer radiation belt ($L \sim 3 - 8$) (Van Allen, 1959).
 60 Energetic protons dominate the relatively stable inner radiation belt, while the dynamic
 61 outer radiation belt consists of energetic electrons spanning tens of keV to several MeV.

62 The unpredictable variability of the outer belt primarily stems from solar activ-
 63 ity and subsequent geomagnetic disturbances. These disturbances drive a complex in-
 64 terplay of competing acceleration and loss mechanisms. Those loss mechanisms include
 65 magnetopause shadowing, outward radial diffusion, and wave-particle interactions, ul-

66 timately leading to the precipitation of particles into the Earth's atmosphere (Millan &
 67 Thorne, 2007; Moya et al., 2017; Turner, Morley, et al., 2012; Shprits et al., 2008; Loto'aniu
 68 et al., 2010; Green & Kivelson, 2004). Some of the most pronounced changes within Earth's
 69 outer radiation belt manifest as dropouts, which denote substantial depletions of the outer
 70 radiation belt, frequently witnessed during the main phase of geomagnetic storms (Baker
 71 et al., 1994; Xiang et al., 2018). These occurrences are characterized by a drastic reduc-
 72 tion in electron flux across a wide spectrum of energies and spatial domains, occurring
 73 within a span of just a few hours (Friedel et al., 2002; Turner, Morley, et al., 2012).

74 In the case of dropout events, the combined effects of magnetopause shadowing and
 75 outward radial diffusion have been identified as significant contributors. However, these
 76 processes often fail to fully explain the observed depletion, necessitating the inclusion
 77 of an additional loss mechanism in the form of artificial "fast scattering" in simulations,
 78 particularly to replicate depletions at lower L shells ($L \lesssim 4$) (Shprits et al., 2006; Turner,
 79 Shprits, et al., 2012). "Fast scattering" encompasses pitch angle scattering of relativis-
 80 tic electrons, leading to Relativistic Electron Precipitation (REP). In high L-star regions,
 81 a combination of magnetopause shadowing, outward radial diffusion and particle scat-
 82 tering is expected to contribute to dropout events, while in low L-star regions, particle
 83 precipitation is suggested to be the primary driver (Xiang et al., 2018).

84 Pitch angle scattering can occur through two distinct mechanisms, either separately
 85 or in combination (Horne et al., 2009; Capannolo et al., 2022). The first process involves
 86 wave-particle interaction, which entails the exchange of energy and momentum between
 87 electromagnetic waves and charged particles. Different types of waves cause pitch an-
 88 gle scattering across various energy ranges. With a focus on MeV precipitation in this
 89 study, waves that influence precipitation within the MeV range are of particular inter-
 90 est as they could potentially act as drivers. Electro Magnetic Ion Cyclotron (EMIC) waves
 91 have been proposed as generators of REP events in the MeV range, particularly affect-
 92 ing particles with low pitch angles (Millan & Thorne, 2007; Summers & Thorne, 2003;
 93 Xiang et al., 2017, 2018). Scattering attributed to EMIC waves is anticipated to occur
 94 predominantly in the sectors from dawn to dusk (Allen et al., 2015), but is inadequate
 95 to explain the observed loss in the MeV energy range. Therefore, the inclusion of Hiss
 96 and whistler mode chorus waves is necessary (Drozdov et al., 2020).

97 The second mechanism for pitch angle scattering is current sheet scattering (CSS),
 98 which occurs when the Earth's magnetic field curvature radius approaches the gyroradi-
 99 us of electrons, violating the first adiabatic invariant. This phenomenon is associated
 100 with increased stretching of magnetic field lines and predominantly occurs in the night-
 101 side magnetosphere where the current sheet thins. Unlike wave-driven REP, which can
 102 be observed within the plasmasphere, CSS-driven REP is preferentially detected outside
 103 of it (Büchner & Zelenyi, 1989; Capannolo et al., 2022).

104 The relative importance of precipitation compared to other loss mechanisms such
 105 as magnetopause shadowing and outward radial diffusion remains incompletely under-
 106 stood but appears to depend on energy, L-star, and disturbance conditions. Yu et al. (2013)
 107 found for 649 keV electrons that losses for $L\text{-star} > 5$ are predominantly due to mag-
 108 netopause shadowing and outward radial diffusion, whereas for $L\text{-star} < 5$, these mech-
 109 anisms explain only 60% of losses. Reeves et al. (2003) observed significant losses for 1.8-
 110 3.5 MeV electrons at low L-shells, even when the magnetopause was far outwards, sug-
 111 gesting precipitation maybe a prevalent loss mechanism. Additionally, Xiong et al. (2015)
 112 demonstrated through superposed epoch analyses that storms with 'energy-dependent'
 113 responses enhance the likelihood of precipitation as an important loss process. Mean-
 114 while, Gokani et al. (2019) studied precipitation during the 2015 Saint Patrick's Day storm
 115 and found it contributed less than 0.5% to the total loss of 0.9-6.3 MeV electrons.

116 While MeV precipitation is commonly suggested as a loss mechanism during fast
 117 depletions, there is still limited direct observational evidence to confirm that MeV elec-

tron precipitation actually contributes to dropouts (Bruno et al., 2022; Blum et al., 2024). Furthermore, our understanding of where and when precipitation can occur, as well as the relative importance of precipitation loss compared to other loss mechanisms such as outer boundary loss, remains incomplete. The significant importance of understanding precipitation events lies in the potential consequences of these events. REP events not only contribute to atmospheric heating but also pose risks to astronaut health during spacewalks and can lead to spacecraft anomalies (Goldberg et al., 1995; Dachev, 2018). Furthermore, studying MeV precipitation during dropout events contributes to a broader understanding of the outlined precipitation drivers.

This statistical study investigates the temporal and spatial occurrence of MeV electron precipitation during dropout events over a span of four years to enhance the overall comprehension of dropout events.

2 Data and Methodology

2.1 Datasets

To identify dropout events, electron fluxes from the Van Allen Probes are analyzed. The twin Van Allen Probes operated from 2012 to 2019 in a highly elliptical near-equatorial orbit, with a period of \sim 9 hours and an apogee of \sim 5.8 R_E , inside geostationary orbit (Mauk et al., 2013). This analysis involves utilizing a merged dataset from the Magnetic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013) and the Relativistic Electron Proton Telescope (REPT) (Baker et al., 2013) onboard the Van Allen Probes. MagEIS captured radiation belt electron data from \sim 200, keV to \sim 3, MeV, while REPT measured electrons ranging from \sim 1.6, MeV to \sim 19, MeV. To resolve an offset in the overlapping channels of the two datasets, a spline fitting technique was employed by Boyd et al. (2021) to merge the data. This study utilizes the Magnetic Ephemeris data from the Van Allen Probes, calculated using the Tsyganenko and Sitnov 2004 (TS04) magnetic field model.

To identify MeV precipitation events, measurements from the CALorimetric Electron Telescope (CALET) are employed. Data collection by CALET commenced in August 2015 (Torii et al., 2019). The instrument flies onboard the International Space Station (ISS), maintaining a low Earth orbit at altitudes ranging from 370 to 460 km and an inclination of 51.6°. It measures the lower altitude footprints of the outer radiation belt, which can be mapped to L-shells 3-7 and is sampled multiple times daily across various magnetic local time (MLT) locations. CALET has a charge detector equipped with two scintillator arrays, CHDX and CHDY, adept at detecting electrons with energies surpassing 1.5 MeV and 3.4 MeV, respectively (Bruno et al., 2022). Rapid electron precipitation events measured by CALET are discernible through isolated surges in count rates (Kataoka et al., 2016, 2020). A catalogue of REP events observed by CALET, identified through a self-organizing map technique, is employed in this study (Vidal-Luengo et al., 2024). Specifically, the detected electron enhancements have been subdivided into two main categories: 1) rapid profiles, characterized by sharp temporal variations that can last from a few seconds to several minutes; and 2) smooth profiles, exhibiting a gradual increase followed by a decrease in count rates, typically spanning 5–10 minutes. Only the first event class is taken into account in this analysis, since smooth profiles are typically due to drift loss cone precipitation, and therefore cannot be precisely associated with certain dropout events in time and location. The overlapping time period between CALET and the Van Allen Probes used in this paper's analysis covers the period from the beginning of November 2015 to the end of June 2019.

In addition to radiation belt electron data, solar wind data and geomagnetic indices (OMNI) are employed to enhance our comprehension of the background conditions during dropout and precipitation events.

168 **2.2 Methodology**

169 To quantitatively assess radiation belt changes, identifying irreversible, non-adiabatic
 170 alterations is crucial, signifying genuine enhancements or depletions. The adiabatic in-
 171 variants

$$172 \mu = \frac{p_{\perp}^2}{2m_0 B} = \frac{p^2 \sin^2 \alpha}{2m_0 B}$$

$$173 K = \frac{J}{2\sqrt{2m_0 \mu}} = \int_{s'_m}^{s_m} \sqrt{B_m - B_s} ds$$

$$174 L^* = \frac{2\pi M}{|\Phi|R_E}$$

175 are used to reveal particle kinematics within the geomagnetic field (Green & Kivelson,
 176 2004; Roederer & Zhang, 2014). The first invariant, denoted as μ , represents the mag-
 177 netic moment, illustrating the trajectory of particles as they gyrate along magnetic field
 178 lines. Here, p_{\perp} signifies the component of relativistic momentum perpendicular to the
 179 magnetic field, m_0 denotes the rest mass of the electron, B stands for the magnitude of
 180 the magnetic field, and α represents the pitch angle. The second invariant, convention-
 181 ally expressed as K , correlates with bounce motion. J represents the longitudinal invari-
 182 ant, while s_m and s'_m indicate the distances from the particle's mirror point, where the
 183 particle undergoes bouncing. B_s and B_m signify the magnetic field magnitudes at points
 184 s and the mirror point, respectively. The third invariant, symbolized as L-star (L^*), em-
 185 bodies a property of stably trapped particles and conveniently relates inversely propor-
 186 tional to the magnetic flux Φ . Here, M represents the magnetic moment of Earth's dipole
 187 field, and R_E denotes the radius of the Earth.

