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Abstract—Volumetric video streaming has become increasingly
popular in recent years due to its support of 6 degrees-of-
freedom (6-DoF) exploration. There is, however, a shortage of
dynamic 6-DoF content suitable for comparing the performance
among heterogeneous volumetric video representations. This
paper introduces a software toolkit for creating both a dataset of
dynamic 6-DoF content in point clouds and a dataset for training
and testing neural-based representations such as neural radiance
fields (NeRF). Starting with freely available 3D assets online, our
software toolkit uses the Blender Python API to generate training
and testing datasets for neural-based dynamic volumetric model
training. The created datasets are compliant with existing neural-
based model training and rendering frameworks. The software
can also construct point cloud sequences derived from synthetic
dynamic 3D meshes. This further facilitates comparing point
clouds and neural-based methods for volumetric video repre-
sentation. We release the software toolkit along with a rich set of
sequence datasets generated in compliance with the permissions
granted by the original 3D asset creators. With our toolkit
and dataset, we aim to facilitate research from the multimedia
systems community to support practical volumetric streaming.
QOur software toolkit and dataset are available at: https:
//6-dof-dynamic-content-software.github.io/.

Index Terms—Software, Dataset, Point Cloud, Neural Radiance
Field, Volumetric Content

I. INTRODUCTION

Volumetric video is an emerging media form that allows
users to experience and navigate a scene in 6 degrees-of-
freedom (6-DoF)—from any perspective at any position. It has
been widely used in immersive applications such as virtual
reality (VR), augmented reality (AR), and mixed reality (MR).
One notable representation of volumetric videos is the point
cloud. A point cloud is typically generated through active or
passive capturing methods, such as 3D scanning via LiDAR
or photogrammetry, containing geometry and color attributes.
However, raw point clouds from depth cameras can contain
millions of points with noise. Consequently, many of the
studies focus on point cloud registration and compression.
Point cloud registration aligns multiple point clouds to create
an accurate representation of a 3D scene. For example, the
Iterative Closest Point [1] algorithm is a feature-based reg-
istration method that iteratively refines the transformation to
minimize the distance between corresponding points in two
point clouds. Meanwhile, due to the large size of point cloud
sequences, point cloud compression (PCC) plays an important
role in dynamic point cloud streaming. There are two main
categories of PCC methods [2]: geometry-based PCC (G-PCC)

focuses on compressing the geometry information, including
spatial coordinates and connectivity; and video-based PCC
(V-PCC) [3] projects point clouds on to 2D planes and uses
existing 2D video codec for compression.

Besides point clouds, an emerging approach is to use neural-
based methods for 3D representation. Given a set of images
of the same scene taken with different camera poses, these
methods train neural models that can predict novel views of
the scene with high fidelity. For example, neural radiance fields
(NeRF) [4] uses a single multi-layer perceptron (MLP) for
scene representation. However, the original NeRF model suf-
fers from very long training time, e.g., 1 to 2 days. Following
NeRF, many enhanced neural radiance filed models [5]—[8]
have been developed and published, achieving faster training
and rendering speed, with Instant-NGP notably can finish
training within seconds. Despite NeRF’s significant progress
in static scene representation, development in dynamic scenes
still faces challenges. D-NeRF [9] and DyNeRF [10] are
two early proposed dynamic NeRF models. D-NeRF takes 48
hours to complete training a synthetic model, while DyNeRF
requires 8 GPUs running for a week to train a single scene
captured from the real world. Recently, K-Planes [11] uses
6 planes to represent dynamic scenes while achieving faster
training times of 1.8 hours on the DyNeRF dataset and 52
minutes on the D-NeRF dataset. K-Planes also has a compact
model size of 3-50 MB, which is suitable for today’s access
network bandwidth for transmission and streaming. Despite
the improved training time, the rendering time of dynamic
models remains a constraint. For example, ReRF [12] reaches
up to 20 fps, which still fails to meet the requirement for
real-time volumetric video streaming (e.g., 30 fps).

