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A B S T R A C T 

We introduce the Hawai‘i Supernova Flows project and present summary statistics of the first 1217 astronomical transients 

observed, 668 of which are spectroscopically classified Type Ia Supernovae (SNe Ia). Our project is designed to obtain 

systematics-limited distances to SNe Ia while consuming minimal dedicated observational resources. To date, we have performed 

almost 5000 near-infrared (NIR) observations of astronomical transients and have obtained spectra for o v er 200 host galaxies 

lacking published spectroscopic redshifts. In this surv e y paper, we describe the methodology used to select targets, collect/reduce 

data, calculate distances, and perform quality cuts. We compare our methods to those used in similar studies, finding general 

agreement or mild impro v ement. Our summary statistics include various parametrizations of dispersion in the Hubble diagrams 

produced using fits to several commonly used SN Ia models. We find the lowest dispersions using the SNooPy package’s 

EBV model2, with a root mean square deviation of 0.165 mag and a normalized median absolute deviation of 0.123 mag. The 

full utility of the Hawai‘i Supernova Flows data set far exceeds the analyses presented in this paper. Our photometry will provide 

a valuable test bed for models of SN Ia incorporating NIR data. Differential cosmological studies comparing optical samples 

and combined optical and NIR samples will have increased leverage for constraining chromatic effects like dust extinction. We 

invite the community to explore our data by making the light curves, fits, and host galaxy redshifts publicly accessible. 

Key words: catalogues – galaxies: distances and redshifts – (cosmology:) large-scale structure of Universe – transients: super- 

novae. 

1  I N T RO D U C T I O N  

Ha wai‘i Superno v a Flo ws is an ongoing ef fort to map the distribution 

of mass in the local universe ( z < 0.1) using near-infrared (NIR) 

observations of Type Ia Supernovae (SNe Ia) in combination with 

untargeted optical surv e ys. In this paper, we provide an overview 

of the Hawai‘i Supernov a Flo ws project to support future papers 

examining detailed science cases using data from Hawai‘i Supernova 

Flows. 

� E-mail: ajmd6@cam.ac.uk 

The paper is organized as follows. In this Section, we review 

the connection between large-scale structure and peculiar velocities, 

describe the largest contemporary peculiar velocity surveys, and 

moti v ate our use of SNe Ia. Section 2 describes the individual 

components of the project: including the target selection process, the 

observing facilities used, the photometric calibration and analysis, 

the identification of host galaxies, and the determination of their 

redshifts. Section 3 describes the three SN Ia fitting procedures we 

employ and how each set of fitting parameters is converted to distance 

moduli. We validate our fitting methodology and photometry using 

data from the Dark Energy, H 0 , and peculiar Velocities using Infrared 

Light from Supernovae survey (DEHVILS; Peterson et al. 2023 ) and 
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the Carne gie Superno va Project’s third data release (CSP-I DR3; 

Krisciunas et al. 2017 ) in Section 4 . Section 5 lists the quality cuts 

used to define the various samples we describe, analyse, and discuss 

in Section 6 . 

1.1 Peculiar velocities and the state-of-the-art 

While the LSS contains some luminous, baryonic matter, the majority 

of its mass may only be studied through its gravitational effects 

(for a re vie w of dark matter, consider Bertone & Hooper 2018 ). In 

comoving coordinates, objects accelerate towards denser regions of 

LSS and away from voids. This motion is called peculiar velocity 

and its projection on our line of sight may be calculated as (Davis & 

Scrimgeour 2014 ) 

v = c 

(
z obs − z cos ( d L ) 

1 + z cos ( d L ) 

)
, (1) 

where z obs is the observed redshift and z cos ( d L ) is the redshift 

at luminosity distance d L due to univ ersal e xpansion in a given 

cosmological model with deceleration parameter q 0 and Hubble 

constant H 0 (Peebles 1993 ) 

z cos ≈
1 

1 − q 0 

[ 

−1 + 

√ 

1 + 
2 H 0 d L 

c 
(1 − q 0 ) 

] 

. (2) 

Peculiar velocities have been used to infer the distribution of 

LSS through a variety of approaches like the POTENT method 

(Bertschinger & Dekel 1989 ; Dekel, Bertschinger & Faber 1990 ; 

Dekel et al. 1999 ), the Wiener Filter and constrained realizations 

method (Ganon & Hoffman 1993 ; Zaroubi et al. 1995 ; Zaroubi, 

Hoffman & Dekel 1999 ; Courtois et al. 2012 ), the unbiased minimal 

variance estimator (Zaroubi 2002 ), and various Bayesian hierarchical 

approaches (Lavaux 2016 ; Graziani et al. 2019 ; Valade et al. 2022 ). 

These methods commonly assume the LSS formed through gravita- 

tional instabilities, and is thus irrotational on large scales ( ∇ × � v = 0) 

(Peebles 1980 ). Variations between the methods typically represent 

different approaches to minimizing the systematic effects of smooth- 

ing, unev en sk y co v erage, and biases in peculiar-v elocity surv e ys. 

Modern cosmographic surv e ys are not limited by analytical tools, 

but by the number and precision of distance measurements. 

Man y peculiar v elocity surv e ys use either the fundamental plane 

(FP; Djorgovski & Davis 1987 ; Dressler et al. 1987 ) or the Tully–

Fisher relation (TF; Tully & Fisher 1977 ) to measure distances 

because these methods can be applied to a significant fraction of all 

galaxies, whereas other methods require relatively rare phenomena 

like a gravitational lens (Refsdal 1964 ), a maser (Herrnstein et al. 

1999 ) or megamaser (Gao et al. 2016 ), a gra vitational wa v e ev ent 

(Holz & Hughes 2005 ), or a supernova (SN). However, while the 

FP and TF methods ha ve significant advantages in target a vailability, 

the resulting distance measurements are often five to ten times less 

precise than measurements from more narrowly applicable distance 

probes. The FP and TF methods, along with most photometric 

measures of distance, produce errors in distance modulus, which 

causes error to increase with the distance. This proportionality is 

directly passed on to the uncertainties in peculiar velocity. While 

independent peculiar velocity measurements of N neighbouring 

galaxies can be combined to reduce the statistical uncertainty by 

a factor of 
√ 

N , galaxies have a finite amount of neighbours. A 

volume-limited peculiar velocity survey will al w ays find a noise 

floor that scales with the uncertainty in the distance-measuring 

technique and inversely with the root of galaxy number density. 

Put another way, a surv e y with an explicit precision requirement has 

a maximum ef fecti ve range that cannot be extended without more 

precise measures of distance. 

For this reason, two of the three largest homogeneous collections 

of peculiar velocities extend no farther than a cosmic microwave 

background (CMB) rest-frame redshift of z CMB = 0 . 05. These are 

the Cosmicflows-IV TF catalogue (CF4-TF, 9792 galaxies; Kourkchi 

et al. 2020 ) and the FP-based 6-degree Field Galaxy Surv e y peculiar 

velocity sample (6dFGSv, 8885 galaxies; Campbell et al. 2014 ; 

Springob et al. 2014 ). The Sloan Digital Sk y Surv e y (SDSS) peculiar 

velocity catalogue (SDSS-PV, 34 059 galaxies; Howlett et al. 2022 ) 

is the first FP- or TF-based surv e y to e xtend to z CMB = 0 . 1, but 

so far only co v ers the SDSS North Galactic Cap contiguous area 

(7016 deg 
2 
). The largest compilation of extragalactic distances is 

the heterogeneous catalogue Cosmicflows-IV (CF4, 55 877 galaxies; 

Tully et al. 2023 ), which consolidates these and other surv e ys and 

uses both FP and TF measurements, as well as surface brightness 

fluctuations (Tonry & Schneider 1988 ), core-collapse SNe (Hamuy & 

Pinto 2002 ), and SNe Ia (Phillips 1993 ). 

The SDSS-PV sample has not yet produced any detailed cos- 

mographic studies, but the authors measured a bulk flow in mild 

excess ( p ∼ 0 . 06 –0 . 20 depending on cuts) of what a fiducial dark 

energy and cold dark matter ( � CDM) model would suggest. This 

excess has been suggested before using various independent data sets 

(e.g. Pike & Hudson 2005 ; Feldman & Watkins 2008 ; Kashlinsky 

et al. 2008 ; Feldman, Watkins & Hudson 2010 ; Lavaux et al. 2010 ). 

Contemporary analyses extend the scale of the issue, with Watkins 

et al. ( 2023 ) finding that CF4 data indicate excess bulk flows on 

scales of 200 h 
−1 

Mpc that have a 1 . 5 × 10 −6 chance of occurring 

in the standard cosmological model using CMB-derived parameters. 

Howlett et al. ( 2022 ) theorize that the Shapley Supercluster as seen 

in the 2M ++ redshift compilation (Carrick et al. 2015 ) could be 

responsible, but because it is not in the SDSS-PV surv e y footprint it 

will be difficult to test. A surv e y that trades depth for sky coverage 

will still struggle to constrain the effects of the Shapley Supercluster, 

as Carrick et al. ( 2015 ) find their bulk flow measurements prefer a 

contribution from sources at z > 0 . 067 at a 5.1 σ level. 

Thus far, the Hawai‘i Supernov a Flo ws project has obtained 

peculiar velocity measurements over three quarters of the sky to a 

depth of z ∼ 0 . 1. This encompasses the gravitational sources thought 

to dominate local dynamics, including the Shapley supercluster, the 

dipole repeller (Hoffman et al. 2017 ), and the cold spot repeller 

(Courtois et al. 2017 ). Equation ( 1 ) shows that peculiar velocities 

require an assumed cosmology and two measurements: an observed 

redshift and a proper distance. The redshift can be measured to high 

precision with a single spectrum, but measuring distances is more 

difficult. Techniques have been developed and refined to excel in 

various niches of a parameter space spanning applicability, maximum 

range, and precision. Our project uses optical and NIR observations 

of SNe Ia to measure distances. 

1.2 Type Ia Superno v ae 

F ollowing the disco v ery that SNe Ia could be used as standardizable 

candles (Pskovskii 1977 ; Phillips 1993 ; Tripp 1998 ) there have been 

continuous efforts to impro v e the accuracy and precision of SNe Ia 

distance inference. These efforts include refining theoretical models 

of SNe Ia progenitors and explosions (re vie wed in Liu, R ̈opke & Han 

2023 ); increasing the sample of well-studied SNe Ia (e.g. Amanullah 

et al. 2010 ; Phillips et al. 2019 ; Scolnic et al. 2018 ; Brout et al. 2022 ); 

and empirically identifying correlations between SNe Ia luminosities 

and observable parameters like host-galaxy mass (Kelly et al. 2010 ; 

Lampeitl et al. 2010 ; Sulli v an et al. 2010 ), host-galaxy specific star 
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formation rate (Uddin et al. 2017 ), local H α surface brightness 

(Rigault et al. 2013 ), host-galaxy metallicity (Moreno-Raya et al. 

2016 ), host-galaxy colours (Roman et al. 2018 ), ejecta velocity 

(L ́eget et al. 2020 ), and more. Accompanying these efforts are 

impro v ements to fitting and modelling techniques ( BayeSN , Mandel 

et al. 2009 ; Mandel, Narayan & Kirshner 2011 ; Thorp et al. 2021 ; 

Mandel et al. 2022 ; Grayling et al. 2024 ; MLCS2k2 1 , Jha, Riess & 

Kirshner 2007 ; SALT 2 , Guy et al. 2005 , 2007 , 2010 ; Kenworthy 

et al. 2021 ; Pierel et al. 2022 ; SiFTO , Conley et al. 2008 ; SNEMO 3 , 

Saunders et al. 2018 ; SNooPy 4 , Burns et al. 2011 , 2014 ; SUGAR 5 , 

L ́eget et al. 2020 ). This body of work has established SNe Ia as 

excellent probes of distance. We choose to use them over competing 

distance measuring techniques for three reasons. 

First, SNe Ia are abundant. With modern surv e ys across the globe 

constantly scanning the sky, SNe are no longer rare targets of 

opportunity, but are disco v ered ev ery night. Desai et al. ( 2024 ) use 

data from the All-Sky Automated Survey for SuperNovae (ASAS- 

SN; Shappee et al. 2014 ; Kochanek et al. 2017 ; Hart et al. 2023 ) to 

find an SN Ia volumetric rate of ∼ 2 . 3 × 10 4 yr −1 Gpc −3 h 
3 
70 , which 

amounts to about 20 each night within z < 0 . 1. Wiseman et al. ( 2021 ) 

use results from the Dark Energy Surv e y (DES) to calculate a rate 

of SNe Ia per galaxy between one every 3000 yr to more than one 

every 100 yr depending on host-galaxy properties. This means that 

although the number of usable galaxies in an SNe Ia-based peculiar 

v elocity surv e y is relativ ely low compared to TF or FP surv e ys, it 

scales with time and can exceed competing methods with enough 

observational support. 

Secondly, SNe Ia are bright enough to be used at the distances 

we require. The demonstration of accelerating expansion relied on 

measurements of SNe Ia at redshifts near unity (Riess et al. 1998 ; 

Perlmutter et al. 1999 ). Our interests are more local, extending to 

redshifts z < 0 . 1. The mean absolute magnitude of SNe Ia before 

correcting for host-galaxy extinction is about −18 . 6 mag in B 

and −18 . 7 mag in V (e.g. Ashall et al. 2016 ). At z = 0 . 1 this 

corresponds to an apparent magnitude of about 19.6 or 19.5 mag, 

within the limiting magnitude of two of the all-sky surveys described 

in Section 2.1 . 

Lastly, SNe Ia-based distance measurements are far more precise 

than those of competing methodologies. This is not to say that SNe 

Ia are the most precise of all distance indicators. Distances based on 

Cepheid period–luminosity relations (Leavitt & Pickering 1912 ) or 

the Tip of the Red Giant Branch (Freedman et al. 2020 ; Anand et al. 

2021 ) are typically more precise than those based on SNe Ia, but the 

objects of study for these probes are about 13–16 mag fainter than 

SNe Ia. This restricts them to z < 0 . 023 even with 22 HST orbits 

per galaxy (PI D. Jones; proposal 16269). Hawai‘i Supernov a Flo ws 

extends about 4 times farther. The SDSS-PV sample has used the FP 

method to measure distances at z ∼ 0 . 1, but these distances are only 

precise to around 20 per cent. SNe Ia-based distances can be system- 

atically corrected to a root mean square (RMS) scatter between 4 and 

7 per cent (Burns et al. 2018 ; Scolnic et al. 2018 ). This means that 

it w ould tak e several dozens of independent TF or FP measurements 

to reach the precision of a single SN Ia distance measurement. 

Optical SNe Ia light curv es hav e been used as standardizable 

candles for several decades (e.g. Phillips 1993 ; Hamuy et al. 1995 ; 

1 Multicolour light-curve shapes. 
2 Spectral adaptive light-curve template. 
3 SuperNova Empirical MOdels. 
4 SuperNovae in Object Oriented Python. 
5 SUpernova Generator And Reconstructor. 

Riess et al. 1998 ; Perlmutter et al. 1999 ), but a growing body of 

evidence (e.g. Kasen 2006 ; Wood-Vasey et al. 2008 ; Burns et al. 

2011 ; Dhawan, Jha & Leibundgut 2018 ; Avelino et al. 2019 ) suggests 

that the NIR may offer substantial advantages. 

1.2.1 SNe Ia in the near-infrared 

NIR bandpasses like Y , J , H , and K are 5–11 times less affected by 

dust than the traditionally used B band (Cardelli, Clayton & Mathis 

1989 ; O’Donnell 1994 ; Fitzpatrick 1999 ). The total-to-selective 

extinction parameter R V is known to vary based on the properties 

of dust, even in our own galaxy (Draine 2003 ). Brout & Scolnic 

( 2021 ) and Popovic et al. ( 2023 ) proposed that the dispersion in 

Hubble residuals of red SNe Ia may be largely due to the uncertain 

properties of extragalactic dust, which varies as a function of position 

in the host galaxy. The effects of dust correlate with the colour of 

an y giv en SN Ia, making any added uncertainty a systematic issue 

that may not be resolved with a larger sample. Studying SNe Ia in 

the NIR suppresses the systematic error associated with dust. 

Additionally, SNe Ia have been claimed to be more uniform in 

the NIR (e.g. Wood-Vasey et al. 2008 ; Barone-Nugent et al. 2012 ; 

Kattner et al. 2012 ; Stanishev et al. 2018 ; Avelino et al. 2019 ; Galbany 

et al. 2023 ; Jones et al. 2022 ). Avelino et al. ( 2019 ) used NIR light 

curves to determine distances consistent with those determined using 

optical light curv es. Notably, Av elino et al. ( 2019 ) did not apply the 

typical standardizations to the NIR light curves, but did correct the 

optical light curves for decline rate, host-galaxy extinction, and host- 

galaxy mass. The empirical regularity of SNe Ia peak magnitudes 

in the NIR is supported by theory (Kasen 2006 ), with radiative 

transfer calculations sho wing ho w decreases in bolometric flux are 

balanced by increases in relative emission at longer wavelengths. 

The remarkable uniformity of SNe Ia peak absolute magnitudes in 

the NIR makes any distance measurement much more robust against 

systematic uncertainties. 

