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Abstract—In response to the evolving landscape of wireless
communication networks and the escalating demand for unprece-
dented wireless connectivity performance in the forthcoming 6G
era, this paper proposes a new 6G architecture to enhance
the wireless network’s sum rate performance. Therefore, we
introduce an aerial base station (ABS) network with reconfig-
urable intelligent surfaces (RISs) while leveraging the multi-users
multiple-input single-output (MU-MISO) antenna technology.
The motivation behind our proposal stems from the imperative
to address critical challenges in contemporary wireless networks
and harness emerging technologies for substantial performance
gains. We employ deep reinforcement learning (DRL) to jointly
optimize the ABS trajectories, the active beamforming weights,
and the RIS phase shifts. Simulation results show that this
joint optimization effectively improves the system’s sum rate
while meeting minimum quality of service (Qos) requirements
for diverse mobile users.

Index Words—6G wireless, deep reinforcement learning, eaves-
dropping, RIS, sum rate, QoS, UAV, ABS, DDPg.

I. INTRODUCTION
The rapid growth of wireless communications services

has increased the need for advanced wireless technologies.
Legacy communication systems often suffer from disruptions
in connectivity and inadequate quality of services (QoS)
resulting from wireless channel impairments. The reconfig-
urable intelligent surface (RIS) was introduced [1] to steer
the radio frequency (RF) propagation and, thus, control the
channel. A RIS is an engineered, planar meta-surface con-
structed from numerous passive antenna elements, each of
which can be electronically controlled to create controllable
radio environments [2]. The primary knobs of a RIS are its
configurable phase shifters, which enable precise control over
the RF propagation. By strategically manipulating the phase
of incident electromagnetic waves, the RIS can manipulate
the signal path, which can lead to improved coverage and
communication quality [3] compared to conventional passive
reflectors or antennas.

The rapid progress of unmanned aerial vehicle (UAV)
technologies has motivated research on integrating UAVs into
wireless communication networks [4]. UAVs, when employed
as aerial base stations (ABS), offer a promising solution to
increase coverage or capacity on the fly. ABSs can often
establish line-of-sight (LoS) links with ground users, thus
enhancing communication reliability [5]. The integration of
ABSs with RISs to enhance the wireless system performance

has attracted considerable attention in the recent years [6].
Theoretical research has shown significant improvements by
leveraging multi-user multiple-input multiple-output (MU-
MIMO) technology for RIS deployments.

There has been growing interest in using RISs and UAVs
for mobile networks. However, there is a research gap on the
integration of RIS with ABSs in conjunction with MISO-
MU systems, particularly for scenarios involving user mo-
bility. The authors of [7] focus on optimizing the passive
beamforming of the RIS and designing the trajectory of the
ABS in a wireless environment for a single ground user
at a fixed location. Reference [6] introduces an alternating
optimization algorithm to address the complex sum rate
maximization problem for RIS-assisted UAV networks. This
involves optimizing the UAV trajectory, phase shifter design,
and resource allocation for an orthogonal frequency division
multiple access (OFDM) system. It is worth noting that the
RIS serves only one user at a time and that the user locations
are assumed to be fixed. Another related work [8] tackles
the problem of system sum rate maximization in an ABS-
assisted network with an RIS. The sum rate is improved by
jointly optimizing the RIS’s phase shifts and ABS’s altitude,
employing a conjugate gradient particle swarm optimization
(CG-PSO) scheme.

This paper stands at the intersection of several key ad-
vancements in wireless communication technologies—ABS,
RIS, and MU-MIMO systems. The emphasis is on sum rate
maximization while adhering to individual user QoS require-
ments in terms of minimum data rates by jointly optimizing
the active beamforming MU-MISO system, the RIS phase
shifts, and the ABS trajectory in a mobile multi-users scenario.
Given the complexity of the problem, we propose applying
deep reinforcement learning (DRL). The considered users
encompass both vehicular and pedestrian users, exhibiting
distinct mobility characteristics. By considering the mobility
dynamics of these users, we aim to tailor our approach to
scenarios where traditional communication systems often fall
short, thereby paving the way for a more adaptable and robust
communication infrastructure.

The rest of the paper is organized as follows: Section II
introduces the system model, followed by the formulation
of the optimization problem. Section IV introduces the user
clustering and DRL schemes based on the deep deterministic
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Fig. 1: RIS-assisted MU-MISO communications from an
ABS.

policy gradient (DDPG) for jointly optimizing the active
beamforming, ABS trajectories, and RIS phase shifts. The
numerical analysis of Section V shows the effectiveness of
the proposed approach. Section VI draws the conclusions.

