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Abstract—Several natural phenomena, such as floods, earth- 
quakes, volcanic eruptions, or extreme space weather events often 
come with severity indexes. While these indexes, whether linear 
or logarithmic are vital, data-driven predictive models for these 
events rather use a fixed threshold. In this paper, we explore 
encoding this ordinality to enhance the performance of data- 
driven models, with specific application in solar flare forecasting. 
The prediction of solar flares is commonly approached as a binary 
forecasting problem, categorizing events as either Flare (FL) or 

No-Flare (NF) based on a chosen threshold (e.g., ≥C-class, ≥M- 

class, or ≥X-class). However, this binary formulation overlooks 
the inherent ordinality between the sub-classes within each binary 
class (FL and NF). In this paper, we propose a novel loss 

function aimed at optimizing the binary flare prediction problem 
by embedding the intrinsic ordinal flare characteristics into the 
binary cross-entropy (BCE) loss function. This modification is 
intended to provide the model with better guidance based on 
the ordinal characteristics of the data and improve the overall 

performance of the models. For our experiments, we employ 
a ResNet34-based model with transfer learning to predict ≥M- 

class flares by utilizing the shape-based features of magnetograms 
of active region (AR) patches spanning from −90◦ to +90◦ of 

solar longitude as our input data. We use a composite skill 

score (CSS) as our evaluation metric, which is calculated as the 
geometric mean of the True Skill Score (TSS) and the Heidke 
Skill Score (HSS) to rank and compare our models’ performance. 
The primary contributions of this work are as follows: (i) We 
introduce a novel approach to encode ordinality into a binary loss 
function showing an application to solar flare prediction, (ii) We 
enhance solar flare forecasting by enabling flare predictions for 
each AR across the entire solar disk, without any longitudinal 
restrictions, and evaluate and compare performance. (iii) Our 

candidate model, optimized with the proposed loss function, 
shows an improvement of ∼7%, ∼4%, and ∼3% for AR patches 

within ±30◦, ±60◦, and ±90◦ of solar longitude, respectively in 
terms of CSS, when compared with standard BCE. Additionally, 
we demonstrate the ability to issue flare forecasts for ARs in near- 

limb regions (regions between ±60◦ to ±90◦) with a CSS=0.34 

(TSS=0.50 and HSS=0.23), expanding the scope of AR-based 
models for solar flare prediction. This advances the reliability 
of solar flare forecasts, leading to more effective prediction 
capabilities. 

Index Terms—Solar flares, Deep learning, Optimization 

I. INTRODUCTION 

From earthquakes to tornadoes, and volcanic eruptions to 

extreme space weather events, natural occurrences that pose 

hazards to our society often come with a severity index. This 

index may follow a linear scale (such as flood severity [1] or 

tornadoes [2]) or a logarithmic one (for example, earthquakes 

[3], volcanic activity [4], or space weather events like flares or 

solar energetic particle events [5]). Predictive models for these 

events commonly incorporate a set threshold; however, these 

models can gain advantages from incorporating the ordinality 

of these severity indices. In this work, we will delve into 

encoding this information appropriately to efficiently optimize 

data-driven predictive models, with specific applications to 

binary solar flare forecasting. 

Solar flares are short-lived events on the Sun observed as 

intense outbursts of energy radiating from the Sun’s surface 

in the form of extreme ultraviolet and X-ray radiation, and 

they are the central phenomena in space weather forecasting. 

They are classified according to their peak X-ray flux 

level into the following five categories by the National 

Oceanic and Atmospheric Administration (NOAA): X 

(> 10−4Wm−2), M (> 10−5Wm−2), C (> 10−6Wm−2), 

B (> 10−7Wm−2), and A (> 10−8Wm−2) [5]. These five 

major flare classes are measured on a logarithmic scale and 

ordered as X>M>C>B>A. Flares weaker than A-class are 

generally undetectable and are classified as flare-quiet (FQ). 

M-class and X-class solar flares are rare events and much 

more powerful than other flare classes. These stronger flares 

(M- and X-class) attract the attention of researchers because 

they can potentially impact conditions near Earth and disrupt 

technological systems such as satellite communications, 

GPS navigation, power grids, and aviation [6]. Therefore, 

solar flare prediction in a binary setting is most commonly 

formulated as predicting ≥M-class flares. 