2  PROJECT  C O M P O N E N T S  A N D  

OBSER  VAT I O NA L  FA  CILIT IE S  

Initial testing showed that SNe Ia observations spanning the 

NIR-peak produce RMS dispersions in Hubble residuals ∼
10 –30 per cent lo wer than v alues obtained for SNe Ia only observed 

after the peak. Thus, to obtain distances to SNe Ia and recessional 

velocities for their host galaxies, we require three types of data: high- 

cadence photometry to find SNe Ia before they reach their NIR peaks, 

NIR photometry of each SN Ia near their peaks, and spectroscopically 

determined redshifts of their host-galaxies. 

Fig. 1 illustrates the various components of the program, delineat- 

ing what is supplied from the community and what requires dedicated 

observing resources. 

2.1 Triggers from All-Sky Sur v eys 

The entire sky is imaged multiple times per night by All-Sky Surveys 

like the Asteroid Terrestrial-impact Last Alert System (ATLAS; 

Tonry et al. 2018 ), the Zwicky Transient Facility (ZTF; Bellm et al. 

2019 ), and ASAS-SN. These surv e ys operate with different cadences 

and depths to co v er a range of science cases, but they all search the 

sky for objects that vary on time-scales of hours, days, or months. 

SNe Ia are in this class of astronomical objects, with light curves 

that increase in brightness for a few weeks before peaking, declining 

o v er a month, and then exponentially decaying. Here, we describe 
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Figure 1. Our project uses archi v al and surv e y data as a foundation for supplementary observ ations. Whene ver a new transient is reported, we collect optical 

light curves from ATLAS, ASAS-SN, and ZTF. We trigger NIR observations for targets that are either classified as SNe Ia or are unclassified and have a 

SN Ia-like light curve. About 53 per cent of targets we observe are associated with galaxies that have spectroscopic redshifts, and we pursue spectroscopic 

observations for the remaining 47 per cent with either the University of Hawai‘i (UH) 2.2 m telescope or Subaru depending on their surface brightness profiles. 

The optical and NIR light curves allow us to infer luminosity distances, which we combine with host-galaxy redshifts to derive peculiar velocities. 

the archi v al and observ ational facilities used, and ho w we access, 

store, and process the data. 

2.1.1 The Transient Name Server 

The Transient Name Server (TNS) 6 is the official International 

Astronomical Union repository for extragalactic transients. Large 

observational campaigns such as Pan-STARRS (Chambers et al. 

2016 ), GaiaAlerts 7 (Gaia Collaboration 2016 , 2018 ), the surv e ys 

described in the following sections, and many more automatically 

generate reports within minutes to hours of exposure read-out. 

Av eraging o v erall reports from TNS, about 10 per cent of transients 

recei ve observ ational follo w-up and spectroscopic classification, and 

of these, about 70 per cent are SNe Ia. 8 The majority of transients 

fade and become unobservable without being classified. 

The Ha wai‘i Superno v a Flo ws project uses the TNS-provided 

PYTHON code 9 to solicit new and recently updated reports every half 

hour, and uses these reports to generate a list of SNe Ia candidates. 

We ignore transients that are classified as anything other than an SN 

Ia or non-peculiar sub-type, but still consider unclassified transients 

as potential SNe Ia. This leads to some NIR observations of targets 

that are later classified as non-SN Ia, but we cannot afford to wait for 

6 https:// www.wis-tns.org/ 
7 http:// gsaweb.ast.cam.ac.uk/ alerts 
8 https:// www.wis-tns.org/ stats-maps 
9 https:// www.wis-tns.org/ sites/ default/ files/ api/ tns api search.py.zip 

Figure 2. The distribution of detection dates and public classification dates 

for SNe Ia relative to the J -band maximum light. About 40 per cent of all 

SNe Ia are classified more than a day before the NIR peak. 

spectroscopic classification of each target, which often occurs after 

the NIR-peak as seen in Fig. 2 . 

The reduction in efficiency can be mitigated in several ways. 

The Hawai‘i Supernova Flows team relays targets of interest to 

the Spectroscopic Classification of Astronomical Transients (SCAT) 

program (Tucker et al. 2022 ). The SCAT team classifies astronomical 

transients using spectra primarily from the University of Hawai‘i 

(UH) 2.2 m telescope (instrumentation described in more detail in 

Section 2.3.3 ), but has recently expanded to the Australian National 

University 2.3 m telescope through a collaboration with Melbourne 
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Table 1. The spectroscopic classifications of our observed targets show that 

a strong majority of our targets receive classification, and most of those 

classifications are some kind of SN Ia. We need to select targets before they 

are classified in order to observe the NIR peak, which precedes the optical 

peak by several days. This results in some observations of non-SN Ia objects, 

but these targets are promptly remo v ed from the observing queue. 

Type Number 

SN Ia-norm 637 

SN Ia-91T-like 25 

SN Ia-91bg-like 6 

Unclassified 327 

SN Ia-pec 3 

SN Ia-CSM 2 

SN Iax[02cx-like] 2 

SN Ia-SC 1 

SN II 93 

SN IIn 15 

SN Ic 12 

SN Ib 11 

CV 7 

SN IIP 6 

SN 4 

SN Ibn 4 

SN Ib/c 3 

SN I 3 

SN Ic-BL 3 

Nova 2 

SLSN-II 2 

LRN 1 

AGN 1 

SN Ib-Ca-rich 1 

Varstar 1 

SLSN-I 1 

Impostor-SN 1 

ILRT 1 

University. In a random sampling of TNS objects, one would expect 

10 per cent to be classified, but by providing SCAT with a list of 

candidates to observe, we increase the fraction of classified transients 

in our observed sample to about 73 per cent. Additionally, M ̈oller & 

de Boissi ̀ere ( 2020 ) demonstrated that using whole light curves, SNe 

Ia and non-SNe Ia can be identified with up to 95 per cent accuracy, or 

98 per cent accuracy when including host-galaxy information. Even 

when restricting the light curves to early times, the difference in 

light-curve shape between various SNe allows us to a v oid observing 

unclassified targets that are unlikely to be SNe Ia. The demographics 

of Hawai‘i Supernova Flows targets are presented in Table 1 . 

The following sections describe three untargeted surv e ys with 

publicly available light-curve generation services that we use to 

impro v e our triggering process, and as later detailed in Section 3 , 

impro v e our distance determinations. 

2.1.2 ATLAS 

ATLAS consists of four fully robotic, 0.5 m f /2 Wright Schmidt 

telescopes that image the entire night sky about once every two days 

(T onry 2011 ; T onry et al. 2018 ). This system was designed to identify 

potentially hazardous asteroids, and optimizations for that purpose 

affect the utility of ATLAS in studying astrophysical transients. 

An object’s orbital elements are fairly decoupled from its spectral 

properties, so to increase throughput, ATLAS uses two non-standard 

broad filters, a ‘cyan’ filter covering 420–650 nm and an ‘orange’ 

filter co v ering 560–820 nm. This aids its primary science mission 

by increasing ‘surv e y speed’ (Tonry 2011 ), but presents unique 

challenges for integrating observations with other filter systems, 

which we describe in Section 3.1 . 

Additionally, to specialize in moving object detection, the tele- 

scope system observes each field of view with four 30-s exposures 

o v er a 1-h interval. Under nominal conditions, each 30-s exposure 

reaches a median 5 σ detection limit of o ∼ 19 . 1 AB mag and 

c ∼ 19 . 6 AB mag. For stationary targets, these exposures can be 

co-added to impro v e depth by about 0.75 AB mag and increase 

the signal-to-noise-ratio (SNR) at a given brightness by a factor 

of 2. Ho we ver, we found that interobserv ational v ariation in point 

spread function (PSF), pointing, and atmospheric conditions made 

combining multiple exposures difficult. Instead, we combine the four 

photometric measurements of each object using an inverse variance 

weighted median, excluding any measurement more than three times 

its uncertainty away from the median flux. Additionally, we ignore 

measurements where the object is within 40 pixels of a chip edge or 

has an axis ratio greater than 1.5 and measurements where the sky 

brightness is under 16. 

Although ATLAS specializes in astronomy at the Solar system 

scale, it is a leading source of high-cadence data for studying 

astrophysical transients. Smith et al. ( 2020 ) describe the utility of 

ATLAS in this context and how to access data using the ATLAS 

F orced Photometry serv er. 10 Ha wai‘i Superno v a Flo ws continues to 

use the proprietary channel we developed to access light curves 

before the forced photometry server came online, but the data 

collected exactly match the publicly available data. 

2.1.3 ASAS-SN 

ASAS-SN is a globally distributed system of 20 fully robotic 

telescopes focused on disco v ering bright, nearby SNe (Shappee et al. 

2014 ; Kochanek et al. 2017 ; Hart et al. 2023 ). Each of the five ASAS- 

SN sites employs four 14 cm telescopes sharing a common mount. 

The original two sites used the Johnson V -bandpass, but since 2019 

all observations use the Sloan g -bandpass (Holoien et al. 2020 ). Each 

pointing consists of three dithered 90 s exposures, reaching median 

5 σ detection limits of 17.8 AB mag each (Kochanek et al. 2017 ). 

These exposures can be co-added to impro v e depth by about 0.6 AB 

mag and increase SNR by a factor of 
√ 

3 . The system images the 

entire sky about once every 20 h, with few losses due to weather 

because of the numerous sites. 

The ASAS-SN light curve server described in Kochanek et al. 

( 2017 ) has grown into the ASAS-SN Sky Patrol, 11 which serves 

light curves for any position on the sky. As with ATLAS, we access 

this publicly available data using a proprietary channel to minimize 

o v erheads. 

2.1.4 ZTF 

ZTF uses the Palomar 48-in Schmidt telescope to pursue science 

objectives across a range of cadences, depths, and areas, with an 

emphasis on SNe (Bellm et al. 2019 ; Graham et al. 2019 ). Through 

the public surv e ys, ZTF co v ered the night sky North of δ = −31 ◦

once every 3 d, increasing to once every 2 d with ZTF-II. 

ZTF uses custom g- , r- , and i- band filters designed to avoid 

prominent sky lines at the Palomar site. These filters reach 30- 

s exposure 5 σ limiting magnitudes of 20.8, 20.6, and 19.9 mag, 

10 https:// fallingstar-data.com/ forcedphot/ 
11 https:// asas-sn.osu.edu/ 
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respectively. Each field of view is typically imaged twice, once in 

ZTF- g and once in ZTF- r (Bellm et al. 2019 ). 

The ZTF alert distribution system produces o v er a million alerts 

each night, which feed into brokers that parse the data and make it 

publicly available. We access ZTF light curves through the Automatic 

Learning for the Rapid Classification of Events (ALeRCE) broker’s 

Python client 12 (F ̈orster et al. 2021 ). 

2.1.5 Trig g ering criteria 

When our half-hourly sync with TNS reveals a new target, we obtain 

light curves from ATLAS and ZTF, and if the target is brighter than 

18 mag in any filter we also obtain an ASAS-SN light curve. We then 

attempt to fit the data to an SN Ia model using SNooPy (Contreras 

et al. 2010 ; Burns et al. 2011 ) and SALT3-NIR (Pierel et al. 2022 ) 

(our fitting procedure is discussed further in Section 3 ). We manually 

inspect the light curves and fits to address two points: is the candidate 

consistent with an SN Ia and is it possible to obtain observations at 

or before the NIR peak? If the candidate does not have spectroscopic 

classification, we assess the quality of successful fits. If the residuals 

indicate a poor fit to the data, or if the reduced χ2 is greater than 

2, we reject the candidate or defer judgment until more photometry 

becomes available. We estimate the time of peak brightness in the 

NIR using the best-fitting SALT3-NIR parameters. If the candidate 

is either classified as an SN Ia or is photometrically consistent with 

one, and if it has not yet reached its NIR peak, we pursue NIR 

observations as described in the following section. 

2.2 Hawai‘i Superno v a Flo ws NIR photometry 

2.2.1 UKIRT – WFCAM 

F or NIR observations, Ha wai‘i Superno va Flows uses the Wide Field 

Camera (WFCAM) mounted on the UKIRT 3.8 m telescope owned 

and operated by the University of Hawai‘i 13 (Hodapp et al. 2018 ). 

UKIRT is a 3.8-m Cassegrain telescope on the summit of Maunakea. 

It has a declination limit of −40 ◦ < δ < 60 ◦07 ′ , granting access 

to about 3/4 of the sky. The Cambridge Astronomical Surv e y Unit 

(CASU) continues to provide data processing services and the Wide 

Field Astronomy Unit at the University of Edinburgh maintains the 

WFCAM Science Archive (Hambly et al. 2008 ) through which data 

are distributed. 

WFCAM is a NIR imager developed specifically for large-scale 

surv e ys (Casali, M. et al. 2007 ). Its four detectors are Rockwell 

Hawaii-II (HgCdTe 2,048 ×2,048) arrays (Hodapp et al. 2004 ) 

each co v ering 13 . 65 ′ × 13 . 65 ′ at a scale of about 0 . ′′ 4 per pix el. 

With its 0 . 9 ◦ diameter focal plane, WFCAM enabled the UKIRT 

Infrared Deep Sky Survey (Lawrence et al. 2007 ) and the UKIRT 

Hemisphere Surv e y (Dye et al. 2018 ). Hodgkin et al. ( 2009 ) explain 

that an astrometric distortion causes the pixel scale to vary radially, 

with per cent level differences in pixel area between the centre and 

edge of the focal plane. This changes the flux from the sky in each 

pixel, but their equation ( 1 ) provides a method for correcting this 

effect. We confirm this spatial variation and its resolution through 

the provided correction. 

WFCAM uses a set of five broad-band filters, ZYJHK, and two 

narrow-band filters, H2 1–0 S1 and 1.644 Fe II . Each detector is 

equipped with its own set of filters, with inter-detector filter variations 

12 https:// alerce.readthedocs.io/ en/ latest/ 
13 https://about.if a.haw aii.edu/ukirt/

leading to photometric differences of no more than 0.01 mag (Hewett 

et al. 2006 ). The performance of WFCAM in the abo v e filters 

was analysed in Hodgkin et al. ( 2009 ), who compared instrumental 

magnitudes against the Two Micron All Sky Survey (2MASS) Point 

Source Catalogue (Skrutskie et al. 2006 ). We use the J -band colour 

equation the y deriv e to conv ert 2MASS J and H magnitudes to 

WFCAM J magnitudes, which we use to calculate zero-points for 

each image. 

Hodgkin et al. ( 2009 ) also identified spatially correlated photomet- 

ric v ariability, e ven when accounting for the astrometric distortion 

mentioned previously. The exact cause of the issue is unknown, 

but CASU provides an empirically derived table of corrections on 

a monthly basis. We address this spatial correlation independently 

by treating each image’s zero-point as a second-order 2D polyno- 

mial centred on the SN candidate, inferred with the probabilistic 

programming language Stan (implemented through PyStan Riddell; 

Hartikainen & Carter 2021 ) for each image (Carpenter et al. 2017 ; 

Stan Development Team 2024 ). Stan provides a framework for 

specifying fully Bayesian statistical models and conditioning them on 

data using a no-U-turn sampler (NUTS; Hoffman & Gelman 2011 ; 

Betancourt 2013 ; Hoffman & Gelman 2014 ), an adaptive variant 

of Hamiltonian Monte Carlo sampling (HMC; Duane et al. 1987 ; 

MacKay 2003 ; Neal 2011 ). The scale of the effect is ∼0.021 mag 

from the centre to the edges of the image, comparable to the tables 

provided by CASU. 

2.2.2 Source c har acterization and galaxy subtr action 

The data distributed through the WFCAM Science Archive include 

catalogues of photometric parameters for sources extracted with 

the program imcore . 14 Initial testing highlighted issues in the 

catalogues when point sources coincided with extended sources. 

This compromised the photometry of most SNe Ia that were not 

exceptionally well separated from their host-galaxy. 

Leveraging the multiplicity of our observations, we analysed each 

supernova and host-galaxy image series as an ensemble using the 

forward-model (or scene-model) code from Rubin et al. ( 2021 ). In 

short, this procedure assumes a series of images contains a time- 

independent 2D surface (modelled with splines) and a time-varying 

point-source. This allows for degeneracies when ‘sharp’ features in 

the galaxy (such as the nucleus) coincide with the SN Ia, but late-time 

observations of the galaxy taken after the SN Ia has faded resolve 

this issue by essentially providing a traditional reference image for 

subtraction. We manually determine which host-galaxies require late- 

time observations using diagnostic images such as those in Fig. 3 . 

We pursue late-time observations if the galaxy model exhibits sharp 

features at the site of the SN, or if the residuals after subtracting 

either the galaxy or the galaxy and SN appear to have spatial 

structure. 