188 For this study, the adiabatic invariants are used to compute the PSD from electron
 189 flux data measured by the Van Allen Probes, representing particle concentration in the
 190 combined space of position and momentum. Utilizing a 4-hour time resolution, the mea-
 191 surements are aggregated into 4-hour intervals, and data gaps along the L-star param-
 192 eter are interpolated. To identify dropout events, the procedure utilized by Xiang et al.
 193 (2018) is employed, where a decrease in PSD exceeding a factor of five within a span of
 194 less than eight hours is classified as a dropout event. In this study, the commencement
 195 of a dropout is defined as the time step where the PSD first decreases by a factor of at
 196 least five, while the end of a dropout is defined as the time step where the PSD is no longer
 decreasing.

197 A catalog is compiled for the specified data timeframe, detailing the PSD for given
 198 K and μ values across L-star. An example page of the catalogue is illustrated in Figure
 199 1. The white dotted line denotes storms identified by Turner et al. (2019), while diamonds
 200 represent all REP events identified from the measurements of CALET, with color indi-
 201 cating their intensity in counts. The pink circles in the lower plot highlight identified dropouts.
 202 Additionally, the figure is overlaid with the SYM-H index.

203 If multiple dropout events are detected within a 2-day timeframe, they are consid-
 204 ered a single event independent of their L-star region. This approach prevents inadver-
 205 tent categorization into separate dropout events due to missing data points or variations
 206 in loss processes over different timescales. Throughout the investigated timeframe, no
 207 instances occurred where different storm events associated with a dropout happened closer
 208 together than 2 days, ensuring accurate identification of distinct events. Figure 1 serves
 209 as an example where the detected dropouts, indicated by pink circles, are counted as three
 210 distinct dropout events. Moreover, the calculation of the last closed drift shell (LCDS)
 211 helps determine whether magnetopause shadowing, rather than precipitation, was the
 212 predominant influencing factor. Pinto et al. (2020), shows that electron outward radial
 213 diffusion driven by intense ULF waves, along with magnetopause shadowing, is frequently
 214 the main driver for electron losses between the LCDS and the plasmapause location. The
 215 minimum plasmapause position is often 1.0–1.5 Earth radii R_E lower than the minimum

216 LCDS. Consequently, ULF wave-driven radial diffusion is less likely to be the primary
 217 driver for losses at L-shells below the LCDS and above $1.5 R_E$.

218 To calculate all these values, the International Radiation Belt Environment Modeling
 219 (IRBEM) library is utilized in conjunction with OMNI data, while employing the
 220 International Geomagnetic Reference Field IGRF-13 (Alken et al., 2021) and the Tsy-
 221 ganenko and Sitnov 2005 (TS05) models for the description of the internal and exter-
 222 nal geomagnetic field components.

223 With dropouts and REP events identified, it becomes feasible to ascertain whether
 224 dropouts coincide with precipitation events. For this study, the dropouts are separated
 225 into the two categories, based on the presence/ absence of MeV electron precipitation.
 226 The dropout events with precipitation are identified by fulfilling two criteria:

227 (1) Precipitation must be detected in an interval from 12 hours prior to the dropout
 228 commencement to 4 hours after its end. This temporal criterion aligns with the
 229 established definition of a dropout event, characterized by a rapid decline exceeding
 230 five units within an 8-hour interval (Xiang et al., 2018). Given the dataset's
 231 temporal resolution of 4 hours, the chosen window ensures full coverage of the 8-
 232 hour period before the dropout and at the time of the dropout end.
 233 (2) The recorded precipitation must fall within a specified L-star range relative to the
 234 dropout location, set at ± 0.3 , to accommodate potential inaccuracies in L-star cal-
 235 culations. While the maximum error in the calculations may exceed ± 0.3 , the value
 236 is chosen as a conservative estimate. This decision is based on the observation that
 237 the overall number of detected dropouts with precipitation varies by only 4% be-
 238 tween ± 0.3 and ± 0.6 , but showed a 10% increase from ± 0.1 to ± 0.3 and a 4% in-
 239 crease from ± 0.6 to ± 0.7 .

240 Events not satisfying these selection requirements are classified as dropouts with-
 241 out precipitation.

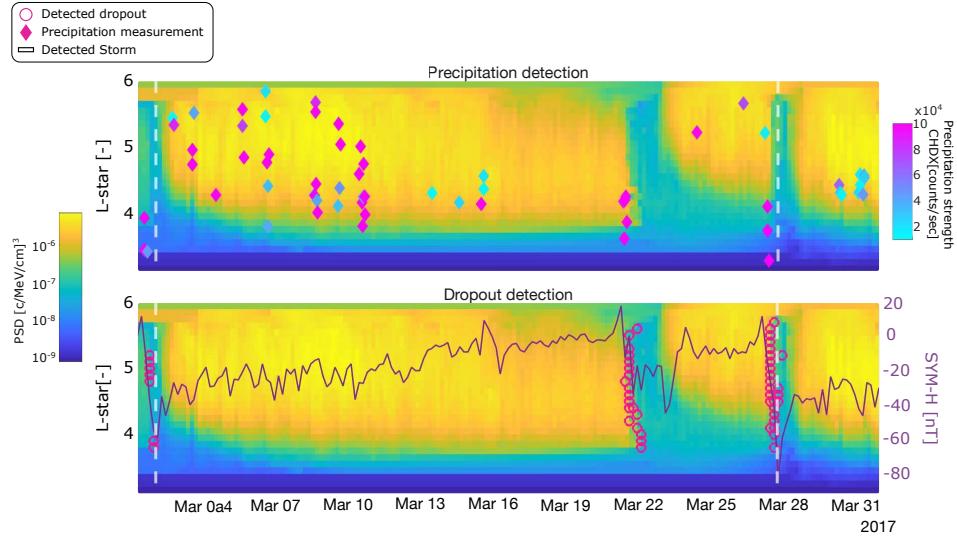


Figure 1: In the upper panel, the PSD is depicted overlaid with precipitation (diamonds) measured by CALET, with color indicating the strength of the precipitation in count rate. Detected storm events by Turner et al. (2019) are denoted by white dotted lines on both plots. The lower subfigure illustrates the PSD overlaid with dropout events (magenta circles) and the SYM-H index.

242 **2.3 Potential sources of uncertainty**

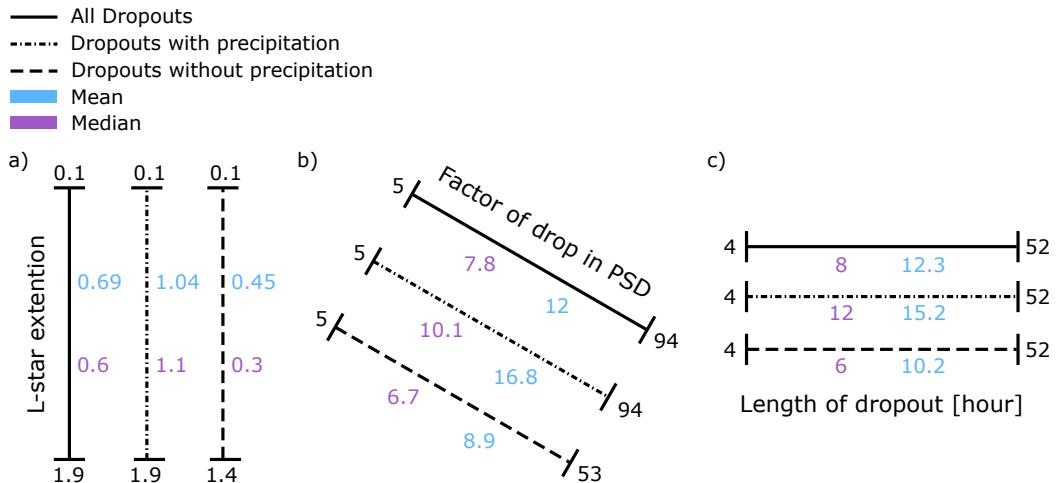
243 Utilizing the Van Allen Probes introduces the challenge of limited time resolution,
 244 which at best is approximately 4 hours. However, due to various factors such as data gaps,
 245 the time resolution can deteriorate, potentially resulting in the omission of dropout events.
 246 Furthermore, the nature of PSD necessitates fixed values for K and μ , making it chal-
 247 lenging to capture all dropout events within the MeV energy band of CALET without
 248 conducting multiple iterations across different parameter values. Given that energy varies
 249 with L-star, this approach may result in potential undetected MeV dropouts during cer-
 250 tain times and in specific L-star regions.

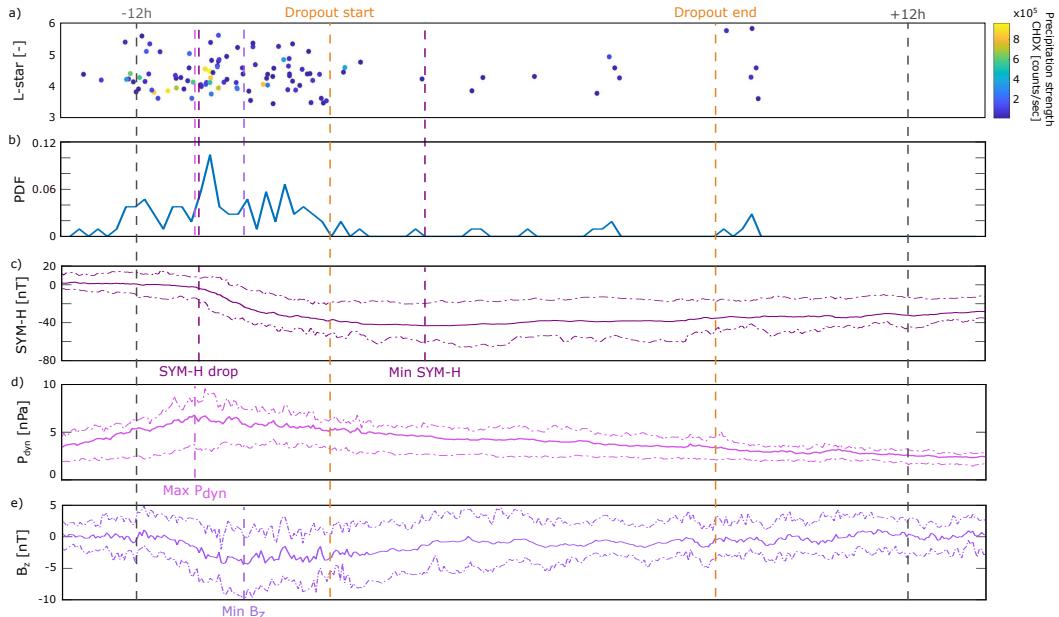
251 In addition to dropout detection, the precipitation measurements lead to poten-
 252 tial uncertainties. As a result of the offset and tilt of the geomagnetic dipole with respect
 253 to the Earth, combined with the ISS orbital constraints, CALET is able to sample the
 254 outer radiation belt at varying L-shell/MLT intervals throughout its orbit (Bruno et al.,
 255 2021). Additionally, the coverage of the L-shell per MLT is not uniform. Moreover, the
 256 CALET measurements are reported in terms of L-shell values, representing drift-shell
 257 distance at magnetic equator, whereas for comparison purposes, L-star values are nec-
 258 essary, indicating regions characterized by stably trapped particles. The L-star calcu-
 259 lation involves magnetic-field line tracing through the ISS position using the IGRF and
 260 the TS05 models. Subsequently, L-star is computed for the specified set of K values at
 261 the equatorial location. It's important to note that this methodology assumes that the
 262 particle precipitation is aligned with the magnetic field. The L-star values derived from
 263 both the Van Allen Probe dataset and the CALET dataset are accompanied by poten-
 264 tial errors arising from the modeling of the Earth magnetic field. Consequently, a thresh-
 265 old of ± 0.3 for L-star alignment is selected.