To facilitate further research in addressing the practical
challenges of volumetric video streaming using neural-based
representations and point clouds, datasets of dynamic 6-DoF
content are needed. Today, a number of dynamic point cloud
sequence datasets are available, including 8iVFBV2 [13],
vsenseVVDB2 [14], and Panoptic Studio [15]. More recently,
the Dynamic 3D point cloud [16] dataset offers point clouds
with accurate motion vectors as ground truth, derived from
synthetic 3D models. Existing datasets for neural-based rep-
resentations primarily focus on static scenes, e.g., the original
NeRF dataset [4] and the LLFF dataset [17]. However,
datasets for dynamic scenes are limited. D-NeRF, DyNeRF,
and Immersive video datasets [18] are frequently used to



evaluate dynamic neural-based representation methods. ReRF
introduces an outside-looking-in dynamic dataset from the
real world, which only includes three dynamic scenes. To
the best of our knowledge, none of these dynamic datasets
enables fair comparisons between point cloud and neural-
based representations. This prevents the multimedia systems
community from evaluating different design choices on the 3D
representation in volumetric streaming systems.

In this paper, we introduce a software toolkit for creating
dynamic 6-DoF content in both the point cloud and neural-
based representations. We aim to bridge the gap between
the research in representations of dynamic 6-DoF content
and the research in addressing system-level challenges in
volumetric video streaming. Our software toolkit can enable
the generation of training and testing datasets for neural-based
research in volumetric video streaming by rendering animated
synthetic scenes and point clouds in Blender'. Our software
toolkit can also generate dynamic point cloud sequences from
synthetic dynamic scenes by directly sampling points on the
3D mesh representation, compatible with relevant point cloud
research. This further facilitates comparing point clouds and
neural-based methods for volumetric video representation and
streaming. As a showcase, we generate and release a dataset of
dynamic 6-DoF content using our software toolkit, available
at: https://6-dof-dynamic-content-software.
github.io/. Overall, our software toolkit and dataset serve
the following purposes:

e Our software toolkit can generate training and testing
datasets based on animated synthetic scenes for neural-based
model learning.

o Our software toolkit can generate datasets for training and
testing neural-based methods given existing dynamic point
cloud sequences.

o Finally, our software can generate dynamic point cloud
sequences derived from animated synthetic scenes, e.g., in
3D meshes.

II. RELATED WORK

While our software toolkit and dataset are the first of their
kind, prior datasets have been designed for either point cloud
or neural-based representations, as the following survey shows.

A. Existing Dynamic Point Cloud Datasets

The 8iVFBV2 [13] dataset, known as 8i Voxelized Full
Bodies, comprises four dynamic point cloud sequences cap-
tured from the real world. Each sequence was recorded by
42 RGB cameras at 30 fps with a duration of 10 seconds.
The cameras are configured in 14 clusters, each functioning
as a local RGBD camera to capture depth information. This
dataset has been used to evaluate various research problems,
including point cloud compression [3], [19], interpolation [20],
and bitrate allocation [21]. VsenseVVDB2 [14] includes four
real-world dynamic point cloud sequences. Additionally, this
dataset provides compressed point clouds using V-PCC, fea-
turing various combinations of compression parameters. It also
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includes 3D meshes of the recorded sequences. This dataset
has been widely used for visual quality assessment in point
clouds [22]-[24]. Dynamic 3D point cloud dataset [16]
comprises nine dynamic point cloud sequences generated from
scenes with diverse animations. Each scene includes ground
truth for motion estimation vectors, enabling the evaluations of
algorithms like point cloud registration and error concealment.
This dataset offers valuable resources for advancing research
in dynamic 3D point clouds and associated algorithms.

B. Existing Neural-Based Datasets

A number of static datasets exist for training and evaluating
neural-based approaches. NeRF offered the first dataset gen-
erated from synthetic scenes. Additionally, LLFF and Mip-
NeRF360 datasets provided scenes captured from the real
world and are widely used in neural-based approaches [6]-
[8]. More recently, OMMO [25] provided a new large-scale
outdoor multimodal dataset captured by a drone.