We use the subsample of targets with late-time observations to 

validate our methodology against an independent data reduction 

process using traditional image subtraction performed with ISIS 

(Alard & Lupton 1998 , 1999 ) and source characterization using 

tphot (Sonnett et al. 2013 ). The differences between the forward- 

modelled and image-subtracted photometry have a median of 0.008 

mag and a standard deviation of 0.07 mag. We also examine how the 

forward-modelling code performs without late-time observations, 

and find the median difference remains low at 0.02 mag, but the 

standard deviation increases to 0.826 mag. This increase is driven 

14 http:// casu.ast.cam.ac.uk/ surv e ys- projects/software- release/imcore 
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Figure 3. The forward-modelling code used to make photometric measurements produces diagnostic images showing the observed flux, the galaxy model, 

the residuals after subtracting the galaxy model (‘Residuals from Galaxy Model’), and the residuals after subtracting both the galaxy and supernova models 

(‘Residuals from Model’). We present a few examples representative of bad subtractions. SN 2020tul shows spatially correlated structure after galaxy subtraction, 

indicating the galaxy was not accurately modelled. Additionally, the supernova appears o v ersubtracted. This effect is more clearly seen in SN 2020xyh, which 

occurred near the nucleus of its host galaxy. The images on the left seem to show the galaxy has been subtracted, leaving only point sources at the location of 

the supernova and two nearby galaxies, but the images on the right show that SN 2020xyh appears to leave a small hole in some unmodelled structure. 

by a few cases where the forward-modelling code struggled to 

separate the galaxy and the transient. Fig. 4 shows the average 

difference in a galaxy’s forward-modelled photometry with and 

without late-time observations as a function of projected separation 

between the supernova and host-galaxy nucleus. The histogram 

shows that in the majority of cases, late-time observations do not 

result in significantly different photometry. In a few cases, the 

observations break degeneracies in the forward-modelling process, 

resulting in photometry up to a few magnitudes different. These 

cases are visually conspicuous, as seen in Fig. 3 . In Appendix A , 

we fit a Gaussian mixture-model to the photometric differences 

( �m ) using Stan (Carpenter et al. 2017 ; Stan Development Team 

2024 ) and find 74.0 per cent of the differences appear tightly 

dispersed ( �m ∼ N (0 . 01 ± 0 . 004 mag , (0 . 08 ± 0 . 005 mag ) 2 )), and 

the remaining 26.0 per cent vary much more dramatically ( �m ∼
N (0 . 33 ± 0 . 050 mag , (0 . 68 ± 0 . 037 mag ) 2 )). The fraction of targets 

reliant upon late-time observations for accurate photometry is vastly 

exaggerated in this analysis because the subsample comprises only 

targets manually determined to potentially benefit from late-time 

observations. Forward-modelled photometry is thus as accurate as 

traditional image subtraction, and more economical in that it often 

does not require a late-time observation. 

2.3 Host galaxy redshifts 

Although dozens of surv e ys hav e collectiv ely measured redshifts 

for millions of galaxies, about half of the SNe Ia in our sample 

have host galaxies with no publicly available redshifts. Furthermore, 

the redshift measurements that are publicly available come from 

heterogeneous methodologies and at times are inconsistent with other 

measurements of the same galaxy. Here, we describe how we identify 

host-galaxies for each SN Ia, incorporate data from extant surveys, 

and obtain redshifts for galaxies that do not have publicly available 

spectroscopic redshifts. 

2.3.1 Identifying host galaxies 

All SN host galaxies in our surv e y were identified manually. This 

decision introduces an unquantified systematic error in our final 

peculiar velocity measurements due to the possibility of inaccurate 

host galaxy identification. Without a detailed simulation, it is unclear 

how often we misidentify host galaxies. However, the error rate is 

definiti vely lo wer than an algorithmic approach we tested, which 

produced obvious misidentifications. This alternative approach is 

detailed in Appendix B . 

The SN Ia-galaxy associations produced manually were flagged if 

the host galaxy was ambiguous or otherwise problematic. These 

manual flags allow us to exclude these SNe Ia in our analyses, 

but introduce a hard-to-quantify bias (Gupta et al. 2016 ), and will 

not scale well if operations significantly expand. Recent work (e.g. 

Aggarwal et al. 2021 ; Qin et al. 2022 ) has formalized various 

methods of associating transient events with their host-galaxies using 

objective parameters, but still critically depends on the completeness 

and accuracy of galaxy catalogues. Automatic association will 

become necessary when our sample expands, but we will continue 

to associate SNe Ia and their host galaxies manually while it remains 

accurate and practical. 
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Figure 4. The differences between measurements made with and without late-time observations are minimal for a large number of targets, indicating accurate 

reconstruction of the galaxy surface profile. Ho we ver, there are many targets where a late-time observation is crucial for decoupling the SN and host galaxy. The 

abundance of targets needing late-time observation is biased high in the plotted data because all targets were manually determined to potentially benefit from 

late-time observations. 

2.3.2 Incorporating redshifts from literature 

Before we pursue spectroscopic observations to find each host- 

galaxy’s redshift, we search for existing measurements in the 

HyperLEDA data base (Paturel et al. 2003a , b ; Makarov et al. 

2014 ), which is based on the Lyon-Meudon Extragalactic Database 

(LEDA; Paturel et al. 1988 ) and Hypercat (Prugniel & Simien 1996 ). 

This significantly reduces our observational needs, but the variety 

of measurement techniques necessitates the careful handling of 

systematic differences. HyperLEDA uses a system of quality flags 15 

to hierarchically combine optical and radio redshift measurements, 

and applies corrections on a reference by reference level to minimize 

systematic offsets between data sources (Paturel et al. 1997 ). If a host 

galaxy does not have a radial velocity in HyperLEDA, we pursue 

spectroscopic observations. 

2.3.3 UH 2.2 m – SNIFS 

The primary instrument we use for measuring host-galaxy redshifts 

is the Supernova Integral Field Spectrograph (SNIFS; Lantz et al. 

2004 ) on the UH 2.2 m Telescope. SNIFS samples a 6 ′′ × 6 ′′ field 

with 0 . ′′ 4 × 0 . ′′ 4 spaxels, each of which produces two spectra, one 

blue (320–560 nm, R (430 nm) ∼ 1000) and one red (520–1000 nm, 

R (760 nm) ∼ 1300). Our exposure times are manually chosen based 

on galaxy surface brightness, atmospheric conditions, and galaxy 

spectral type, with late-type galaxies typically featuring emission 

lines and thus requiring less integration. The average exposure time 

was 1800 s. We use the data reduction pipeline described in Tucker 

et al. ( 2022 ) to produce 1D spectra. Absolute wavelength calibration 

15 http:// leda.univ-lyon1.fr/ a110/ 

is provided by arc-lamp exposures taken immediately after each 

science exposure. We include the average discrepancies between the 

arc spectra and their models when calculating redshift uncertainties, 

though the contribution is typically sub-dominant at ∼1 km s 
−1 

. All 

galaxy spectra are converted to the heliocentric rest frame. 

2.3.4 Subaru – FOCAS 

When a galaxy is too faint for SNIFS, we use the 8.2 m Sub- 

aru telescope’s Faint Object Camera and Spectrograph (FOCAS; 

Kashikawa et al. 2002 ) with its 300B grating with no filter (365–

830 nm, R (550 nm) ∼ 700) and a 0 . ′′ 6 or 0 . ′′ 8 wide slit depending on 

the atmospheric conditions (Ebizuka et al. 2011 ). Subaru’s mirror has 

o v er 13 times more light-gathering power than the UH 2.2 m mirror. 

This allows us to increase our limiting magnitude from r < 19 . 1 to 

r < 22 . 9 mag using comparable exposure times. 

In addition to the increased light-gathering power, FOCAS’s slit 

spectroscopy has pro v en necessary for v ery diffuse galaxies. Our 

reduction pipeline for SNIFS spectra struggles with sky subtraction 

if the entire 6 ′′ × 6 ′′ microlens array is filled. In such a case, we would 

need to obtain a sky observation for proper subtraction, doubling the 

exposure time required per object. For each galaxy, we perform a 

900 s exposure and examine the summit-pipeline-reduced spectrum. 

If the galaxy has no strong emission lines, we pursue one or two 

additional 900 s exposures as deemed necessary by the observer. 

We perform bias subtraction and flat-fielding data using the routines 

described in the FOCAS Cookbook. 16 We use skylines for relative 

wavelength calibration, and use Subaru’s location, the time of each 

16 https:// subarutelescope.org/ Observing/ DataReduction/ Cookbooks/ 

FOCAS cookbook 2010jan05.pdf
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Figure 5. We compare the differences between our measured SNIFS veloci- 

ties and HyperLEDA’s aggregated velocities, finding two distinct groups. The 

12 galaxies on the left side of the histogram have an average difference of 

27 km s 
−1 

and a standard deviation of 48 km s 
−1 

. The four galaxies on the right 

are offset by several hundred km s 
−1 

. Three of the four HyperLEDA velocities 

come from relatively older sources, and could be the result of inaccurate 

methodologies. Each galaxy in the histogram also has a marker with a y - 

value corresponding to its rescaled H α equivalent width. The presence of 

weak equi v alent widths in the sample with low velocity differences suggests 

that the four discrepancies are not due to weak spectral features. 

exposure, and the position of each target to transform all spectra to a 

heliocentric rest frame. 

2.3.5 Redshift determination and uncertainties 

Once we have spectra from either SNIFS or FOCAS, we com- 

pare them with spectral templates from SDSS DR5 17 (Adelman- 

McCarthy et al. 2007 ) using the weighted cross-correlation routine in 

the SeeChange Tools 18 (Hayden et al. 2021 ). We tested the accuracy 

of this method by calculating redshifts for 158 galaxies using spectra 

from SDSS DR12, removing cross-correlations with an r-value less 

than 5 (as defined in Tonry & Davis 1979 ), and comparing our 

recession velocities with those in HyperLEDA. The differences 

averaged to ∼7 km s 
−1 

with a standard deviation of ∼45 km s 
−1 

. 

Thus, we include a 45 km s 
−1 

uncertainty when inferring host-galaxy 

redshifts using this cross-correlation technique. 

Additionally, we looked for systematic differences in absolute 

wavelength calibration between redshifts from literature and redshifts 

from our SNIFS and FOCAS spectra. We observed 24 galaxies 

with redshifts available in HyperLEDA using SNIFS, and 4 using 

FOCAS. Five of our SNIFS spectra had insufficient SNR and are 

not included in this analysis. The 19 remaining spectra yielded 

redshifts within about 100 km s 
−1 

of their HyperLEDA values, with 

a few exceptions. We measure five galaxies to have redshifts several 

hundred km s 
−1 

greater than their literature values. In descending 

order of discrepancy, these galaxies are PGC 40363, 4579, 29889, 

13428, and 1033041, shown in the right side of Fig. 5 . These 

galaxies include early and late-type morphologies, emission and 

absorption spectra, and their colours are not at the extremes of the 

19 galaxy sample. The only unifying theme is that HyperLEDA 

sources the PGC 40363, 4579, and 13 428 from relatively older 

17 https:// classic.sdss.org/ dr5/ algorithms/ spectemplates/ spectemplatesDR2. 

tar.gz 
18 https:// zenodo.org/ record/ 4064139#.YHkLvC1h2X0 

sources (Eastmond & Abell 1978 ; Sakai, Giovanelli & Wegner 

1994 ; Thoraval, Boiss ́e & Duvert 1999 ), whereas PGC 29 889 and 

1 033 041 have more recent measurements, such as those from SDSS 

or 6dF. HyperLEDA aggregates and weights various sources, which 

should privilege more accurate observations, but these galaxies have 

only been spectroscopically observed once or twice before our 

observations with SNIFS. It is unclear why our measured redshifts 

are uniformly greater than their literature values. Disregarding these 

fiv e e xceptions, the av erage dif ference between the SNIFS-deri ved 

and HyperLEDA redshifts is ∼27 km s 
−1 

with a standard deviation of 

∼48 km s 
−1 

. Including them, the average and standard deviation rise 

to ∼81 and ∼102 km s 
−1 

, respectively. We subtract ∼27 km s 
−1 

from 

our SNIFS-derived redshifts and interpret the ∼48 km s 
−1 

standard 

deviation as a rough confirmation of the previously identified ∼45 km 

s 
−1 

uncertainty. We also note that redshifts in HyperLEDA that 

have not been verified through repeated observations could benefit 

from additional measurements. Fig. 6 shows the distributions of 

heliocentric redshifts and g -band Kron magnitudes for the values 

taken from the literature and the values calculated with either SNIFS 

or FOCAS. 

We note that galaxies in larger groups will have an additional 

velocity term due to intracluster dynamics, and that using the group 

redshift would likely probe large-scale flows more robustly, as 

done in Peterson et al. ( 2022 ). Ho we ver, pursuing spectroscopic 

observations for all members of an associated group would reduce 

the number of SNe Ia host galaxies we could observe. We note 

that our analysis will benefit from future large spectroscopic surv e ys 

such as the Multi-Object Spectroscopy of Transient Hosts surv e y 

(MOST Hosts; Soumagnac et al. 2024 ) Dark Energy Spectroscopic 

Instrument (DESI; Collaboration 2022 ). 

All redshift uncertainties are converted to uncertainties in distance 

modulus via the distance–redshift relation for an empty universe 

presented in Kessler et al. ( 2009b ): 

σ z 
μ = σz 

(
5 

ln 10 

)
1 + z 

z(1 + z/ 2) 
. (3) 

Different cosmological models produce negligible differences in 

σ z 
μ, which is already subdominant compared to other sources of 

uncertainty in the distance modulus. 

3  DISTAN CE  DETERMINATION  

In this section, we describe the specific methodology used to convert 

our data into distance moduli using SNooPy and SALT3-NIR as 

they were the only publicly available fitting programs that can utilize 

optical and NIR observations when our analyses began. We only 

intend to describe our fitting procedures to contextualize the results 

presented in Section 6 , and as such we will not be claiming one 

program is more accurate or more appropriate for our use case. We 

leave such an analysis for future work, where we will also incorporate 

fits from BayeSN, which was made public with Mandel et al. ( 2022 ), 

and has been updated with Grayling et al. ( 2024 ). 

3.1 SNooPy 

SNooPy is a Python package designed for fitting light-curves of 

SNe Ia from the Carnegie Supernova Project (CSP; Contreras et al. 

2010 ; Burns et al. 2011 ). It estimates luminosity distances by 

comparing data spanning flux, phase, and a shape parameter to 

filter-specific 3D models (Burns et al. 2011 ). These models were 

produced using high-cadence observations of SNe Ia in the CSP 

photometric system (Hamuy et al. 2006 ). We use version 2.6.0, which 
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Figure 6. The normalized histograms of targets from SNIFS, FOCAS, and literature in z show distinct redshift distributions. Each galaxy’s Pan-STARRS g 

Kron mag is plotted against redshift to show that the distribution in magnitudes are also distinct. Triggering only on transients in galaxies with redshifts in the 

literature biases the sample towards lower redshifts and brighter galaxies. By triggering on galaxies regardless of redshift availability, we mitigate this issue. 

does not yet include the impro v ed models of Lu et al. ( 2023 ). We 

look forward to reprocessing our sample when SNooPy incorporates 

these templates. Decreased systematic uncertainties in the NIR SED 

could increase the weight of J -band photometry in a multiband fit. 

SNooPy is described by the CSP 
19 as ‘not a fixed algorithm for 

fitting light curves, but rather a collection of tools that are useful for 

building your own fitter (or fitting interactively)’. As such, there are 

a variety of non-trivial decisions that influence the distance moduli 

inferred using SNooPy . In version 2.6.0, there are three primary 

decisions: 

(i) Parametrizing shape with �m 15 or s BV . 

(ii) Selecting one of the available models: EBV model, 

EBV model2, max model, max model2, Rv model, color model, 

SALT model, and MLCS model. 

(iii) Selecting a ‘calibration’ to describe the correlation between 

SN parameters and absolute magnitude. 

(iv) Selecting a reddening law. 

We describe and qualitatively justify our choices here, but refer the 

reader to Appendix C for a quantitative analysis exploring alternative 

decisions. 

19 https:// csp.obs.carnegiescience.edu/ data/ snpy 

3.1.1 Choice of shape parameter 

SNooPy offers two distinct ways to characterize the shape of an SN 

Ia light curve; one being the decline rate parameter ( �m 15 ; Phillips 

et al. 1999 ), and the other being the colour-stretch parameter ( s BV ; 

Burns et al. 2014 ). The latter is less sensitive to changes in reddening 

(varying ∼ 1 per cent across A V = 3 mag) and does not become 

degenerate for fast-declining SNe Ia ( s BV < 0 . 7), as seen with �m 15 

(Burns et al. 2014 ). As such, we use s BV when characterizing light 

curves with SNooPy . 

3.1.2 Choice of model 

The SNooPy models are described more comprehensively in the 

online documentation 20 , but we summarize them here to provide 

context for our decision. 

The EBV model and EBV model2 use light curves in numerous 

filters to infer four parameters of each SN Ia: the shape, the time of B - 

band maximum, the colour excess of the host galaxy ( E( B − V ) host ), 

and distance modulus ( μcos ). The EBV model is restricted to using 

�m 15 while the EBV model2 can use that or s BV to parametrize 

shape. They also differ in that the former model approximates 

the luminosity–shape correlation as a linear function using the six 

calibrations presented in Folatelli et al. ( 2010 ), whereas the latter 

20 https:// users.obs.carnegiescience.edu/ cburns/ SNooPyDocs/ html/ models. 

html 



634 A. Do et al. 

MNRAS 536, 624–663 (2025) 

model uses a quadratic function calibrated with additional CSP 

data. In the EBV model2, the cosmological distance modulus μcos 

is related to the observed apparent magnitude in observer-frame 

bandpass OF at time t since B-band maximum ( m OF ( t)) using a 

template in rest-frame bandpass RF with shape factor s BV at de- 

redshifted time since B-band maximum t ′ ( T RF ( t 
′ , s BV )) with the 

following equation: 

m OF ( t) = T RF ( t 
′ , s BV ) + P 0 + P 1 ( s BV − 1) + P 2 ( s BV − 1) 2 

+ μcos + R OF E( B − V ) MW + R RF E( B − V ) host 

+ K OF,RF ( T RF ( t 
′ , s BV ) , z, R OF , R RF ) , (4) 

where P 0 , P 1 , and P 2 are polynomial coefficients defined by the 

calibration, R OF and R RF are the total-to-selective absorptions 

of the Galactic and host galaxy dust, and K OF,RF is the cross- 

band k -correction (described in Section 3.1.6 ). R OF and R RF are 

calculated by using an R V -dependent reddening law to compute 

synthetic extinction values. We assume the Galactic average of 

R V = 3 . 1 (Schlafly & Finkbeiner 2011 ) for calculating R OF , and 

calculate R RF with the calibration-provided value for host galaxy 

R V . If parametrizing shape with �m 15 , the template term changes to 

T RF ( t 
′ , �m 15 ) and the shape polynomial’s ( s BV − 1) terms change 

to ( �m 15 − 1 . 1). 