Ordinality-aware Loss Function: In solar flare forecasting, 

the binary prediction framework involves categorizing 

flares based on their flare magnitude. Specifically, setting 

the threshold at  M categorizes M- and X-class flares 

as Flare (FL), while FQ-, A-, B-, and C-class flares are 

designated as No Strong Flare (NF). This approach simplifies 

prediction by distinguishing significant flares (M- and X- 

class) from less intense activity, aiding in assessing potential 

solar disturbances. However, the intrinsic ordinal flare 

characteristics in sub-class level is overlooked during model 

optimization. Traditional loss functions like cross-entropy 

and focal loss [7], commonly used in data-driven model 

optimization for binary settings, cannot account for ordinal 

characteristics within the FL and NF classes. They treat all 

instances equally during optimization, failing to distinguish 

between different sub-classes within these categories. This 

approach does not fully utilize the ordinal information 

inherent in the flare classification system. Hence, in our 
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work, we propose encoding these ordinal characteristics 

as weighting factors in the binary cross-entropy (BCE) 

loss function. By doing so, we assign different weights to 

instances based on their flare sub-class, ensuring that the 

model optimizes for the specific nuances within each class. 

We hypothesize that this adjustment is particularly relevant 

considering the ordinal nature of the flare events classification. 

 

Flare Forecasting with Projection Effects: In this study, 

we utilize images of line-of-sight (LoS) magnetograms of 

active region (AR) patches. ARs are high activity regions on 

the Sun’s surface, distinguished by their intense magnetic 

fields concentrated within sunspots. These magnetic fields 

often undergo significant distortion and instability, triggering 

plasma disturbances and releasing energy in the form of 

flares and other solar phenomena [8]). This makes ARs 

the regions of interest emphasizing the importance of 

utilizing AR-based features for predicting solar flares, as the 

disturbed magnetic fields in them are often linked as the 

main initiators of these solar events. However, the magnetic 

field measurements, which are the main features used in 

AR-based forecasting techniques, are susceptible to severe 

projection effects caused by the orientation of the observing 

instrument relative to the solar surface. Therefore, as ARs 

get closer to limbs to the degree that after 60◦ of solar 

longitude, the magnetic field readings are distorted [9], 

which limits the existing models to include data pertaining 

to central locations only [10]. To address this, we derive 

images from original LoS magnetogram rasters of AR patches. 

 

Data Preprocessing Pipeline for ARs: Our data prepro- 

cessing pipeline introduced in [11], converts high-dimensional 

magnetic field rasters to images capturing the overall morphol- 

ogy and spatial distribution of ARs retaining the important 

shape-based parameters such as size, directionality, sunspot 

borders, and polarity inversion lines [12]. Shape-based features 

retained in these derived images of magnetograms provide a 

robust representation of the overall underlying magnetic activ- 

ity. We recognize the persistence of severe projection effects, 

however, we hypothesize that the complex feature learning 

capabilities of contemporary deep learning models can poten- 

tially learn from these distorted readings. Consequently, we 

include data encompassing ARs in near-limb regions (beyond 

60◦) as well, thereby offering a novel capability to predict 

solar flares throughout the entire solar disk. 

Furthermore, it is essential to note that the tracked AR 

patches vary in size depending on the size of the ARs. 

Existing approaches have been limited to AR patches in central 

locations, often resizing rectangular patches to obtain square 

images. However, this resizing distorts the original aspect 

ratio, consequently altering the shapes and sizes of ARs. 

Alternatively, variable-sized AR patches are cropped (using 

methods like center crop or random crop) to obtain square 

images, resulting in information loss. In contrast, we proposed 

and utilized a sliding window kernel-based approach in [11]. 

This method select such a cropped region that maximizes 

total unsigned flux (USFLUX: the sum of the absolute of the 

magnetic field strength values), maintaining the original aspect 

ratios of AR patches and preserving critical spatial features. 

By maximizing the USFLUX, we ensure that we extract the 

most representative region with significant magnetic flux build 

up. This method adapts to the variability in AR patch shapes 

and sizes, avoiding distortion and prioritizing the capture of 

more relevant information. 

Leveraging the images of LoS magnetograms of AR 

patches, we develop a predictive model for solar flares of mag- 

nitude  M-class. We employ these images to train ResNet34 

[13] based model with different configurations of our proposed 

loss function. Our contributions can be summarized as follows: 

(i) We introduce a novel approach to encode inherent ordinality 

of data to binary cross-entropy (BCE) loss function, showing 

the effectiveness in solar flare prediction as a case study, (ii) 

We show that our models are capable to predict flares across 

the entire solar disk, including often overlooked near-limb 

regions, improving the comprehensiveness of AR-based solar 

flare prediction models. This study presents a key advancement 

in the field of solar flare prediction, contributing to ongoing 

efforts aimed at enhancing space weather forecasting capabil- 

ities and improving our understanding of solar phenomena. 

The remainder of the paper is structured as follows. Sec. II 

provides an overview of existing studies on solar flare predic- 

tions using deep learning models and various data sources. 