II. SYSTEM MODEL

A. System Model

We investigate a MU-MISO communication system, where
the UAV is deployed as an aerial base station (ABS) equipped
with M antennas and responsible for delivering downlink
communications to multiple mobile ground terminals (GTs).
An RIS with L reflecting elements is deployed on one of the
surrounding buildings and is leveraged to steer the transmis-
sions originating at the ABS to the GTs that suffer from high
blockage or severe interference in their direct channels with
the ABS. Figure 1 depicts this scenario.

The total flight time T of the ABS is split into N
time slots of duration δt= T

N . The ABS hovers at qA[n] =
[x[n], y[n], z]T∀n ∈ N at a fixed height zt. For the sake of
simplicity and without loss of generality, we do not consider
optimizing the ABS height in this paper. The height zt is
chosen to enable LoS communication links to ground users
unobstructed by obstacles in ABS’s proximity [9]. There are
K single antenna GTs served by the ABS, where K ≤M .

Two types of GTs are assumed: vehicular and pedestrian
GTs with different mobility models. The location of each GT
in time slot n is qk[n] = [xk[n], yk[n], 0]

T∀k ∈ K,∀n ∈ N .
The RIS, which is at a fixed location qR = [xr, yr, zr]

T ,
receives incoming signals and utilizes its configurable reflec-
tive elements to redirect these signals toward the K GTs.
For the considered MU-MISO communication system, each
GT experiences signal reception through one of two primary
communication routes: The first is the direct transmission
from the ABS to the GT and the second is the indirect
transmission through the RIS. The ABS employs its array of
M antennas to transmit K distinct data streams to the RIS
simultaneously, one for each each GT.

The communication channel between the M antennas of
ABS A and the L reflecting elements of RIS R in time
slot n ∈ N is modeled as a multiple input, multiple output

(MIMO) channel and denoted as HAR[n] ∈ CL×M . The
MISO channels between ABS A and GT k and between
RIS R and GT k in time slot n ∈ N are defined as
hAk[n] ∈ CM×1 and hRk[n] ∈ CL×1, respectively, ∀k. We
assume that the ABS has perfect knowledge of the channel
state information (CSI) and conveys this information to the
RIS controller through a dedicated control channel. The L
reflecting elements of the RIS are interconnected to form a
uniform linear array (ULA) as in [10]. The phase shift array
in time slot n ∈ N is denoted as ϕ[n] ∈ CL×L,ϕ[n] =
diag{ejθ1[n], ejθ2[n], · · · , ejθL[n]}, where θl[n] ∈ [0, 2π), l ∈
[1, 2, ..., L] is the phase of the lth element.

B. Channel Model

We model the air-to-ground communications channel be-
tween the ABS and the RISs and GTs using small-scale
Rician fading, which includes line of sight (LoS) and non-
LoS (NLoS) components [11]. Equation

HAR[n] =

√
λ0

Dα
AR[n]

(√
β

1 + β
HL

AR[n]+

√
1

β + 1
HN

AR[n]

)
(1)

represents the MIMO communications channel between the
M antennas of the ABS and the L reflecting elements of the
RIS in time slot n. Parameter λ0 is the path loss at the refer-
ence distance of 1 m, DAR[n] is the 3D distance between the
ABS and the RIS, α is the path loss exponent, β corresponds
to the Rician factor, and HL

AR[n] and HN
AR[n] represent the

LoS and NLoS channel components, respectively.
Without loss of generality, the entries in HN

AR are con-
sidered to be independent and identically distributed (i.i.d.).
These entries are modeled as zero-mean and unit-variance
circularly symmetric complex Gaussian (CSCG) variables:
CN (0, 1). The LoS channel gain results from the angle of
departure (AoD) channel at the ABS and the angle of arrival
(AoA) channel at the RIS:

HL
AR[n] = H

(A)
AR [n] H

(D)
AR [n]. (2)

The AoD channel contribution is
H

(D)
AR [n] =

[
1, e−j 2π

λ ΥΓAR[n], · · · , e−j 2π
λ (M−1)ΥΓAR[n]

]
, (3)

where λ represents the carrier wavelength, Υ the antenna
separation, and ΓAR[n] the AoD component. The AoD com-
ponent can be expressed as ΓAR[n] = sinϑ[n] cosψ[n], with
ϑ[n] representing the elevation AoD and ψ[n] representing the
azimuth AoD originating from the ULA antennas at the ABS.