The max model and max model2 also simultaneously fit light 

curves in multiple bandpasses, but relax the requirement that the 

photometry follows a well-characterized reddening law. Like the 

previous models, the two max models fit for a global shape parameter 

and time of B -band maximum, but rather than fit for a distance 

modulus and host galaxy colour excess, these models fit for a peak 

apparent magnitude in each rest-frame bandpass ( m RF ). 

m OF ( t) = T RF ( t 
′ , s BV ) + m RF + R OF E( B − V ) MW 

+ K OF,RF ( T RF ( t 
′ , s BV ) , z) (5) 

m RF is not necessarily equal to m RF ( t = 0) because the evolution 

of SN Ia SEDs produces peaks in different bandpasses at different 

times (e.g. Kasen, Thomas & Nugent 2006 ; Krisciunas et al. 2009 ; 

Phillips 2012 ; Burns et al. 2014 ). While distance moduli are not 

fitting parameters, they can be calculated based on each apparent 

maximum using a Tripp-like formula, such as the one presented in 

equation ( 4 ) of Burns et al. ( 2018 ): 

m X = P 0 + P 1 ( s BV − 1) + P 2 ( s BV − 1) 2 + μcos + βmax ( m Y − m Z ) , 

(6) 

where m X , m Y , and m Z are the peak apparent magnitudes determined 

by the max model fit in the bandpasses X, Y , and Z (these arbitrary 

labels are not to be confused with the Y or Z bandpasses). The 

difference between the max model and max model2 is that the latter 

allows for each bandpass to correspond to a unique time of B-band 

maximum light. 

The Rv model is similar to the EBV model, in that it uses �m 15 

and models the luminosity–shape correlation as a linear function. 

The primary difference is that the total-to-selective extinction of the 

host galaxy is a fitting parameter rather than a global constant taken 

from the calibration. Additionally, rather than using the Folatelli 

et al. ( 2010 ) values for calibrating luminosity, shape, and colour, this 

model uses values from Burns et al. ( 2011 ). 

The color model infers the shape parameter (only s BV ), the time 

of B-band maximum, and the peak apparent B magnitude, but also 

uses the difference between the observed colours and the intrinsic 

colours found in the 81 SNe Ia in Burns et al. ( 2014 ) to infer the 

host galaxy colour excess and R V . Unfortunately, this model requires 

observations in the rest-frame B band, and as such we cannot evaluate 

this model. It is possible to use cross-band k -corrections to infer 

a rest-frame B-band light curve, but doing so would increase our 

vulnerability to differences between the real and modelled SED. 

Lastly, the SALT model and MLCS model are wrappers for 

running the SALT2 and MLCS2k2 fitters in the SNooPy framework. 

Neither SALT2 (Guy et al. 2007 ) nor MLCS2k2 support NIR 

bandpasses (Jha et al. 2007 ), so we do not consider these models 

for Hawai‘i Supernova Flows. 

We decide to use EBV model2 and the max model because they 

support the use of s BV and quadratic luminosity–shape correlations, 

both of which are fa v oured o v er their alternativ es (Burns et al. 2014 ). 

Furthermore, recent work has made use of both the EBV model2 

(Jones et al. 2022 ; Phillips et al. 2022 ; Pierel et al. 2022 ; Peterson 

et al. 2023 ) and the max model (Burns et al. 2018 ; Phillips et al. 2022 ; 

Lu et al. 2023 ; Uddin et al. 2023 ). We do not use the color model 

because our observed bandpasses do not o v erlap with rest-frame B 

band in the majority of the redshift range we co v er. We do not use the 

max model2 because our J -band light curves are sparse and often 

times insufficient for estimating the time of B-band maximum alone. 

3.1.3 Choice of calibration 

The choice of ‘calibration’ refers to the values parametrizing the 

correlation between luminosity, shape, and colour (e.g. P 0 , P 1 , P 2 , 

and βmax in equation 6 ). These values come from fits to samples 

of SNe Ia observed by CSP. While the method of fitting varies ( χ2 

minimization in Folatelli et al. ( 2010 ) and Markov chain Monte Carlo 

(MCMC) methods in Burns et al. ( 2011 , 2014 , 2018 )), differences 

in calibration values are primarily driven by variation in the samples 

used. As an example, the first calibration from Burns et al. ( 2018 ) 

was produced from 137 SNe Ia, but there are alternative calibrations, 

one excluding SNe Ia with s BV values less than 0.5, one excluding 

those with m B –m V pseudo-colours greater than 0.5 mag, and one 

excluding those that meet either criteria. For our EBV model2 fits, 

we use the calibration from Burns et al. ( 2018 ) based on the full 

sample since the reduced χ2 values of the fits using the Burns et al. 

( 2018 ) calibrations are typically lower than those using the Folatelli 

et al. ( 2010 ) calibrations (details in Appendix C ) and because there 

are SNe Ia in our sample that have s BV values less than 0.5 and 

m B –m V colours greater than 0.5 mag. For our max model fits we use 

Stan (Carpenter et al. 2017 ; Stan Development Team 2024 ) to infer 

the nuisance parameters P 0 , P 1 , P 2 , and βmax using our photometry. 

We omit the term correlating luminosity and host-galaxy mass to 

maintain consistency with EBV model2, which does not factor in 

galaxy mass. 

3.1.4 Choice of reddening law 

The final decision point is the choice of reddening law. SNooPy ’s 

default reddening law (O94; O’Donnell 1994 ) is a corrected version 

of the CCM89 reddening law (Cardelli et al. 1989 ). It also natively 

supports the original, uncorrected version, as well as the redden- 

ing laws F99 (Fitzpatrick 1999 ) and FM07 Fitzpatrick & Massa 

( 2007 ). We have performed minor modifications to the SNooPy 

source code 21 to accommodate the reddening laws provided in the 

dust extinction package (Gordon 2024 ). After comparing fits 

produced with the O94, F99, and F19 (also referred to as F20; 

Fitzpatrick et al. 2019 ) reddening laws (details in Appendix C ) we 

find that the reduced χ2 values are typically lowest when using 

21 Modified version available at https:// github.com/ ado8/ snpy 
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the F19 reddening law. Thus we use the F19 reddening law for 

all SNooPy fits, which applies to both host galaxy and Galactic 

extinction in the EBV model2, but only Galactic extinction in the 

max model. We assume the total-to-selectiv e e xtinction parameter 

for Galactic dust is R V = 3 . 1 and use the R V value defined in the 

Burns et al. ( 2018 ) calibration for host galaxy dust. Galactic colour 

excess values comes from the SFD dust map (Schlegel, Finkbeiner & 

Davis 1998 ) with the 0.86 scaling factor described in Schlafly & 

Finkbeiner ( 2011 ) (hereafter, the rescaled SFD dust map). 

3.1.5 Estimating uncertainties 

SNooPy provides estimates of statistical uncertainty in all inferred 

parameters following either frequentist or Bayesian conventions. 

Initial fits without priors produce statistical errors using the standard 

frequentist convention of inverting the Hessian matrix at the best- 

fitting parameters to produce a covariance matrix. 22 When this matrix 

is singular, as can happen with undersampled light curves or for 

light curves of non-SNe Ia, the model becomes insensitive to one 

or more parameters and will not infer values for any of them. After 

the initial fit, SNooPy offers an MCMC method which samples 

their posterior distributions with the package emcee (Foreman- 

Mackey et al. 2013 ). The default priors are based on previous 

work with the CSP sample, but can be o v erwritten with arbitrary 

functions. 

In addition to providing statistical errors, SNooPy provides an un- 

certainty floor for each parameter. The floor in the distance modulus 

reflects the uncertainty in the various terms used to standardize SNe 

Ia luminosities. These terms depend on the model used, but generally 

include filter-specific measurements of peak absolute magnitude and 

how that changes with s BV . Thus, the distance modulus accuracy has 

a systematic floor determined by the sample used to calibrate it and 

becomes less accurate as the shape factor deviates from its normal 

value. The other floors have constant values derived from various 

analyses. The uncertainty floor in s BV is 0.03, and comes from the 

dispersion around a quadratic fit of s BV to the SALT x 1 parameter 

(discussed in Section 3.2 ) (Burns et al. 2014 ). The host galaxy 

colour excess floor is 0.06 mag, coming from the intrinsic dispersion 

of the m B –m V colours in the CSP sample after correcting for 

reddening. In the max model, the peak magnitudes in each bandpass 

are presented with uncertainty floors based on Folatelli et al. ( 2010 ). 

Lastly, the time of B -band maximum is fixed to have an uncertainty 

floor of 0.34 d. We define the uncertainty on each parameter 

estimate as the quadrature sum of the statistical uncertainty and the 

floor. 

3.1.6 K- and S-corrections 

Observations of SNe Ia at significant redshift can lead to a mismatch 

between the observed and rest-frame spectral energy distribution 

(SEDs). One could almost trivially account for this issue in spectral 

observations if the redshift is known (telluric corrections aside), but 

photometric observations require some knowledge of the underlying 

SED to determine what is shifted into and out of the ef fecti ve 

bandpass. The adjustments needed to compensate for the mismatches 

between observed and emitted SEDs are called ‘ K -corrections’ 

(Humason, Mayall & Sandage 1956 ; Oke & Sandage 1968 ). 

22 https:// users.obs.carnegiescience.edu/ cburns/ SNooPyDocs/ html/ 

fitting LM.html 

Similarly, variations in an optical system’s transmission function 

leads to differences in instrumental magnitudes that depend on the 

SED observed. SNooPy models are defined in the CSP photometric 

system, and using data from other bandpasses would introduce 

systematic errors in the parameter inferences. The typical treatment 

for managing multiple filter sets is to observe a range of standard 

stars and perform linear fits of colour terms to transform one set 

to the other. Using stellar standards produces equations capable of 

converting stellar observations between filter sets, but SNe Ia have 

non-stellar SEDs, and there are no perennially available standard SNe 

Ia. The solution is to apply an ‘S-correction’ (Burns et al. 2011 ). 

SNooPy applies both of these corrections simultaneously by 

calculating a ‘cross-band K -correction’ (Kim, Goobar & Perlmutter 

1996 ) using the spectral library from Hsiao et al. ( 2007 ), which com- 

bines ∼ 600 heterogeneous spectra of ∼ 100 SNe Ia. Although the 

library co v ers a wide breadth, the available spectra cannot represent 

every kind of SN Ia at every possible epoch. To account for levels of 

reddening and intrinsic colours not seen in the spectral library, Hsiao 

et al. ( 2007 ) describe a ‘mangling’ process by which template spectra 

can be multiplied by a smoothly varying spline to match observed 

colours. The statistical error on each K -correction and mangling 

varies between about 0.01 and 0.04 mag depending the amount of 

o v erlap between the redshifted rest-frame CSP bandpass and the 

observ ed bandpass. P airs with little o v erlap rely on e xtrapolation, 

and are more sensitive to the spectral template used (Hsiao et al. 

2007 ), whereas a rest-frame bandpass that maps exactly on to an 

observed bandpass would be completely insensitive to the underlying 

spectrum. The ATLAS c and o bandpasses are wider than those in 

the CSP photometric system, and so they necessarily belong to the 

former category. 

3.2 SALT 

SALT fits SNe Ia light curves using a different approach (Guy et al. 

2005 , 2007 , 2010 ). Roughly speaking, where SNooPy attempts to 

fit observed light curves to well studied light curves, SALT attempts 

to fit observed light curves to a spectral time series. This model is 

built from a term that describes the phase-independent effect of the 

colour law ( CL ( λ)) and two or more surfaces spanning flux, phase 

( p), and wavelength ( λ), whose combinations describe the spectral 

flux and evolution of all SNe Ia: 

F ( p, λ) = x 0 [ M 0 ( p, λ) + x 1 M 1 ( p, λ) + . . . ] × exp [ c × CL ( λ)] , 

(7) 

where M i is the ith surface, x i scales how much that surface 

contributes to the spectral flux, and c scales the colour law (Guy et al. 

2007 ). The surfaces are empirically derived, with M 0 encapsulating 

the ‘standard’ SN Ia spectral time series while the remaining surfaces 

describe all other modes of variation. This means the surfaces 

themselves may not correlate exactly with the physical parameters 

of SNe Ia, but instead may be understood as principal components. 

With that said, x 1 is often considered a shape factor like s BV or 

�m 15 since light-curve shape seems to be the dominant mode of 

variation. Each combination of x terms defines an SED and evolution 

that can be further sculpted by c, the colour law, and redshift. 

At any observational epoch, a filter set’s transmission function is 

used to make synthetic magnitudes, which can be compared to real 

photometry. Thus one can infer the most likely SALT parameters and 

their uncertainties given observations of a particular SN Ia. These 

parameters provide a distance modulus ( μ) by the equation 

μ = m 
∗
B − M + αx 1 − βc, (8) 
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where m 
∗
B is the rest-frame Bessell B-band magnitude (Perlmutter 

et al. 1997 ), M is the absolute magnitude of an SN Ia with x 1 = 

c = 0, and α and β are standardization coefficients. While m 
∗
B can 

be approximated by −2 . 5 log 10 ( x 0 ) + const. , we calculate its value 

using synthetic photometry based on model parameters. 

Rubin ( 2020 ) suggested that SNe Ia luminosity variability may 

consist of three to five independent parameters. Attempts to stan- 

dardize SNe Ia luminosities using one or two parameters report an 

‘intrinsic scatter’ that cannot be explained by measurement error 

alone (e.g. Scolnic et al. 2018 ; Brout et al. 2022 ). Rose et al. ( 2020 ) 

explored the differences between two and seven-component fits using 

SNEMO (Saunders et al. 2018 ), and found that only CSP data had the 

SNR and co v erage to constrain the additional parameters. Put another 

w ay, a tw o-component fit with SALT compares to a seven-component 

fit with SNEMO for all but the most e xtensiv ely co v ered light curv es. 

With that in mind, we use the two-component fits of SALT3-NIR 

(Pierel et al. 2022 ). The only other SALT model that can process 

NIR light curves is SALT2-Extended, but it was trained on optical 

data extrapolated to the NIR and is thus insensitive to correlations 

between SALT parameters and NIR light-curve properties (Pierel 

et al. 2018 ). SALT3-NIR was jointly trained on the optical sample of 

1083 SNe Ia from Kenworthy et al. ( 2021 ) and 166 SNe Ia with NIR 

data (Pierel et al. 2022 ). We access the SALT3-NIR model through 

the Python package SNCosmo version 2.10.4 (Barbary et al. 2022 ), 

and utilize the convenience functions therein to account for Galactic 

extinction using the rescaled SFD dust map and the reddening 

law from Fitzpatrick et al. ( 2019 ) with R V = 3 . 1. Notably, we use 

SNCosmo to calculate model fluxes given a set of SN Ia parameters, 

but do not use the built-in functions to estimate those parameters. 

Instead, we use the fitting methodology of Rubin et al. ( 2023 ), 

defining a χ2 function and using a downhill-simplex algorithm to 

iteratively identify the SALT parameters that minimize that function. 

3.2.1 Estimating uncertainties 

The covariance matrices we obtain for each object’s best-fitting SALT 

parameters (time of B-band maximum light, x 0 , x 1 , and c) reflect 

three sources of uncertainty. Our NIR photometric methods produce 

correlation matrices, but we assume the measurements and errors 

from ATLAS, ASAS-SN, and ZTF are completely independent. We 

incorporate the SALT3-NIR model uncertainties during our fitting 

process. Lastly, we repeat each fit with slightly varied inputs to 

calculate deri v ati ves between the fitting parameters and quantities 

like redshift, Galactic colour excess, and the photometric zero-point 

in each bandpass. 

The error explicitly associated with K -corrections and S - 

corrections is ostensibly remo v ed due to SALT’s use of spectra when 

fitting. Ho we ver, if the intrinsic SED of an SN Ia differs from the 

form of equation ( 7 ) truncated after i = 1, the synthetic photometry 

will be inaccurate. We assume these errors are encapsulated in the 

model uncertainties. 

The distance modulus in equation ( 8 ) requires specifying the 

standardization coefficients α and β, which are typically calibrated 

empirically. Fitting for α and β by minimizing dispersion in the 

Hubble residuals introduces a form of Eddington bias due to 

uncertainties in x 1 and c. We estimate the standardization coefficients 

using a Bayesian framework called UNITY (Unified Nonlinear 

Inference for Type-Ia cosmologY; Rubin et al. 2015 , 2023 ). UNITY 

assumes a Gaussian and skew normal distribution for the population 

distributions of the true value of each SN’s x 1 and c, respectively, and 

uses flat hyperpriors for the means of each distribution and the log 

of their standard deviations. This approach a v oids Eddington bias, 

which would suppress both coefficients. Although UNITY can model 

α and β as broken-linear functions, we assume the coefficients are 

constants. In Section 6.2 , we identify and discuss a systematic issue 

tied to this decision. 