In Sec. III, we detail the process of data collection with 

labeling and consequent data distribution, and describe the 

architecture of our flare prediction model. In Sec. IV we 

outline our methodology by providing a detailed description 

of our modification to the standard cross-entropy loss and 

its application to solar flare prediction. Sec. V presents the 

experimental design and hyperparameter configurations of 

our model. Sec. VI presents our model evaluation showing 

the effectiveness of our approach on models’ performance 

evaluated with skill scores. Finally, in Sec. VII, we summarize 

our findings and suggest avenues for future research. 

 

II. RELATED WORK 

Several approaches such as human-based predictions (e.g., 

[14]), statistical models (e.g., [15]), and numerical simula- 

tions based on physics-based models (e.g., [16]), have been 

employed to predict solar flares. Recently, the use of data- 

driven approaches, which leverage machine learning and deep 

learning techniques, has significantly increased (e.g., [17]– 

[20]) owing to their capacity to exploit extensive datasets and 

their experimental achievements in space weather forecasting 

[21]. As solar flares are phenomena caused by sudden, abrupt 

changes in the magnetic field in the solar atmosphere, these 

data-driven approaches most commonly utilize magnetogram- 

based data which includes solar full-disk magnetograms (e.g., 

[10], [22]–[25]), multivariate time series (MVTS) data ex- 

tracted from solar vector magnetograms (e.g., [26], [27], [28]), 

cutouts or patches of tracked AR (e.g., [29], [30]), and features 

summarizing each AR patch (e.g., [31], [32]). 



Authorized licensed use limited to: Georgia State University. Downloaded on January 18,2025 at 01:07:11 UTC from IEEE Xplore. Restrictions apply.  

≥ ≥ 

≥ ≥ 

≥ 
≥ 

± 

± 

≥ 

≥ 
± 

× 

≥ 

± 

≥ ≥ 

± ± 

± ≥ ≥ 
× 

≥ 

± 
± 

∼± 

A deep learning model based on a multi-layer perceptron to 

predict solar flares C and M class was presented in [33]. In 

this study, they used manually selected features extracted from 

multi-modal solar observations of the full solar disk, which 

included vector magnetograms and extreme ultraviolet (EUV) 

images to predict M- and C-class flares. In [34], a convolu- 

tional neural network (CNN) based hybrid model is proposed 

 

 

 

 

 

 

 

 

 
 

 

 

(a) Original HMI SHARP Magnetogram 

Patch Size: 688 × 448 px 

 

 

 

 

 

 

 

 

 
 

 

 

(b) HMI SHARP Bitmap 

High Activity Region Size: 520 × 440 px 

 

 

 

 

 

 

 

 

 
 

 

 

(c) Final Processed Image 

Size: 512 × 512 px 

to predict the occurrence of  C-class flares. Similarly, [24], 

[35] presented a CNN-based model to predict M-class flares 

utilizing full-disk magnetogram images. While these full-disk 

models include near-limb regions, by design they are unable 

to localize the relevant ARs that are likely to flare and instead 

issue one single forecast for the entire solar disk. 

In [32], a support vector machine based model trained with 

25 AR summary parameters extracted from vector magne- 

tograms of AR patches within 68◦ of solar longitude was 

presented. Similarly, in [27], a deep learning based time series 

classifier and in [28] a sliding window Time Series Forest 

(TSF) was trained with a MVTS data of 24 space weather 

related physical parameters primarily calculated from AR 

magnetograms within  70◦ of solar longitude. Furthermore, 

a CNN-based flare forecasting model trained with solar AR 

patches (resized to 100 100 pixels) extracted from LoS mag- 

netograms within  30◦ of solar longitude to predict  C-, M- 

, and  X-class flares was presented in [29]. More recently, 

[36] proposed a CNN-based model named “CARFFM-4” 

trained with AR patches (sized to 160 160 pixels) created 

from R parameter [37] within 30◦ of solar longitude to 

predict M-class flares in the next 48 hours. 

All the literature reviewed in this section, formulates solar 

flare prediction as a binary forecasting problem utilizing a 

binary loss function without any flare ordinal characteristics. 

Furthermore, It is important to note that, there is variabil- 

ity in the literature in terms of the type of data modality 

which includes multiple instruments (HMI/SDO, AIA/SDO, 

MDI/SOHO) and data types (EUV images, magnetograms 

and extracted features corresponding to AR and full-disk). 