The AoA can be calculated as
H

(A)
AR [n] =

[
1, e−j 2π

λ ΥΛAR[n], · · · , e−j 2π
λ (L−1)ΥΛAR[n]

]
, (4)

where ΛAR[n] = cos Θ[n] sin φ[n] is the AoA component
of the transmitted signal from the ABS to the RIS, Θ[n]
corresponds to the azimuth AoA and φ[n] represents the
elevation AoA.

The MISO channels between the ABS and GT k and the
RIS and GT k in time slot n are modeled as
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hAk[n] =

√
λ0

Dα
Ak[n]

(√
β

1 + β
hL
Ak[n] +

√
1

β + 1
hN
Ak[n]

)
,

hRk[n] =

√
λ0

Dα
Rk[n]

(√
β

1 + β
hL
Rk[n] +

√
1

β + 1
hN
Rk[n]

)
.

(5)
The same CSCG distribution defined earlier is followed by
hN
Ak and hN

Rk. Parameters DAk[n] and DAk[n] represent the
3D distance between the ABS and the kth GT and between
the RIS and the kth GT in time slot n, respectively.

The LoS MISO channel components between the ABS and
a GT and between the RIS and a GT in time slot n are modeled
as
hL
Ak[n] =

[
1, e−j 2π

λ ΥχAk[n], · · · , e−j 2π
λ (M−1)ΥχAk[n]

]
,

hL
Rk[n] =

[
1, e−j 2π

λ ΥχRk[n], · · · , e−j 2π
λ (L−1)ΥχRk[n]

]
,

(6)

where χAk = cos ΦAk[n] sin ΩAk[n] and χRk[n] =
cos ΦRk[n] sin ΩRk[n] represent the AoD components of the
transmissions originating from the ABS and RIS, respectively.
These are determined by Φ[n] as the azimuth AoD and Ω[n]
as the elevation AoD.

C. Data Rate
The M -antenna ABS serves the single antenna k-th user

either directly or through the L-element RIS utilizing the same
frequency, employing space-division multiple access (SDMA)
and time-division multiple access (TDMA). In continuation
we provide the user data rate calculations for both links, the
direct and indirect links.

1) Data Rate of the Direct Link: The ABS simultaneously
generates M concurrent beams to K spatially separated users
using SDMA. Each user is assigned a dedicated beam vector
for transmit beamforming. However, the presence of power
leakage between beams within small proximity at the receivers
introduces multi-user interference.

In time slot n,

x[n] =

K∑
k=1

wk[n]sk[n] (7)

represents the downlink transmit signals, where x[n] ∈
CM×1, wk[n] ∈ CM×1 is the ABS beamforming vector, and
sk[n] is the transmitted information symbol for the k-th user in
time slot n. The beamforming or precoding matrix of the ABS
has K beamforming vectors W k[n] = [w1[n], . . . ,wK [n]] ∈
CM×K . The allocated transmit power for the k-th user can
be computed as the squared norm of the beamforming vector:
∥wk[n]∥2. Therefore, the received signal at the k-th GT
through the direct link can be expressed as
y0,k[n] = hAk[n]x[n] + nk,

= hAk[n](
K∑

k=1

wk[n]sk[n]) + nk,

= hAk[n]wk[n]sk[n] + hAk[n](
K∑

i=1,i̸=k

wi[n]si[n]) + nk,

(8)

where nk represents the additive white Gaussian noise
(AWGN). It is assumed that the noise at each user follows a
complex normal distribution of zero-mean and unit variance:

nk ∼ CN (0, 1). The signal-to-interference-plus-noise-ratio
(SINR) at the k-th GT can be calculated as

γ0,k[n] =
| (hAk[n]wk[n]) |2

K∑
i̸=k

| (hAk[n]wi[n]) |2 +σ2
k

, (9)

where the first term in the denominator corresponds to the
multi-user interference of the MISO communications system
and σ2

k is the noise variance. The resulting normalized data
rate of the k-th GT served via the direct link in time slot n
is then obtained as

R0,k[n] = log2 (1 + γ0,k[n]) , (10)
2) Data Rate of the Indirect Link: The received signal

at the k-th GT on the indirect link through the RIS can be
expressed as follows:
y1,k[n] = hRk[n]ϕ[n]HAR[n]x[n] + nk

= hRk[n]ϕ[n] HAR[n]
( K∑
k=1

wk[n]sk[n]
)
+ nk,

= hRk[n]ϕ[n] HAR[n]wk[n]sk[n] + hRk[n]ϕ[n]

HAR[n]
( K∑
i=1,i̸=k

wi[n]si[n]
)
+ nk.