266

3 Analysis and Discussion

267 This study focuses on addressing two fundamental inquiries: the temporal occurrence
 268 and the spatial distribution of precipitation events in conjunction with dropout
 269 occurrences. If not specified otherwise, the adiabatic invariants $K = 1.311G^{1/2}$ and $\mu =$
 270 $144\text{MeV}/\text{G}$ are employed to derive the forthcoming results. These values correspond to
 271 an energy range of 1.4 to 3.6 MeV and an equatorial pitch angle range of 12 to 25 degree,
 272 in an L-star range from 3-6. They were chosen due to their association with a relatively high
 273 occurrence of MeV dropouts and the possibility of waves being associated with this dropout,
 274 as this particle population can be efficiently scattered by He^+ - and O^+ -band EMIC waves (Xiang et al., 2018). As a result, this study encompasses a total
 275 of 106 events, with 63 instances occurring without precipitation and 43 being accompa-
 276 nied by precipitation. The dimensions of the dropouts are illustrated in Figure 2. The
 277 figure showcases the dimensions of all dropouts, encompassing both those with and with-
 278 out precipitation. The extension of L-star indicates the range over which the dropouts
 279 span. Notably, dropouts with precipitation tend to cover a broader L-star range com-
 280 pared to those without precipitation. To compute the factor of the PSD drop for a sin-
 281 gle dropout, the mean PSD reduction across each L-star bin where a decrease of at least
 282 a factor of five is observed. The values show that the dropout depth tends to be larger
 283 for dropouts with precipitation. While the maximum values of PSD drop for events with
 284 and without precipitation can be very large, such high values are rare occurrences rather
 285 than commonly observed features. The duration of dropouts, measured in hours, is de-
 286 termined by identifying the first and last detection across all L-star bins. Dropouts with
 287 precipitation tend to have longer durations.
 288




Figure 2: Dimension of dropouts, including the L-star extension, (a) drop in PSD, (b) and duration of dropout, (c) split into dropouts with and without precipitation. The dimensions are defined by the minimum and maximum values at the beginning and end of each line. The mean and median values are also reported in cyan and violet, respectively.

289

3.1 When - Temporal occurrence of dropout related precipitation

290 The temporal relationship between the onset of precipitation and dropout detection,
 291 as well as the timing of the SYM-H index drop, the peak in dynamic pressure P_{dyn} ,
 292 and the direction of the interplanetary magnetic field (IMF) B_z component, is explored
 293 by evaluating a timeline. Thereby, a superposed epoch study is conducted using all iden-
 294 tified dropout events with precipitation.

295 Figure 3(a) presents all precipitation measurements during the time of the detected
 296 dropouts and their strength in counts, while Figure 3(b) shows the probability distribu-
 297 tion function (PDF) based on the amount of precipitation in (a) indicating the amount
 298 of precipitation during different times relative to the time of the dropout. Figure 3(c)
 299 shows the mean in the SYM-H index for all events, with dashed lines indicating the up-
 300 per and lower quartiles. The same is done in Figure 3(d) for P_{dyn} and Figure 3(e) for
 301 B_z . The dropout start is delineated as the moment when the PSD experiences its ini-
 302 tial decline exceeding a factor of five. Conversely, the end of the dropout is identified as
 303 the first instance where there is no further reduction of any magnitude in PSD observed.
 304 Preceding the dropout onset, time is measured absolutely, while the interval between dropout
 305 onset and conclusion is relative and contingent upon the duration of the dropout itself.

306 Figure 3: Timeline illustrating precipitation occurrence relative to dropout start and end
 307 times, overlaid with averaged maximum SYM-H index, maximum dynamic pressure P_{dyn} ,
 and minimum magnetic field strength B_z of all events. Absolute time frames occur before
 and after dropout events, with relative time in between. a) Precipitation plotted in L-star
 over time, with color indicating precipitation strength measured in the CHDX channel of
 CALET in counts. b) Probability distribution of precipitation occurrence over time. c)
 Mean SYM-H index for all events with upper and lower quartiles (dashed line). d) Mean
 P_{dyn} for all events with upper and lower quartiles (dashed line). e) Mean B_z for all events
 with upper and lower quartiles (dashed line).

306 The drop in the SYM-H index occurs roughly 8.5 hours prior to the onset of dropouts,
 307 along with the peak in P_{dyn} and the drop in B_z . This is accompanied by heightened pre-

308 cipitation, indicating a correlation between the outlined values, and the commencement
 309 of precipitation associated with dropouts. A study by Ni et al. (2016) shows that for elec-
 310 trons with energies greater than 100 keV, the largest depletion occurs during or right
 311 after the peak in P_{dyn} . In this work, the peak in MeV precipitation can be observed roughly
 312 7.5 hours before the dropout is detected, following the peak in P_{dyn} . While earlier stud-
 313 ies proposed that precipitation of high-energy electrons into the Earth's atmosphere oc-
 314 cur mainly during the recovery phase of the SYM-H index (Bazilevskaya et al., 2017; Horne
 315 et al., 2009), the used dataset indicates a larger amount of precipitation before the dropout
 316 onset. A study conducted by Mourenas et al. (2016) demonstrated how the combination
 317 of chorus and EMIC waves could induce rapid MeV dropouts, within the observed time-
 318 frame (2-10 hours), at an L-range of 3-6. After the onset of dropouts, there is a rapid
 319 decrease in precipitation amount, attributed to the significant loss of electrons that has
 320 already occurred by the time dropouts are detected. During the time of the dropout, the
 321 minimum in the SYM-H index is reached. As the dropout progresses, precipitation di-
 322 minishes gradually, with precipitation levels nearly absent by the end of the dropout phase.
 323 Regarding the precipitation strength, defined by the amplitude in count rate measure-
 324 ments of CALET, it is highest during the phase of the drop in the minimum SYM-H in-
 325 dex and decreases over time.

326 Analysis of the dataset from 2015 to 2019 reveals a trend associated with the so-
 327 lar cycle and the seasons, indicating changes in dropout frequency, as well as variations
 328 in the frequency of dropouts with associated precipitation. Figure 4a presents the study
 329 by Mursula et al. (2022), illustrating the annual distribution of storms driven by CMEs
 330 and HSSs/CIRs. This categorization is used to better contextualize the data in Figure
 331 4b, which illustrates the trend of sunspot numbers over time, with overlaid bars indicat-
 332 ing dropout occurrences separated into those without precipitation and those accompa-
 333 nied by precipitation. The data show that with a required alignment between dropouts
 334 and precipitation events of $L^* \pm 0.3$, the decrease in occurrence towards the solar min-
 335 imum is only evident from 2017 to 2018, with fewer dropout events observed in 2016 com-
 336 pared to 2017. However, it's necessary to note that certain time periods are subject to
 337 small-number statistics. As outlined in Section 2.3, due to specific K and μ values and
 338 the energy dependence of electrons relative to L^* , some dropouts in different L^* regions
 339 might not be detected. Conversely, loosening the criteria risks categorizing dropouts as
 340 those with precipitation, even if the precipitation occurred independently. Nonetheless,
 341 to assess overall trends and gauge sensitivity, an L^* alignment requirement of ± 1 is ad-
 342 ditionally set, as shown by the shaded bars in Figure 4b. The results in Figure 4b show
 343 similar trends for both alignment criteria overall, with larger discrepancies observed in
 344 2016. However, the primary focus in the following analysis is on the stricter binning cri-
 345 teria of ± 0.3 to eliminate the number of potential false positive dropout categorizations.

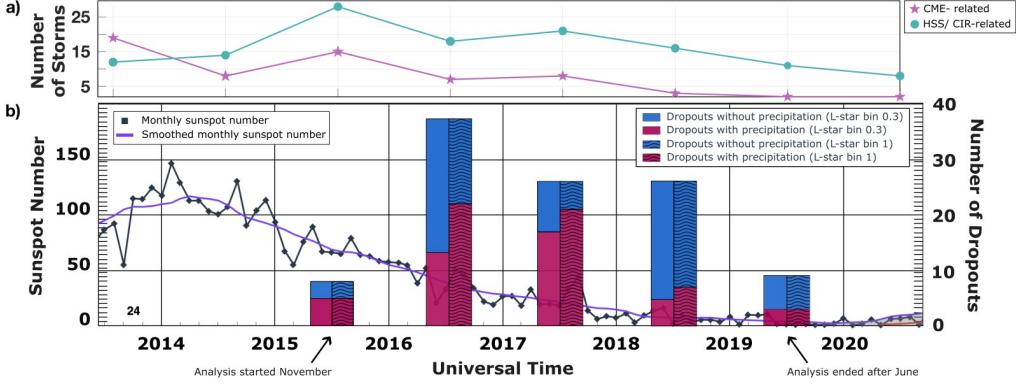


Figure 4: A comparative analysis of yearly dependency of detected dropouts. a) Number of different storm types per year as comparison (Mursula et al., 2022) b) Number of detected dropouts($K = 1.311 G^{1/2} R_E$, $\mu = 144 \text{ MeV/G}$) with and without precipitation alignment (Magenta vs. Blue) within an L-star alignment requirement of ± 0.3 and ± 1 including data from the beginning of November 2015 until the end of June 2019, plotted against the solar cycle sunspot numbers (NOAA, 2024).

