
NeuFair: Neural Network Fairness Repair with Dropout

Vishnu Asutosh Dasu
Pennsylvania State University

State College, USA
vdasu@psu.edu

Ashish Kumar
Pennsylvania State University

State College, USA
azk640@psu.edu

Saeid Tizpaz-Niari
University of Texas at El Paso

El Paso, USA
saeid@utep.edu

Gang Tan
Pennsylvania State University

State College, USA
gtan@psu.edu

Abstract

This paper investigates neuron dropout as a post-processing bias

mitigation method for deep neural networks (DNNs). Neural-driven

software solutions are increasingly applied in socially critical do-

mains with signi�cant fairness implications. While DNNs are ex-

ceptional at learning statistical patterns from data, they may encode

and amplify historical biases. Existing bias mitigation algorithms of-

ten require modifying the input dataset or the learning algorithms.

We posit that prevalent dropout methods may be an e�ective and

less intrusive approach to improve fairness of pre-trained DNNs

during inference. However, �nding the ideal set of neurons to drop

is a combinatorial problem.

We propose NeuFair, a family of post-processing randomized al-

gorithms that mitigate unfairness in pre-trained DNNs via dropouts

during inference. Our randomized search is guided by an objec-

tive to minimize discrimination while maintaining the model’s

utility. We show that NeuFair is e�cient and e�ective in improv-

ing fairness (up to 69%) with minimal or no model performance

degradation. We provide intuitive explanations of these phenomena

and carefully examine the in�uence of various hyperparameters of

NeuFair on the results. Finally, we empirically and conceptually

compare NeuFair to di�erent state-of-the-art bias mitigators.

CCS Concepts

• Software and its engineering→ Search-based software en-

gineering; • Computing methodologies→Machine learning.

Keywords

Machine Learning, Bias Mitigation, AI Ethics

ACM Reference Format:

Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan.

2024. NeuFair: Neural Network Fairness Repair with Dropout. In Proceed-

ings of the 33rd ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680380

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680380

1 Introduction

Arti�cial intelligence (AI), increasingly deployed with deep neu-

ral network (DNN) components, has become an integral part of

modern software solutions that assist in socio-economic and legal-

critical decision-making processes such as releasing patients [31],

identifying loan defaults [23], and detecting tax evasion [43].

Despite many advances made possible by AI, some challenges re-

quire understanding the dimensions and implications of deploying

AI-driven software solutions. One such concern about the trustwor-

thiness of AI is discrimination. Unfortunately, there are plenty of

fairness defects in real systems. Parole decision-making software

was found to harm black and Hispanic defendants by falsely predict-

ing a higher risk of recidivism than for non-Hispanic white defen-

dants [28]; Amazon’s hiring algorithm disproportionately rejected

more female applicants than male applicants [27]; and data-driven

auditing algorithm selected black taxpayers with earned income

tax credit claims (EITC) at much higher rates than other racial

groups for an audit [43]. As evidenced by these examples, resulting

software may particularly disadvantage minorities and protected

groups and be found non-compliant with laws such as the US Civil

Rights Act [6]. Hence, helping programmers and users to mitigate

unfairness in social-critical data-driven software systems is crucial

to ensure inclusion in our modern, increasingly digital society.

The software engineering (SE) community has spent signi�cant

e�orts to address discrimination in the automated data-driven soft-

ware solutions [2, 10, 19, 47, 56]. Fairness has been treated as a

critical meta-property that requires analysis beyond functional

correctness and measurements beyond prediction accuracy [7].

Thus, the community presents various testing [2, 19, 57], debug-

ging [22, 36, 50], and mitigation [5, 53] techniques to address fair-

ness defects in data-driven software.

Broadly, fairness mitigation can be applied in the pre-processing

(e.g., increasing the representations of an under-represented group

by generating more data samples for them), in-processing (e.g.,

changing the loss function to include fairness constraints during

training), or post-processing (e.g., changing the logic of a pre-

trained model) stage. However, when the decision logic of AI is

encoded via DNNs, it becomes challenging to mitigate unfairness

due to its black-box uninterpretable nature.

We posit that a subset of neurons in a neural network disparately

contributes to unfairness. Removing these neurons during infer-

ence as a post-processing operation on a trained DNN can im-

prove fairness. Therefore, prevalent techniques such as dropout

1541

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

methods [40, 41]—a process of randomly dropping neurons during

training—might be e�ective in mitigating unfairness in pre-trained

DNN models. While the dropout strategy has been signi�cantly

used to prevent over-�tting during the training of DNNs, to the best

of our knowledge, this is the �rst work to systematically leverage

dropout methods as a post-processing bias mitigation method for

improving the fairness of pre-trained DNN models.

However, �nding the optimal subset of dropout neurons is an in-

tractable combinatorial problem that requires an exhaustive search

over all possible combinations of neuron dropouts. To overcome

the computational challenges, we explore the class of randomized

algorithms with Markov chain Monte Carlo (MCMC) strategies to

e�ciently explore the search space with statistical guarantees. In

doing so, we pose the following research questions:

RQ1. How successful are randomized algorithms in repairing the

unfairness of DNNs via dropouts?

RQ2. Are there dropout strategies that improve model fairness and

utility together?

RQ3. What are the design considerations of search algorithms for

e�cient and e�ective dropouts?

RQ4. How do dropout strategies compare to the state-of-the-art post-

processing (bias) mitigators?

To answer these research questions, we presentNeuFair (Neural

Network Fairness Repair): a set of randomized search algorithms to

improve the fairness of DNNs via inference-time neuron dropouts.

We design and implement simulated annealing (SA) and random

walk (RW) strategies that e�ciently explore the state-space of neu-

ron dropouts where we encode the frontiers of fairness and utility

in a cost function.

We evaluate NeuFair over 7 deep neural network benchmarks

trained over 5 socially critical applications with signi�cant fairness

implications. We found that NeuFair can improve fairness (up to

69%) with minimal utility degradation in most cases. We also report

a pathological case and reasons behind a failure of NeuFair. We

also observe that NeuFair can simultaneously improve fairness

and utility and provide intuitive explanations of such phenomena.

Furthermore, we examine di�erent hyperparameter con�guration

options of randomized algorithms. While some hyperparameters al-

ways in�uence fairness with positive or negative impacts, we detect

a hyperparameter that de�nes a trade-o� between explorations and

exploitation that should be tuned as a constant variable in the cost

function for each benchmark. Finally, we show the e�ectiveness

of the SA algorithm, compared to the RW and the state-of-the-art

post-processing (bias) mitigator [36].

In summary, the key contributions of this paper are:

(1) Inference-Time dropout for fairness. To the best of our

knowledge, we present the �rst dropout method of bias mit-

igation over pre-trained deep neural networks,

(2) Randomized algorithms for fairness. We create a well-

de�ned framework to formulate the combinatorial inference-

time dropout problem inDNNs using randomized algorithms,

(3) Experimental evaluations. We implement the randomized

algorithms in NeuFair and evaluate their e�ectiveness and

e�ciency vis-a-vis the state-of-the-art techniques.

2 Background

In this section, we provide a background on the various model

utility and fairness metrics.

2.1 Notions of Model Utility

Given a binary classi�er ℎ, a set of features - , and predictions

ℎ(-) = {)%,)#, �%, �# }, we can de�ne the following notions of

model utility. In ℎ(-), TP, TN, FP, and FN denote the set of True

Positives, True Negatives, False Positives, and False Negatives. We

drop the cardinality operator |·| in the following de�nitions for

brevity.

Accuracyℎ =

)% +)#
)% +)# + �% + �#

F1ℎ =

2 ∗ %A428B8>= ∗ '420;;
%A428B8>= + '420;; =

2 ∗)%
2 ∗)% + �% + �#

Accuracy can be used to gauge the overall performance of a clas-

si�er. However, accuracy is a poor metric for imbalanced datasets

commonly used in fairness evaluations as the number of negative

samples far outweighs the positive samples. For example, predicting

all samples as negative (0 true positives) in the Bank [14] dataset

yields an accuracy of 88% but the F1 score would be 0 or unde-

�ned. Since F1 is de�ned as the harmonic mean of precision and

recall, rather than the arithmetic mean, it penalizes performance

signi�cantly if either precision or recall is low.

2.2 Notions of Model Fairness

Consider a machine learning classi�er ℎ, a set of features - , sensi-

tive features � ⊂ - , and a set of labels . . We can then de�ne the

following notions of fairness.