(11)

The SINR at the k-th GT served through the RIS is

γ1,k[n] =
| (hRk[n]ϕ[n] HAR[n]wk[n]) |2

K∑
i̸=k

| (hRk[n]ϕ[n] HAR[n]wi[n]) |2 +σ2
k

(12)

and the resulting normalized data rate
R1,k[n] = log2 (1 + γ1,k[n]) . (13)

D. Total Data Rate

Considering the channel models and mobility models dis-
cussed in the previous section, the average achievable down-
link data rate Rk[n] in bits/s/Hz of the k-th GT up to time
slot n can be calculated as

Rk[n] =
1

n
·

n∑
i=1

uk[i]R0,k[i] + (1− uk[i])R1,k[i]. (14)

Expression uk[i] = 1 if GT k is served by the direct link in
time slot i and uk[i] = 0, otherwise.

The average sum data rate over all GTs until time slot n is

R[n] =
K∑
i=k

Rk[n]. (15)

III. PROBLEM FORMULATION

Incorporating ABSs and RISs together in a dynamic mo-
bility environment enables maintaining reliable multi-user
communications despite heterogeneous user mobility patterns.
This can be achieved by strategically positioning the ABS to
accomplish direct LoS communications with ground users or
establish controlled reflected propagation paths through the
RIS. By employing an MU-MIMO ABS and an RIS, the
optimization parameters are the beamforming matrix W, the
phase shifters of the RIS ϕ, and the trajectory of the ABS qA

in addition to the decision of which users should be served
by the direct link and which should be served by the RIS,
captured by U. The optimization problem is formulated as
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P (U,W,qA,ϕ) : max
U,W,qA,ϕ

∑N

n=1
R[n] (U,W,q,ϕ)

s.t.
C1 : uk[n] ∈ {0, 1}, ∀k, n,
C2 : Rk[n] ≥ Rmin,k,∀k,

C3 :
∑K

k=1
∥wk[n]∥2 ≤ Pmax, (16)

C4 :
∥∥∥ejθl[n]∥∥∥ = 1, ∀l, n,

C5 : ∥qA [n]− qA [n− 1]∥ ≤ δtVmax,∀n,
C6 : q [0] = qA(Initial),

C7 : qA [N ] = qA(Final).

Expression Rmin,k in constraint C2 denotes the minimum
average data rate required for the k-th GT. This criterion is
required to meet the user-specific QoS. Constraint C3 sets a
boundary on the maximum allowable transmit power Pmax for
the ABS. Constraint C5 ensures that the ABS does not travel
beyond the specified maximum speed limit Vmax. Constraint
C6 establishes the ABS’s initial location qA(Initial) and C7
the final location qA(final).

IV. PROPOSED SOLUTION

The optimization problem (16) is a non-convex mixed-
integer optimization problem, which is known for its inherent
complexity. This complexity primarily stems from the binary
variable uk[n] and the non-convex nature of the achievable
rate function embedded within both the objective function
and constraint C2. Additionally, there exist intricate interde-
pendencies among the optimization variables ϕ, qA, W , and
U . Notably, the unit modulus constraint imposed on ϕ has
been demonstrated to be non-convex [10]. In addition, the
optimization complexity associated with the phase shifts of
the RIS directly scales with the number of elements, which
is typically large. Therefore, it is imperative to devise opti-
mization solutions that can efficiently handle a large number
of reflective elements.

We propose solving (16) by leveraging data-driven ap-
proaches, which have demonstrated their efficacy in solving
similar optimization problems [12]. Initially, we employ k-
means clustering to assign GTs to either direct or indirect
links. Subsequently, we employ DDPG to optimize the joint
ABS trajectory, beamforming matrix, and RIS phase shifts.

A. User Clustering

The objective of user clustering is to partition the K users
into two groups, one served directly by the ABS and the other
served indirectly through the RIS. We employ K-means clus-
tering, an unsupervised learning technique that maximizes the
similarity within groups and the dissimilarity across groups.
K-means clustering is known for its computational efficiency
compared to alternative techniques such as graph theory, fuzzy
c-means clustering, and hierarchical clustering [13].