The seasonal variation, along with the potential correlation between dropouts with and without precipitation and the equinoxes, is depicted in Figure 5. Thereby, only the years with full measurement coverage (2016-2018) are included. Figure 5(a) illustrates fluctuations in the total number of dropouts, while Figure 5(b) depicts variations in the percentage of dropouts accompanied by precipitation per month. Both Figure 5(a) and 5(b) reveal peaks around the spring and autumn equinoxes, marked by the Sun's crossing of the celestial equator.

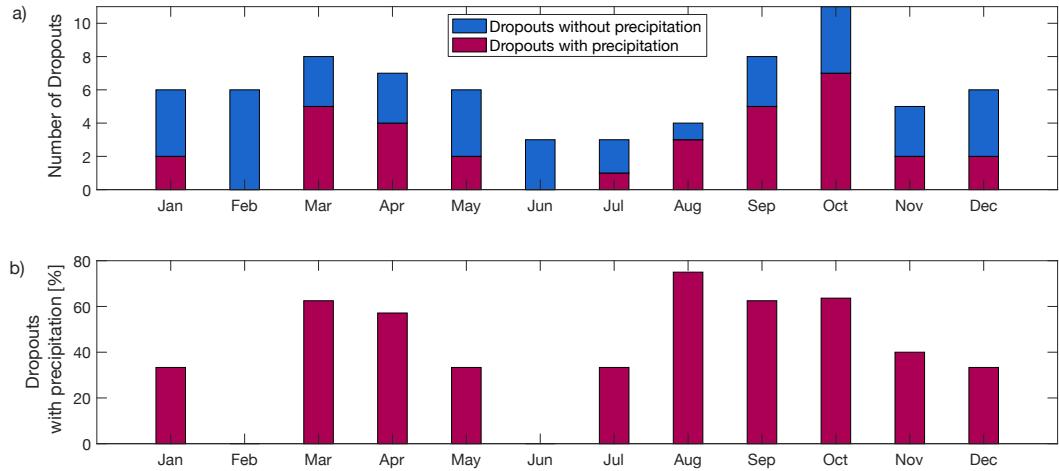


Figure 5: A comparative analysis of monthly dependency of detected dropouts ($K = 1.311 G^{1/2} R_E$, $\mu = 144 \text{ MeV/G}$) within a variability in L-Star of ± 0.3 . a) Comparison between dropouts with and without precipitation alignment (Magenta vs. Blue) per month. b) Percentage of dropouts with precipitation per month.

353 The observed trend with the solar cycle in Figure 4 is likely attributable to the de-
 354 cline in solar activity leading towards the solar minimum, resulting in fewer geomagnetic
 355 disturbances (Miyoshi & Kataoka, 2011; Samsonov et al., 2019; Mursula et al., 2022).
 356 The annual as well as the semiannual variation is also reported by Vidal-Luengo et al.
 357 (2024) for all MeV precipitation events measured by CALET. However, from 2017 to 2018,
 358 the number of dropouts with precipitation decreases drastically, while the total number
 359 of dropouts remains the same.

360 The decrease in events with precipitation may be attributed to variations in elec-
 361 tron intensity stemming from changes in geomagnetic activity. Typically 2-3 years be-
 362 fore reaching the solar minimum there is an uptick in high-speed solar wind streams (HSSs)
 363 and a decrease in interplanetary coronal mass ejections (CMEs) (Richardson et al., 2001),
 364 as can be seen in Figure 4a. These streams energize the radiation belt whenever the so-
 365 lar wind velocity exceeds 500 km/s (Baker & Kanekal, 2008). The importance of HSS
 366 events for the energetic particle population in the outer radiation belt, coupled with the
 367 lower occurrence rate in 2016 compared to 2017, could potentially explain why no de-
 368 crease of precipitation-related dropouts can be seen in the data from 2016 compared to
 369 2017, even while approaching solar minimum.

370 Additionally, HSS-events lead to pronounced seasonal variations, depicted in Fig-
 371 ure 5 and observed during this descending phase from approximately 2015-2018 by Katsavrias
 372 et al. (2021). The seasonal variation in average flux reveals peaks during spring (Febru-
 373 ary to April) and fall (August to October) for electrons within the 2-6 MeV range at $2.5 < L < 6.5$. In contrast, electron flux decreases notably during winter (November to Jan-
 374 uary) and further diminishes in summer (May-June) (Baker & Kanekal, 2008). This vari-
 375 ation is primarily driven by the Russell–McPherron effect (Russell & McPherron, 1973),
 376 which stems from the larger z component of the interplanetary magnetic field near the
 377 equinoxes in GSM coordinates, resulting from the tilt of the dipole axis relative to the
 378 heliographic equatorial plane. Additionally, the equinoctial effect (Cliver et al., 2000, 2002),
 379 representing the varying angle of the Earth’s dipole with respect to the Earth–Sun line
 380 and consequently the solar wind speed, particularly when the angle is at 90° during the
 381 equinoxes, cannot be excluded as a contributing factor (Katsavrias et al., 2021).
 382

383 The findings of Mursula et al. (2022) corroborate the theory that HSS events are
 384 important for dropout events with precipitation by revealing a significant decrease in mod-
 385 erate HSS events between 2017 and 2018. However, the overall storm frequency, includ-
 386 ing CMEs and weak HSS-events, remains relatively stable during this period. The preva-
 387 lence of MeV dropouts may remain high due to the influence of weaker storms, which,
 388 at the same time, might not be strong enough to induce precipitation. In support of this,
 389 2018 exhibits smaller average dropout dimensions, accompanied by lower average min-
 390 imum SYM-H indices. Solar wind parameters and geomagnetic indices may also exert
 391 additional influence.

392 The enhanced geomagnetic activity during the equinoxes manifests, among other
 393 things, in a distinct seasonal variation of the DST index (Oh & Yi, 2011). Therefore, the
 394 potential link between precipitation events and increased geomagnetic activity is explored
 395 next by examining their association with storms using the minimum SYM-H index. Thereby,
 396 the DST index and the SYM-H only differentiate in the time resolution of 1 hour and
 397 1 minute, respectively. The minimum SYM-H for each event is determined by identify-
 398 ing the lowest value within the time period of 12 hours preceding the dropout until the
 399 end of the dropout. A minimum SYM-H categorization commonly used to classify storm
 400 intensity is as follows (Loewe & Prölss, 1997): a weak storm is defined as $-30 \text{ nT} > \text{SYM-H} >$
 401 -50 nT , a moderate storm as $-50 \text{ nT} > \text{SYM-H} > -100 \text{ nT}$, and a strong storm as
 402 $-100 \text{ nT} > \text{SYM-H} > -200 \text{ nT}$. Figure 6 illustrates the SYM-H dependency of dropouts
 403 with and without precipitation. Applying this definition of storms, it becomes appar-
 404 ent that dropouts do not always occur in relation to a storm. Furthermore, even dropouts

405 with precipitation sometimes transpire for SYM-H minimum indices below the thresh-
 406 old defined for a weak storm of -30 nT.

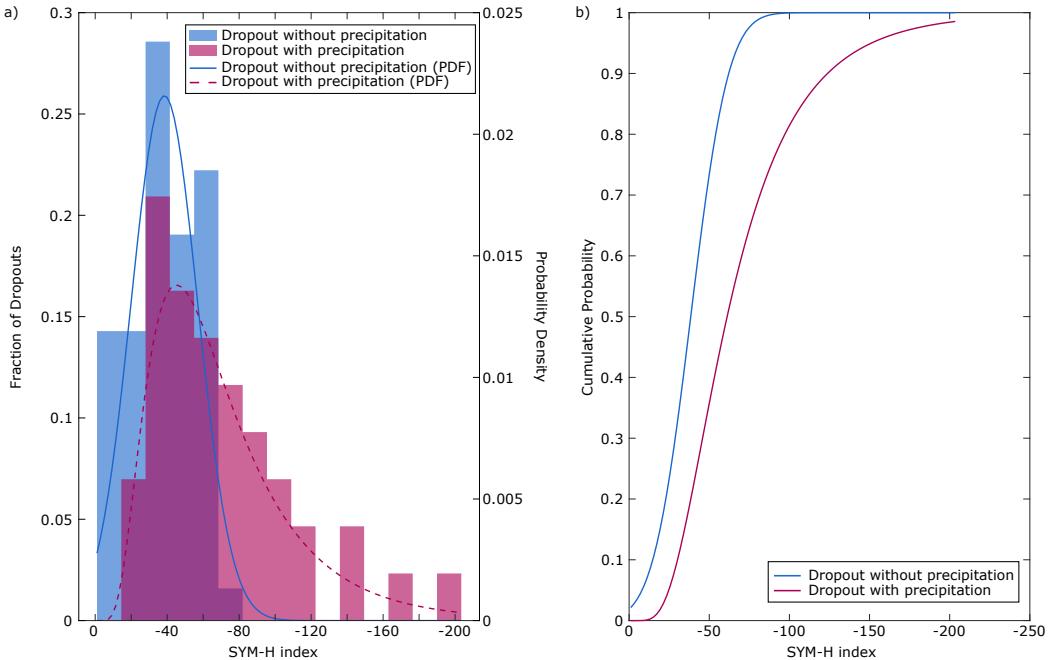


Figure 6: SYM-H index dependency of detected dropouts ($K = 1.311 G^{1/2} R_E$, $\mu = 144$ MeV/G) with and without precipitation alignment (Magenta vs. Blue) within a variability in L-Star of ± 0.3 . a) Fraction of dropouts with precipitation indicates to follow a log normal distribution, while dropouts without precipitation alignment indicate to follow a normal distribution. b) Cumulative probability indicating the occurrence of all dropouts without precipitation during more positive SYM-H indices and vice versa.

407 Figure 6(a) shows that dropouts associated with precipitation exhibit a normal dis-
 408 tribution, while those without precipitation follow a lognormal distribution, as confirmed
 409 by the Kolmogorov-Smirnov Test. Moreover, Figure 6(b) demonstrates that dropouts
 410 consistently coincide with precipitation for SYM-H minimum indices more negative than
 411 -85. Conversely, when the SYM-H minimum index is more positive than -15, precipita-
 412 tion in correlation with dropout events is not observed. The findings suggest that a mag-
 413 netosphere undergoing heightened disturbance is more predisposed to initiating precip-
 414 itation events, potentially due to an amplification in wave occurrence. An earlier study
 415 by Ni et al. (2016) showed additionally that electron flux dropouts become more signif-
 416 icant when the magnitude of SYM-H index decreases largely. Meredith et al. (2011) pro-
 417 posed that belt dropouts during the main phase of HSS driven storms are not caused
 418 by precipitation to the atmosphere. However, this study indicates that any storms can
 419 be at least accompanied by MeV electron precipitation if the disturbance of the mag-
 420 netosphere is strong enough.