Definition 2.1 (Demographic Parity [1]). The classi�er ℎ satis-

�es Demographic Parity under a distribution over (-,�,.) if its pre-
diction ℎ(-) is statistically independent of the sensitive feature � i.e.

P[ℎ(-) = ~̂ |� = 0] = P[ℎ(-) = ~̂] for all 0,~. For binary classi�ca-

tion with ~̂ = {0, 1}, this is equivalent to E[ℎ(-) |� = 0] = E[ℎ(-)]
for all 0.

Definition 2.2 (Eqalized Odds [1, 25]). The classi�er ℎ satis-

�es Equalized Odds under a distribution over (-,�,.) if its prediction
ℎ(-) is conditionally independent of the sensitive feature � given the

label . i.e. P[ℎ(-) = ~̂ |� = 0,. = ~] = P[ℎ(-) = ~̂ |. = ~] for all 0,
~, and ~̂. For binary classi�cation with ~̂ = {0, 1}, this is equivalent
to E[ℎ(-) |� = 0,. = ~] = E[ℎ(-) |. = ~] for all 0, ~.

Equal Opportunity is a relaxed variant of Equalized Odds with

. = 1 [25]. Equalized Odds require the true positive and false

positive rates to be equal across all sensitive groups. However,

Equal Opportunity only requires the true positive rate to be equal

across all sensitive groups.

Demographic Parity is the weakest notion of fairness, and Equal-

ized Odds is the strongest. In our work, we use Equalized Odds

as the fairness criterion. The disparity or unfairness for Equalized

Odds is the Equalized Odds Di�erence (EOD), de�ned as the maxi-

mum absolute di�erence between the true and false positive rates

across the sensitive groups. Mathematically, this is represented as

1542

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

�$� = max

(

|P[ℎ (-) = 1 |� = 0, . = 1] − P[ℎ (-) = 1 |� = 1, . = 1] |,
|P[ℎ (-) = 1 |� = 0, . = 0] − P[ℎ (-) = 1 |� = 1, . = 0] |

)

with sensitive features � = {0, 1}.

3 Problem Statement

We consider pre-trained deep neural network (DNN) classi�ers with

the set of input variables - partitioned into a protected set of vari-

ables (such as race, sex, and age) and non-protected variables (such

as profession, income, and education). We further assume the out-

put is a binary classi�er that gives either favorable or unfavorable

outcomes.

3.1 Syntax and Semantics of DNN

A deep neural network (DNN) encodes a function D : - → [0, 1]2
where - consists of the set of protected attributes -1 ×-2 · · · ×-<
and non-protected attributes -<+1 · · · × .<+A . The DNN model

is parameterized by the input dimension<+A , the output dimen-

sion 2, the depth of hidden layers = + 1, and the weights of its

hidden layers,0,,1, . . . ,,= . We describe the hidden layers with

M ← [!� , !0, . . . , !=, !$], where !� and !$ are the input and out-

put layers, respectively, and !8 ,∀8 ∈ [0, =], are the hidden layers.

We assume that there exists a subset of neurons N ∈ !8 ,∀8 ∈ [0, =]
in the hidden layers that disparately contribute to unfairness.

Let !8 be the output of layer 8 that implements an a�ne mapping

from the output of previous layer !8−1 and its weights,8−1 for
1 ≤ 8 ≤ = followed by a �xed non-linear activation unit (e.g., ReLU

de�ned as !8−1 ↦→ max {,8−1 .!8−1, 0}) for 1 ≤ 8 ≤ =. Let !
9
8
be the

output of neuron 9 at layer 8 that is !
9
8
(G) = ReLU

(
∑ |!8 |

9=1 F8!
9
8−1

)

.

The output is the likelihood of favorable and unfavorable outcomes.

The predicted label is the index of the maximum likelihood,D(G) =
max8 !$ (G) (8).

3.2 Inference Time Dropout for Fairness

Dropout [41] is a technique proposed to improve the performance

of DNNs by preventing over�tting. Dropout sets all F8 to 0 for a

random set of neurons in the hidden layers with some probability

during training. Once training is complete, dropout is not used,

and all the neurons in the DNN are utilized to make predictions.

While dropout has been traditionally used to prevent over�tting

during training, we hypothesize that dropping neurons of the DNN

during inference after training can signi�cantly improve fairness

with a minimal impact on performance. However, unlike traditional

dropout, where a set of neurons are randomly dropped during

training, we aim to identify a subset of neurons at the Pareto optimal

curve of fairness-performance during inference.

We consider a binary vector as the neuron state with B = {0, 1}# ,

where # =

∑=
8=0 |!8 | and B8 indicates whether the neuron 8 is

dropped or not and = is the number of layers. A pre-trained DNN

model D does not include any dropouts; hence, all the indicators

are 0.

Definition 3.1 (Desirable Dropout of Fairness vs. Utility).

Given a DNN model D trained over a dataset - ; the search problem

is to infer a repaired DNN model D′ by dropping a subset of neurons

� in the binary neuron state, i.e., B8 = 1 for any 8 ∈ � , such that

(1) the model bias (e.g., EOD) is maximally reduced, (2) the model

performance (e.g., F1-score) is minimally degraded, and (3) the model

structure in terms of the numbers of inputs, outputs, and hidden layers

remains the same as compared to the original pre-trained model D.

We de�ne desirable states as those states that have a good

fairness-performance tradeo�. A brute-force search to �nd desir-

able neurons is exponential in the size of DNN as we have 2 |# |

possible subsets. The running time becomes prohibitively expen-

sive, even for small DNNs. To �nd the desirable subset of neurons,

we explore di�erent types of randomized algorithms to improve

fairness via model inference dropout.

4 Approach

Our approach comprises two randomized search algorithms, namely

Simulated Annealing (SA) and Random Walk (RW).

4.1 Simulated Annealing Search

We formulate the problem of �nding the desirable subset of neurons

as a discrete optimization problem and solve it using Simulated

Annealing. Simulated Annealing (SA) [4] is a probabilistic algo-

rithm that �nds the global minima (w.r.t some cost function) in a

large search space with high probability. Algorithm 1 presents a

generic template to apply SA to a search space optimization prob-

lem. Figure 1 overviews the steps in our bias mitigation approach

with the SA search. We now de�ne the core concepts used in our

SA algorithm.

Algorithm 1:Generic Simulated Annealing (SA) Procedure

Input: Search space S, neighborhood relation Γ, cost

function 2 , initial temperature)0, initial state B0
Output: Best solution found.

1), B, B∗,< ←)0, B0, B0, 0

2 while ‘stopping criterion’ is not met do

3 B′ ← Generate(B)
4 Compute Δ� = cost(B′) − cost(B)
5 if Δ� ≤ 0 then

6 Accept transition i.e. B ← B′

7 Update best solution found i.e. B∗ ← B′

8 else

9 if 4−Δ�/)< ≥ UniformSample(0, 1) then
10 Accept transition i.e. B ← B′

11)<+1 ← Update()<)
12 < ←< + 1
13 return B∗

Search Space. For a DNNM ← [!� , !0, . . . , !=, !$] we de�ne a
state of our search space S as a binary sequence B ∈ {0, 1}# , where

=

∑=
8=0 |!8 |1. The 8th element of B , denoted B8 is 1 if neuron 8 is

1For memory reasons, we store a state as a decimal number rather than a # -bit binary
sequence, where the binary sequence B is mapped to the unique decimal number which
has binary expansion 1B .

1543

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

Original Unfair Model

Training Data

Neuron Repair

Validation Data

Repaired Model

Test Data

Unfair
Model M

Repaired
Model M*

Sample initial set of neurons S0
Set best cost C,C* = Cost(S0), S,S* = S0
Iterate until a stopping criterion occurs:
 Sample neighbor S' of S
 Compute C' = Cost(S')

 if then
 S = S', C = C'
 if C <= C* then S = S*, C = C*
Drop neurons in the model: M* = M - S*

Figure 1: Overview of the NeuFair: a post-processing bias mitigation approach.

dropped and 0 otherwise2. For example, consider a DNNM ←
[!� , !0, !1, !$], where |!0 | = 3 and |!1 | = 3. Then, the state B given

by:

B = (0, 1, 0
︸︷︷︸

!0

, 0, 0, 1)
︸︷︷︸

!1

drops the second neuron in the �rst layer and the third neuron in

the second layer.