Existing datasets of dynamic scenes for training neural-
based models, however, are limited. D-NeRF [9] presents eight
synthetic dynamic scenes with animations in varying duration,
spanning from 50 to 200 frames per scene. The training dataset
is derived from a monocular camera that renders views from
different viewpoints at each step. The datasets include 100
to 200 rendered views with a resolution of 800x800 pixels.
The dataset has been split into training/validation/test sets and
used in the evaluations of K-planes [11] and DyNeRF [10].
DyNeRF offers plenoptic video datasets containing videos
captured from six real-world dynamic scenes. Each scene
comprises 15 to 21 10-second videos at 30 fps, captured
by 21 static GoPro Black Hero 7 cameras in forward-facing
directions. Despite the cameras being time-synchronized, some
videos still exhibit apparent offsets. Their intrinsic and ex-
trinsic parameters are obtained through COLMAP [26]. The
central camera is used for testing while the rest of the camera
views are used for training. The DyNeRF dataset has been
used to evaluate multiple works such as NeRFplayer [27] and
K-planes. Immersive video [18] provides a light field video
dataset with 15 dynamic real-world scenes. Captured with
46 4K time-synchronized fisheye cameras on a hemispherical
surface, these videos offer inside-looking-out directions. All
recordings maintain a 30 fps frame rate, and raw video data
are provided. This dataset has been used in the evaluations of
DyNeRF and NeRFplayer.

III. OUR SOFTWARE TOOLKIT AND DATASET

Our software and dataset generation are based on Blender, a
software capable of creating, editing, animating, and rendering
3D meshes. It supports multiple cameras in each scene and
automatically synchronizes all cameras when capturing, which
is challenging in real-world setups. In this section, we describe
the dynamic 3D contents we work with and the procedure
for generating datasets for both point clouds and neural-based
representations. The entire dataset can be generated simply via
command line execution of Python scripts.
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Fig. 1: Front-facing images all 12 dynamic 3D contents. (a)-(d): Our Synthetic Dynamic Scenes sequences; (e)-(h):
81VFBV2 sequences [13]; (i)-(1): vsenseVVDB2 sequences [14]. From these contents, our software toolkit can generate
datasets compatible with training neural-based representations. Our software toolkit can also generate dynamic point cloud
sequences from the Synthetic Dynamic Scenes dataset for point cloud research.

A. Dynamic Scenes Descriptions

Figure 1 shows the front-facing images of 12 3D contents
that we use for demonstrating the use of our software toolkit.
These 12 contents are from three distinct sources.

e We collected Synthetic Dynamic Scenes from 3D
assets that are freely available online. These include four
animated Blender 3D models: Lego [4], Worker from the
Dynamic Point Cloud dataset [16], Amyz, and Pig3. Anima-
tion for “Lego” includes raising and lowering the bulldozer’s
bucket, created by manipulating the built-in control panel in
the original .blend file. The “Worker” model is animated
to dance. The “Amy” model includes animations of a girl
talking, blinking, and swaying her body. The “Pig” model is
designed with animations including shaking head, shaking
ears, and wagging tail. All the models are animated with 60
frames in total.

e 81VFBV2 [13] contains four dynamic point cloud se-
quences: Longdress, Loot, Soldier, and RedandBlack in raw
.ply files.

e vsenseVVDB2 [14] contains four dynamic point cloud se-
quences — AxeGuy, LubnaFriends, Rafa2, and Matis, also in
raw .ply files. Both 8iVFBV2 and vsenseVVDB2 share
the exact spatial resolution of 1024x1024x1024 voxels. All
point cloud sequences have 300 frames in total.

For our Synthetic Dynamic Scenes, we describe
the procedure for generating datasets for training/testing
neural-based representations in Section III.C. We also de-
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scribe how we generate point clouds from 3D meshes in
Blender in Section III.D. Furthermore, for 8iVFBV2 and
vsenseVVDB2 that are in raw point cloud formats, we de-
scribe in Section III.B how we render point clouds in Blender
so that we reuse the pipeline in Section III.C to generate
training/testing datasets for neural-based representations.