421 When examining the temporal profiles of P_{dyn} and B_z , the differentiation between
 422 dropouts with and without precipitation becomes less distinct, as shown in Figure 7. Sim-
 423 ilar to the determination of the minimum SYM-H, the peak in P_{dyn} and the minimum
 424 in B_z for each event are identified by finding the lowest value within the time period span-
 425 ning 12 hours before the onset of dropout until its end. Dropouts with precipitation tend

426 to occur in relation to more positive P_{dyn} values and more negative B_z values. The for-
 427 mer is likely due to magnetosphere compression and the resulting waves (Onsager et al.,
 428 2002; Yan et al., 2023). A study by Yu et al. (2013) supports the observed trend, as sim-
 429 ilar results indicate that higher values of P_{dyn} correspond to more significant MeV elec-
 430 tron flux dropouts compared to lower values of P_{dyn} . The latter is likely due to the fact
 431 that a southward IMF B_z results in strong injections from the plasma sheet, providing
 432 a source of free energy for electromagnetic wave excitation, which in turn leads to wave-
 433 particle interaction (Gao et al., 2015).

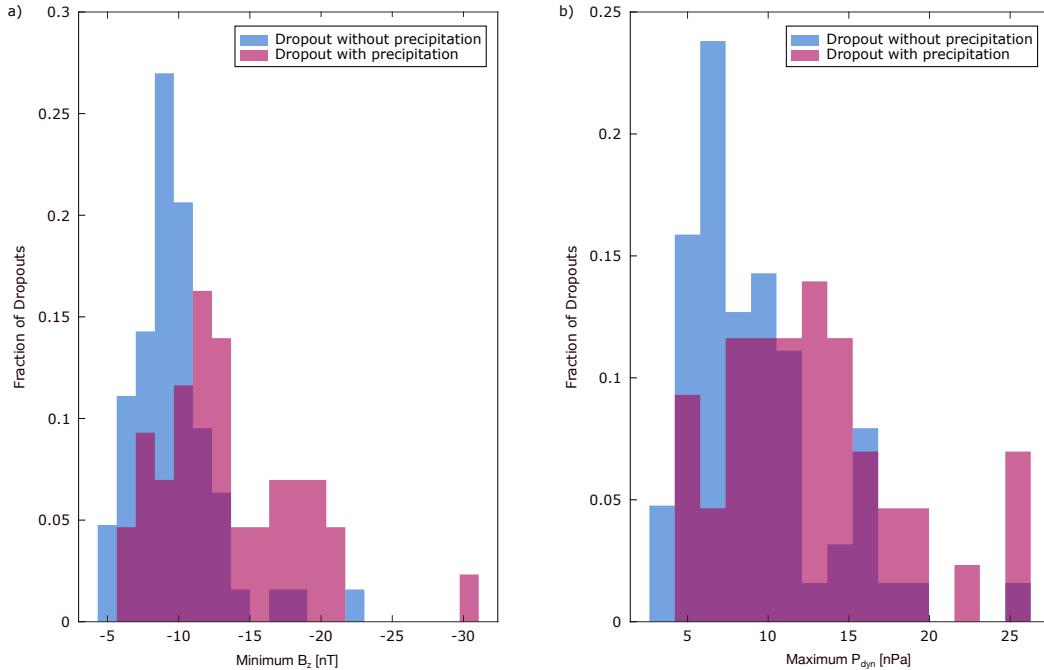


Figure 7: B_z and P_{dyn} dependency of detected dropouts ($K = 1.311 G^{1/2} R_E, \mu = 144 \text{ MeV/G}$) with and without precipitation alignment (Magenta vs. Blue) within a variability in L-Star of ± 0.3 . a) Fraction of dropouts for a given B_z minimum. b) Fraction of dropouts for a given P_{dyn} maximum.

434 Investigating the relationship between dropout events with and without precipi-
 435 tation and the LCDS helps to identify the dropout mechanism, whether solely due to
 436 precipitation or a combination of factors like precipitation, magnetopause shadowing,
 437 and outward radial diffusion. Figure 8 illustrates a direct correlation between the SYM-
 438 H index and the LCDS. Specifically, Figure 8(a) displays the fraction of dropouts with
 439 and without precipitation alongside the corresponding LCDS. It can be seen that for an
 440 LCDS value smaller than 6.5, all detected dropouts were accompanied by precipitation.
 441 This indicates that the likelihood of a dropout being associated with precipitation in-
 442 creases as the LCDS moves inward, and decreases as the LCDS moves outward. Figure
 443 8(b) illustrates the relationship between the SYM-H index and the LCDS, showing a di-
 444 rect correlation between these values. This observation is noteworthy, because events where
 445 the LCDS moves far inward are often attributed solely to magnetopause shadowing and
 446 outward radial diffusion. However, the research indicates that all three mechanisms con-
 447 tribute to dropouts associated with low LCDS values and consequently more negative
 448 SYM-H indices.

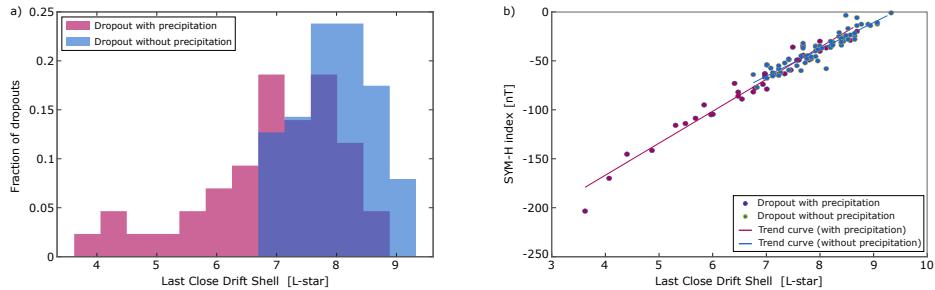


Figure 8: Detected Dropouts ($K = 1.311 G^{1/2} R_E$, $\mu = 144 \text{ MeV/G}$) with and without Precipitation Alignment (Magenta vs. Blue) within a Variability in L-Star of ± 0.3 , presented as: a) Fraction of dropouts per Last Close Drift Shell. b) Dropout distribution per SYM-H index per Last Close Drift Shell.

3.2 Where - Spatial occurrence of dropout related precipitation

To examine disparities in spatial occurrence between dropouts with and without precipitation, the study investigates the penetration depth, denoting the minimum L-star value at which the dropout is detected. Figure 9 illustrates the penetration depth of dropouts with precipitation (magenta) and without precipitation (blue). The graph highlights a noticeable distinction between dropouts with and without precipitation. Dropouts associated with precipitation tend to penetrate into deeper L-star regions, with the highest occurrence below an L-star value of 4, while dropouts without precipitation tend to penetrate less deeply, leading to a peak occurrence above an L-star value of 5. This result suggests two possibilities: firstly, that precipitation plays a pivotal role in dropouts occurring within low L-star regions, or secondly, that dropouts associated with loss within these regions coincide with precipitation events. Figure 9 also reveals outliers of dropouts with precipitation events in higher L-star regions, and vice versa.

While studies have shown that magnetopause shadowing tends to be the predominant loss mechanism at $L\text{-star} > 4$, and EMIC waves can significantly contribute to electron loss at $L\text{-star} < 4$ (Shprits et al., 2006; Turner, Shprits, et al., 2012; Xiang et al., 2018), the reverse can also be true (Xiang et al., 2017).

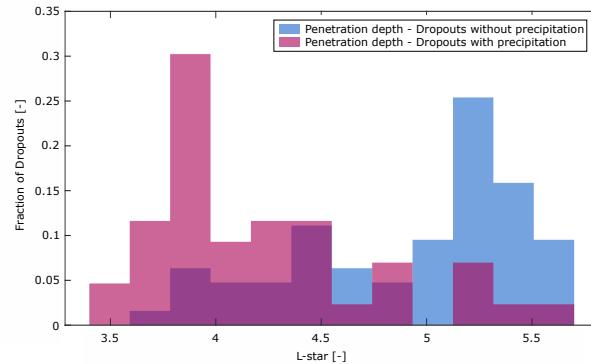


Figure 9: Penetration depth dependency in L-star of detected dropouts ($K = 1.311 G^{1/2} R_E$, $\mu = 144 \text{ MeV/G}$) with and without precipitation alignment (Magenta vs. Blue) within a variability in L-Star of ± 0.3 , indicated by plotting the fraction of the dropouts over L-star.

466 Besides the L-star region, the pronounced MLT region of precipitation occurrence
 467 is investigated. Figure 10(a) illustrates the fraction of occurrences of precipitation not
 468 associated with a dropout in purple, while the pink color indicates precipitation corre-
 469 lated with dropouts. Overall, these two datasets align with each other, albeit with a more
 470 pronounced trend observed for precipitation with dropouts occurring in the dusk and
 471 midnight sector.

472 Precipitation in the dusk sector has frequently been observed in correlation with
 473 a strong southward IMF B_z , consistent with the trend depicted in Figure 7(a) (Gao et
 474 al., 2015). EMIC waves are proposed as the primary driver of loss (Horne et al., 2009;
 475 Gao et al., 2015). During the compression of the magnetic field induced by P_{dyn} , it was
 476 suggested that EMIC waves become excited and manifest around MLT 18 (Yan et al.,
 477 2023). While the trend of higher dynamic pressure leading to dropout events is evident
 478 in Figure 7(b), the dependence is not distinct. Precipitation in the midnight sector has
 479 been previously observed during periods characterized by either strong southward IMF
 480 B_z or high dynamic pressure (Gao et al., 2015). It is suggested that precipitation around
 481 the midnight sector may be primarily driven by CSS. Hiss and Chorus waves alone are
 482 unlikely to serve as the primary driver in the dusk and midnight sectors due to their dis-
 483 tribution of occurrence (Borovsky, 2021). Although the occurrence rate of MeV dropouts
 484 does not exhibit a clear dependence on MLT (Hua et al., 2023; Onsager et al., 2002), a
 485 discernible precipitation trend is evident. This suggests that precipitation may primar-
 486 ily influence MeV dropouts around the dusk-midnight sector.

487 Figure 10(b) shows all precipitation measurements related to a dropout event, with
 488 color indicating the precipitation strength in counts per second plotted along L-star. Most
 489 of the precipitation occurs between L-star of 4 and 5, with the strongest precipitation
 490 events occurring during the periods of dusk and midnight, especially around MLT 19-20,
 491 as also noted by Jordanova et al. (2008).