Instead of allowing our search space S to drop every possible

subset of neurons possible (which would ensure S has size 2#),

we restrict the size of S by �xing an upper and lower bound on

the number of neurons that can be dropped from the DNN. Let =;
and =D (=; ≤ =D) denote the minimum and maximum number of

neurons allowed by our DNN, respectively. We can then formally

de�ne S as:

S := {B ∈ {0, 1}# | =; ≤ �, (B) ≤ =D } (1)

where �, (B) denotes the hamming weight of B . Restricting our

search space with a conservative estimate of the lower and upper

bound would have a minimal impact on our ability to �nd the

desirable subset, as dropping too many neurons will reduce the

model utility to less than acceptable levels, whereas dropping too

few neurons will improve fairness by only a marginal amount.

However, asymptotically, a conservative estimate of the lower and

upper bound still generates prohibitively large search spaces. With

the bounds =; and =D , the cardinality of the search space |S| =
∑=D
8==;

(#
8

)

= Ω(2#√
#
) if =; < #

2 < =D , which rules out brute-force

as a viable option.

Neighborhood Relation and ‘Generate’ subroutine. The neighbor-

hood of any state B ∈ S, denoted Γ(B), is de�ned as the set of all

states that are at a hamming distance of 1. Mathematically, this is

de�ned as

Γ(B) := {B′ ∈ S | �� (B, B′) = 1}
where �� (B, B′) denotes the hamming distance between B and B′.
With our de�nition of the search space and neighborhood of a

state, the entire search space graph can be viewed as a subset of the

2The neurons are numbered according to some total order; the choice of total order is
insigni�cant as long as we �x the mapping of a neuron to its position in the binary
sequence.

0,0,0

1,1,1

0,0,1 0,1,0 1,0,0

0,1,1 1,0,1 1,1,0

Figure 2: 3-dimensional Boolean hypercube that demon-

strates the exponential search space of a neural network

with 1 hidden layer having 3 neurons.

-dimensional hypercube, where the vertices of the hypercube rep-

resent the states of our search space, and the edges of the hypercube

represent the neighborhood relation. The Generate subroutine on

input B ∈ S uniformly samples a neighbor B′ from Γ(B) and returns
B′. This is equivalent to uniformly sampling an index position 8

from [1, =] and subsequently uniformly �ipping bit B8 in the binary

sequence B to get B′. We make the following observation on our

underlying search space graph3:

Lemma 4.1. If =; < =D , then our search space graph is connected

and has a diameter less than # . Moreover, the distance between any

two states B, B′ ∈ S is given by �� (B, B′).

For example, Figure 2 shows the search space graph for a neu-

ral network with 1 hidden layer with 3 neurons, along with the

neighbors and state transitions.

Cost Function. Our primary goal is to �nd a state B ∈ S which

minimizes its unfairness score �$�B . However, we do not wish to

3The search space graph is a graph with S as the set of vertices and edges de�ned
according to the neighborhood relation Γ i.e. (B, B′) is an edge i� B′ ∈ Γ (B) . As our
neighborhood relation is symmetric, our search space graph is undirected.

1544

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

consider those states with a signi�cant loss in model performance

(measured using the F1 score of the model) compared to the original

model; thus, we try to �nd an acceptable balance between the

improvement in fairness and the loss in model performance. To

realize this balance, we penalize our cost function with an additional

term to arti�cially increase the cost if the state has a lower F1 score.

We now formally de�ne our cost function, cost(·) as follows:

cost(B) := �$�B + ? · �$�B0 · 1(�1B < C�1B0) (2)

In the above equation, B0 is the original state (the DNN with no

dropout), ? ∈ R≥0 is called the penalty multiplier, C ∈ (0, 1) is called
the threshold multiplier, �$�B and �$�B0 are the unfairness scores

of states B and B0 respectively, �1B and �1B0 are the F1 scores of

the B and B0 respectively, and 1(·) denotes the indicator function.
The threshold multiplier C determines the percentage loss in F1

score we will tolerate to improve fairness. The penalty multiplier

? discourages states with an F1 score less than the threshold by

penalizing them with a multiple of the unfairness of the initial state.

Our cost function formulation allows us to �nd the state with the

minimum unfairness while maintaining a signi�cantly higher F1.

Initial Temperature, Cooling Schedule, and ‘Update’ subroutine.

The temperature) of the SA procedure determines the probability

with which we accept a positive transition (a transition where the

cost is increased); the higher the temperature, the more likely the

algorithm accepts such a transition. The cooling schedule refers to

the function used to update the temperature after each iteration.

We adopt the logarithmic cooling schedule [24] which has proven

convergence guarantees [35]. According to the logarithmic cooling

schedule, the temperature) (·) at iteration< is de�ned as

)< =

)0

log(2 +<) ,∀< ∈ Z≥0 (3)

The Update subroutine updates the temperature using the above

formula. Using the convergence results for SA with a logarithmic

cooling schedule [35], we get the following result for our SA runs:

Lemma 4.2. Let ? > 1. If we set)0 ≥ (1+? ·�$�B0) (=D −=;), then
the probability that SA �nds a global minima within : > ⌈=D−=;2 ⌉
iterations is greater than 1 − �

(:

=D −=;
)2 where

2 := min (1

(=D − =;)# ⌈
=D −=;

2 ⌉
,

4

)0(2
)

where (is the size of the validation dataset and � > 0 is a constant.

While the above lemma provides a worst-case bound on the num-

ber of iterations required to �nd an optimal solution, it is practically

infeasible to achieve the large bound. Ben-Ameur [3] proposes an

algorithm for computing)0 and shows that SA performs well ex-

perimentally with fewer iterations than estimated by Mitra et al.

[35]. We use the temperature initialization algorithm from [3] to

estimate the initial temperature)0. At a high level, this algorithm

back-computes an initial value for the temperature for which the

expected value of acceptance probabilities for positive transitions

from a random initial distribution is greater than some prede�ned

threshold.

Stopping Criterion. We use time as a stopping criterion for our

SA runs i.e., we run the SA search for time less than some hyperpa-

rameter C8<4_;8<8C .

Algorithm 2: NeuFair to mitigate unfairness in trained

neural networks

Input: Unfair neural networkM, Penalty multiplier ? ,

Threshold multiplier C , Minimum and maximum

number of neurons to drop [=; , =D], Algorithm Type

0;6_C~?4 , Time Limit C8<4_;8<8C

Output: Repaired neural networkM★, Desirable state B★,

Best cost 2>BC★
1 B ← random_state(M, =; , =D)

2 B★, BC0AC_C8<4 ← q , curr_time()

3 2>BC ← compute_cost(M, B, ?, C)

4 2>BC★← compute_cost(M, B★, ?, C)

5)0← estimate_temperature(M, B)

6 while 2DAA_C8<4 () − BC0AC_C8<4 ≤ C8<4_;8<8C do

7) ← update_temperature()0, 2DAA_C8<4 ())
8 B8 ← generate_state(B, =; , =D)

9 2>BC8 ← compute_cost(M, B8 , ?, C)

10 Δ� ← 2>BC8 − 2>BC
11 if Δ� ≤ 0 then

12 2>BC ← 2>BC8

13 B ← B8

14 else if (0;6_C~?4 == RW) ∨ (0;6_C~?4 ==
SA ∧ 4−Δ�/) ≥ Uniform(0,1)) then

15 2>BC ← 2>BC8

16 B ← B8

17 if 2>BC ≤ 2>BC★ then

18 2>BC★← 2>BC8

19 B★← B8

20 M★←M \ B★
21 returnM★, B★, 2>BC★

4.2 Random Walk Search

The RandomWalk (RW) strategy samples a random state B ∈ S, and
recursively samples states from the neighborhood Γ(·) to explore

the search space. The RW strategy then records the best state dis-

covered throughout the walk. We use the same cost function as SA

in RW to determine the desirable state. A key di�erence between

RW and SA search is that in RW, we always transition to a new

state, regardless of cost. In contrast, in SA, we always transition to

a new state with a lower cost and transition with some probability

if it has a higher cost. This is highlighted in Line 14 in Algorithm 2.

A RW can also be considered an SA run with in�nite temperature,

i.e., the transition probability is always 1.

5 Experiments

We pose the following research questions:

RQ1 How successful are randomized algorithms in repairing the

unfairness of DNNs via dropouts?

1545

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

Table 1: Architectures of the DNNs used for the datasets.