B. Point Cloud Rendering in Blender

Blender does not inherently support the rendering of points,
e.g., .ply files. To address this problem, we adopt a strategy
of generating faces for the points. Generating meshes from
point clouds is well supported in Open3D [28], an open-source
library used to process meshes and point clouds, using Poisson
Surface Reconstruction [29]. However, we found that noise
in the point clouds seriously affects the generated meshes, as
shown in Figure 2. We, therefore, directly assign faces for each
point and then render all these faces in Blender as follows.

We first import point clouds as vertices with geometry
positions and colors into Blender. Then, using the geometry
node in Blender, we create a cube centered on each vertex. To
achieve this, we first create a cube mesh using the geometry
node of type “Cube Mesh” to build an instance. Then, we add
geometry nodes of type “Instance on Points” and ‘“Realize
Instances” to the “Cube Mesh” node to assign point geometry
to the cube mesh instance. Subsequently, we create a new
material, linking the color attribute of the point cloud to the
material. This is achieved by adding the “Color Attribute”
node and making it the base color of the “Diffuse BSDF”
node. After this, we add the “Set Material” node to the “Cube
Mesh” node we created before, assigning color attributes to the



Fig. 2: Comparison between Poisson Surface Reconstruction
[29] and our method. Left: rendering results from meshes gen-
erated from Poisson Surface Reconstruction in Open3D [28].
Right: rendering results using our method, closely resembling
the original content.

cube. Given that the rendered image in Blender is influenced
by default lighting and shadows, to render authentic RGB
colors of points, we set the output color management type
to “Standard” and render output channel to “Diffuse Color”.
With this method, point clouds can be rendered in Blender
successfully. The complete node maps are shown in Figure 3.

C. Training and Testing Dataset Generation

One advantage of using Blender is that we can set virtual
cameras anywhere with any timestamp in the Blender world
coordinates and obtain accurate camera parameters. The pre-
cision of camera parameters is very important in NeRF-like
models. Without them, the trained model may have low visual
quality. To generate training and test datasets, we first place
the model’s center at the origin (0, 0, 0). For .blend Blender
meshes, we had to translate some meshes along the Z axis to
make it approximately located in the origin. For 8i1VFBV2
and vsenseVVDB2 datasets, the point cloud positions span a
range of [0, 1024]. Given that the default unit in Blender is 1
meter, i.e., the point cloud has a dimension of 1024 meters, it
is difficult to capture the full body using a basic camera. Thus,
we use a scale factor to resize the point clouds, bringing them
to a more manageable size of approximately 2.3 meters to 2.5
meters in height within Blender’s world coordinates. We re-
calculate the center of each point cloud by setting its origin
to the center of volume and placing it at (0, 0, 0). Finally, to
appropriately align the scaled and translated model, we apply
a rotation to ensure its up vector is +Z, and the XY plane
aligns parallel to the ground plane. Detailed transformation
parameters are provided in our dataset.

After properly initializing meshes, we follow the original
NeRF [4] work to generate training and testing images of
the dynamic 6-DoF contents. We place virtual cameras at
different positions by rotating around the origin with randomly
generated Euler angles, starting from position (0, 4.0, 0.5).
To ensure consistent camera orientation and distance from
the origin, we use Blender’s “Track To” camera constraint,
directing the camera to look at the origin throughout its
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Fig. 3: Node maps for rendering point clouds in Blender.

rotation. To maintain synchronization across all cameras, we
import and render point clouds frame by frame and set the
seed to a fixed value for different frames to yield the same set
of Euler angles.

For Blender meshes, we render all the frames (full anima-
tion) at one position first, then move to the next position and
render all the frames again. Generally, we set different random
seeds for training data and testing data. The total number of
views for both the training and testing datasets, along with
the desired output resolution, is adjustable. As an example,
we configure the software toolkit to generate 80 views for
training and 20 views for testing, each with a resolution of
800x800 pixels, saving the rendered images as .png files.
The overall pipeline of training/testing dataset generation from
point clouds in .p1ly files is shown in Figure 4.