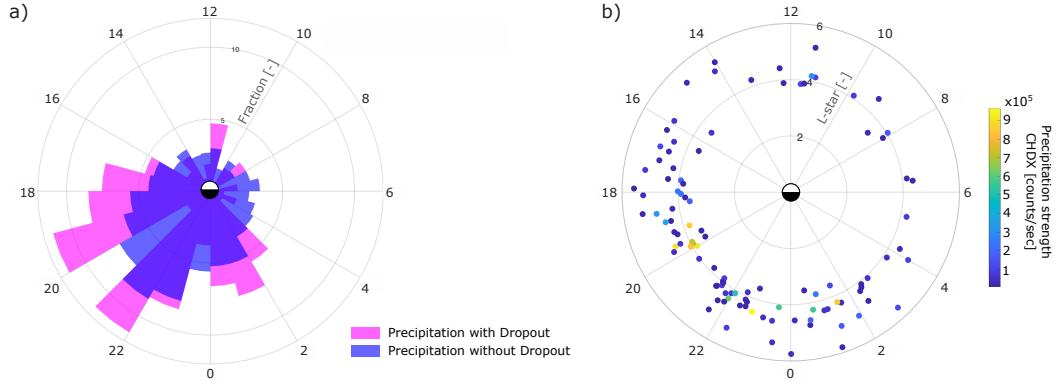


Figure 10: a) Analysis of the MLT dependency of precipitation with and without dropout alignment ($K = 1.311 G^{1/2} R_E$, $\mu = 144 \text{ MeV/G}$), represented by Pink and Purple respectively, within a Variability in L-Star of ± 0.3 . The data is binned into 1-hour MLT regions and displayed as fractions. b) Visualization of precipitation measurements with dropout alignment plotted against MLT and L-star, with color indicating precipitation strength measured by the CHDX channel of CALET.

492

3.3 Validation

493 All the trends observed in the analysis outlined in Chapter 3.1 and 3.2 are repli-
 494 cated using a different set of K and μ values, with K being $0.172 \text{ G}^{1/2}\text{R}_E$ and μ being
 495 1096 MeV/G, corresponding to a similar energy range of 1.4 to 4.2 MeV and a equato-
 496 rial pitch angle range of 35 to 58 degrees. In total, 91 dropouts are found, with 35 of them
 497 associated with precipitation. The same trend for B_z and P_{dyn} depicted in Figure 7 is
 498 even more pronounced at these K and μ values.

499 Furthermore, it is tested whether precipitation consistently occurs at the same rate
 500 or if there is an enhancement around the time of the dropout occurrence. This valida-
 501 tion aims to ensure that the timeline depicted in Figure 3 is not merely a random align-
 502 ment of precipitation points. A 10-day time frame is chosen both before and after the
 503 onset of dropouts, during which the precipitation is documented, as illustrated in Fig-
 504 ure 11(a). Figure 11(b) displays the PDF over time, indicating the precipitation amount.
 505 It is evident that a significant increase in precipitation events occurs between 11h and
 506 9h before the detection of dropout commencement. This validates that the chosen time
 507 period of Figure 3, which is 12 hours, aligns well with the precipitation occurrence ob-
 508 served over a longer duration and is not random. Furthermore, a slight decrease in L-
 509 star just before the commencement of dropout can be observed in Figure 11(a).

510 To further validate the temporal relationship between dropouts and precipitation
 511 events, a low-energy population is selected. This population, characterized by specific
 512 values of $K = 0.015 \text{ G}^{1/2}\text{R}_E$ and $\mu = 50 \text{ MeV/G}$, corresponds to an energy range around
 513 117 keV and an equatorial pitch angle around 77 degrees. Precipitation measurements
 514 using CALET's energy channels are not feasible within this range, implying that there
 515 should be no correlation between dropouts and precipitation events. All dropout events
 516 previously identified within the MeV range have been omitted from consideration due
 517 to the potential for precipitation originating from those dropouts. Following the imple-
 518 mentation of binning in L-star at ± 0.3 and subsequent reevaluation, only approximately
 519 4% of events are found to correlate with precipitation, indicating the success of the test.



Figure 11: Timeline illustrating precipitation occurrence relative to dropout start (DS) and end (DE) times, overlaid with averaged maximum SYM-H, maximum dynamic pressure P_{dyn} , and minimum magnetic field strength B_z of all events. Absolute time frames occur before and after dropout events, with relative time in between. a) Precipitation plotted in L-star over time, with color indicating precipitation strength measured in the CHDX channel of CALET in counts. b) Probability distribution of precipitation occurrence over time.

520 **4 Summary and Conclusions**

521 The study yields several key conclusions concerning the temporal and spatial oc-
 522 currence of MeV electron precipitation in relation to radiation belt dropouts:

- 523 • Dropouts with MeV precipitation typically exhibit larger dimensions (L-star ex-
 524 tension, factor of drop in PSD, and length) compared to those without precipi-
 525 tation.
- 526 • Precipitation tends to occur during periods of SYM-H and B_z decline, as well as
 527 enhancements in P_{dyn} . These conditions also lead to the largest amplitude of pre-
 528 cipitation, predominantly in lower L-star regions.
- 529 • The total number of dropouts, as well as fraction of dropouts with precipitation,
 530 show a correlation with the solar cycle and the seasons, likely attributable to so-
 531 lar and geomagnetic activity.
- 532 • During periods of more negative minimum SYM-H indices, which coincide with
 533 the inward movement of LCDS, the likelihood of experiencing dropouts with pre-
 534 cipitation significantly increases.
- 535 • A tendency is observed where lower B_z and larger P_{dyn} values are more likely to
 536 be associated with precipitation during dropouts.
- 537 • Dropouts accompanied by precipitation tend to penetrate into lower L-star regions.
- 538 • The occurrence of precipitation associated with dropout events peaks in the dusk-
 539 midnight sector, coinciding with an increase in precipitation intensity.

540 Overall, this study provides initial insights into the contribution of precipitation
 541 into the atmosphere to radiation belt losses observed during MeV dropout events. Ev-
 542 idence is provided showing that precipitation frequently occurs during MeV dropouts,
 543 emphasizing its importance as a loss mechanism. These findings support that precipi-
 544 tation is needed as an additional mechanism in simulations to capture the full extent of
 545 electron loss during MeV dropouts. Additionally, these results demonstrate a distinc-
 546 tion between MeV electron dropouts with and without precipitation, highlighting their
 547 dependence on solar wind parameters, geomagnetic indices, dropout dimensions, and MLT.

548 **Data Availability Statement**

549 The CALET data utilized in this research are publicly accessible online in ASCII
 550 format through the Data ARchives and Transmission System of the Japan Aerospace
 551 Exploration Agency (data.darts.isas.jaxa.jp/pub/calet/cal-v1.1/CHD/level1.1/obs/). Additionally, the combined pitch-angle resolved electron flux data from Van Allen
 552 Probes A and B are available via https://rbsp-ect.newmexicoconsortium.org/rbsp_ect.php, along with the corresponding Magnetic Ephemeris data (<https://rbsp-ect.newmexicoconsortium.org/science/DataDirectories.php>). Furthermore, NASA's
 553 OMNIWeb data can be accessed online at <https://cdaweb.gsfc.nasa.gov>.
 554

557 **Acknowledgments**

558 D. Freund, L. W. Blum, A. Bruno and S. Vidal-Luengo acknowledge support from
 559 NASA/Living With a Star Science program NNH20ZDA001N-LWS, and the NSF AGS-
 560 2123253 grant. A. Bruno also acknowledges support by NASA under award number 80GSFC21M0002.
 561 R. Kataoka acknowledges support from JSPS Kakenhi grant 24H00025. Appreciation
 562 is extended to the CALET collaboration and the Van Allen Probes team for providing
 563 the data.

564 **References**

565 Alken, P., Thébault, E., Beggan, C., et al. (2021). International geomagnetic refer-
 566 ence field: the thirteenth generation. *Earth, Planets and Space*, *73*(49). Re-
 567 trieved from <https://doi.org/10.1186/s40623-020-01288-x> doi: 10.1186/
 568 s40623-020-01288-x

569 Allen, R. C., Zhang, J.-C., Kistler, L. M., Spence, H. E., Lin, R.-L., Klecker, B., ...
 570 Jordanova, V. K. (2015). A statistical study of emic waves observed by cluster:
 571 1. wave properties. *J. Geophys. Res. Space Physics*, *120*, 5574–5592. doi:
 572 10.1002/2015JA021333

573 Baker, D. N., Blake, J. B., Callis, L. B., Cumming, J. R., Hovestadt, S., D
 574 .and Kanekal, Klecker, B., ... Zwick, R. D. (1994, Mar). Relativistic elec-
 575 tron acceleration and decay timescales in the inner and outer radiation belts:
 576 Sampex. *Geophysical Research Letters*, *21*(6), 409–412.