Furthermore the variability in prediction targets ( C-,  M- 

, X-class flares) and forecasting horizon (24 hours and 48 

hours) is also prominent. The predictive capabilities of AR- 

based models are often limited by observations taken from 

central locations from 30◦ to 70◦. The full-disk models 

complement the issue of longitudinal coverage in AR-based 

models; however, they fail to pin-point an active region and 

issue a single forecast for the entire solar disk. In this work, 

we introduce a new loss function to build a limb-to-limb 

flare prediction model that is trained on magnetogram images 

of AR-patches spanning full 180◦ ( 90◦) of solar longitude 

and evaluate our models’ efficacy in different zones defined 

by longitudinal range and provide a novel capability, to our 

knowledge, missing in operational systems. 

III. DATA AND MODEL 

The primary raw input data in our work are obtained from 

line-of-sight (LOS) magnetograms of ARs provided by the 

Helioseismic and Magnetic Imager (HMI) [38] onboard the 

Fig. 1. An illustrative example of (a) Original raw input magnetogram of 
HMI AR patch corresponding to HARP number: 7115 (NOAA AR number: 
12673) observed on 2017-09-06 at 06:00:00 UTC, (b) Bitmap corresponding 
to HMI AR patch in (a) showing the high activity region (region of interest) 
indicated by white pixels, (c) Final processed image of AR patch in (a) now 
sized to 512×512, that is used to train our models. 

 

Solar Dynamics Observatory (SDO) [39], which are publicly 

available as a data product named Spaceweather HMI Active 

Region Patches (SHARP) [40] from the Joint Science Oper- 

ations Center1 at a temporal cadence of 12 minutes. In this 

work, we utilized magnetograms spanning from May 2010 

to December 2018, sampling magnetograms at a cadence of 

one hour. The magnetograms of AR patches contain rasters of 

magnetic field strength values typically ranging from   4500 

G. An example of magnetogram of an AR patch is shown in 

Fig. 1 (a). Along with magnetograms, we use bitmaps (another 

data product from the SHARP series) which define the region 

with pixels located within or outside the ARs, providing the 

region of interest within the AR patch as shown in Fig. 1 (b). 

The bitmaps are equal in size to the LOS magnetograms of 

AR patches, where the area represented by white pixels shows 

the region within the AR and hence our region of interest [40]. 

For each AR patch, we assign a binary label using peak X- 

ray flux converted to NOAA/GOES flare classes such that: (i) 

M indicates Flare (FL) signifying the existence of a relatively 

strong flaring activity, and (ii) <M indicates No Flare (NF) 

with a prediction window of 24 hours. To illustrate, from 

the timestamp of an AR patch to the next 24 hours, if the 

maximum NOAA/GOES flare class is <M, then we label the 

AR patch as NF; otherwise, FL. 

In our data processing pipeline, introduced in our prior work 

[11] and illustrated in Fig. 2, we begin by collecting hourly 

instances of raw input magnetograms of AR patches, alongside 

their corresponding bitmaps. Our initial step involves applying 

the bitmap as a filter to precisely crop the AR patches, isolating 

the regions with high activity. Subsequently, we implement a 

size filter: if the resulting cropped AR patches are smaller than 

70 pixels in width, we exclude them from our dataset. It is 

worth noting that we determine this threshold based on the 

overall data distribution, ensuring retention of all instances 

corresponding to ’FL’ instances while removing those from 

the ’NF’ class. Following this filtering stage, we proceed to 

adjust the magnetic flux. We cap the flux values at 256G, 

and any flux values within  25G are set to 0 to mitigate noise. 

Ensuring uniformity in size, we apply zero-padding to patches 
smaller than 512×512 pixels. Conversely, for larger patches, 

exceeding 512×512 pixels, we employ a 512×512 kernel to 

1http://jsoc.stanford.edu 

http://jsoc.stanford.edu/
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Fig. 2. The overall schema of the data processing pipeline used in this work. It shows a sequential pipeline for creating JPEG images from magnetogram 
rasters and corresponding bitmaps used for cropping the regions with relevant information. Boxes colored in green collectively defines our dataset. 
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Fig. 3. (a) A bar plot representing the overall distribution of flare classes in our dataset (b) A bar plot showing binarized (≥M) flare distributions across the 
four temporally non-overlapping tri-monthly data partitions. Note: The height of the bars are in logarithmic scale. 

 

select the patch with the maximum total unsigned flux (namely 

USFLUX, which is the sum of the absolute value of magnetic 

field strength represented as raster values in magnetograms). 

By doing this, we aim to minimize information loss by picking 

a spatial window where the total flux is the highest, which 

is more likely to include the regions of interest. Finally, to 

standardize the representation, all patches are scaled to fit 

within the range of 0-255, facilitating the generation of images. 

An example of a final processed image is shown in Fig. 1 

(c) generated using the magnetogram of AR patch in Fig. 1 

(a) and the corresponding bitmap in Fig. 1 (b), providing an 

illustration of the outcomes of our data preprocessing steps. 