We are not allowed to redistribute the .blend files and the
81VFBV2 and vsenseVVDB2 datasets, so we only release
the generated training and testing data in the Synthetic
Dynamic Scenes dataset. We provide codes for training
and testing dataset generation, which can be adapted for any
3D meshes/point clouds besides the 12 ones described in this
paper. Interested users can download other 3D meshes, point
clouds and large realistic scenes with complex background
supported by Blender, and use our software toolkit to generate
the datasets themselves.
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Fig. 5: Overall pipeline for generating point clouds from 3D
meshes in Blender.

D. Dynamic Point Cloud Sequence Generation

To make the Synthetic Dynamic Scenes dataset
useful for point cloud research, our software toolkit can gen-
erate dynamic point cloud sequences derived from synthetic
scenes. The complete pipeline of generating point clouds
using our software toolkit, shown in Figure 5, contains two
components: renderer and point cloud generator.

First, we preprocess each mesh-based scene in the renderer
to eliminate unnecessary components and add scene lights.
Due to the limited number of vertices in the original Blender
model, the exported point clouds from Blender are too sparse.
To address this, we upsample meshes by evenly inserting
vertices along each edge and connecting them to increase the
number of meshes and vertices. Subsequently, we bake the
color, texture, and shadows of each upsampled object into a
new texture image to retrain the object’s appearance with the

Fig. 6: Sample rendered point clouds generated from
Blender 3D models in Synthetic Dynamic Scenes
Lego, Worker, Amy, and Pig.

effects of lights and shadows.

In the point cloud generator, the point cloud converter maps
new texture images to the upsampled 3D meshes, using all ver-
tices to form the point cloud. We duplicate the entire pipeline
for each frame and save individual point clouds in .ply
files with binary little endian 1.0 format, forming dynamic
point cloud sequences. With our method, the generated point
cloud of the synthetic scene with hundreds of objects, e.g.,
Lego, may have a very large number of points. Therefore,
our software toolkit includes a point cloud downsampler,
implemented based on voxel downsampling in Open3D [28],
to create a uniformly downsampled point cloud. We release the
generated point clouds of Synthetic Dynamic Scenes
as illustrated in Figure 6.

IV. SAMPLE USAGE OF OUR DATASET

The dataset created using our software toolkit can be used to
further research in neural-based representations of 3D scenes,
especially for dynamic NeRF-like models. We have tested our
datasets on three popular neural-based models, Nerfacto [7]
and Instant-NGP [8] for static scene models, and K-Planes [11]
for dynamic scene models. Because some existing dynamic
NeRF works, such as D-NeRF [9] and DyNeRF [10], require
long training time, we only considered K-Planes as the dy-
namic mode our experiments. With that said, our datasets
are compatible with D-NeRF and DyNeRF. Figure 7 shows
that our dataset works well with different neural-based models
and their training and evaluation frameworks. Other dynamic
NeRF-like models, including NeRFplayer [27] and ReRF [12],
may require coordinate transformation and format conversion
of . json files to align with the requirements of their models.

V. CONCLUSION

This paper introduces a software toolkit designed to gener-
ate datasets of dynamic scenes for volumetric videos. This
includes the generation of training and test datasets from
synthetic animated objects and dynamic point cloud sequences,
enabling their use in neural-based 3D representations. The
software toolkit also facilitates the generation of dynamic point
cloud sequences derived from synthetic scenes. These datasets
hold significant potential for diverse research fields, including
dynamic NeRF-like neural-based representations and dynamic
point cloud compression. We hope our software toolkit can
enable more future research in the design, implementation,
and evaluation of volumetric video streaming systems.



(a) NeRFstudio with Nerfacto model [7]

(b) Instant-NGP [8]

(c) NeRFstudio with K-Planes model [11]

Fig. 7: Our datasets work well with different NeRF-like models and their training and evaluation frameworks.
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