577 Baker, D. N., Kanekal, S., Hoxie, V., Batiste, S., Bolton, M., Li, X., ... Friedel, R.
 578 (2013). The relativistic electron-proton telescope (rept) instrument on board
 579 the radiation belt storm probes (rbsp) spacecraft: Characterization of earth's
 580 radiation belt high-energy particle populations. *Space Sci Rev*, *179*, 337–381.
 581 (Received: 12 April 2012 / Accepted: 9 October 2012 / Published online: 14
 582 December 2012 © Springer Science+Business Media Dordrecht 2012) doi:
 583 10.1007/s11214-012-9950-9

584 Baker, D. N., & Kanekal, S. G. (2008). Solar cycle changes, geomagnetic varia-
 585 tions, and energetic particle properties in the inner magnetosphere. *Journal of*
 586 *Atmospheric and Solar-Terrestrial Physics*, *70*(2–4), 195–206. Retrieved from
 587 [https://doi.org/10.1016/j.jastp.2007](https://doi.org/10.1016/j.jastp.2007.08.031) .08.031 doi: 10.1016/j.jastp.2007
 588 .08.031

589 Bazilevskaya, G. A., Kalinin, M. S., Krainev, M. B., Makhmutov, V. S.,
 590 Svirzhevskaya, A. K., Svirzhevsky, N. S., ... Gvozdevsky, B. B. (2017). Precip-
 591 itation of magnetospheric electrons into the earth's atmosphere and the elec-
 592 trons of the outer radiation belt. *Bulletin of the Russian Academy of Sciences:*
 593 *Physics*, *81*(2), 215–218. (Original Russian Text published in *Izvestiya Rossi-
 594 iskoi Akademii Nauk, Seriya Fizicheskaya*) doi: 10.3103/S1062873817020071

595 Blake, J., Carranza, P., Claudepierre, S., Clemons, J., Crain Jr., W., Dotan, Y.,
 596 ... Zakrzewski, M. (2013). The magnetic electron ion spectrometer (mageis)
 597 instruments aboard the radiation belt storm probes (rbsp) spacecraft. *Space*
 598 *Sci Rev*, *179*, 383–421. (Received: 15 October 2012 / Accepted: 9 May 2013 /
 599 Published online: 7 June 2013 © The Author(s) 2013. This article is published
 600 with open access at Springerlink.com) doi: 10.1007/s11214-013-9991-8

601 Blum, L. W., Bruno, A., Capannolo, L., Ma, Q., Kataoka, R., Torii, S., & Baishev,
 602 D. (2024). On the spatial and temporal evolution of emic wave-driven rela-
 603 tivistic electron precipitation: Magnetically conjugate observations from the
 604 van allen probes and calet. *Geophysical Research Letters*, *51*, e2023GL107087.
 605 (Received 30 OCT 2023, Accepted 10 FEB 2024) doi: 10.1029/2023GL107087

606 Borovsky, J. E. (2021). Magnetospheric plasma systems science and solar wind
 607 plasma systems science: The plasma-wave interactions of multiple particle
 608 populations. *Frontiers in Astronomy and Space Sciences*, *8*, 780321. doi:
 609 10.3389/fspas.2021.780321

610 Boyd, A. J., Spence, H. E., Reeves, G. D., Funsten, H. O., Skoug, R. M., Larsen,
 611 B. A., ... Jaynes, A. N. (2021, February 11). Rbsp-ect combined pitch an-
 612 gle resolved electron flux data product. *Journal of Geophysical Research:*
 613 *Space Physics*, *126*(3), e2020JA028637. Retrieved from <https://doi.org/10.1029/2020JA028637> (Technical Reports: Data, Free Access) doi:
 614 10.1029/2020JA028637

615 Bruno, A., Blum, L. W., de Nolfo, G. A., Kataoka, R., Torii, S., Greeley, A. D., et
 616 al. (2022). Emic-wave driven electron precipitation observed by calet on the
 617 international space station. *Geophysical Research Letters*, *49*, e2021GL097529.
 618

(Received 3 JAN 2022, Accepted 23 FEB 2022) doi: 10.1029/2021GL097529

619 Bruno, A., Guzik, T. G., Nolfo, G. D., Blum, L., Cannady, N., & Ficklin, A. W.
 620 (2021, January). Relativistic electron precipitation observations with calet. In
 621 *43rd cospar scientific assembly* (Vol. 43, p. 1165).

622 Büchner, J., & Zelenyi, L. M. (1989, September). Regular and chaotic charged parti-
 623 cle motion in magnetotaillike field reversals: 1. basic theory of trapped motion.
 624 *Journal of Geophysical Research*, *94*(A9), 11821–11842.

625 Capannolo, L., Li, W., Millan, R., Smith, D., Sivadas, N., Sample, J., & Shekhar,
 626 S. (2022). Relativistic electron precipitation near midnight: Drivers, distri-
 627 bution, and properties. *Journal of Geophysical Research: Space Physics*, *127*,
 628 e2021JA030111. doi: 10.1029/2021JA030111

629 Cliver, E. W., Kamide, Y., & Ling, A. (2002). The semiannual variation of geomag-
 630 netic activity: phases and profiles for 130 years of aa data. *Journal of Atmo-*
 631 *spheric and Solar-Terrestrial Physics*, *64*, 47–53. Retrieved from [https://doi.org/10.1016/S1364-6826\(01\)00093-1](https://doi.org/10.1016/S1364-6826(01)00093-1) doi: 10.1016/S1364-6826(01)00093-1

632 Cliver, E. W., Kamide, Y., & Ling, A. G. (2000). Mountains vs. valleys: the semi-
 633 annual variation of geomagnetic activity. *Journal of Geophysical Research*, *105*,
 634 2413–2424. Retrieved from <https://doi.org/10.1029/1999JA900439> doi: 10.1029/1999JA900439

635 Dachev, T. P. (2018). Relativistic electron precipitation bands in the outside ra-
 636 diation environment of the international space station. *Journal of Atmospheric*
 637 *and Solar-Terrestrial Physics*, *177*, 247–256. doi: 10.1016/j.jastp.2017.11.008

638 Drozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y.
 639 (2020). The role of hiss, chorus, and emic waves in the modeling of the dynam-
 640 ics of the multi-mev radiation belt electrons. *Journal of Geophysical Research:*
 641 *Space Physics*, *125*, e2020JA028282. doi: 10.1029/2020JA028282

642 Friedel, R., Reeves, G., & Obara, T. (2002). Relativistic electron dynamics in the
 643 inner magnetosphere—a review. *Journal of Atmospheric and Solar-Terrestrial*
 644 *Physics*, *64*, 265–282.

645 Gao, X., Li, W., Bortnik, J., Thorne, R. M., Lu, Q., Ma, Q., ... Wang, S. (2015).
 646 The effect of different solar wind parameters upon significant relativistic elec-
 647 tron flux dropouts in the magnetosphere. *Journal of Geophysical Research:*
 648 *Space Physics*, *120*, 4324–4337. doi: 10.1002/2015JA021182

649 Gokani, S. A., Kosch, M., Clilverd, M., Rodger, C. J., & Sinha, A. K. (2019). What
 650 fraction of the outer radiation belt relativistic electron flux at $1 \approx 3\text{--}4.5$ was
 651 lost to the atmosphere during the dropout event of the st. patrick's day storm
 652 of 2015? *Journal of Geophysical Research: Space Physics*, *124*, 9537–9551. doi:
 653 10.1029/2018JA026278

654 Goldberg, R. A., Baker, D. N., Herrero, F. A., Jackman, C. H., Kanekal, S., &
 655 Twigg, P. A. (1995). Mesospheric heating during highly relativistic electron
 656 precipitation events. *Journal of Geomagnetism and Geoelectricity*, *47*, 1237–
 657 1247. (Received November 28, 1994; Revised June 12, 1995; Accepted June 23,
 658 1995)

659 Green, J. C., & Kivelson, M. G. (2004). Relativistic electrons in the outer ra-
 660 diation belt: Differentiating between acceleration mechanisms. *Journal of*
 661 *Geophysical Research*, *109*, A03213. (Received 21 July 2003; revised 21
 662 November 2003; accepted 22 January 2004; published 18 March 2004) doi:
 663 10.1029/2003JA010153

664 Horne, R. B., Lam, M. M., & Green, J. C. (2009). Energetic electron precipitation
 665 from the outer radiation belt during geomagnetic storms. *Geophysical Research*
 666 *Letters*, *36*(L19), L19104. doi: 10.1029/2009GL040236

667 Hua, M., Bortnik, J., & Ma, D. (2023). Dependence of electron flux dropouts
 668 in the earth's outer radiation belt on energy and driving parameters during
 669 geomagnetic storms. *Journal of Geophysical Research: Space Physics*, *128*,

670 671 672 673

674 e2023JA031882. Retrieved from <https://doi.org/10.1029/2023JA031882>
 675 doi: 10.1029/2023JA031882

676 Jordanova, V. K., Albert, J., & Miyoshi, Y. (2008). Relativistic electron precipitation
 677 by emic waves from self-consistent global simulations. *Journal of Geophysical Research*, 113, A00A10. doi: 10.1029/2008JA013239

678 Kataoka, R., Asaoka, Y., Torii, S., Nakahira, S., Ueno, H., Miyake, S., et al. (2020).
 679 Plasma waves causing relativistic electron precipitation events at international
 680 space station: Lessons from conjunction observations with arase satellite. *Journal*
 681 of *Geophysical Research: Space Physics*, 125, e2020JA027875. (Received 2
 682 FEB 2020, Accepted 3 AUG 2020, Accepted article online 14 AUG 2020) doi:
 683 10.1029/2020JA027875

684 Kataoka, R., Asaoka, Y., Torii, S., Terasawa, T., Ozawa, S., Tamura, T., ... Mori,
 685 M. (2016). Relativistic electron precipitation at international space station:
 686 Space weather monitoring by calorimetric electron telescope. *Geophysical Re-*
 687 *search Letters*, 43, 4119–4125. (Received 4 APR 2016, Accepted 22 APR 2016,
 688 Accepted article online 25 APR 2016, Published online 7 MAY 2016) doi:
 689 10.1002/2016GL068930

690 Katsavrias, C., Papadimitriou, C., Aminalragia-Giamini, S., Daglis, I. A., Sand-
 691 berg, I., & Jiggens, P. (2021). On the semi-annual variation of relativistic
 692 electrons in the outer radiation belt. *Annales Geophysicae*, 39, 413–425.
 693 Retrieved from <https://doi.org/10.5194/angeo-39-413-2021> doi:
 694 10.5194/angeo-39-413-2021

695 Loewe, C. A., & Prölss, G. W. (1997). Classification and mean behavior of mag-
 696 netic storms. *Journal of Geophysical Research: Space Physics*, 102(A7),
 697 14029–14740. Retrieved from <https://doi.org/10.1029/96JA04020> doi:
 698 10.1029/96JA04020

699 Loto'aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elk-
 700 ington, S. R., & Bonnell, J. W. (2010). Relativistic electron loss due to
 701 ultralow frequency waves and enhanced outward radial diffusion. *Journal of*
 702 *Geophysical Research*, 115, A12245. doi: 10.1029/2010JA015755

703 Mauk, B. H., Fox, N. J., Kanekal, S. G., et al. (2013, November). Science objec-
 704 tives and rationale for the radiation belt storm probes mission. *Space Science*
 705 *Reviews*, 179, 3–27. Retrieved from <https://doi.org/10.1007/s11214-012-9908-y>
 706 (Received: 01 February 2012; Accepted: 02 June 2012; Published: 07
 707 September 2012) doi: 10.1007/s11214-012-9908-y

708 Meredith, N. P., Horne, R. B., Lam, M. M., Denton, M. H., Borovsky, J. E., &
 709 Green, J. C. (2011). Energetic electron precipitation during high-speed solar
 710 wind stream driven storms. *Journal of Geophysical Research: Space Physics*,
 711 116(A5), A05223. doi: 10.1029/2010JA016293