Dataset
Model Architecture

[!� , !0, . . . , !=, !$]
Adult Census Income [34, 64, 128, 64, 1]

Compas Software [12, 32, 32, 1]

Bank Marketing [32, 32, 32, 1]

Default Credit [30, 16, 16, 16, 1]

Medical Expenditure (MEPS16) [138, 128, 128, 128, 1]

RQ2 Are there dropout strategies that improve fairness and utility

together?

RQ3 What are the design considerations of search algorithms for

e�cient and e�ective fairness repair of DNNs via dropout?

RQ4 How do dropout strategies compare to the state-of-the-art

post-processing (bias) mitigators?

5.1 Datasets and Models

We evaluate NeuFair with �ve di�erent datasets from fairness

literature. For two of the datasets, we consider two di�erent pro-

tected groups, which e�ectively results in a total of 7 benchmarks.

Table 2 presents an overview of the datasets and protected groups.

The Adult Census Income [15], Bank Marketing [14], Compas Soft-

ware [39], Default Credit [16], and Medical Expenditure (MEPS16)

[18] are binary classi�cation tasks to predict whether an individual

has income over 50K, is likely to subscribe, has a low reo�ending

risk, is likely to default on the credit card payment, and is likely to

utilize medical bene�ts, respectively.

We used DNNs trained over the dataset benchmarks as the ma-

chine learning model. Table 1 highlights the architectures of the

DNN models used for each dataset. We use ReLU as the activation

function after the linear layers. For the Bank, Default, and Compas

datasets we use a dropout of 0.2 during training. For the Adult and

MEPS16 datasets, we set the dropout to 0.1. For the Compas dataset,

we use Adam as the optimizer with a learning rate of 0.001. For

the other datasets, we use SGD with a learning rate of 0.01. For

data preprocessing, we utilize standard techniques such as one-hot

encoding for categorical features followed by min-max or standard

scaling for numerical features. For the Compas dataset, we use a

version of the dataset used in [46] that has 12 features after feature

selection. The modi�ed Compas dataset is available online4.

5.2 Technical Details

We run all our experiments on a desktop running Ubuntu 22.04.3

LTS with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor,

32GB RAM, and a 1 TB HDD. The neural networks and repair

algorithms were implemented using python3.8, torch==2.0.1,

numpy==1.24.3, and scikit-learn==1.3.1.

5.3 Experimental Setup

For each dataset, we evaluate the performance of the NeuFair al-

gorithms using 10 di�erent random seeds. The seeds are set for the

torch, numpy, and scikit-learn libraries before DNN training.

4https://github.com/Tizpaz/Parfait-ML/blob/main/subjects/datasets/compas

Speci�cally, the seed determines the randomness of the training,

validation, and test splits and the randomness of model training,

such as sampling batches and initializing the weights of the DNN.

The NeuFair algorithms themselves are not seeded. Each SA and

RW run is unique.

During training, the training dataset was used for gradient de-

scent, and the validation dataset was used for hyperparameter tun-

ing. We use the model from the epoch with the highest validation

F1 score. The validation dataset is also used by NeuFair to identify

the desirable set of neurons to drop. We evaluate the fairness of the

original and �xed (repaired) models using the test dataset.

Unless otherwise speci�ed, all runs reported in the paper have a

time-out limit of 1 hour with the following cost function:

� (B) = �$�B + 3.0 · �$�B0 · 1(�1B < (0.98 · �1B0)) .

The F1 threshold is 98% of the validation F1 score of the unfair

DNN, i.e., we tolerate a 2% degradation in the F1 score to improve

fairness. A penalty of 3× the baseline unfairness is added to the

fairness of the current state if its F1 score is less than the threshold.

For all datasets, we set the minimum number of neurons to =; = 2

and vary the maximum number of neurons =D between 20% −
40% of the number of hidden layer neurons. The =D values are 50,

24, 24, 20, and 135 for Adult, Compas, Bank, Default, and MEPS16

respectively. For all datasets, we use a train/validation/test split of

60%/20%/20%. We set the threshold for the acceptance probabilities

in the temperature initialization algorithm [3] to 0.75.

5.3.1 E�ectiveness of randomized algorithms on mitigating unfair-

ness using dropout (RQ1). The �rst research question is answered

by analyzing the data in Figure 3, Figure 4, Table 3, and Table 4.

Figure 3 and Figure 4 highlight the cost of the best state found

for the SA and RW over time, respectively, for 10 di�erent seeds

per data subject using the logarithmic scale. In all cases, we see a

positive trend where the cost improves over time, and the search

identi�es better subsets of neurons to drop. We note the seemingly

�at plots correspond to those cases where a good state was found

in the beginning. The exception is the black line in the sub-plot for

the Default dataset in both �gures as it corresponds to a failed run;

i.e., the best state found has an F1 score lesser than 0.98× the F1

score of the initial state. Out of 70 runs (10 per benchmark), the

SA and RW found a desirable state with 0.98× the initial F1 score
in 69 cases. In addition, we re-run the failed Default experiment

with an F1 threshold multiplier of 0.96 and identify a desirable state

with a test set fairness of 6.26%, an improvement from 13.2%. The

progress graphs of the RW strategy are “steep” initially as the initial

states are unfair and are heavily penalized by the penalty multiplier

as RW generates intermediate states with an F1 score less than

the threshold. However, due to the cost function and probabilistic

transitions, SA only explores worse states with a low probability.

Thus, the progress graphs are not as steep initially.

Table 3 and Table 4 highlight the mean and 95% con�dence in-

tervals for the F1 score, accuracy, and EOD for all data subjects

aggregated across 10 seeds. We observe that in all cases, both Ne-

uFair algorithms improve the EOD. However, SA outperformed

RW in all cases for the validation set while ensuring that the F1

score reduces by at most 2%. We can conclude that SA is the more

1546

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Datasets used in our experiments.

Dataset |Instances| |Features|
Protected Groups Outcome Label

Group1 Group2 Label 1 Label 0

Adult Census [15]
48, 842 14

Sex-Male Sex-Female
High Income Low Income

Income Race-White Race-Non White

Compas Software
[39]

7, 214 28
Sex-Male Sex-Female

Did not Reo�end Reo�end
Race-Caucasian Race-Non Caucasian

Bank Marketing [14] 45, 211 17 Age-Young Age-Old Subscriber Non-subscriber

Default Credit [16] 13, 636 23 Sex-Male Sex-Female Default Not Default

Medical Expenditure (MEPS16) [18] 15, 675 138 Race-White Race-Non White Utilized Bene�ts Not Utilized Bene�ts

Table 3: Fairness and model utility metrics of the unrepaired (original) DNN.

Dataset

Unfair Neural Network

Validation Test

EOD F1 Accuracy EOD F1 Accuracy

Adult (Sex) 9.704% ± 1.405
0.68 ± 0.005 0.857 ± 0.003 11.639% ± 2.326

0.667 ± 0.008 0.851 ± 0.003
Adult (Race) 8.352% ± 2.806 8.251% ± 3.195

COMPAS (Sex) 2.307% ± 0.679
0.968 ± 0.002 0.97 ± 0.002 2.522% ± 0.817

0.967 ± 0.004 0.969 ± 0.004
COMPAS (Race) 2.022% ± 0.884 2.96% ± 1.088

Bank 13.752% ± 2.567 0.553 ± 0.006 0.842 ± 0.003 14.665% ± 2.114 0.553 ± 0.004 0.84 ± 0.003
Default 9.068% ± 1.782 0.538 ± 0.006 0.774 ± 0.007 8.962% ± 1.772 0.53 ± 0.006 0.769 ± 0.007
MEPS16 20.167% ± 2.32 0.543 ± 0.009 0.79 ± 0.005 20.641% ± 2.527 0.533 ± 0.01 0.788 ± 0.009

Table 4: Fairness and model utility metrics of the repaired DNN.