4  VA LID  ATIN G  D  ATA  A N D  M E T H O D O L O G Y  

In this section, we validate our data reduction and modelling 

techniques by partially reproducing the analysis of the DEHVILS 

surv e y (Peterson et al. 2023 ) using our NIR photometry and fit- 

ting methodologies. To e v aluate the dif ferences produced by these 

variations, we compare each inferred distance modulus ( μfit ) and 

the theoretical distance modulus at its corresponding redshift in a 

fiducial cosmology ( μcos ). These Hubble residuals are calculated as 

�μ = μfit − μcos (9) 

μcos = 5 log 10 

[ ( cz CMB 

H 0 

)( 1 + z hel 

1 + z CMB 

)(
1 + 

1 − q 0 

2 
z CMB 

)] 
+ 25 , 

(10) 

where H 0 is the Hubble constant and q 0 is the cosmic deceleration 

parameter, which we take as −0 . 53 (Planck Collaboration et al. 

2020 ). As stated in Burns et al. ( 2018 ), the factor of (1 + z hel ) / (1 + 

z CMB ) accounts for observ ational ef fects which should be corrected 

in a heliocentric rest frame. In each sample we define H 0 such that 

the inverse-variance weighted average of the Hubble residuals is 0 

mag. 

The dispersion in �μ is typically characterized through RMS 

(e.g. Blondin, Mandel & Kirshner 2011 ; F ole y et al. 2017 ; Av elino 

et al. 2019 ; Jones et al. 2022 ; Pierel et al. 2022 ; Peterson et al. 

2023 ); inverse-variance weighted RMS (WRMS; e.g. Blondin et al. 

2011 ; F ole y et al. 2017 ; Av elino et al. 2019 ), or normalized median 

absolute deviation (NMAD; e.g. Boone et al. 2021 ; Peterson et al. 

2023 ). SNe Ia analyses repeatedly find that measurement uncertainty 

alone cannot explain the observed dispersion, indicating that SNe Ia 

luminosities include some unmodelled variance commonly called 

intrinsic scatter ( σint ; e.g. Blondin et al. 2011 ; Burns et al. 2018 ; 

Scolnic et al. 2018 ). 

Lastly, we validate our treatment of max model parameters by 

using photometry from CSP-I DR3 (Krisciunas et al. 2017 ) to re- 

derive the Tripp calibration parameters in table 1 of Burns et al. 

( 2018 ). 

4.1 Comparisons with DEHVILS 

The DEHVILS surv e y collected data in tandem with Ha wai‘i 

Supernov a Flo ws, also using UKIRT’s WFCAM to collect NIR 

observations of SNe Ia (Peterson et al. 2023 ). Our programs differ in 

that DEHVILS collected photometry in the Y , J , and H bands and 

pursued more observations (median 6 epochs per bandpass) for fewer 

SNe ( N = 96). We shared J -band observations near peak to a v oid 

redundancy, but reduced the data through independent photometric 

pipelines. The DEHVILS analysis employs the following quality 

cuts: | x 1 | < 3, σx 1 < 1, σt 0 < 2, E( B − V ) MW < 0 . 2 mag, and Type 

Ia LC fit probability P fit > 0 . 01. σx 1 and σt 0 refer to the uncertainty 

in the SALT parameter x 1 and the estimated time of maximum light, 

while P fit is defined in SNANA as the fraction of the χ2 distribution 

with k degrees of freedom above a given χ2 value (Kessler et al. 

2009a ): 

P fit ( k , χ
2 ) = 

1 

� ( k / 2) 

∫ ∞ 

χ2 / 2 

t k/ 2 −1 e −t dt. (11) 
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Further, the target’s host galaxy must have a spectroscopic redshift. 

There are differences between the redshifts in the DEHVILS sample 

and the redshifts assembled following the methods described in 

Section 2.3 . In this section, we use the published DEHVILS redshifts 

for a fairer comparison. The sample analysed in Peterson et al. ( 2023 ) 

comprises 47 of the 83 spectroscopically classified normal SNe Ia 

with DEHVILS photometry. Using fitting parameters to define cuts 

means differences in fitting methods may lead to differences in the 

objects cut. When we apply the same cuts using our implementation 

of the SALT3-NIR model we find that 56 of the optical-only (ATLAS 

co) fits pass all cuts, 47 fits using optical (ATLAS co) and DEHVILS- 

reduced NIR 
23 ( Y J H ) photometry pass, and 30 DEHVILS-reduced 

NIR-only ( Y J H ) fits pass. Refitting the 83 SNe Ia assuming the 

reddening law from Fitzpatrick ( 1999 ) for Milky Way extinction 

does not lead to any difference in the objects cut. 

4.1.1 Varying sample selection and fitting methodology 

The 47 SNe Ia analysed in Peterson et al. ( 2023 ) do not exactly 

match the 47 that pass the same cuts in our analysis, indicating a 

difference between our methodologies. Identifying the exact point of 

departure is of intrinsic interest, but more immediately concerning 

are the consequences of such a difference. Our goal in this section is 

to compare the dispersion of Hubble residuals found in Peterson 

et al. ( 2023 ) to our values calculated with the same photometry but 

different methods. We assume there are negligible differences in our 

ATLAS photometry and that there are no unstated quality cuts in the 

DEHVILS analysis. 

We use DEHVILS photometric measurements for all NIR data 

and fit each of the normal SNe Ia in host galaxies with spectroscopic 

redshifts using SNooPy ’ s EBV model2, SNooPy ’ s max model, and 

SALT3-NIR using the bandpass combinations c o, c oY J H , and Y J H 

for all three fitters. The DEHVILS cuts are based on the SALT 

fitting parameter x 1 , which we approximate in the SNooPy fits as 

0 . 65 < s BV < 1 . 40 using a conversion we empirically determine in 

equation ( 14 ) of Section 5.3.1 . We also use this equation to convert 

the σx 1 < 1 cut to σs BV < 0 . 125. 

The 83 normal SNe Ia are defined as such based on their 

spectroscopic classification as SN Ia on TNS, but after visually 

inspecting the light curves we believe there are nine non-normal 

SNe Ia in this sample. We find four underluminous candidates 

(SNe 2020jsa, 2020rlj, 2020unl, and 2021mim), four SN 2006bt- 

like candidates (SNe 2020naj, 2020sme, 2020mbf, 2020tkp), and 

one Ia-pec candidate (SN 2020kzn). These targets are eliminated 

by the P fit cut in the DEHVILS analysis and are excluded from 

the analyses in this section based on their suspected classification. 

These targets are not e xplicitly e xcluded in the main sample selection 

process described in Section 5 , but all are remo v ed by either quality 

cuts or the outlier detection methods described in Section 5.3 except 

for SN 2021mim. 

The SNooPy -based fits produce higher χ2 values than the SALT3- 

NIR fits for targets that were successfully fit and passed quality cuts 

(excluding the P fit cut). Andrae, Schulze-Hartung & Melchior ( 2010 ) 

re vie w the inherent problems with using χ2 values and degrees of 

freedom to assess model performance (especially non-linear models), 

but the P fit cut is a function of those parameters. The median ratio 

between χ2 / DoF values from EBV model2 fits and SALT3-NIR 

fits using the coY J H bandpasses is about 2.22. Ho we ver, when 

excluding model variance in both sets of χ2 calculations, the median 

23 Available at https:// github.com/ erikpeterson23/ DEHVILSDR1 

ratio is 0.88. This reversal when excluding model variance applies 

to fits using other bandpass combinations, with the ratio falling from 

1.37 to 0.94 in the optical only fits, and from 2.31 to 0.8 in the NIR 

only fits. This indicates the uncertainties in the SALT3-NIR model 

may be o v erestimated, at least compared to the SNooPy model 

uncertainties which may themselves be underestimated. This finding 

is similar to that of Taylor et al. ( 2023 ) who compared SALT2 and 

SALT3 models trained on identical data and found that the SALT3 

model showed multiple indicators of o v erestimated model-plus-data 

uncertainties. Ho we ver, this is inconsistent with Peterson et al. ( 2023 ) 

who performed a visual inspection of their fits and suspected the 

model uncertainties may be underestimated, leading to significant 

cuts due to fit probability. Regardless of the reason for the different 

χ2 values found by different models, the application of a P fit > 0 . 01 

cut will produce imbalanced sample sizes cut at different quantiles of 

P fit , which will skew the comparison of Hubble residual dispersions. 

Instead, we define model-specific samples based on the 47 highest 

P fit values from each model’s fits to the coY J H bandpasses. This 

is consistent with the DEHVILS analysis, which analysed the same 

47 SNe Ia when fit with optical-only, optical and NIR, or NIR-only 

photometry. The χ2 / DoF cut values are 1.31 for SALT3-NIR fits, 

4.14 for EBV model2 fits, and 4.51 for max model fits. 

With the differences in sample selection defined, we now describe 

the differences in fitting methodology. By equation ( 6 ), calculat- 

ing distance moduli using the max model requires specifying a 

bandpass ( m X ) and a colour ( m Y –m Z ), which makes comparisons 

between max model fits subject to systematic discrepancies when the 

bandpasses differ. There is no bandpass and colour common to the 

bandpass combinations we examine, but we may still compare each 

implementation of the max model against the DEHVILS results. For 

the co combination, we use the V bandpass and the V − r colour; for 

coY J H , we use J and V − r; and for Y J H , we use J and Y − J . 

We calculate SAL T -based distance moduli using α and β parameters 

derived with UNITY (Rubin et al. 2015 ), except for the Y J H 

sample which encountered numerous problems during modelling 

and produced an anomalously low and noisy β = 0 . 14 ± 1 . 80. For 

this sample, we calculate the α and β values that minimize the 

standard deviation of the Hubble residuals. The standardization 

coefficients for the c o, c oY J H , and Y J H samples are ( α, β) 

= (0.155, 3.3), (0.138, 3.702), and (0.111, 2.475), respectiv ely. F or 

comparison, Peterson et al. ( 2023 ) used standardization coefficients 

of ( α, β) = (0.145, 2.359) and (0.075, 2.903) for the co and coY J H 

samples, with no standardization applied to the Y J H sample. They 

characterize the dispersion in Hubble residuals using NMAD and 

standard deviation (STD), so we use the same statistics in this section. 

Our methods noticeably differ in fitting one of the bandpass 

combinations. In the DEHVILS analysis, the fit parameters x 1 and c 

were held fixed at 0 for the NIR-only sample. Our methodology does 

not hold these parameters fixed, and we found greater dispersion. 

This is consistent with their finding that keeping c constant while 

allowing x 1 to vary led to increased scatter. For the other co bandpass 

combination, we found dispersions in Hubble residuals roughly 

consistent with the DEHVILS values and errors presented in Peterson 

et al. ( 2023 ) and reproduced in Table 2 . Our NMAD values were 

lower and our STD values higher, implying our Hubble residuals are 

hea vier -tailed than a Gaussian distribution. This could be an effect of 

different sample selection, different treatment of ATLAS photometry, 

or different standardization coefficients. For the coY J H bandpass 

combination, our analysis with SNooPy ’s EBV model2 is consistent 

with the DEHVILS values, but the other two models tend to produce 

higher dispersion values. We note that in our SALT3-NIR analysis, 

if we use the α and β values that minimize the standard deviation 
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Table 2. We highlight any differences due to methodology by using 

DEHVILS photometry and approximating their quality cuts. We did not 

replicate their findings when using only Y J H photometry, which is where 

our methodologies differ the most. The DEHVILS team fixed x 1 and c to 0 for 

those fits and we allowed them to vary. For the co bandpass combination, our 

methodology produced Hubble residual dispersions consistent with the values 

reported by DEHVILS. We find mixed results with the coY J H combination, 

with our max model analysis producing larger dispersions, and our SALT3- 

NIR analysis producing consistent results only if we solve for the α and β

values that minimize dispersion in the Hubble residuals. 

Model Filters N NMAD (mag) STD (mag) 

DEHVILS co 47 0.177(029) 0.221(043) 

DEHVILS coYJH 47 0.132(025) 0.175(034) 

DEHVILS YJH 47 0.139(026) 0.172(027) 

EBV model2 co 55 0.177(041) 0.327(065) 

EBV model2 coYJH 47 0.126(023) 0.131(014) 

EBV model2 YJH 50 0.152(025) 0.165(022) 

max model co 51 0.215(039) 0.234(032) 

max model coYJH 47 0.159(027) 0.153(015) 

max model YJH 47 0.181(034) 0.182(023) 

SALT3-NIR co 56 0.225(043) 0.246(025) 

SALT3-NIR coYJH 47 0.184(030) 0.186(023) 

SALT3-NIR YJH 30 0.164(036) 0.161(020) 

(0.100 and 3.052, respectively), we find a value of 0.162 mag and a 

NMAD of 0.124 mag, which is consistent with the DEHVILS values. 

Our max model analysis is also not optimized against dispersion. 

We use the J -band peak magnitude and V − r pseudo-colour to 

infer distances because that is the methodology we apply to our own 

photometry, which does not include Y - or H -band observations. 

The consistency between the dispersion values we measure and 

the values reported in Peterson et al. ( 2023 ) suggests that our 

methodology is comparable for fits when using optical data or 

optical and NIR data. Our methodology is inferior for fits using 

only NIR photometry, and max model fits using coY J H photometry, 

indicating that we would need to adapt our methodology if we were 

to collect Y - and H -band data like the DEHVILS team and produce 

NIR-only samples. The samples we produce using our own J -band 

data al w ays include optical data. 

Our samples are distinct from the one analysed in Peterson et al. 

( 2023 ). Ho we ver, the ef fects of a fe w mismatched SNe should be 

suppressed after bootstrap resampling the Hubble residuals. As in 

the DEHVILS analysis, for each sample we perform 5000 iterations 

of randomly choosing 47 residuals with replacement. The dispersion 

values and uncertainties presented in Table 2 are the averages and 

standard deviations of the values measured across the 5000 iterations 

(shown in Figs 7 and 8 ). 

4.1.2 Varying photometry 

We repeat the comparative analysis of the previous section, this time 

isolating the effects of differing photometry. We fit ATLAS and either 

our J -band data or that of the DEHVILS surv e y to create two sets 

of fits for each of our three models. We apply the model-specific 

χ2 / DoF cuts based on the greater value between the fits using our 

photometry or that of DEHVILS. 

Once more, we bootstrap resample the Hubble residuals to estimate 

the uncertainties in our dispersion measurements, but we include 

an additional set of statistics. When varying methodology, we 

could only compare the distributions of our resampled dispersion 

Table 3. We use our methodology to calculate Hubble residuals using AT- 

LAS photometry and either our J -band photometry or that of the DEHVILS 

surv e y. Bootstrap resampling these residuals 5000 times shows the dispersion 

measurements are insensitive to any differences between our photometry. In 

SNooPy ’s EBV model2 and max model and in SALT3-NIR, the change in 

dispersion is consistent with 0. 

Model J data N NMAD (mag) STD (mag) 

EBV model2 HSF 48 0.109(022) 0.143(020) 

EBV model2 DEHVILS 48 0.142(024) 0.152(017) 

max model HSF 50 0.144(032) 0.196(029) 

max model DEHVILS 50 0.165(029) 0.161(015) 

SALT3-NIR HSF 49 0.180(034) 0.197(022) 

SALT3-NIR DEHVILS 49 0.218(044) 0.227(021) 

measurements with the values reported in Peterson et al. ( 2023 ), 

but in this analysis we can make pairwise comparisons between 

individual iterations of the resampling process. For each iteration, we 

randomly choose SNe Ia with replacement, record the NMAD and 

STD of their Hubble residuals in our six samples, and additionally 

calculate the differences in dispersion between each model’s sample 

using our J -band photometry and using DEHVILS photometry 

( �D = D HSF − D DEHVILS where D is either NMAD or STD). Thus, 

we not only produce distributions of NMAD and STD, but also 

distributions of � NMAD and � STD. 

The averages and standard deviations of these values are presented 

in Table 3 and the histograms of dispersions and differences are 

plotted in Figs 9 and 10 . None of the distributions indicate that 

using our photometry instead of DEHVILS photometry leads to 

increased dispersion measurements. The averages are within one 

standard deviation of each other, and the differences within one 

standard deviation of no change in dispersion. 

4.2 Comparison with CSP 

The EBV model2 produces Hubble residuals with lower dispersion 

than those produced by either SALT3-NIR or the max model. 

The greater dispersion in the max model was unexpected since 

the EBV model2 is calibrated to CSP observations of 36 SNe, 

whereas in this analysis we derived standardization coefficients for 

the max model using our observations of 47 SNe. 

4.2.1 Validating Tripp calibration 

To test our deri v ation process, we used photometry from CSP-I 

DR3 (Krisciunas et al. 2017 ) to solve for the calibration coefficients 

presented in table 1 of Burns et al. ( 2018 ). We fit all CSP photometry 

with the SNooPy max model, parametrizing light-curve shape with 

s BV . We use the heliocentric redshifts provided in the data release 

rather than redshifts from HyperLEDA to focus on differences due 

to methodology. Our equation ( 6 ) does not include a term for host- 

galaxy mass, but in order to match the CSP deri v ation methodology 

we reintroduce this term: 

m X = P 0 + P 1 ( s BV − 1) + P 2 ( s BV − 1) 2 + μcos 

+ βmax ( m Y − m Z ) + αM ( log ( M ∗/M �) − M 0 ) , (12) 

where αM is the coefficient correlating magnitude and host-galaxy 

stellar mass ( M ∗) and M 0 is an arbitrary mass zero point, taken as 

10 11 M �. We follow the methodology in appendix B of Burns et al. 