The overall distribution of our labeled AR patches data, with 

binary flare classes NF (comprising flare-quiet (FQ), A-, B-, 

and C-class flares) and FL (including M- and X-class flares), 

is shown in Fig. 3 (a). In total, we have 501,106 instances 

belonging to the NF class and 10,315 instances belonging to 

the FL class, resulting in a class imbalance ratio of  1:49. 

We split our dataset into four non-overlapping tri-monthly 

partitions as shown in Fig. 3 (b), using the onset timestamps of 

the HARP series to ensure that each AR trajectory remains en- 

tirely within a single partition, thus avoiding any overlap. This 

approach contrasts with the method described in [41], which 

uses magnetogram observation timestamps for partitioning the 

full-disk magnetograms. Finally, we use Partitions 1 and 2 as 

our training set while Partitions 3 and 4 are used as validation 

and test set respectively. The preprocessed dataset used in this 

study is publicly available from [42]. 

The task of solar flare prediction in this work is formalized 

as a binary image classification problem; therefore, we select a 

general CNN based model, ResNet34 [13]. Recently, attention- 

based models, notably Vision Transformers (ViTs) [43], have 

gained prominence for their superior performance in image 

classification tasks. Despite their state-of-the-art results, these 

models tend to have a high number of trainable parameters, 

making them resource-heavy and less suitable for applications 

with limited computational resources or small datasets. For 

our specific application involving a small dataset, we opted for 

a more straightforward approach using a CNN-based model, 

specifically ResNet34. We modified the ResNet34 architecture 

to handle 1-channel input magnetogram images (grayscale 

images) by adding an initial convolutional layer with a 3 3 

kernel, a stride of 1, and three output feature maps. This 

modification allows the model to utilize pre-trained weights 

effectively while processing the 1-channel magnetogram im- 

ages. The final architecture includes 34 convolutional layers 
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Fig. 4. An illustrative plot showing: (a) Standard binary cross-entropy (BCE) loss. (b-c) BCE for solar flare prediction (BCE-SF) which encodes ordinal flare 
characteristics as loss weighting mechanism with α=1 and α=4 respectively. Note: FL class indicates target 1 and NF class indicates target 0. 

 

(including all residual and basic convolutional layers), one 

max pooling layer, one adaptive average pooling layer, and 

one fully connected layer. 

IV. ORDINALITY-AWARE LOSS FUNCTION DESIGN 

In this work, we utilize a novel loss function designed for 

binary solar flare prediction that encodes the ordinal flare 

characteristics in the standard binary cross-entropy (BCE) loss. 

Let N be the total number of instances in a batch. Let yi denote 

the true label for the i-th sample, where yi  0, 1 . Let pi 

be the predicted probability that the i-th sample belongs to 

the ”FL” class (target 1), defined as pi = σ(yˆi), where yˆi) is 

the model output (logit) and σ is the sigmoid function, then 

the standard binary cross-entropy BCE(y, yˆ) loss function is 

represented as shown in Eq. (1) and the corresponding loss 

function plot is shown in Fig. 4 (a). 

 

BCE(y, yˆ) = − 
 1 L 

[y log(p ) + (1 − y ) log(1 − p )] 

The BCE-SF loss is designed in such a way that the incor- 

rect predictions in the binary flare classes result in different 

losses based on the sub-class of the instances. To elaborate 

further, since an X-class flare is ten times more powerful than 

an M-class flare, even though both belong to class FL, the 

loss value for an X-class flare should be higher than that for 

an M-class flare. Similarly, a B-class flare in the NF class is 

ten times weaker than C-class flares in the same binary class. 

Therefore, incorrect predictions of these two classes should 

have different loss values. Thus, we used these ordinal weights 

(βi) representing individual flare classes, and our proposed 

binary cross-entropy loss for solar flare prediction (BCE-SF) 

can be represented as shown in Eq. (3). 

 
1  

N 
 1  

BCE-SF(y, yˆ) = − α × BCE(y , yˆ ) × (3) 

  

Here, α is a scaling factor that aligns the loss values with 

the scale of the corresponding BCE loss. Specifically, when 
N 

i i i 

i=1 

i 

(1) 
α = 1, the maximum loss value for an incorrectly predicted 

instance matches the scale of the BCE loss, as shown in Fig. 4 
As mentioned earlier, in the binary setting of solar flare 

prediction where our chosen threshold is M, the two binary 

classes are: (i) the NF-class including FQ-, A-, B-, and C- 

class instances, and (ii) the FL-class including M- and X- 

class instances. As each of these individual flare classes are 

ordinal in nature, where FQ<A<B<C<M<X, we introduce a 

weighting factor based on the corresponding sub-classes (flare 

classes within each binary class) such that instances belonging 

to these sub-classes are represented by weights β as shown in 

Eq. (2). 