Dataset

Repaired Neural Network

Simulated Annealing Random Walk

Validation Test Validation Test

EOD F1 Accuracy EOD F1 Accuracy EOD F1 Accuracy EOD F1 Accuracy

Adult (Sex) 5.618% ± 0.807 0.668 ± 0.005 0.856 ± 0.004 7.259% ± 1.697 0.652 ± 0.01 0.849 ± 0.004 6.01% ± 0.704 0.667 ± 0.005 0.855 ± 0.003 7.358% ± 1.063 0.652 ± 0.01 0.849 ± 0.004
Adult (Race) 3.298% ± 2.069 0.667 ± 0.005 0.854 ± 0.003 4.976% ± 1.816 0.656 ± 0.008 0.849 ± 0.004 3.965% ± 1.665 0.667 ± 0.005 0.853 ± 0.003 4.785% ± 2.085 0.658 ± 0.009 0.849 ± 0.003

COMPAS (Sex) 0.468% ± 0.548 0.955 ± 0.004 0.959 ± 0.003 2.921% ± 1.446 0.954 ± 0.08 0.957 ± 0.008 0.54% ± 0.535 0.956 ± 0.005 0.959 ± 0.004 2.233% ± 1.022 0.954 ± 0.007 0.957 ± 0.006
COMPAS (Race) 0.56% ± 0.71 0.955 ± 0.002 0.959 ± 0.002 2.239% ± 1.003 0.954 ± 0.005 0.957 ± 0.004 0.58% ± 0.715 0.956 ± 0.003 0.959 ± 0.002 2.159% ± 1.07 0.955 ± 0.004 0.958 ± 0.004

Bank 0.871% ± 0.509 0.547 ± 0.007 0.892 ± 0.01 7.257% ± 3.533 0.537 ± 0.014 0.888 ± 0.01 1.714% ± 0.921 0.548 ± 0.006 0.882 ± 0.01 7.595% ± 2.733 0.548 ± 0.008 0.881 ± 0.008
Default 1.14% ± 0.98 0.529 ± 0.007 0.794 ± 0.016 2.749% ± 0.827 0.519 ± 0.006 0.79 ± 0.015 2.045% ± 1.251 0.53 ± 0.007 0.794 ± 0.015 3.124% ± 0.937 0.523 ± 0.005 0.79 ± 0.015
MEPS16 4.589% ± 1.294 0.535 ± 0.01 0.86 ± 0.006 8.426% ± 2.311 0.507 ± 0.02 0.853 ± 0.005 6.622% ± 1.183 0.535 ± 0.01 0.856 ± 0.005 9.86% ± 2.623 0.513 ± 0.018 0.851 ± 0.007

Figure 3: Evolution of the cost of the best state (logarithmic scale) found during the search on validation dataset using Simulated

Annealing (SA) with 7 benchmarks and 10 seeds each.

1547

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

Figure 4: Evolution of the cost of the best state (logarithmic scale) found during the search on validation dataset using Random

Walk (RW) with 7 benchmarks and 10 seeds each.

e�ective algorithm in identifying the desirable state during the

search procedure, subject to the F1 threshold. On the test set, we

observe that bothNeuFair algorithms improve the EOD. SA outper-

forms RW for 4 datasets (Adult (Sex), Bank, Default, and MEPS16).

We observe the largest absolute improvement of 12.215% in EOD

(20.641% to 8.426%) for the MEPS16 dataset using SA. The largest

relative improvement of 69.43% (8.962% to 2.749%) was observed

in the Default dataset using SA. However, SA did not improve the

EOD on the COMPAS (Sex), which is a pathological case.

Table 5: Fairness metrics for COMPAS (Sex)

Model EOD for 10 seeds

Unfair 2.2% 2.5% 2.35% 1.87% 4.1% 2.15% 1.38% 4.26% 0.79% 3.6%

Repaired (SA) 1.97% 4.28% 2.35% 4.58% 4.37% 0.12% 0.47% 4.83% 5.5% 0.75%

Repaired (RW) 1.25% 3.61% 3.19% 2.5% 2.4% 0.53% 0.28% 4.54% 3.07% 0.92%

Pathological Case. Table 5 highlights the individual EOD scores for

all seeds of COMPAS (Sex) with the original and repaired networks.

Here, we observe that SA improves the EOD in 4 cases, does not

improve in 1 case, and has a worse EOD in 5 cases. RW improves

the EOD in 5 cases and has a worse EOD in the other 5 cases. There

are two reasons for the di�erent trends in COMPAS (Sex). First,

there is a discrepancy in the original model statistics between the

validation and test splits. The di�erence arises because the DNN

tends to over�t slightly on the training and validation sets. This is

evident frommodelmetrics in Table 3. Second, theCOMPAS datasets

by default are quite fair (according to EOD) compared to other

datasets as their unfairness is around 2%. During the search, the

SA algorithm correctly identi�es a desirable state according to the

validation dataset and performs better than RW. However, given the

low initial unfairness and the model’s tendency to perform better

on the training and validation sets, we observe minor discrepancies

in the test set. The average unfairness, however, increases by 0.399%

(2.522% to 2.921%), which is negligible. For bothNeuFair algorithms,

the validation fairness improves in the COMPAS (Sex) experiment.

Answer RQ1: The randomized algorithms e�ectively mitigate

unfairness via dropouts by de-activating a desirable subset of

neurons. On the test set, Fairness improves by up to 69%. The

SA algorithm performs better than the RW algorithm.

5.3.2 Dropout strategies improving both fairness and utility (RQ2).

The second research question is answered by observing the F1 score

and accuracy (model utility metrics), besides the EOD score (fair-

ness) in Table 3 vs. Table 4. For all datasets, the F1 score decreases

for the validation and test sets. The decrease in F1 score is accompa-

nied by an improvement in fairness which highlights the tradeo�

between the model utility and fairness. However, we observe that

the accuracy increases for the Bank, Default, and MEPS16 datasets.

The biggest improvement in accuracy is observed inMEPS16, where

the validation and test accuracy increase from 0.79 and 0.788 to

0.86 and 0.853 for SA and to 0.856 to 0.851 for RW. For Default, the

validation and test accuracies increase from 0.774 and 0.769 to 0.794

and 0.79 for both SA and RW. For Bank, the validation and test

accuracies increase from 0.842 and 0.84 to 0.892 and 0.88 for SA and

0.882 and 0.881 for RW.

The opposing trends of F1 score and accuracy can be attributed

to the increase in negative predictions (0 is the negative class and 1

is positive) as neurons continue to be dropped out from the DNN.

The increase in negative predictions favors the true negatives as

the datasets are highly imbalanced with more negative samples.

The Default, Bank, and MEPS16 datasets have 78%, 88%, and 83% of

1548

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

the data belonging to the negative class. The trained DNN models

were optimized for F1 score on the validation dataset to improve

performance on the underrepresented positive class. The accuracy

increases as the increase in true negatives far outweighs the drop

in true positives. The F1 score, however, always decreases as we

lose precision and recall when the true positives decrease and the

false negatives increase.

Answer RQ2: The overall accuracy, as a model utility metric,

may improve along with fairness using dropout strategies, as ac-

curacy does not account for false positives and false negatives in

imbalanced datasets. However, the F1 score model utility metric

decreases as fairness increases.

5.3.3 Hyperparameters of randomized algorithms and fairness (RQ3).

TheNeuFair algorithms have 4 hyperparameters: F1 threshold mul-

tiplier, the minimum and maximum number of neurons to drop,

time-out limit, and F1 penalty multiplier.

• The F1 threshold multiplier is inversely proportional to fairness

improvement. For example, as highlighted in RQ1, the fairness

of the Default experiment improves when the F1 threshold is

reduced from 0.98 to 0.96.

• Decreasing the minimum number of neurons and increasing

the maximum number of neurons can have a positive e�ect on

fairness, provided the time-out limit increases. Consider two

ranges [=;1, =D1] and [=;2, =D2] such that =;1 < =;2 < =D2 < =D1.

The search space of [=;2, =D2] is then a sub-space of [=;1, =D1].
• The time-out positively a�ects fairness as the NeuFair algo-

rithms have more time to explore the search space.

• The F1 penalty multiplier has a more nuanced e�ect on the un-

fairness as it controls the exploration vs. exploitation trade-o�s.

A low penalty multiplier increases the probability of state tran-

sitions when the F1 score is less than our threshold, increasing

the SA run’s randomness to explore more of the search space

outside of the current best state. A high penalty multiplier would

decrease the probability of state transitions, thereby encouraging

the SA algorithm to exploit the search space near the current

best state. The penalty multiplier p directly a�ects the cost dif-

ference Δ� between states with acceptable and unacceptable F1

scores. From Line 14 in Algorithm 2, we can see that a higher

cost di�erence results in a lower transition probability. For a

�xed temperature, a higher p would increase the cost di�erence

between good and bad states, thereby decreasing the probability

of transitioning and encouraging exploitation. A lower p would

result in a lower cost di�erence and increase the transition prob-

ability, thereby encouraging exploration. To determine the e�ect

of the penalty multiplier, we run experiments with the Adult,

MEPS16, Default, and Bank datasets with one seed by varying

the F1 penalty multiplier ? ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and F1

threshold multiplier to 0.98. Figure 5 shows the results. The red

dot in the Default dataset corresponds to a run in which SA failed

to �nd a desirable state within the F1 threshold. We can see that

Adult dataset performs better on lower F1 penalties. The Bank

dataset has a “sweet” spot in between while Default performs

worse on intermediate F1 penalties. The MEPS16 does not follow

a clear trend. The results show that the F1 penalty multiplier is a

Figure 5: E�ect of F1 penalty multiplier on the EOD

hyperparameter that trades o� explorations vs. exploitation and

requires tuning for each dataset and model.