We use the normalized channel coefficients between GTs
and the ABS as the data points for the K-means clustering
algorithm. These data points capture the fluctuations in chan-
nel gains arising from diverse propagation factors, including
small-scale fading and shadow fading. Hence, we can define

hnoAk[n] =
hAk[n]

∥ hAk[n] ∥2
, (17)

where hnoAk[n] is the normalized channel gain and hAk[n] is
the channel gain between the ABS and k-th GT. Starting with
random centroids for the two clusters the K-means algorithm
starts to calculate the distances in terms of the normalized
channel coefficient between each GT and the two cluster
centers to assign each GT to its nearest center. Then, the
centroids are updated to minimize the sum of the squared
Euclidean distances between a clustered data point and its
centroid. The Euclidean distance is the chosen metric in this
paper to measure the similarities between data points, other
metrics such as Manhattan distance, can be applied, instead.

B. DRL-Based Optimizer
We employ DDPG to tackle the joint optimization of

beamforming, ABS trajectory, and RIS phase shifts. DDPG
frames the problem as a Markov Decision Process (MDP),
where the environment undergoes transitions from one state to
another based on the actions taken and governed by transition
probabilities.

1) MDP Settings: The MDP is structured around three
components: the state space S, the action space A, and the
reward space R. In time slot n, the agent observes the current
state sn ∈ S and, guided by its policy, selects an action
an ∈ A. Subsequently, the agent transitions into the new state
sn+1 and receives reward rn ∈ R.
State: State sn,

sn = {(G1[n], R1[n]), .., (Gk[n], Rk[n]), .., (GK [n], RK [n])}
Gk[n] = uk[n]· | (hAk[n]wk[n− 1]) |2 +

(1− uk[n])· | (hRk[n]ϕ[n− 1] HAR[n]wk[n− 1]) |2,
(18)

encompasses a collection of 2K elements that pertain to the
CSI and the average data rate of each GT.
Action: Action an,

an = {W [n],Φ[n], φ[n], ω[n]} , (19)
has K+L+2 elements: K elements pertain to beamforming, L
elements are associated with phase shifts, while the remaining
two elements contribute to defining the trajectory of the ABS.
Parameter φ represents the UAV’s horizontal flight direction,
while ω captures the distance of movement in this direction.
Reward: The reward function considers the average data rate
and incorporates two penalties:

rn =

(∑n
i=1R[i]

n

)
− (P1[n] + P2[n]),

P1[n] = max(0,
K∑

k=1

(Rmin,k −Rk[n])),

P2[n] = max(0, (∥qA [N ]− qA [n]∥ − (N − n) · δt · Vmax)).
(20)

The first penalty considers the discrepancy between the aver-
age data rate and the minimum data rate requirement for each
GT, satisfying constraint C2. The second penalty considers the
distance between the current location of the ABS and its final
destination, while also assessing if there is enough remaining
time to reach that destination, addressing constraint C7.
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Fig. 2: Block diagram of the proposed DDPG architecture.

2) Deep Deterministic Policy Gradient: DDPG excels at
handling complex, high-dimensional action spaces and con-
tinuous action domains [14]. It leverages two deep neural
networks (DDN), the actor and critic network, to approximate
both the policy and the value function [15]. This is illustrated
in Fig. 2. In each time slot n, the DDPG agent gets the output
of the clustering algorithm, the previous W and ϕ values, and
the CSI for each GT to construct state sn, then feeds sn to the
actor network ℧ to determines action an, sends an to the ABS
and the RIS controller, which execute the actions, calculates
the reward, and generates a record of experience consisting of
sn, an, rn, and the next state sn+1, or en = (sn, an, rn, st+n).
This experience is sent to a replay buffer of capacity ℵ so that
M = {e1, ..., en, ..., eℵ} are used for training the actor and
critic networks.

The actor network weight parameters are updated by taking
a mini batch from the replay buffer and applying

ða = ða − ϱa ∆aQ
(
ð†c | (sn, an)

)
∆ða

℧(ða | sn), (21)

where ða denotes the actor network weights ℧(ða | sn), ð†c
denotes the critic network weights, ϱa is the learning rate,
∆aQ(·) is the gradient of the target critic network output with
reference to the taken action, and ∆ða ℧(·) is the gradient of
the training actor network with respect to ða. The updates of
the training critic network are obtained as

ðc = ðc − ϱc ∆ðc
ℓ(ðc). (22)

Parameter ℓ(ðc) is the loss function of the training critic
network and can be calculated as

ℓ(ðc) = E

[([
rt + ζ × Q

(
ð†c | (st+1, ã)

)]
−[

Q
(
ðc | (st, at)

)])2
]
, (23)

where ã is the agent’s action that follows the deterministic
policy drafted by the target actor network.