( 2018 ) for assembling host-galaxy stellar masses, primarily drawing 

from the 2MASS Extended Source Catalogue (Jarrett et al. 2000 ), 
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Figure 7. We show the distributions of NMAD in 5000 bootstrap resamplings of each set of Hubble residuals. The columns correspond to the fitting model used 

the rows to the bandpass combination. The solid and dashed vertical lines show the values and uncertainties of the NMAD reported in the DEHVILS surv e y. 

Our methodology produces Hubble residuals with dispersions consistent with the values reported by the DEHVILS surv e y using SNooPy ’s EBV model2, but 

not when using SALT3-NIR or SNooPy ’s max model. 

Figure 8. The same set of plots as Fig. 7 , but showing standard deviation instead of NMAD. 
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Figure 9. The histograms in the left panels show the distributions of NMAD dispersion measurements after 5000 iterations of bootstrap resampling Hubble 

residuals. The histograms in the right panels show the distributions of differences in dispersion between the samples using HSF photometry and the samples 

using DEHVILS photometry in each iteration. Using our measurements instead of DEHVILS photometry may lead to a decrease in the dispersion of the Hubble 

residuals, but it is not statistically significant. 

which we convert from K-band apparent magnitudes to stellar masses 

assuming a constant mass-to-light ratio. 

log 10 ( M ∗/M �) = −0 . 4 ( m K + μ) + C, (13) 

where μ is the distance modulus and C is a constant which CSP 

determined to be 1.04 dex by comparing masses from the 2MASS 

catalogue with mass estimates from Neill et al. ( 2009 ). We verify that 

this is the best-fitting value from a simple least-squares regression. 

When there is no K-band magnitude available, we use estimates from 

Neill et al. ( 2009 ) and Chang et al. ( 2015 ) when possible, as Burns 

et al. ( 2018 ) did. 

The coefficients in equation ( 6 ) derived in Burns et al. ( 2018 ) 

and re-derived with our methods are presented in Table 4 . The 

average deviation between the two sets of coefficients is 0.582 times 

the quadrature sum of the uncertainties. Additionally, we derive a 

set of coefficients while not accounting for host-galaxy mass. As 

e xpected, the av erage difference between this set and the original 

values is greater, albeit only slightly at 0.598 times the combined 

uncertainty. 

We conclude that our methodology for calibrating the Tripp 

method is consistent with the method used in Burns et al. ( 2018 ). The 

difference in dispersion in Hubble residuals between the max model 

and EBV model2 seen in Section 4.1.1 is not due to errors in 

determining the calibration coefficients. Additionally, we do not find 

a significant difference in dispersion between the two models when 

examining the CSP data. Using the max model, the Hubble residuals 

have an NMAD dispersion of 0.163 mag and a standard deviation of 

0.233 mag, which is only marginally greater than the same values 

using EBV model2: 0.157 and 0.227 mag. 

5  SAMPLE  SELEC TION  

We have NIR observations of 1217 unique transients, but only about a 

quarter of those are presently useful for cosmology. Our final sample 

is comprised of targets that pass three sets of cuts: one based on 

observational data, one based on fitting parameters, and one based on 

several outlier detection algorithms. The number of targets discarded 

and remaining after each cut are presented in Tables 5 and 6 . 

5.1 First cut: obser v ational data 

The set of all our observed transients includes unclassified or 

misclassified non-SNe Ia, galaxies with photometric or unknown 

redshifts, and SNe Ia missing co v erage near maximum light in 

one or more all-sk y surv e y bandpasses. In future work we intend 

to incorporate the unclassified transients that are photometrically 

consistent with SN Ia light curves, but for this paper, we do not 

include them in our analysis. Vincenzi et al. ( 2023 ) describe the 

magnitude of biases in cosmological measurements when using 

photometrically classified samples and discuss various methods for 

mitigating them to sub- per cent levels when estimating the dark 

energy equation of state parameter w. 

Of the 1217 observed transients, 668 have been spectroscopically 

classified as usable SNe Ia. This number does not include SNe Ia 

subtypes that are unsuitable for distance inference using SALT3- 

NIR or SNooPy : 2002cx-like SNe (sometimes called SNe Iax, Li 

et al. 2003 ), 2002ic-like SNe (sometimes called SNe Ia-CSM, Hamuy 

et al. 2003 ), 2003fg-like SNe (formerly called super-Chandrasekhar 

SNe or SNe Ia-SC, Howell et al. 2006 ; Hicken et al. 2007 ; Ashall 

et al. 2021 ), and generally peculiar SNe Ia (Ia-pec). This number 
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Table 4. We show some of the Tripp calibration coefficients presented in Table 1 of Burns et al. ( 2018 ) and our derivations using the same data with our 

methodology. Our values differ from the original values by an average of 0.582 times the combined uncertainty. When not accounting for host-galaxy 

masses, the average difference slightly increases to 0.598 times the combined uncertainty. 

Deri v ation P 0 P 1 P 2 βmax αgal σint v pec 

(mag) (mag) (mag) (mag/dex) (mag) (km s 
−1 

) 

CSP −18.633(062) −0.37(12) 0.61(32) 0.36(10) −0.056(029) 0.11 336 

This Work −18.626(028) −0.407(128) −0.021(344) 0.292(096) −0.044(032) 0.083(033) 384(57) 

This Work (No Masses) −18.607(024) −0.352(126) 0.102(346) 0.270(097) N/A 0.093(032) 384(57) 

Table 5. Our first set of cuts is independent of the fitting model used and applies to all targets observed. 

Cuts Number cut Remaining sample 

Spec. classification 327 890 

SN Ia 222 668 

Spec. redshift 65 603 

E( B − V ) MW < 0.3 8 595 

N obs ≥ 5 0 595 

Successful spectroscopic reduction 76 519 

Successful photometric reduction 15 504 

Table 6. The second set of cuts is based on the fitting model used, the SNPY EBV sample using SNooPy ’s EBV model2, the SNPY Max sample using 

the max model, and the SALT sample using SALT3-NIR. We calculate the χ2 / DoF thresholds based on our comparison to the DEHVILS cut based on 

SNANA ’s fit probability parameter. Our final two cuts are based on outlier detection. d M refers to the Mahalanobis distance described in Section 5.3.1 . 

Cuts SNPY EBV Cut Remaining SNPY Max Cut Remaining SALT Cut Remaining 

Successful fit 2 502 2 502 1 503 

Rest frame m J , m V , and m r 100 402 

0.6 < s BV < 1.3 24 478 41 361 

σs BV < 0.2 2 476 2 359 

E( B − V ) host < 0.3 mag 75 401 

| x 1 | < 3 20 483 

σx 1 < 1.5 4 479 

| c | < 0.3 43 436 

σc < 0.2 1 435 

Phase requirements 0 401 1 358 2 433 

Reduced χ2 < 4.14/4.51/1.31 38 363 28 330 65 368 

d M < 5 σd M 4 359 4 326 4 364 

UNITY outlier 2 357 2 324 2 362 

does include several 2006bt-like candidates, which we discuss in 

Section 5.3 . 

Spectroscopic host-galaxy redshifts are available or have been 

successfully measured for 603 of these 668 SNe Ia. The remaining 

65 include galaxies scheduled for spectroscopic observation, galaxies 

with spectral features manually judged to be too weak for accurate 

redshift determination, and galaxies with exceptionally low surface 

brightness, such that spectroscopic observation is prohibitively 

e xpensiv e. We remo v e additional eight targets that hav e Galactic 

reddening greater than 0.3 mag according to Schlafly & Finkbeiner 

( 2011 ). As the last cut in this set, we remo v e targets with fewer than 

5 optical and NIR observations, counting each quartet of ATLAS 

exposures as a single observation. Of the remaining 595 SNe Ia, 

76 are in galaxies for which we have unreduced spectroscopic 

observations, and 15 encountered errors during photometric analysis, 

leaving 504 SNe Ia. 

5.2 Second cut: fitting parameters 

Removing targets based on fitting parameters necessarily requires 

successfully running each model’s fitting procedure, which is not 

guaranteed for each possible permutation of input data. Without 

sufficient phase co v erage in photometry, the shape parameter of 

a SN Ia becomes underconstrained. The same is true for insuffi- 

cient wav elength co v erage and the colour parameter or host-galaxy 

extinction. These produce singular covariance matrices, indicating 

de generac y in the fitting parameters. Additionally, the models span 

finite combinations of phase and wavelength, making comparisons to 

some observations interpolative at best and often times extrapolative. 

The fit is unsuccessful if all data in a given bandpass lie outside the 

model domain. Ho we v er, the phase of an y observation is dependent 

on the estimated time of maximum light, which itself is a fitting 

parameter. This means that the success of a fit is partially dependent 

on how the fitting parameters are initialized. When a fit fails because 

one of the bandpasses has no data in a model’s domain, we attempt 

to perform the same fit without data from the behaviour bandpass. If 

that succeeds, we use those fitting parameters to initialize a new fit, 

reintroducing the excluded data. Sometimes this leads to a successful 

fit using all available bandpasses, at other times a subset of available 

bandpasses, and occasionally the fit cannot be salvaged. The success 

or failure of a fit acts as a cut. We now define three distinct samples 

based on the three fitting models: SNPY EBV with 502 fits from 

SNooPy ’s EBV model2, SNPY Max with 502 fits from SNooPy ’s 

max model, and SALT with 503 fits from SALT3-NIR. 
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Figure 10. The same set of histograms as Fig. 9 , but applied to standard deviation rather than NMAD. Again, using our measurements instead of DEHVILS 

photometry does not lead to a statistically significant difference in the dispersion of the Hubble residuals. The closest case is the standard deviation in the 

max model, which increases by an average of 0 . 014 ± 0 . 022 mag. The more robust NMAD decreases by 0 . 015 ± 0 . 038 mag, indicating the increase in standard 

deviation is due to a few discrepant values rather than a systematically preferred set of photometry. 

Figure 11. Left: The s BV values of each SN are inferred using the same data, and either SNooPy ’s EBV model2 or max model. The one-to-one line is plotted 

in dotted black. Right: Each SN’s inverse-variance weighted average s BV value is compared to the x 1 value inferred by SALT3-NIR. We plot the linear (dotted 

black), quadratic (solid orange), and cubic (dashed magenta) polynomial fits determined through orthogonal distance regression. The Bayesian information 

criterion fa v ours the cubic fit. In both plots, outliers identified through divergent model inferences are red and have circle markers. These outliers are ignored 

when calculating the parameter transformation equations. 
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Figure 12. Left: The E( B − V ) host values inferred by SNooPy ’s EBV model2 are plotted against the c values inferred by SALT3-NIR. As in Fig. 11 , we 

show the linear (dotted black), quadratic (solid orange), and cubic (dashed magenta) polynomial fits determined through orthogonal distance regression. The 

linear and quadratic relationships o v erlap. Right: F or each SN, the pseudo-colour between the peak apparent magnitudes in V and J determined by SNooPy ’s 

max model are plotted against c. Once again, outliers identified through divergent model inferences are red and have circle markers. These outliers are ignored 

when calculating the parameter transformation equations. 

Figure 13. We identify outliers (red) based on disagreement between the 

three models inferences for an SN’s time of maximum, shape, and colour. 

After transforming the SNooPy parameters s BV , E( B − V ) host , and m V −
m J to x 1 , c, and c, we calculate the standard deviations in each SN’s three 

inferred values for t 0 , x 1 , and c. We then parametrize disagreement using 

the Mahalanobis distance between the standard deviations ( σt 0 ,i , σx 1 ,i , and 

σc,i ) and a distribution centred at the origin. When the three models produce 

consistent estimates the standard deviation is relatively low, but when they 

diverge the standard deviation increases. 

After fitting, we apply the following cuts. In the SNPY samples 

we use quality cuts from Jones et al. ( 2022 ), rejecting fits with 

shape factors outside the interval 0 . 6 < s BV < 1 . 3 (their ‘loose’ cut) 

or with uncertainty σs BV > 0 . 2, and for SNPY EBV, rejecting fits 

with host-galaxy E( B − V ) host > 0 . 3. In the SNPY Max sample, 

the rest-frame bandpasses used for calculating distances depend 

on both the observed bandpasses and the redshift. Since we infer 

distances using the J band and the V − r colour, we cut SNe from 

SNPY Max whenever the max model does not provide inferences for 

the maximum apparent magnitudes in those bandpasses. While it is 

possible to force SNooPy to map to these bandpasses, the cross-band 

K -corrections required become much more sensitive to differences 

between the assumed and actual SED. This acts as a cut based on 

redshift. In the SALT sample we reject fits where | x 1 | > 3, σx 1 > 1 . 5, 

| c| > 0 . 3, or σc > 0 . 2 (F ole y et al. 2017 ; Scolnic et al. 2018 ; Scolnic 

et al. 2022 ). We use the temporal co v erage cut from Rubin et al. 

( 2023 ), which is based on the calculated time of maximum light ( t 0 ), 

the phase of the initial observation ( t i ), and the phase of the final 

observ ation ( t f ). Gi ven that t 0 can v ary between the three samples, 

we apply this cut to each sample independently. Adequately observed 

SNe Ia meet at least one of two sets of criteria. The first set requires 

t i no more than 2 d after t 0 , t f at least 8 d after t 0 , and t f − t i must 

span at least 10 d. The second set allows for a later t i , up to 6 d 

after t 0 , as long as t f − t i spans at least 15 d. Lastly, we remo v e 

fits with reduced χ2 values abo v e 4.14, 4.51, or 1.31 for fits in the 

SNPY EBV, SNPY Max, and SALT samples, respectively. These 

cut values come from the comparison to the DEHVILS sample in 

Section 4.1 . This leaves our three samples with 363/502 objects in 

SNPY EBV, 330/502 in SNPY Max, and 368/503 in SALT. 

5.3 Third cut: outlier detection 

There are many vectors for outliers to appear in our sample: 

spectroscopic misclassification of core-collapse SNe, incorrectly 

assigned host-galaxy redshifts, errors in photometric reduction, or 

errors in fitting. Even with ‘perfect’ data and methods, an outlier 

could arise from anomalous astrophysical properties (e.g. an exotic 

progenitor system or detonation mechanism) or unclassified Type-Ia 

peculiarity. In particular, 2006bt-like SNe are difficult to identify 

without i band or NIR observations (Stritzinger et al. 2011 ; Phillips 

2012 ). There are several objects in our sample that are classified as 
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Figure 14. The top panel shows the Hubble diagram of the SNPY EBV sample with residuals plotted belo w. The v alue of H 0 is degenerate with the absolute 

magnitude of SNe Ia, amounting to a constant vertical offset. The solid black line shows the � CDM model that zeros the inverse-variance weighted residuals. 

The dashed lines show the combined uncertainty due to the sample’s σint and 250 km s 
−1 

of uncertainty in peculiar velocity converted to uncertainty in distance 

modulus via equation ( 3 ). 

SNe Ia on TNS, but have NIR light-curves suggestive of 2006bt-like 

SNe: SN 2020naj, SN 2020tkp, SN 2020mbf, and SN 2020sme. We 

emplo y tw o kinds of outlier detection methods. The first compares 

inferred parameters for common targets between the samples, and 

the second is based on the mixture model of Kunz, Bassett & Hlozek 

( 2007 ) as implemented through UNITY (Rubin et al. 2015 ). 

5.3.1 Divergent model inferences 

In a Bayesian framework, the physical parameters inferred by each 

fitting model should draw from the same posterior distribution of 

‘true’ physical parameters. This common quantity allows for simple 

error detection in the 246 SNe common to all samples. Where the 

estimates of the same parameter vary significantly, at least one model 

is likely to have converged on a local maximum in likelihood and 

is not reliable for inferring other parameters. The SNPY and SALT 

samples share a common definition for the time of maximum light, 

but differ in exactly how they quantify light-curve shape and colour. 

Burns et al. ( 2018 ) described a linear transformation between the 

x 1 parameter in SALT2 and the s BV parameter in SNooPy . We 

use orthogonal distance regression and find a slightly different 

relationship, potentially due to differences between SALT2 and 

SALT3-NIR. After testing linear, quadratic, and cubic polynomial 

fits, the Bayesian information criterion fa v ours a cubic relationship 

(102.6, 103.5, 77.2): 

x 1 = −0 . 09(02) + 8 . 97(27)( s BV − 1) 

− 4 . 73(92)( s BV − 1) 2 

− 34 . 35(04)( s BV − 1) 3 . (14) 

Here, s BV is the average between the values inferred by SNooPy ’s 

two models. The relationship between s BV values from the two 

SNooPy models as well as the relationship between their average 

and the SALT x 1 parameter is shown in Fig. 11 . 

The c parameter in SALT represents both intrinsic colour variation 

in SNe Ia and reddening from dust, while the E( B − V ) host fitting 

parameter in SNooPy is strictly concerned with the latter. Ho we ver, 

Brout & Scolnic ( 2021) found that the correlation between intrinsic 

colour and luminosity may be weak, and that dust can provide the 

observ ed div ersity of colours. We test linear, quadratic, and cubic fits, 

and the Bayesian information criterion supports a linear fit ( −245 . 4, 

−239 . 9, −234 . 7): 

c = −0 . 05(00) + 0 . 96(03) E( B − V ) host mag −1 . (15) 

Our colour information in the SNPY Max sample comes from the dif- 

ferences in apparent maxima. To more ef fecti vely parametrize dust, 

we use the m V − m J pseudo-colour. We test the same polynomial 
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Figure 15. Same as Fig. 14 , but using the SNPY Max sample. The limited redshift range is due to the cut requiring the observed filters to map to the CSP V 

and r filters in the rest frame. 

fits, and find support for a cubic fit (364.2, 369.4, 340.9): 

c = 0 . 12(02) − 0 . 17(10)( m V − m J ) mag −1 

− 1 . 21(23)( m V − m J ) 
2 mag −2 

− 0 . 85(16)( m V − m J ) 
3 mag −3 (16) 

The relationships between the colour parameters are shown in 

Fig. 12 . 