Answer RQ3: The fairness of the repaired model can improve

as the F1 threshold decreases, the number of neurons to drop

increases, and the time-out limit increases for both NeuFair-SA

and NeuFair-RW algorithms. The F1 penalty multiplier controls

a trade-o� between explorations vs. exploitation, which requires

tuning for each speci�c benchmark. A higher F1 penalty mul-

tiplier encourages SA to exploit the local solutions, whereas a

lower penalty encourages exploring the global space.

5.3.4 Comparing to the state-of-the-art (RQ4). We compare the

e�cacy of NeuFair against a state-of-the-art post-processing bias

mitigator. Dice [36] uses a fault localization technique via do logic

to pinpoint a single neuron that signi�cantly in�uences fairness.

The approach computes the amounts of variation in the outcomes of

each layer that depends on the sensitive attributes and de-activates

a single neuron with the highest e�ects on fairness. Since the search

space evaluates a single neuron, we brute-force the entire search

space of one neuron dropout in linear time. We note that the best

improvement, feasible by Dice, cannot be more than the brute-

force search. Table 6 highlights the test fairness after dropping a

single neuron that most impacts fairness. The results show that

NeuFair substantially outperforms DICE in improving fairness. We

also note a similar trend with COMPAS (Sex), where the unfairness

increases slightly. The largest discrepancy in fairness improvement

between NeuFair and Dice is observed in theMEPS16 dataset, with

an absolute di�erence of 10.778% and a relative improvement of

56.124% (19.204% and 8.426%) using SA.

1549

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

Table 6: Fairness and Utility of Dice [36].

Dataset
Test Dataset

EOD F1 Accuracy

Adult (Sex) 10.453% ± 2.266 0.658 ± 0.007 0.851 ± 0.003
Adult (Race) 8.092% ± 3.253 0.662 ± 0.008 0.851 ± 0.003

COMPAS (Sex) 3.229% ± 0.774 0.964 ± 0.005 0.957 ± 0.004
COMPAS (Race) 2.964% ± 1.088 0.965 ± 0.003 0.968 ± 0.003

Bank 12.205% ± 2.731 0.567 ± 0.005 0.862 ± 0.01
Default 5.845% ± 1.816 0.528 ± 0.004 0.791 ± 0.007
MEPS16 19.204% ± 2.592 0.54 ± 0.012 0.8 ± 0.009

Table 7: Simulated Annealing compared to Brute-force search

strategies.

Seed
Unfair DNN

EOD

Repaired Neural Network EOD

SA Brute Force EOD Delta

1 14.087% 6.441% 6.415% 0.026

2 8.874% 5.306% 5.306% 0.0

3 8.352% 5.755% 5.755% 0.0

4 17.896% 13.823% 13.743% 0.08

5 8.062% 5.304% 5.25% 0.054

Table 8: Distribution of Best, Good, and Bad states in the

search space.

Seed
Best State Good State Bad State

Count Likelihood Count Likelihood Count Likelihood

1 1 2.3 × 10−8 43,789 0.001 41,669,509 0.967

2 11 2.5 × 10−7 6,717 1.0 × 10−4 40,062,436 0.93

3 8 1.8 × 10−7 1,795 4.1 × 10−5 42,997,093 0.998

4 1 2.3 × 10−8 790 1.8 × 10−5 42,467,272 0.985

5 1 2.3 × 10−8 13,623 3.16 × 10−4 40,197,630 0.933

Answer RQ4: NeuFair outperforms the state-of-the-art unfair-

ness mitigation algorithm Dice [36] across all benchmarks. The

relative improvement of NeuFair is 56% higher than Dice.

6 Discussion

E�ectiveness of Randomized Algorithms. To understandwhy random-

ized algorithms are e�ective in mitigating unfairness, we compare

them to brute-force strategies. We create a small DNN for the Adult

(Sex) dataset with 2 hidden layers, each with 16 neurons, to allow

the brute force search to explore the entire space.We use a restricted

search space with =; = 4 and =D = 9 that has a total of 43, 076, 484

states. The time-out for SA runs is one hour. The brute force ex-

haustive search takes 60 hours. Table 7 highlights the results of

both search strategies. SA �nds the global optimal solution for two

seeds in the search space. The EOD Delta column highlights the

di�erence in cost of the states identi�ed by SA and brute force. The

highest cost di�erence of 0.054 shows the e�cacy of randomized

algorithms in identifying good states. SA is faster than brute force

in reaching a good state as it follows a cost gradient to choose a

path to a good state by always accepting states that improve the

cost. Additionally, SA uses a probabilistic transition function that

can transition to worse states and potentially escape local minima.

Gradient-based methods often get stuck in local minima. Table 8

shows the distribution of the Best, Good, and Bad states. The best

states are the states with the global optimal cost. The cost of the

good states is within 0.05 of the optimal cost. Bad states are states

whose F1 scores are less than the 98% of the baseline F1 score. We

observe that the best and good states occupy a negligible amount

of the search space. On the other hand, over 90% of the states are

bad states. This suggests that the good states occupy small “pock-

ets” of the search space. The cost gradient e�ectively leads SA to

identify such pockets and the probabilistic transitions prevent it

from getting stuck in local minima.

Limitations. Since we used randomized algorithms, our results

might be sub-optimal. While SA provides statistical guarantees

on the con�dence and running time to reach an optimal state, in

practice such guarantees might require multiple runs of algorithms

over a long period of time. Additionally, we observe a discrepancy

between the validation and test fairness improvements where the

test set improves less than the validation set in both NeuFair al-

gorithms. For our experiments, we use Equalized Odds Di�erence

(EOD) only. However, the cost function can be modi�ed accordingly

with any fairness metric.

Threat to Validity. To address the internal validity and ensure our

�nding does not lead to an invalid conclusion, we follow the estab-

lished SE guidelines and repeat the experiments 10 times, reporting

both the average and 95% con�dence intervals. In addition, we study

the progress of algorithms during their runs, not just the outcomes.

To ensure that our results are generalizable and address external va-

lidity, we perform our experiments on seven DNN benchmarks with

various architectures. While similar architectures have been used

in the prior works [36, 54, 57, 58], it is an open problem whether

these datasets and DNN models are su�ciently representative for

showing the e�ectiveness of NeuFair.

7 Related Work

Since the main focus of this paper is unfairness mitigation, we

primarily focus on the prior work on mitigation.

A) Pre-processing Techniques exploit the space of input data to mit-

igate fairness defects [17, 20, 29, 51]. Reweighting [29] augments

the dataset where the data points in each group-label combination

are weighted di�erently to ensure fairness. The reweighting pro-

cess minimizes the discrepancy between the observed and expected

probabilities of the favorable outcome occurring with the sensitive

attribute. FairMask [37] uses the fact that protected attributes can

be inferred by some combinations of other non-protected attributes

(the “proxy” problem) to reduce the in�uence of protected attributes

in the inference stage. Fair-SMOTE [8] used under-sampling and

over-sampling techniques [11] to balance data based on class and

sensitive attributes. MAAT [12] proposes an ensemble training ap-

proach to mitigating unfairness. They propose a framework to train

fairness and performance ML models and combine their outputs to

make predictions. The performance model is identical to traditional

ML algorithms and remains unchanged. For the fairness model,

they design a debugging strategy based on prior work [9, 48] that

attribute bias in training data to selection bias and label bias. LTDD

[33] hypothesizes that biased features in training data contribute to

unfairness. They develop a linear regression-based algorithm that

1550

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

measures the association between non-sensitive and sensitive fea-

tures in the dataset to obtain unbiased features. The non-sensitive

features are then modi�ed to remove the biased parts to become

independent of the sensitive features. The sensitive features are

dropped from the training dataset after debiasing.