10 if FQ 

102 if A 

103 if B 

(b). In this case, the loss value scale for FQ- and X-class 

(the two extremes of the binary categories) aligns with the 

corresponding BCE loss, while all other incorrect predictions 

have lower loss values. Similarly, when α = 4, the minimum 

loss value for an incorrectly predicted instance matches the 

scale of the BCE loss, as shown in Fig. 4 (c). Here, the 

loss value scale for C-class aligns with the BCE loss scale, 

while all other incorrect predictions have higher loss values. 

Therefore, we recommend the range of α  [1, 4] which can 

be regarded as a hyperparameter for optimal performance. It is 

important to note that the BCE-SF loss, by leveraging intrinsic 

flare characteristics, offers a simple modification to the BCE 

loss without introducing new model-dependent parameters. 
β = 

104 if C 

102 if M 

10 if X 

(2) 
V. EXPERIMENTAL SETTINGS 

In this section, we comprehensively delve into our dataset 

preparation methods for model training and evaluation, along- 

i=1 10 
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(a) Original (Preprocessed) (b) Polarity Inversion (c) Gaussian Blurring 

 

(d) Vertical Flipping (e) Horizontal Flipping (f) Add Noise (+25G) 

Fig. 5. An illustrative example of (a) input magnetogram of HMI AR patch corresponding to HARP number: 7115 (NOAA AR number: 12673). (b-f) five 
different augmentations applied to AR patch in (a). These augmentations are applied to the processed magnetograms before scaling to 0-255. 

 

side detailing our model configurations in regard to the usage 

of BCE and BCE-SF loss functions, and hyperparameters. Fur- 

themore, we provide the definition of our evaluation metrics 

and the rationale behind the selection of these metrics. 

A. Dataset 

As mentioned earlier in Sec. III, we follow time-segmented 

trimonthly partitioning to create four partitions of our entire 

dataset. Partition-1 and 2 combined are used as the training set. 

However, due to significant class imbalance in our dataset, we 

used undersampling together with data augmentation to create 

a balanced training set. Firstly, we augmented data instances 

belonging to the FL-class in our training set using five data 

augmentation techniques: (i) polarity inversion, which swaps 

the signs of positive polarity to negative and vice versa as 

shown in Fig. 5 (b), (ii) Gaussian filtering, which applies 

a Gaussian blur to the image to reduce noise and detail 

(Fig. 5 (c)), (iii) Vertical Flipping , which involves flipping 

the image along a horizontal axis (Fig. 5 (e)), (iv) Horizontal 

Flipping, which involves flipping the image along a vertical 

axis (Fig. 5 (d)), and (v) Adding random noise within 25G 

(Fig. 5 (f)). To balance the FL-Class instances with NF, we 

undersampled our training data by randomly selecting 30% of 

instances belonging to A-, B-, C-class flares each, and ∼8% 

of instances from FQ from both Partition-1 and 2. For realistic 

evaluation, we maintained the original imbalanced distribution 

in Partitions 3 and 4, which are our validation and test sets 

respectively, as shown in Fig. 6. 

B. Model Parameters 

 
TABLE I 

HYPERPARAMETERS SEARCH SPACE WITH EXPERIMENTALLY OBSERVED 

OPTIMAL HYPERPARAMETERS FOR EACH MODEL. 
 

Optimal Parameters 

Hyperparameters Search Space BCE BCE-SF 

Initial Learning Rate {0.00001 to 0.01} 0.01 0.001 

Weight Decay {0.00001 to 0.01} 0.01 0.001 

Batch Size {48, 64, 80} 64 64 

Scaling Factor (α) {1, 2, 3, 4} N/A 2 

 

In our model hyperparameter selection process, we define 

the hyperparameter space, encompassing initial learning rates 

(η), weight decay parameters, batch sizes, and scaling factors 

(α) as shown in Table I. Following the definition of our 

hyperparameter space, we conduct a grid search across this 

space, evaluating on the validation set for all our models. 



Authorized licensed use limited to: Georgia State University. Downloaded on January 18,2025 at 01:07:11 UTC from IEEE Xplore. Restrictions apply.  

× 

≥ 

± 

− 

 

 

 

10
5

 

 

246,169 246,169 

NF  FL 

 

 

10
4

 

 

 

10
3

 

 

 

10
2

 

 

 

10
1

 
 

Partition1 & 2 Augmented-FL Undersampled-NF 

(Train Set) 

 

Partition 3 

(Validation Set) 

 

Partition 4 

(Test Set) 

 

Fig. 6. The overall distribution of data instances partitioned into train set (showing original, augmented and undersampled data counts), validation set, and 
test set used in this work. 