712 Millan, R. M., & Thorne, R. M. (2007). Review of radiation belt relativis-
 713 tic electron losses. *Journal of Atmospheric and Solar-Terrestrial Physics*,
 714 69, 362–377. (Received 9 May 2006; received in revised form 20 June
 715 2006; accepted 26 June 2006; Available online 20 February 2007) doi:
 716 10.1016/j.jastp.2006.06.018

717 Miyoshi, Y., & Kataoka, R. (2011). Solar cycle variations of outer radiation belt and
 718 its relationship to solar wind structure dependences. *Journal of Atmospheric*
 719 *and Solar-Terrestrial Physics*, 73(10), 1324–1330. (Received 15 June 2009,
 720 Received in revised form 19 June 2010, Accepted 28 September 2010, Available
 721 online 13 October 2010)

722 Mourenas, D., Artemyev, A., Ma, Q., Agapitov, O., & Li, W. (2016). Fast
 723 dropouts of multi-mev electrons due to combined effects of emic and
 724 whistler mode waves. *Geophysical Research Letters*, 43, 4155–4163. doi:
 725 10.1002/2016GL068921

726 Moya, P. S., Pinto, V. A., Sibeck, D. G., Kanekal, S. G., & Baker, D. N. (2017). On
 727 the effect of geomagnetic storms on relativistic electrons in the outer radiation

729 belt: Van allen probes observations. *Journal of Geophysical Research: Space*
 730 *Physics*, 122, 11100–11108. doi: 10.1002/2017JA024735

731 Mursula, K., Qvick, T., Holappa, L., & Asikainen, T. (2022). Magnetic storms dur-
 732 ing the space age: Occurrence and relation to varying solar activity. *Journal of*
 733 *Geophysical Research: Space Physics*, 127, e2022JA030830. (Received 8 JUL
 734 2022, Accepted 20 NOV 2022, 1 of 27) doi: 10.1029/2022JA030830

735 Ni, B., Xiang, Z., Gu, X., Shprits, Y. Y., Zhou, C., Zhao, Z., ... Zuo, P. (2016).
 736 Dynamic responses of the earth's radiation belts during periods of solar
 737 wind dynamic pressure pulse based on normalized superposed epoch analy-
 738 sis. *Journal of Geophysical Research: Space Physics*, 121, 8523–8536. doi:
 739 10.1002/2016JA023067

740 NOAA. (2024). *Sunspot numbers*. <https://www.swpc.noaa.gov/products/solar-cycle-progression>.

741 Oh, S. Y., & Yi, Y. (2011). Solar magnetic polarity dependency of geomagnetic
 742 storm seasonal occurrence. *Journal of Geophysical Research*, 116, A06101. doi:
 743 10.1029/2010JA016362

744 Onsager, T. G., Rostoker, G., Kim, H.-J., Reeves, G. D., Obara, T., Singer, H. J., &
 745 Smithtro, C. (2002). Radiation belt electron flux dropouts: Local time, radial,
 746 and particle-energy dependence. *Journal of Geophysical Research*, 107(A11),
 747 1382. doi: 10.1029/2001JA000187

748 Pinto, V. A., Zhang, X.-J., Mourenas, D., Bortnik, J., Artemyev, A. V., Lyons,
 749 L. R., & Moya, P. S. (2020). On the confinement of ultrarelativistic elec-
 750 tron remnant belts to low l shells. *Journal of Geophysical Research: Space*
 751 *Physics*, 125, e2019JA027469. Retrieved from <https://doi.org/10.1029/2019JA027469> (©2020. American Geophysical Union. All Rights Reserved.)
 752 doi: 10.1029/2019JA027469

753 Reeves, G. D., McAdams, K. L., Friedel, R. H. W., & O'Brien, T. P. (2003).
 754 Acceleration and loss of relativistic electrons during geomagnetic storms.
 755 *Geophysical Research Letters*, 30(10), 1529. Retrieved from <https://doi.org/10.1029/2002GL016513> (Received 24 October 2002; revised
 756 18 December 2002; accepted 21 March 2003; published 27 May 2003) doi:
 757 10.1029/2002GL016513

758 Richardson, I. G., Cliver, E. W., & Cane, H. V. (2001). Sources of geomagnetic
 759 storms for solar minimum and maximum conditions during 1972–2000. *Geo-
 760 physical Research Letters*, 28(13), 2569–2572. Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013052> doi:
 761 10.1029/2001GL013052

762 Roederer, J. G., & Zhang, H. (2014). *Dynamics of magnetically trapped particles*
 763 (2nd ed.). New York: Springer. (Retrieved from <https://doi.org/10.1007/978-3-642-41530-2>)

764 Russell, C. T., & McPherron, R. L. (1973). Semiannual variation of geomagnetic ac-
 765 tivity. *Journal of Geophysical Research*, 78, 92–108. Retrieved from <https://doi.org/10.1029/JA078i001p00092> doi: 10.1029/JA078i001p00092

766 Samsonov, A., Bogdanova, Y., Branduardi-Raymont, G., Safrankova, J., Nemecek,
 767 Z., & Park, J.-S. (2019). Long-term variations in solar wind parameters,
 768 magnetopause location, and geomagnetic activity over the last five solar cy-
 769 cles. *Journal of Geophysical Research: Space Physics*, 124, 4049–4063. doi:
 770 10.1029/2018JA026355

771 Shprits, Y. Y., Elkington, S. R., Meredith, N. P., & Subbotin, D. A. (2008). Review
 772 of modeling of losses and sources of relativistic electrons in the outer radiation
 773 belt i: Radial transport. *Journal of Atmospheric and Solar-Terrestrial Physics*,
 774 70, 1679–1693. doi: 10.1016/j.jastp.2008.06.008

775 Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker,
 776 D. N., & Kanekal, S. G. (2006). Outward radial diffusion driven by losses
 777 at magnetopause. *Journal of Geophysical Research*, 111, A11214. doi:
 778

784 10.1029/2006JA011657

785 Summers, D., & Thorne, R. M. (2003). Relativistic electron pitch-angle scattering
786 by electromagnetic ion cyclotron waves during geomagnetic storms. *Journal of*
787 *Geophysical Research*, 108(A4), 1143. (Correction published 14 January 2005)
788 doi: 10.1029/2002JA009489

789 Torii, S., Marrocchesi, P. S., & CALET Collaboration. (2019). The calorimetric elec-
790 tron telescope (calet) on the international space station. *Advances in Space Re-*
791 *search*, 64(12), 2531–2537. (Available online 13 May 2019) doi: 10.1016/j.asr
792 .2019.04.007

793 Turner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G., O'Brien, T. P.,
794 Fennell, J. F., et al. (2019). The response of earth's electron radiation belts to
795 geomagnetic storms: Statistics from the van allen probes era including effects
796 from different storm drivers. *Journal of Geophysical Research: Space Physics*,
797 124, 1013–1034. (Retrieved from <https://doi.org/10.1029/2018JA026066>)

798 Turner, D. L., Morley, S. K., Miyoshi, Y., Ni, B., & Huang, C. L. (2012). Outer
799 radiation belt flux dropouts: Current understanding and unresolved questions.
800 *Geophysical Monograph Series*, 199, 195–212. doi: 10.1029/2012GM001310

801 Turner, D. L., Shprits, Y., Hartinger, M., & et al. (2012). Explaining sudden losses
802 of outer radiation belt electrons during geomagnetic storms. *Nature Physics*,
803 8, 208–212. doi: 10.1038/nphys2185

804 Van Allen, J. A. (1959, November). The geomagnetically trapped corpuscular radia-
805 tion. *Journal of Geophysical Research*, 64(11), 1587–1594.

806 Vidal-Luengo, S. E., Blum, L. W., Bruno, A., Ficklin, A. W., de Nolfo, G., Guzik,
807 T. G., ... Torii, S. (2024, April 25). Characterization of relativistic elec-
808 tron precipitation events observed by the CALET experiment using self-
809 organizing-maps. *Journal of Geophysical Research: Space Physics*, 129(4),
810 e2024JA032481. Retrieved from <https://doi.org/10.1029/2024JA032481>
811 doi: 10.1029/2024JA032481

812 Vidal-Luengo, S. E., Blum, L. W., Bruno, A., Guzik, T. G., de Nolfo, G., Ficklin,
813 A. W., et al. (2024). Comparative observations of the outer belt electron
814 fluxes and precipitated relativistic electrons. *Geophysical Research Letters*,
815 51, e2024GL109673. (Received 7 APR 2024, Accepted 4 JUN 2024) doi:
816 10.1029/2024GL109673

817 Xiang, Z., Tu, W., Li, X., Ni, B., Morley, S. K., & Baker, D. N. (2017). Under-
818 standing the mechanisms of radiation belt dropouts observed by van allen
819 probes. *Journal of Geophysical Research: Space Physics*, 122, 9858–9879. doi:
820 10.1002/2017JA024487

821 Xiang, Z., Tu, W., Ni, B., Henderson, M. G., & Cao, X. (2018). A statistical survey
822 of radiation belt dropouts observed by van allen probes. *Geophysical Re-*
823 *search Letters*, 45, 8035–8043. Retrieved from <https://doi.org/10.1029/2018GL078907> doi: 10.1029/2018GL078907

824 Xiong, Y., Xie, L., Pu, Z., Fu, S., Chen, L., Ni, B., ... Parks, G. K. (2015). Re-
825 sponses of relativistic electron fluxes in the outer radiation belt to geomagnetic
826 storms. *Journal of Geophysical Research: Space Physics*, 120, 9513–9523. doi:
827 10.1002/2015JA021440

828 Yan, Y., Yue, C., Ma, Q., Zhou, X.-Z., Zong, Q.-G., Fu, H., ... Li, Y.-X. (2023).
829 Prompt appearance of large-amplitude EMIC waves induced by solar wind dy-
830 namic pressure enhancement and the subsequent relativistic electron precipi-
831 tation. *Journal of Geophysical Research: Space Physics*, 128, n/a–n/a. Retrieved
832 from <https://doi.org/10.1029/2023JA031399> doi: 10.1029/2023JA031399

833 Yu, Y., Koller, J., & Morley, S. K. (2013). Quantifying the effect of magne-
834 topause shadowing on electron radiation belt dropouts. *Annales Geophys-*
835 *icae*, 31, 1929–1939. Retrieved from <https://www.ann-geophys.net/31/1929/2013/> (© Author(s) 2013. CC Attribution 3.0 License.) doi:
836 10.5194/angeo-31-1929-2013