V. NUMERICAL ANALYSIS

We evaluate the performance of the proposed scheme
through simulations. The K GTs are distributed within an

urban environment that features an intersection with vehicular
users, a sidewalk with pedestrians, and a park alongside
the road. Moreover, the environment is characterized by a
multitude of high-rise buildings that may obstruct the signals
from the ABS to certain GTs. The ABS maintains a fixed
altitude of 100 m. The RIS is mounted on a building at a
height of 70 m and faces the park.

The DDPG agent is constructed with the critic and actor
networks employing the same DNN architecture. This archi-
tecture consists of six layers, including the input layer, four
fully connected hidden layers, and the output layer. The input
layer’s dimension is set to 2K, matching the state dimension.
The hidden layers have 600, 400, 200, 100 neurons. The output
layer of the actor network has a dimension of 2L+ 2M + 2,
where 2L represents the real and imaginary components of the
complex phase shifts for the L-element RIS, 2M captures the
complex beamforming weights of the M -antenna ABS, and
the remaining two elements handle the ABS trajectory. All
layers in both DNNs utilize the (tanh) activation function
and the Adam optimizer.

We assess the performance of the clustering step by intro-
ducing Baseline 1, which mirrors the proposed scheme but
excludes the clustering. Baseline 2 implements the DDPG
agent to solely optimize the RIS phase shifts and the ABS
trajectory, while the active beamforming is constant and
identical for all users. Baseline 3 assumes fixed RIS phase
shifts, while employing the DDPG agent to optimize the active
beamforming matrix and ABS trajectory. We analyze the
convergence of the reward function for our proposed scheme
and the baselines and evaluate the achievable average system
sum data rate and the 5th percentile data rate, which represents
the minimum data rate achieved by 95% of the users.

Figure 3a illustrates the average episode rewards over
training episodes for our proposed solution and the baseline
schemes with 32 antennas, 32 GTs and 40 RIS elements. The
models were trained over 100 episodes, with each episode
comprising 10,000 time steps N . The results illustrate that
the proposed DDPG agent achieves higher rewards com-
pared to any of the baseline schemes. However, it takes
longer to converge when compared to the scheme without
beamforming and the one without phase shift optimizations.
This is attributed to the fact that in these two schemes, a
smaller number of elements are being optimized, resulting
in a quicker convergence time. The convergence time of the
scheme without clustering is similar to the proposed solution
with clustering, but it achieves a lower reward.

Figure 3b presents the average system sum rate achieved by
the proposed solution and the baseline schemes as a function
of the reflecting elements with 32 antennas and 32 GTs.
The results illustrate that as the number of RIS elements
increases, the average sum rate improves for all schemes.
Furthermore, the scheme that does not optimize the RIS phase
shifts performs worst, as also observed in the previous result.
This emphasizes the importance of the RIS for improving the
network sum rate. These results also show the importance of
active beamforming over clustering.
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Fig. 3: Average episode reward rate over learning episodes (a), average system sum rate rate over the number of RIS elements
(b), and average 5-th percentile rate over the number of RIS elements (c) for the proposed scheme and other baselines.

Figure 3c displays the 5th percentile rate as a function of
the number of RIS elements with 32 antennas and 32 GTs
for the proposed DDPG-based scheme and the considered
baselines. The scenario demands a QoS of Rmin = 2 bps/Hz,
which represents the minimum data rate target for each user.
Both the proposed solution and the no clustering scheme
ensure that 95% of the users achieve data rates exceeding
Rmin even with a relatively low number of RIS elements.
Without proper beamforming, approximately 40 RIS elements
are needed for meeting the 5th percentile rate of 2 bps/Hz,
whereas without proper RIS phase shift optimization, 100
RIS elements are necessary to satisfy this threshold. This
highlights the effectiveness of the proposed scheme and the
tradeoff between phase shift optimization and the number of
RIS resources.

VI. CONCLUSIONS

In this paper, we investigate the use of DRL to jointly
optimize active beamforming, ABS trajectory, and RIS phase
shifts in a MU-MISO communication system. Employing user
clustering to serve them by the ABS directly or through the
RIS is a simple yet effective scheme to improve sum rate
performance, of the CSI is known. Most important, however,
is the RIS phase shift optimization, followed by active beam-
forming. While taking longest to converge, the proposed DRL
scheme outperforms the simpler solutions. Future work will
further analyze the performance of the proposed solution in
different scenarios, the complexity-performance tradeoff, and
the scalability with ground and aerial base stations.
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