The works above tamper with the precious training data sam-

ples that might lead to unrealistic representations of di�erent pro-

tected groups. Additionally, it may not always be feasible to modify

training data. Our work is tangential, focusing on post-processing

mitigation that does not modify or access the training dataset and

works on pre-trained unfair DNNs.

B) In-processing techniques improve fairness during training. Ad-

versarial debiasing [52], employs adversarial learning to develop a

classi�er that hinders the ability of adversaries to determine sensi-

tive attributes fromML predictions. Another approach, the prejudice

remover [30], incorporates a fairness-centric adjustment into the

loss function to balance accuracy and fairness. These strategies

necessitate alterations in either the loss function or the model pa-

rameters. Seldonian [26, 34, 45] presented a technique that allows

users to directly specify (arbitrary) undesirable behaviors as con-

straints and enforce them during training. Fairway [10] combines

pre-processing and in-processing mitigation techniques to improve

fairness. Parfait-ML [46] is a gray-box evolutionary search algo-

rithm that explores the ML hyperparameters to �nd con�gurations

that minimize fairness while maintaining an acceptable accuracy.

While mitigating unfairness during training might be less intrusive

than changing the training datasets, it often requires changing the

training algorithms. This might only be e�ective for a particular

algorithm and fairness de�nition. Additionally, the training process

is often expensive and might not be feasible for existing systems.

C) Post-processing techniques aim to modify the prediction outcomes

of ML models to reduce discrimination [25, 30, 38, 44]. Equalized

Odds Processing (EOP) [25] modi�es the output of a biased binary

classi�er to improve fairness. EOP solves an optimization prob-

lem using a linear program that utilizes the protected attribute,

predictions, and true labels from a dataset to create an unbiased

predictor. NeuFair, however, does not require training auxiliary

models to mitigate unfairness. Additionally, NeuFair does not rely

on randomization for fairness. Predictions during inference time are

deterministic after the neurons are dropped from the DNN. Wood-

worth et al. [49] also show that EOP requires the biased classi�er

to be Bayes optimal, which is practically impossible to learn from

�nite samples of data. Zhang and Sun [55] adaptively intervened

in the input data features and DNN internal neurons to improve

fairness. Care [42] presented a Particle Swarm Optimization (PSO)

algorithm to repair DNNs. Faire [32] proposes a method to repair

unfair DNNs by altering the activations of neurons. Inspired by

program repair techniques, Faire �rst groups neurons represent-

ing protected and non-protected features in the dataset into two

categories. To create the two categories, Faire creates a clone of

the unfair model and retrains it to predict the protected attribute.

By comparing the activations of the corresponding neurons in both

networks, Faire determines which neurons represent the protected

and non-protected features. Finally, the protected neuron activa-

tions are penalized, and the non-protected neuron activations are

promoted. NeuFair, however, does not retrain the model and does

not separately use the protected attribute to identify unfair neurons.

We �nd an unfair subset of neurons given the entire feature vector,

thereby accounting for the causal in�uence of the protected features

on the non-protected features in the training dataset. Our analysis

considers a group of neurons together rather than identifying the

contributions of individual neurons. FairNeuron [21] proposes an

algorithm to mitigate unfairness by selectively retraining neurons

in a DNN. On a high level, the algorithm identi�es input-output

neuron paths corresponding to each sample in the training dataset

that induces bias in the prediction. Then, the dataset is split into bi-

ased and unbiased subsets corresponding to the neuron activations

in the paths. Finally, the algorithm retrains the model with both

training data splits by enabling random dropouts in the biased paths

and disabling any dropouts in the unbiased paths. While FairNeu-

ron uses dropout to improve fairness, it fundamentally di�ers from

NeuFair. We do not retrain the DNN by using the training dataset.

Also, NeuFair utilizes deterministic dropout during inference time

to identify a desirable subset of neurons to drop that has a minimal

impact on F1 score but the maximal impact on fairness, rather than

dropping neurons randomly.

8 Conclusion

In this paper, we tackle the problem of mitigating unfairness in

pre-trained DNNs using the dropout method. We showed that the

neural dropout problem over the DNN models is computationally

hard and presented NeuFair, a family of randomized algorithms

to e�ciently and e�ectively improve the fairness of DNNs. Our

experiments showed that NeuFair can identify an ideal subset of

neurons to drop that disparately contribute to unfairness (leading to

up to 69% fairness improvement) and outperform a state-of-the-art

post-processing bias mitigator.

For future work, there are a few exciting directions. First, we

can analyze the top : states found during the run instead of choos-

ing the best state. Such a strategy could reduce the di�erence in

improvement observed between the validation and test sets. We

can extend to multi-valued protected attributes (e.g., age groups) or

optimize for more than one protected attribute at a time (e.g., race

and sex). Second, we plan to leverage dropouts in the �ne-tuning

process to understand the e�ect of randomized algorithms on miti-

gating the unfairness and toxicity of large language models. Lastly,

alternate strategies like genetic algorithms may be used to solve

the combinatorial optimization problem of neuron dropout. We use

randomized algorithms for their simplicity in e�ciently solving

combinatorial optimization problems. The primary di�erence be-

tween SA/RW and genetic algorithms is that genetic algorithms

create a population of candidate solutions at each step instead of a

single solution. This approach can be promising as it enables us to

explore more states of the search space simultaneously.

Data Availability

Our open-source tool NeuFair with all experimental subjects are

publicly accessible on Zenodo [13] and GitHub.

Acknowledgments

This material is based upon work supported by the National Science

Foundation under Grant No. CNS-2230060 and CNS-2230061.

1551

ISSTA ’24, September 16–20, 2024, Vienna, Austria Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, and Gang Tan

References
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classi�cation. In International
Conference on Machine Learning. PMLR, 60–69.

[2] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.
2019. Black Box Fairness Testing of Machine Learning Models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). 625–635.
https://doi.org/10.1145/3338906.3338937

[3] Walid Ben-Ameur. 2004. Computing the Initial Temperature of Simulated Anneal-
ing. Computational Optimization and Applications 29, 3 (01 Dec 2004), 369–385.
https://doi.org/10.1023/B:COAP.0000044187.23143.bd

[4] Dimitris Bertsimas and John Tsitsiklis. 1993. Simulated annealing. Statist. Sci. 8,
1 (1993), 10–15.

[5] Sumon Biswas and Hridesh Rajan. 2021. Fair Preprocessing: Towards Understand-
ing Compositional Fairness of Data Transformers in Machine Learning Pipeline.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 981–993. https://doi.org/10.1145/3468264.3468536

[6] Ruth G Blumrosen. 1978. Wage discrimination, job segregation, and the title vii
of the civil rights act of 1964. U. Mich. JL Reform 12 (1978), 397.

[7] Yuriy Brun and Alexandra Meliou. 2018. Software Fairness (ESEC/FSE 2018).
754–759. https://doi.org/10.1145/3236024.3264838

[8] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias
in Machine Learning Software: Why? How? What to Do?. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 429–440.
https://doi.org/10.1145/3468264.3468537

[9] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias in
machine learning software: why? how? what to do?. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 429–440. https:
//doi.org/10.1145/3468264.3468537

[10] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies. 2020.
Fairway: a way to build fair ML software. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 654–665.

[11] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res. 16,
1 (jun 2002), 321–357.

[12] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022. MAAT:
a novel ensemble approach to addressing fairness and performance bugs for
machine learning software. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(<conf-loc>, <city>Singapore</city>, <country>Singapore</country>, </conf-
loc>) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY,
USA, 1122–1134. https://doi.org/10.1145/3540250.3549093

[13] Vishnu Asutosh Dasu. 2024. NeuFair: Neural Network Fairness Repair with Dropout.
https://doi.org/10.5281/zenodo.12662049

[14] Dheeru Dua and Casey Gra�. 2017. UCI Machine Learning Repository. https:
//archive.ics.uci.edu/ml/datasets/bank+marketing

[15] Dheeru Dua and Casey Gra�. 2017. UCI Machine Learning Repository. https:
//archive.ics.uci.edu/ml/datasets/census+income

[16] Dheeru Dua and Casey Gra�. 2017. UCI Machine Learning Repository. https:
//archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

[17] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for
Computing Machinery, New York, NY, USA, 259–268. https://doi.org/10.1145/
2783258.2783311

[18] Agency for Healthcare Research and Quality. [Online]. Medical Expenditure
Panel Survey. https://meps.ahrq.gov/mepsweb/.