During this search, we train our models using stochastic 

gradient descent (SGD) with BCE and BCE-SF loss function. 

Additionally, we employ a dynamic learning rate strategy 

called ReduceLRonPlateau with a factor of 0.3 and a 

patience period of 2 epochs. This learning rate scheduling 

mechanism starts the training with an initial learning rate (η) as 

mentioned in Table. I. If the validation loss does not improve 

for two consecutive epochs (patience period), the new learning 

rate is calculated as follows: 

ηnew := ηcurrent × factor 

Upon completing the grid search and evaluating the models, 

TSS, HSS is a metric that accounts for class imbalance. It 

is commonly used in evaluating solar flare prediction models 

because these datasets typically have a high imbalance ratio 

as discussed in [44], [45]. However, choosing a candidate 

model based on two skill scores becomes difficult, as it 

demands preference of one metric over another at the end. 

Therefore, by combining TSS and HSS in a geometric mean 

as in the Composite Skill Score (CSS, in Eq. 6), we obtain a 

single metric that balances between discrimination ability and 

imbalance awareness. 

(
0, if TSS × HSS < 0 

we identified the optimal hyperparameters as shown in Table I. 

These parameters exhibited superior performance during the 

CSS = √
TSS × HSS,  otherwise 

(6)
 

search and we use these to train our final models for 50 epochs 

and evaluate on the test set. 

C. Evaluation Metrics 

True Skill Statistic (TSS, in Eq. 4) and Heidke Skill Score 

(HSS, in Eq. 5), derived from the four elements of confusion 

matrix: TP, TN, FP, FN are the two forecast skills scores 

widely used in evaluating flare prediction models. 

TP FP 
TSS = (4) 

TP + FN FP + TN 

CSS considers both the discrimination power of the model 

(TSS) and its ability to outperform random chance (HSS), 

offering a more comprehensive evaluation. It provides a single 

metric that accounts for both aspects of model performance, 

making it more suitable for assessing forecast models, partic- 

ularly in scenarios with class imbalance. Hence, we evaluate 

and compare our models based on the single metric, which 

is CSS but report both TSS and HSS for completeness. For 

reproducibility, the source codes for this work is publicly 

available from our open source repository [46]. 

HSS = 2 
 TP × TN − FN × FP  

((P × (FN + TN ) + (TP + FP ) × N )) 

where, N = TN + FP and P = TP + FN . 

(5) 
VI. EXPERIMENTAL EVALUATION 

As explained earlier in Sec. V-A, we conducted experiments 

to predict solar flares in a binary setting ( M-class flares) 

using a ”train-validation-test split” of our entire dataset, which 

The values of TSS and HSS range from -1 to 1, where 

1 indicates all correct predictions, -1 represents all incorrect 

predictions (also, it means that all inverse predictions are 

correct, i.e., there is a skill), and 0 represents no skill. Unlike 

consists of magnetograms of AR patches covering a solar 

longitudinal range of 90◦ (i.e., the entire solar disk). We 

utilized the validation set to monitor the models’ performance 

every epoch and tuned hyperparameters to optimize the CSS. 
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Fig. 7. Performance of our models trained with both BCE and BCE-SF loss was evaluated on the test set in terms of (a) TSS, (b) HSS, and (c) CSS. The 
skill scores are shown for different ranges of solar longitudes: ±30◦, ±60◦, and ±90◦. This longitudinal ranges indicates the performance evaluated on ARs 

from the test set located within 0◦ to 30◦, 0◦ to 60◦, and 0◦ to 90◦ in both the directions (East (-ve) and West (+ve)) of the Sun. 
 

After training the model with optimal hyperparameters, we 

employed a threshold tuning approach to calibrate our models 

by tuning the prediction score thresholds. This involved eval- 

uating the performance of each model on the validation set at 

different threshold values ranging from 0.01 to 0.99 with an 

increment of 0.01. We selected the threshold that optimized 

CSS for each model individually. However, this resulted into 

a same threshold value of 0.69 for both the models trained 

with BCE and BCE-SF loss functions. These thresholds were 

then applied to the test set for both models, and the models’ 

performance was reported on the test set. 

Additionally, we assessed the performance of both of our 

models on subsets of data representing different longitudinal 

coverages: within  30◦,  60◦, and  90◦ of solar longitude. 