After converting the SNooPy parameters into SALT parameters, 

we can directly compare each model’s inferences for each SN to find 

where they disagree. We define σt 0 ,i , σx 1 ,i , and σc,i as the standard 

deviation between the transformed fitting parameters of SN i in the 

SNPY samples its parameters in the SALT sample. We account for 

correlations between the differences by calculating the Mahalanobis 

distance between each point m i = ( σt 0 ,i , σx 1 ,i , σc,i ) and a distribution 

D centred at the origin with covariance matrix � (Mahalanobis 

1930 ). We approximate � by bootstrap resampling the parameter 

differences 5000 times, calculating each sample covariance S, and 

defining each element � j,k as the average of all sample elements S j,k . 

Each distance d i ( m i , D) = 
√ 

m i � −1 m 
T 
i , and can be understood as 

the number of standard deviations between point m i and distribution 

D. The quadrature sum of the standard deviations is a similar metric 

if all dimensions are normalized to have unit variance, but does not 

account for correlations. Fig. 13 shows the histogram of distances. 

There are 4 SNe with distances greater than 5 times the standard 

deviation in d , indicating significant disagreement between the 

models. We recalculated the parameter transformation equations and 

Mahalanobis distances excluding these 4, and identified no additional 

outliers. The equations and figures presented are the recalculated 

versions. Disagreement alone leaves room for one or two of the 

models to have accurately fit the data, but while manual inspection 

often reveals which models fit the data well and which do not, we err 

on the side of caution by removing these 4 SNe from all three samples. 

5.3.2 Mixture-model analysis 

The mixture model introduced as BEAMS (Bayesian Estimate 

Applied to Multiple Species; Kunz et al. 2007 ) posits that an 

imperfect SNe Ia surv e y will lead to measurements following 

the sum of multiple distributions. Measurements of real SNe Ia 

should feature relatively low dispersion whereas measurements 

of surv e y contaminants will be more dispersed, and may have a 

different mean. As implemented in UNITY, both populations are 

assumed to be Gaussian around a common mean, and the outlier 

population is assumed to have variances of one in m 
∗
B , x 1 , and c 

(Rubin et al. 2015 ). UNITY’s use of SALT parameters means in 

its present version it can only process the SALT sample. Since 

the mixture-model framework is generalizable to arbitrary fitting 

parameters, future work could allow UNITY to process results 

from SNooPy . At such a time comparing outliers between samples 

could indicate whether the SNe Ia is astrophysically exceptional, or 

whether one of the models is unreliable. For now we are limited to 

examining SALT. 

As UNITY sifts the data through its Bayesian hierarchical model, 

it produces a population level estimate of the fraction of outliers 

in the sample (with a prior of log f outl ∼ N ( −3 , 0 . 5 2 )), and a pair 
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Figure 16. Same as Fig. 14 , but using the SALT sample. 

Figure 17. The difference between Hubble residuals from the SNPY EBV 

sample ( � SNPY EBV ) and the SALT sample ( � SALT ) is anticorrelated with 

redshift. We fit a linear trend to the data, finding a slope of -1.4(3) mag. The 

contours show the 1 σ and 2 σ uncertainties. 

of estimates for each object describing the likelihood it belongs 

to the normal or outlier population. Our sample has an estimated 

outlier fraction of 0.012 ±0.004 and there are 2 SNe more likely 

to be outliers than a part of the normal population. As before, we 

take the conserv ati v e approach of remo ving these objects from all 

samples. Some of the two may have been eliminated from the SNPY 

samples by previous cuts, which is why the number cut at this stage 

may vary across the samples. 

5.4 Final Samples 

After all three sets of cuts the sizes of our samples are 357, 

324, and 362 for the SNPY EBV, SNPY Max, and SALT samples, 

respectively. Tables 5 and 6 enumerate the effect of each cut. 

6  RESULTS  

6.1 Hubble diagrams 

We now present measurements of dispersion in the Hubble residuals 

of our three samples and their inferred intrinsic dispersions. We do 

not list the value of H 0 used in each sample because it is not a 

direct result of the data as explained in Section 3 . To reiterate, H 0 is 

degenerate with the absolute magnitude of SNe Ia and we do not use 

alternative distance probes to estimate that magnitude. 

The Hubble diagrams of each sample are presented in Figs 14 , 

15 , and 16 and their dispersion measurements in Table 7 . The 

same measurements of the targets common to all three samples are 

presented in Table 8 . 

6.2 Trend with redshift 

There is a trend between the Hubble residuals and redshift in the 

SNPY EBV and SALT samples. We perform linear fits using the 

Bayesian approach detailed in Jaynes & Crow ( 1999 ), using flat 

priors in sin ( slope ) and intercept, and a Jeffreys prior on scatter 

(Jeffreys 1946 ). 

�μSNPY EBV = −0 . 6(3) z CMB mag + 0 . 03(02) mag (17) 
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Figure 18. We compare the Hubble residuals in the SNPY EBV sample, the residuals in the SALT sample, and their differences to the SNooPy fitting 

parameters s BV and E( B − V ) host and SALT fitting parameters x 1 and c. The best-fitting linear relation is plotted with a solid red line and the 95 per cent 

confidence interval in light red contours. The strong correlation with colour parameters implies the standardization coefficient β is not calibrated correctly for 

our sample, and that the reddening law assumed in the EBV model2 may be inappropriate for our sample. 

�μSNPY Max = 0 . 0(5) z CMB mag + 0 . 01(02) mag (18) 

�μSALT = 0 . 4(4) z CMB mag − 0 . 02(02) mag . (19) 

The Hubble residuals in the SNPY Max sample do not appear to trend 

with redshift. The differing signs in the slopes of the SNPY EBV 

and SALT samples indicate that the issue is due to differences in the 

fitters rather than a real trend in the data or an issue in the estimation 

of μcos . A re vie w of the SNooPy and SNCosmo code re vealed no 

issue with the programmatic implementation of the methods in the 

literature (Guy et al. 2005 , 2007 ; Burns et al. 2011 , 2014 ; Kenworthy 

et al. 2021 ; Pierel et al. 2022 ). 

The difference between SNPY EBV and SALT Hubble residuals 

is seen most clearly in Fig. 17 . Comparing residuals accounts for 

the zero-point offset in inferred μ in each sample and suppresses 

astrophysical properties that should affect both inferences equally, 

such as peculiar velocity or intrinsic variation in luminosity. We cal- 

culate uncertainties for the differences using the Pearson correlation 

between the distance modulus uncertainties in each sample. 

We tested the SNooPy EBV model2 and SALT3-NIR by fitting 

the r- and i-band photometry of an SN Ia at z CMB ≈ 0 . 72 using 

both programs. 24 Using the H 0 and M values from the SNPY EBV 

and SALT samples, we found the corresponding fitters produced 

24 SN 05D4ev from Guy et al. ( 2010 ). 

residual distance moduli of 0 . 095 ± 0 . 167 and −0 . 315 ± 0 . 167. 

This indicates that any trend between residual distance modulus and 

redshift does not continue at higher redshifts. 

The trend with redshift could be the result of differences in how 

the fitters account for shape or colour, which could both evolve 

with redshift due to selection effects. We investigated whether the 

SNPY EBV residuals, SALT residuals, or their differences were 

correlated with the fitting parameters s BV , E( B − V ) host , x 1 , and 

c, plotting the results in Fig. 18 . Correlations imply the fitter is 

not properly accounting for the effect shape or colour has on the 

luminosity. In SALT this would mean the standardization parameters 

α or β are improperly calibrated. In SNooPy ’s EBV model2 a 

correlation between the Hubble residuals and s BV would imply 

there is a systematic difference between the light curves in our 

sample and the light curves used for interpolation. A correlation 

with E( B − V ) host would imply that the reddening law assumed in 

the EBV model2 does not fully capture the dust properties affecting 

our observations. 

The residuals appear correlated with the colour parameters E( B −
V ) host and c, with the correlation most obvious in the SALT residuals 

and the residual differences. This calls our β coefficient into question, 

which comes from an analysis of the SALT sample performed in 

UNITY. The coefficients are not inferred by minimizing dispersion 

in the Hubble residuals, but by maximizing a likelihood in a Bayesian 

hierarchical model. UNITY models the ‘true’ x 1 and c parameters 

of an SN Ia as latent variables to account for Eddington bias. The 
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Figure 19. UNITY models the ‘true’ values of x 1 and c as latent variables in its hierarchical model. We compare these against the ‘observed’ values that 

come from SALT3-NIR fits, with one-to-one correspondence lines plotted in black. The standardization coefficients from UNITY are calibrated against the true 

values, and will not minimize Hubble residuals when used with the observed values. 

Figure 20. We parametrize the difference between the ‘true’ and ‘observed’ 

x 1 and c parameters as �x 1 and �c. The errors in each difference are 

estimated using the sample Pearson correlation coefficient. The red markers 

and errorbars show the medians and standard deviations of differences in bins 

0.005 wide in redshift space. The standard deviations generally increase with 

redshift until z ∼ 0 . 09, where data is relatively sparse. �c appears offset from 

0, especially at lower redshifts. This could imply that the hyperparameters 

UNITY uses to describe the distribution of c may require more flexibility to 

accurately model our observations. 

standardization coefficients operate on these ‘true’ values rather than 

the ‘observed’ values that come from a light-curve fit. We compare 

the ‘true’ and ‘observed’ x 1 and c parameters in Fig. 19 . Deviations 

from one-to-one correspondence come from both statistical error and 

Eddington bias, which manifests as ‘observed’ parameters scattering 

away from 0. 

Figure 21. We analyse subsets of the SALT sample using UNITY and show 

the inferred β values as a function of redshift cut value z ′ CMB . The data 

connected by the line show the results from subsets defined by a maximum 

redshift z < z ′ . β is relatively stable as the sample expands to include higher 

redshift targets. The unconnected data are from redshift bins centred on z ′ 

and 0.01 wide, such that | z − z ′ | < 0 . 005. SNe in higher redshift bins prefer 

lo wer β v alues, which could be a result of Eddington bias becoming more 

significant at greater distances. 

Fig. 20 shows that the bias seems more pre v alent at higher 

redshifts. Parameter differences in bins at higher redshifts gener- 

ally have larger standard deviations, with sample incompleteness 

heavily affecting bins beyond z ∼ 0 . 09. This could indicate that the 

uncertainties in x 1 or c are underestimated in fits to noisier data, but 

verifying such a claim would require simulations beyond the scope 

of this paper (such as those in Peterson et al. 2024 ). Additionally, the 

median differences in c appear non-zero, especially in lower redshift 

bins. We have not identified a definitive cause for this behaviour, 
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but speculate that our choice of hyperparameters in UNITY does not 

allow for the flexibility needed to model the distribution of c o v er 

the parameter space spanned by our sample. This could produce 

a correlation between SALT Hubble residuals and redshift or c 

independent of β. 

To ascertain the validity of using a single β value o v er the 

entire redshift range, we analysed subsets of the SALT sample in 

UNITY. We examined subsets consisting of targets within redshift 

bins of width 0.01, as well as a cumulative sum including all 

targets below a series of redshifts. Fig. 21 shows that the inferred 

β decreases in higher redshift bins, but that it remains relatively 

stable in the cumulative case. This suggests the hyperparameters 

describing the distribution of c are robust against higher redshift 

SNe Ia, but that these SNe prefer a lower value for β. This 

assumes the c parameter follows a single distribution o v er the whole 

sample, rendering measurements that may suggest otherwise an 

effect of bias. UNITY permits alternative parametrizations, such as a 

broken-linear form for β, but adding such complexity is beyond 

the scope of this paper. Similarly, more sophisticated analyses 

of dust properties using SNooPy have been performed with its 

color model (e.g. Burns et al. 2018 ; Johansson et al. 2021 ) or by 

using more of the colour information in the max model (e.g. Uddin 

et al. 2020 , 2023 ). Implementing and e v aluating these approaches 

will be necessary before using our data for robust cosmological 

analyses. 

Thus, we do not find a satisfactory solution to eliminate the cor- 

relations between Hubble residuals and redshift or colour parameter. 

Empirical corrections are possible using equations ( 17 ), but such an 

approach is neither physically moti v ated nor statistically rigorous. 

More detailed analyses are required to fully understand and rectify 

this issue. 

6.3 The effect of NIR photometry on distance measurements 

As mentioned in Section 1.2.1 , NIR photometry offers two key 

benefits when analysing SNe Ia. The effects of dust are suppressed 

and SNe Ia demonstrate less variable peak luminosities in the NIR. 

We examine the benefits of NIR photometry by comparing fits using 

NIR and optical photometry to fits using only optical photometry. 

We split our three samples into six: SNPY EBV OJ, SNPY Max OJ, 

and SALT OJ (the OJ samples), which include optical and J -band 

photometry and SNPY EBV O, SNPY Max O, and SALT O (the 

O samples), which are their optical-only counterparts. Unlike the 

SNPY EBV, SNPY Max, and SALT samples, which vary in size, 

target selection, and even bandpasses used to fit a given target, 

we enforce parity between the OJ and O samples. To do this 

we prepare the O samples following the same methodology used 

to produce SNPY EBV, SNPY Max, and SALT except without 

J -band photometry. The number of SNe discarded at each cut 

and the size of the final samples are listed in Table 9 . The six 

samples are made of the SNe common to both the O and OJ 

samples. 

We modify the outlier detection method described in Section 

5.3.1 to highlight disagreement between the OJ and O samples 

rather than between SNPY EBV, SNPY Max, and SALT. This 

precludes the need to transform SNooPy fitting parameters into 

SALT parameters. The fitting parameters of SNe in the OJ and 

O samples produce difference vectors: m = ( δt 0 , δs BV , δE( B −
V ) host ) for differences between SNPY EBV OJ and SNPY EBV O, 

m = ( δt 0 , δs BV , δ( V − r)) for differences between SNPY Max OJ 

and SNPY Max O, and m = ( δt 0 , δm 
∗
B , δx 1 , δc) for differences be- 

tween SAL T OJ and SAL T O. We use the Mahalanobis distance 

d( m, D) = 
√ 

m� −1 m T to identify outliers, once again approximat- 

ing the covariance matrix � by bootstrap resampling the parameter 

differences 5000 times and averaging the sample covariances. The 

distributions of Mahalanobis distances for samples the three pairs of 

samples are given in Fig. 22 . 

Measurements of dispersion in each sample’s Hubble residuals are 

presented in Table 10 . We characterize the differences between the OJ 

and O samples with the bootstrapping method we used when varying 

photometry in Section 4.1.2 . The values and uncertainties in Table 10 

are the averages and standard deviations of this process. Histograms 

of the resampled dispersion differences are plotted in Fig. 23 . The 

various dispersion estimators show a general decrease when adding 

J -band photometry to the O samples, but most of the differences 

are within one standard deviation of no change. The exceptions are 

the NMAD in the SALT and SNPY EBV samples and the RMS 

in the SALT sample. Interpreting these exceptions as indicators of 

decreased dispersion while ignoring the other measures is a classic 

case of the multiple comparisons problem. To control the family-wise 

error rate we use the sequentially rejective Bonferroni test (Holm 

1979 ). None of the distributions are far enough from 0 to claim 

that including J -band photometry leads to statistically significant 

decreases in dispersion. This does not imply other methodologies 

do not or cannot benefit from the J -band photometry, but that with 

our samples, cuts, and methods, we cannot definitively say NIR 

photometry leads to smaller Hubble residuals. 

7  DISCUSSION  

The RMS of the Hubble residuals is 0.165 mag in the SNPY EBV 

sample ( N = 357), 0.245 mag in the SNPY Max sample ( N = 324), 

and 0.186 mag in the SALT sample ( N = 362). Our result goes 

against a number of studies that support the use of NIR photometry 

in deriving distances to SNe Ia, but is not alone in finding relatively 

large dispersions. Stanishev et al. ( 2018 ) combine optical and NIR 

light curves from numerous sources, including ne w observ ations, and 

find RMS values of ∼0.15 mag ( N ∼ 120) while Johansson et al. 

( 2021 ) did the same and found an RMS of 0.19 mag ( N = 165). 

Notably, the sub-sample of 16 new SNe Ia presented in Stanishev 

et al. ( 2018 ) were only imaged once or twice in the NIR, and the 

RMS of their residuals is ∼0.2. Sparsity may play a role in the 

greater dispersion, but M ̈uller-Bravo et al. ( 2022 ) found that the 

ef fect is relati vely small, bringing an RMS of 0.166 mag to 0.180 

mag ( N = 36) when removing all but one epoch from J -band light 

curves. 

One key difference between our work and those which find smaller 

dispersions is that our analysis does not force SNe Ia to be standard 

candles in the NIR. It may be possible that variation in SN Ia NIR 

luminosity, if it does vary, is not parametrized by the correlations 

observed in the optical. In our comparison with Peterson et al. 

( 2023 ) we found that our fitting methods applied to their Y J H data 

resulted in large dispersion, whereas the y fix ed the shape and colour 

parameters in the NIR-only fits to be 0, removing any variation in 

luminosity between SNe, and measured lower dispersion than when 

using bandpass combinations including optical data from ATLAS. 