[19] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness Testing:
Testing Software for Discrimination (ESEC/FSE 2017). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3106237.3106277

[20] Sainyam Galhotra, Karthikeyan Shanmugam, Prasanna Sattigeri, and Kush R
Varshney. 2022. Causal feature selection for algorithmic fairness. In Proceedings
of the 2022 International Conference on Management of Data. 276–285.

[21] Xuanqi Gao, Juan Zhai, Shiqing Ma, Chao Shen, Yufei Chen, and Qian Wang.
2022. FairNeuron: Improving Deep Neural Network Fairness with Adversary
Games on Selective Neurons. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 921–933. https://doi.org/10.1145/

3510003.3510087
[22] Usman Gohar, Sumon Biswas, and Hridesh Rajan. 2023. Towards Un-

derstanding Fairness and its Composition in Ensemble Machine Learning.
arXiv:2212.04593 [cs.LG]

[23] Home Credit Group. 2018. Home Credit Default Risk. https://www.kaggle.com/
competitions/home-credit-default-risk/overview.

[24] Bruce Hajek. 1988. Cooling schedules for optimal annealing. Mathematics of
operations research 13, 2 (1988), 311–329.

[25] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of Opportunity in
Supervised Learning. In NIPS.

[26] Austin Hoag, James E. Kostas, Bruno Castro da Silva, Philip S. Thomas, and Yuriy
Brun. 2023. Seldonian Toolkit: Building Software with Safe and Fair Machine
Learning. ICSE (Demo Track) (2023).

[27] David Ingold and Spencer Soper. 2016. Amazon Doesn’t Consider the Race of
Its Customers. Should It? https://www.bloomberg.com/graphics/2016-amazon-
same-day/. Online.

[28] Surya Mattu Julia Angwin, Je� Larson and Lauren Kirchne. 2021. Machine
Bias. https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing. Online.

[29] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classi�cation without discrimination. Knowledge and information systems 33, 1
(2012), 1–33.

[30] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. 2012. Decision Theory for
Discrimination-Aware Classi�cation. In 2012 IEEE 12th International Conference
on Data Mining. 924–929. https://doi.org/10.1109/ICDM.2012.45

[31] Arjun Kharpal. 2018. TECH Health care start-up says A.I. can diag-
nose patients better than humans can, doctors call that ‘dubious’. CNBC
(2018). https://www.cnbc.com/2018/06/28/babylon-claims-its-ai-can-diagnose-
patients-better-than-doctors.html

[32] Tianlin Li, Xiaofei Xie, Jian Wang, Qing Guo, Aishan Liu, Lei Ma, and Yang
Liu. 2023. Faire: Repairing Fairness of Neural Networks via Neuron Condition
Synthesis. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 21 (nov 2023), 24 pages.
https://doi.org/10.1145/3617168

[33] Yanhui Li, Linghan Meng, Lin Chen, Li Yu, Di Wu, Yuming Zhou, and Baowen
Xu. 2022. Training data debugging for the fairness of machine learning software.
In Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 2215–2227. https://doi.org/10.1145/3510003.3510091

[34] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun,
Emma Brunskill, and Philip S Thomas. 2019. O�ine contextual bandits with
high probability fairness guarantees. Advances in neural information processing
systems 32 (2019).

[35] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. 1986. Con-
vergence and �nite-time behavior of simulated annealing. Advances in applied
probability 18, 3 (1986), 747–771.

[36] Verya Monjezi, Ashutosh Trivedi, Gang Tan, and Saeid Tizpaz-Niari. 2023.
Information-Theoretic Testing and Debugging of Fairness Defects in Deep Neu-
ral Networks. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1571–1582.
https://doi.org/10.1109/ICSE48619.2023.00136

[37] Kewen Peng, Joymallya Chakraborty, and Tim Menzies. 2022. FairMask: Better
Fairness via Model-Based Rebalancing of Protected Attributes. IEEE Trans. Softw.
Eng. 49, 4 (nov 2022), 2426–2439. https://doi.org/10.1109/TSE.2022.3220713

[38] Geo� Pleiss, Manish Raghavan, FelixWu, Jon Kleinberg, and Kilian Q.Weinberger.
2017. On Fairness and Calibration (NIPS’17). 5684–5693.

[39] ProPublica. 2021. Compas Software Ananlysis. https://github.com/propublica/
compas-analysis. Online.

[40] Nitish Srivastava. 2013. Improving neural networks with dropout. University of
Toronto 182, 566 (2013), 7.

[41] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Over�tting. J. Mach. Learn. Res. 15, 1 (jan 2014), 1929–1958.

[42] Bing Sun, Jun Sun, Long H Pham, and Jie Shi. 2022. Causality-based neural
network repair. In Proceedings of the 44th International Conference on Software
Engineering. 338–349.

[43] Jim Tankersley. 2023. Black Americans Are Much More Likely to Face Tax Audits,
Study Finds. The New York Times (31 Jan 2023). https://www.nytimes.com/2023/
01/31/us/politics/black-americans-irs-tax-audits.html

[44] Guanhong Tao, Weisong Sun, Tingxu Han, Chunrong Fang, and Xiangyu Zhang.
2022. RULER: discriminative and iterative adversarial training for deep neural
network fairness. In Proceedings of the 30th acm joint european software engi-
neering conference and symposium on the foundations of software engineering.
1173–1184.

[45] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy
Brun, and Emma Brunskill. 2019. Preventing undesirable behavior of intelligent
machines. Science 366, 6468 (2019), 999–1004. https://doi.org/10.1126/science.
aag3311 arXiv:https://www.science.org/doi/pdf/10.1126/science.aag3311

1552

NeuFair: Neural Network Fairness Repair with Dropout ISSTA ’24, September 16–20, 2024, Vienna, Austria

[46] Saeid Tizpaz-Niari, Ashish Kumar, Gang Tan, and Ashutosh Trivedi. 2022.
Fairness-aware con�guration of machine learning libraries. In Proceedings of
the 44th International Conference on Software Engineering. 909–920.

[47] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
directed fairness testing. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering. 98–108.

[48] Michael Wick, swetasudha panda, and Jean-Baptiste Tristan. 2019. Unlocking
Fairness: a Trade-o� Revisited. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_�les/paper/2019/�le/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf

[49] Blake Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian, and Nathan Srebro.
2017. Learning Non-Discriminatory Predictors. arXiv:1702.06081 [cs.LG]

[50] Normen Yu, Gang Tan, and Saeid Tizpaz-Niari. 2023. FairLay-ML: In-
tuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms.
arXiv:2307.05029 [cs.LG]

[51] Richard Zemel, YuWu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. 2013.
Learning Fair Representations. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28 (Atlanta, GA, USA)
(ICML’13). JMLR.org, III–325–III–333.

[52] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating un-
wanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society. 335–340.

[53] Jie M Zhang and Mark Harman. 2021. "Ignorance and Prejudice" in Software
Fairness. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE). IEEE, 1436–1447.
[54] Lingfeng Zhang, Yueling Zhang, and Min Zhang. 2021. E�cient White-Box

Fairness Testing throughGradient Search. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, Denmark)
(ISSTA 2021). 103–114. https://doi.org/10.1145/3460319.3464820

[55] Mengdi Zhang and Jun Sun. 2022. Adaptive Fairness Improvement Based on
Causality Analysis. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 6–17. https://doi.org/10.1145/3540250.3549103

[56] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen
Wang, Jin Song Dong, and Ting Dai. 2020. White-Box Fairness Testing through
Adversarial Sampling (ICSE ’20). Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3377811.3380331

[57] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-box fairness testing through adversar-
ial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 949–960.

[58] Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng, Shouling
Ti, Jingyi Wang, Yue Yu, and Jinyin Chen. 2022. NeuronFair: Interpretable White-
Box Fairness Testing through Biased Neuron Identi�cation. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 1519–1531. https:
//doi.org/10.1145/3510003.3510123

Received 2024-04-12; accepted 2024-07-03

1553

	Abstract
	1 Introduction
	2 Background
	2.1 Notions of Model Utility
	2.2 Notions of Model Fairness

	3 Problem Statement
	3.1 Syntax and Semantics of DNN
	3.2 Inference Time Dropout for Fairness

	4 Approach
	4.1 Simulated Annealing Search
	4.2 Random Walk Search

	5 Experiments
	5.1 Datasets and Models
	5.2 Technical Details
	5.3 Experimental Setup

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