To elaborate, longitudinal coverage of 30◦ indicates AR 

patches in our test set that correspond to the central region of 

the Sun, encompassing up to 30◦ in the East direction and up 

to +30◦ in the West direction from the center (0◦). A coverage 

of 60◦ extends further, encompassing a broader region that 

extends 60◦ to the East and West of the solar longitude. This 

range covers a significant portion of the Sun’s surface, allow- 

ing for a more comprehensive examination of solar activity 

beyond just the central region but still within a reasonably 

close proximity to it. A coverage of 90◦ encompasses the 

entire test set. The performance of our models relative to each 

other in terms of TSS, HSS, and CSS is illustrated in Fig. 7 

(a), (b), and (c), respectively. 

Upon evaluation, we noted that the model trained with 

the BCE-SF loss function consistently outperformed the one 

optimized with BCE loss across all three skill scores and 

longitudinal coverages. Comparing the performance on the 

longitudinal coverage of  30◦, we observed  11%,  3%, 

and  7% higher skill scores in terms of TSS, HSS, and 

CSS, respectively, as shown in Fig. 7. Furthermore, this 

improvement was also observed with increased longitudinal 

coverage. For ARs in the test set within ±60◦, we noted ∼7%, 

∼1%, and ∼4% higher TSS, HSS, and CSS, respectively, with 

BCE-SF compared to the model trained with BCE. Overall, 

for our entire test set, we observed 6%, 1%, and 3% 

higher scores in terms of TSS, HSS, and CSS, respectively, for 

the BCE-SF trained model over BCE, as illustrated in Fig. 7, 

indicated by 90◦. Additionally, our analysis revealed a lin- 

early decreasing trend in model performance with increasing 

longitudinal coverage of ARs, with highest skill scores noted 

for ARs within ( 30◦) and lowest when within  90◦) for both 

of the models (BCE and BCE-SF). 

After noticing the pattern indicating a decline in model 

performance with increasing longitudinal coverage, we inves- 

tigated the effectiveness of our models on non-overlapping 

regions of solar longitudes. To facilitate this analysis, we 

delineated three zones: (i) within 0◦ to 30◦, (ii) the region 

between  30◦ to  60◦, and (iii) the region between  60◦ 

to 90◦. Similar to our earlier evaluation across overlapping 

longitudinal ranges, we computed all three skill scores to 

evaluate the model’s performance across these zones. In doing 

so, we observed a similar linearly decreasing trend in skill 

scores as our earlier evaluation, highest in central regions 

(0◦ to  30◦) and lowest in limb regions ( 60◦ to  90◦), 

as illustrated in Fig. 8 from all three models. Interestingly, we 

observed that while TSS is 3% lower, HSS was 1% higher with 

the BCE-trained model compared to BCE-SF when evaluating 

within  30◦ to  60◦ of the solar longitude, as shown in Fig. 8 

(b). This highlights using a composite skill score, as choosing 

the model based solely on TSS or HSS scores might lead to 

a false sense of good performance. 

It is worth noting that while existing models are typically 

designed to predict solar flares up to 60◦ of the solar 

longitude, our model demonstrates capability in the near-limb 

regions, namely the region between 60◦ to 90◦. Despite 

having lower skill scores compared to those in the central 

region, this study reveals a new capability that demonstrates 

skill in the near-limb region, thereby advancing solar flare 

prediction. This advancement underscores the significance of 

our research in extending predictive models for solar flares 
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beyond central regions, thereby improving our understanding 

and forecasting capabilities for solar phenomena. 

VII. CONCLUSION AND FUTURE WORK 

In this study, we primarily introduced a novel ordinality- 

aware binary loss function to optimize data-driven predictive 

models and demonstrated its effectiveness in improving predic- 

tive capabilities compared to the standard binary loss function, 

specifically in the application of solar flare prediction. Further- 

more, using our data preprocessing pipeline, we utilized AR 

patches encompassing the limb-to-limb range of the Sun (i.e., 

90◦) to build flare prediction models capable of forecasting 

solar flares of magnitude M-class. Upon evaluating the 

capability of our limb-to-limb models, the results show that 

we can satisfactorily predict flaring activity despite severe 

projection effects, although there is room for improvement 

(the skill is limited when compared to central locations). 

Additionally, the results show that shape-based features in 

magnetograms are effective for predicting solar flares even 

when the ARs are close to the limbs. 

While full-disk models are developed to complement AR- 

based models in near-limb regions, they lack the ability to 

localize AR-specific predictions. We define this work as an 

important step towards fully integrating ARs into solar flare 

prediction, with implications for advancing such predictions. 

Numerous avenues for future exploration exist, which include 

exploration on utilizing the actual peak X-ray fluxes as in- 

stance ordinality into the binary loss functions, investigating 

this approach with multi-modal solar observations, developing 

spatiotemporal models, and incorporating explanatory and 

interpretative frameworks into the model to enhance reliability. 
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