This is similar to Avelino et al. ( 2019 ), who treated SNe Ia as standard 

candles in the NIR and found that smaller Hubble residuals than 

those from optical-only fits using SNooPy or SALT2. That said, 

not all studies fa v our this approach. Jones et al. ( 2022 ) measured 

Hubble residual scatter o v er sev eral analyses of 79 SNe Ia and 

measured an RMS of ∼0.17 mag using SNooPy to fit only NIR 

data, and ∼0.14 mag when including optical data with R V = 1 . 52. 
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Table 7. We present various parametrizations of the dispersion in Hubble residuals in the SNPY EBV, SNPY Max, and SALT samples, as 

well as the intrinsic dispersion needed to reconcile the propagated uncertainties and measured dispersion. The samples o v erlap significantly, 

but they are not identical. For comparison purposes, we provide measurements of the common subset in Table 8 . 

Sample N RMS (mag) WRMS (mag) NMAD (mag) σint (mag) 

SNPY EBV 357 0.165(010) 0.152(008) 0.123(010) 0.121(011) 

SNPY Max 324 0.245(024) 0.214(028) 0.164(011) 0.212(028) 

SALT 362 0.186(011) 0.174(009) 0.153(010) 0.123(011) 

Table 8. We present the values from Table 7 derived from the intersection between the SNPY EBV, SNPY Max, and SALT samples. All 

samples are comprised of the same 240 objects. 

Sample RMS (mag) WRMS (mag) NMAD (mag) σint (mag) 

SNPY EBV 0.137(008) 0.133(007) 0.116(011) 0.098(010) 

SNPY Max 0.171(011) 0.148(009) 0.147(012) 0.135(010) 

SALT 0.146(007) 0.150(008) 0.142(012) 0.103(010) 

Table 9. Similar to Table 6 , we list the number of SNe discarded at each cut for our optical-only samples. We begin after the survey wide cuts of Table 5 , 

starting with the number of successful fits in SNooPy ’s EBV model2 (SNPY EBV O), max model (SNPY Max O), and SAL T3-NIR (SAL T O). Our final 

two cuts are based on outlier detection. 

Cuts SNPY EBV O Cut Remaining SNPY Max O Cut Remaining SALT O Cut Remaining 

Passed sample wide cuts 504 504 504 

Successful fit 2 502 2 502 1 503 

Rest frame m V and m r 92 410 

0 . 6 < s BV < 1 . 3 23 479 40 370 

σs BV < 0 . 2 3 476 7 363 

E( B − V ) host < 0 . 3 mag 66 410 

| x 1 | < 3 22 481 

σx 1 < 1 . 5 5 476 

| c| < 0 . 3 38 438 

σc < 0 . 2 5 433 

Phase requirements 1 409 1 362 2 431 

Reduced χ2 < 4.14/4.51/1.31 21 388 21 341 40 391 

Also In OJ sample 173 215 166 175 36 355 

d M < 5 σd M 2 213 1 174 5 350 

UNITY outlier 1 212 0 174 2 348 

The optical and NIR RMS increased to ∼0.18 mag when using a 

Milky Way-like value of R V = 3 . 1, emphasizing the importance of 

assumptions regarding dust. Similarly, Pierel et al. ( 2022 ) examined 

the performance of SALT3-NIR, SALT3, and SNooPy o v er various 

bandpass combinations and model parametrizations. They found a 

Hubble residual RMS of ∼0.12 mag ( N = 24) when using SALT3- 

NIR with optical and Y J H data, fitting for shape and colour, and 

a greater RMS of ∼0.13 mag for the same sample using only 

Y J H data and keeping the shape and colour parameters fixed 

at 0. 

As explored in Section 6.2 , there is a trend between redshift and 

the Hubble residuals in SNPY EBV and SALT. Correcting this trend 

empirically will decrease the dispersion of the Hubble residuals, 

but such an a posteriori treatment invites bias. There are several 

other obvious ways to decrease the measured dispersion. One could 

calibrate α or β by minimizing Hubble residuals, employ corrections 

by the redshift bin, or use cuts based on Hubble residuals such as 

Chauvanet’s crietrion or σ -clipping. There is ample motivation for 

using such techniques. Our robust measure of dispersion, NMAD, is 

consistently lower than RMS and WRMS in all three samples, which 

suggests that there are SNe Ia in our samples could be considered 

outliers. Ho we ver, we choose to present our results as we found them 

to a v oid contaminating them with ad hoc corrections. 

The study of SNe Ia in the NIR has advanced as more data have 

become a vailable, b ut there are still challenges that must be met 

to maximize the potential benefits. At the moment it is unclear 

whether SNe Ia are standard candles in the NIR or simply require 

less standardization than in the optical. Similarly, it is not clear if 

the shape–luminosity correlation observed in the optical is still the 

primary mode of variation in the NIR. Answering these questions 

will require various kinds of data. Spectral time series provide 

unique views into the physical mechanisms of SNe Ia, while also 

impro ving the accurac y of K-corrections. High-cadence, multiband 

observations like those pursued by the DEHVILS surv e y are vital 

for building standardization models. The Ha wai‘i Superno v a Flo ws 

project provides a valuable test bed for SN Ia research through its 

unprecedented sample size. 

8  C O N C L U S I O N  

This paper introduces the Hawai‘i Supernova Flows project, a 

peculiar v elocity surv e y designed to obtain systematics-limited dis- 

tances to SNe Ia while consuming minimal dedicated observational 

resources. We re vie w the observ ational components of our project: 

optical photometry from public all-sky surveys, NIR photometry 

from UKIRT, and optical spectroscopy from the UH 2.2 m and 
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Figure 22. Our first outlier detection algorithm is based on agreement 

between models fit with and without J -band photometry as quantified by 

the Mahalanobis distance between parameter differences and the origin, 

representing an SN with identical estimates in the OJ and O samples. A 

greater distance indicates greater disagreement between fits, with significant 

disagreement indicating at least one of the models is unreliable. 

Subaru. We validate our methods and data against external sources. 

We use SDSS spectra to find that our redshift inferences are typically 

within 45 km s 
−1 

of the values in HyperLEDA. The absolute 

wavelength calibration of our spectroscopic observations introduces 

minimal error, producing redshifts typically within 48 km s 
−1 

of 

their published values. Using our methodology to fit data from our 

partner program DEHVILS, we found no increase in the dispersion 

of Hubble residuals when using only optical data, or using optical and 

NIR data with SNooPy ’s EBV model2. The increase in dispersion 

seen when using SALT3-NIR seems to come from our choice 

to calibrate the standardization coefficients with UNITY instead 

of only using the Hubble residuals. Our independent photometric 

reductions of the same J -band observations are consistent, producing 

similar dispersions. Given cuts on both SNooPy and SALT fitting 

parameters, our three final samples include 357, 324, and 362 SNe. 

The RMS values of their Hubble residuals are 0.165, 0.245, and 

0.186 mag. 

The Nancy Grace Roman space telescope will obtain rest-frame 

NIR observations of SNe Ia within z ∼ 0 . 7 (Hounsell et al. 2018 ; 

Rose et al. 2021 ), necessitating the maturation of SN Ia cosmology 

in the NIR. Thus far, the majority of publicly available NIR SN 

Ia light-curves have come from CSP-I ( N = 123, Krisciunas et al. 

2017 ), CfAIR2 ( N = 94; Friedman et al. 2015 ), or recent work from 

our partner program DEHVILS ( N = 96; Peterson et al. 2023 ). Data 

from CSP-II ( N = 214; Hsiao et al. 2019 ; Phillips et al. 2019 ), the 

SIRAH program ( N = 24, HST-GO 15889; Jha et al. 2019 ), and other 

exciting projects are expected in the near future. Upon publication 

of this work, we will release NIR observations of 1217 transients, 

including 668 spectroscopically classified SNe Ia, 437 of which are 

in at least one of our final samples, and 215 spectroscopic redshifts 

for SN Ia host-galaxies that have not been previously measured. 

The NIR photometry of the Hawai‘i Supernov a Flo ws project is the 

largest homogeneous collection of its kind in terms of unique SNe Ia. 

This growing sample will provide increasing resolution into peculiar 

velocities as a function of position on the sky and redshift, permitting 

us to map the structure of dark matter. 
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Table 10. Adding NIR photometry does not lead to statistically significant decreases in the various measures of dispersion. 

Each estimator is calculated after bootstrap resampling the Hubble residuals 5000 times. The value is the average and the 

uncertainty is the standard deviation. 

Sample RMS (mag) WRMS (mag) NMAD (mag) σint (mag) 

SNPY EBV OJ 0.166(012) 0.154(010) 0.120(011) 0.122(014) 

SNPY EBV O 0.171(011) 0.162(010) 0.149(012) 0.127(014) 

SNPY Max OJ 0.281(037) 0.245(047) 0.173(019) 0.237(044) 

SNPY Max O 0.276(028) 0.227(021) 0.188(022) 0.248(028) 

SALT OJ 0.170(008) 0.171(009) 0.146(010) 0.122(011) 

SALT O 0.185(009) 0.184(010) 0.162(011) 0.129(012) 

Figure 23. We recorded various measures of dispersion o v er 5000 iterations of bootstrap resampling, and show the distributions of differences between the OJ 

and O samples with the averages given by the solid red lines. Including J -band photometry with the optical data typically leads to decreases in the three tested 

measures of dispersion in Hubble residuals and the inferred intrinsic dispersion, but those differences are usually within one standard deviation (red dashed 

lines) of 0 mag (solid black lines). 
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DATA  AVAILABILITY  

The following data are available at https:// www.github.com/ado8/ hs 

f DR1 : 

(i) J -band light curves of all observed targets regardless of 

spectroscopic classification. 
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(ii) Weighted cross-correlation results for all galaxies we observed 

with SNIFS or FOCAS. 

(iii) Multiple sets of fitting parameters and uncertainties for all 

spectroscopically confirmed SNe Ia, with sets co v ering all combina- 

tions of fitting model (EBV model2, max model, SALT3-NIR) and 

data used (optical only or optical and NIR). 

(iv) Additional sets of fitting parameters for SNe Ia used in our 

comparisons with DEHVILS and CSP. 

The code used in our analysis can be found at https://www.github.c 

om/ado8/hsf code . Data such as images and spectra may be available 

upon reasonable request. 
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J. M., Rosell A. C., Dom ́ınguez I., 2016, ApJ , 818, L19 

M ̈uller -Bra v o T. E. et al., 2022, A&A , 665, A123 

Neal R. , 2011, in Brooks S., Gelman A., Jones G., Meng X., eds, Handbook 

of Markov Chain Monte Carlo. Chapman and Hall/CRC, New York, p. 

113 

Neill J. D. et al., 2009, ApJ , 707, 1449 

O’Donnell J. E. , 1994, ApJ , 422, 158 

Oke J. B. , Sandage A., 1968, ApJ , 154, 21 

Paturel G. , Bottinelli L., Fouque P., Gouguenheim L., 1988, in Murtagh F., 

Heck A., Benvenuti P., eds, European Southern Observatory Conference 

and Workshop Proceedings. European Southern Observatory, Garching 

bei M ̈unchen, p. 435 

Paturel G. et al., 1997, A&AS , 124, 109 

Paturel G. , Petit C., Prugniel P., Theureau G., Rousseau J., Brouty M., Dubois 

P., Cambr ́esy L., 2003a, A&A , 412, 45 

Paturel G. , Theureau G., Bottinelli L., Gouguenheim L., Coudreau-Durand 

N., Hallet N., Petit C., 2003b, A&A , 412, 57 

Peebles P. J. E. , 1980, in Wightman A.S., Anderson P.W., eds, The Large- 

Scale Structure of the Universe. Princeton Univ. Press, Princeton, New 

Jersey, p. 49 

Peebles P. J. E. , 1993, in Anderson P.W., Wightman A.S., Treiman S.B., eds, 

Principles of Physical Cosmology . Princeton Univ. Press, Princeton, New 

Jersey, p. 320 

Perlmutter S. et al., 1997, ApJ, 483, 565 

Perlmutter S. et al., 1999, ApJ , 517, 565 

Peterson E. R. et al., 2022, ApJ , 938, 112 

Peterson E. R. et al., 2023, MNRAS , 522, 2478 

Peterson E. R. et al., 2024, A&A , 690, A56 

Phillips M. M. , 1993, ApJ , 413, L105 

Phillips M. M. , 2012, PASA , 29, 434 

Phillips M. M. , Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza 

J., 1999, AJ , 118, 1766 

Phillips M. M. et al., 2019, PASP , 131, 014001 

Phillips M. M. et al., 2022, ApJ , 938, 47 

Pierel J. D. R. et al., 2018, PASP , 130, 114504 

Pierel J. D. R. et al., 2022, ApJ, 939, 11 

Pike R. W. , Hudson M. J., 2005, ApJ , 635, 11 

Planck Collaboration VI , 2020, A&A , 641, A6 

Popovic B. , Brout D., Kessler R., Scolnic D., 2023, ApJ , 945, 84 

Prugniel P. , Simien F., 1996, A&A, 309, 749 

Pskovskii I. P. , 1977, Soviet Ast., 21, 675 

Qin Y.-J. et al., 2022, ApJS , 259, 13 

Refsdal S. , 1964, MNRAS , 128, 307 

Riddell A. , Hartikainen A., Carter M., 2021, pystan (3.0.0), PyPI 

Riess A. G. et al., 1998, AJ , 116, 1009 

Rigault M. et al., 2013, A&A , 560, A66 

Roman M. et al., 2018, A&A , 615, A68 

Rose B. M. et al., 2020, ApJ , 890, 60 

Rose B. M. et al., 2021, preprint ( arXiv:2111.03081 ) 

Rubin D. , 2020, ApJ , 897, 40 

Rubin D. et al., 2015, ApJ , 813, 137 

Rubin D. , Cikota A., Aldering G., Fruchter A., Perlmutter S., Sako M., 2021, 

PASP , 133, 064001 

Rubin D. et al., 2022, ApJS , 263, 1 

Rubin D. et al., 2023, preprint ( arXiv:2311.12098 ) 

Sakai S. , Giovanelli R., Wegner G., 1994, AJ , 108, 33 

Sako M. et al., 2018, PASP , 130, 064002 

Saunders C. et al., 2018, ApJ , 869, 167 

Schlafly E. F. , Finkbeiner D. P., 2011, ApJ , 737, 103 

Schlegel D. J. , Finkbeiner D. P., Davis M., 1998, ApJ , 500, 525 

Scolnic D. M. et al., 2018, ApJ , 859, 101 

Scolnic D. et al., 2022, ApJ , 938, 113 

Shappee B. J. et al., 2014, ApJ , 788, 48 

Skrutskie M. F. et al., 2006, AJ , 131, 1163 

Smith K. W. et al., 2020, PASP , 132, 085002 



Hawai‘i Supernova Flows 655 

MNRAS 536, 624–663 (2025) 

Sonnett S. , Meech K., Jedicke R., Bus S., Tonry J., Hainaut O., 2013, PASP , 

125, 456 

Soumagnac M. T. et al., 2024, ApJS , 275, 22 

Springob C. M. et al., 2014, MNRAS , 445, 2677 

Stan Development Team , 2024, Stan Modeling Language Users Guide and 

Reference Manual, Version 2.35. Available at: https://mc-stan.org 

Stanishev V. et al., 2018, A&A , 615, A45 

Stritzinger M. D. et al., 2011, AJ , 142, 156 

Sulli v an M. et al., 2006, ApJ , 648, 868 

Sulli v an M. et al., 2010, MNRAS , 406, 782 

Taylor G. et al., 2023, MNRAS , 520, 5209 

Thoraval S. , Boiss ́e P., Duvert G., 1999, A&A, 351, 1051 

Thorp S. , Mandel K. S., Jones D. O., Ward S. M., Narayan G., 2021, MNRAS , 

508, 4310 

Tonry J. L. , 2011, PASP , 123, 58 

Tonry J. , Davis M., 1979, AJ , 84, 1511 

Tonry J. , Schneider D. P., 1988, AJ , 96, 807 

Tonry J. L. et al., 2018, PASP , 130, 064505 

Tripp R. , 1998, A&A, 331, 815 

Tucker M. A. et al., 2022, PASP , 134, 124502 

Tully R. B. , Fisher J. R., 1977, A&A, 500, 105 

Tully R. B. et al., 2023, ApJ , 944, 94 

Uddin S. A. , Mould J., Lidman C., Ruhlmann-Kleider V., Zhang B. R., 2017, 

ApJ , 848, 56 

Uddin S. A. et al., 2020, ApJ , 901, 143 

Uddin S. A. et al., 2023, preprint ( arXiv:2308.01875 ) 

Valade A. , Hoffman Y., Libeskind N. I., Graziani R., 2022, MNRAS , 513, 

5148 

Vincenzi M. et al., 2023, MNRAS , 518, 1106 

Watkins R. et al., 2023, MNRAS , 524, 1885 

Wenger M. et al., 2000, A&AS , 143, 9 

White D. J. , Daw E. J., Dhillon V. S., 2011, Class. Quantum Gravity , 28, 

085016 

Wiseman P. et al., 2021, MNRAS , 506, 3330 

Wood-Vasey W. M. et al., 2008, ApJ , 689, 377 

Zaroubi S. , 2002, MNRAS , 331, 901 

Zaroubi S. , Hoffman Y., Fisher K. B., Lahav O., 1995, ApJ , 449, 446 

Zaroubi S. , Hoffman Y., Dekel A., 1999, ApJ , 520, 413 

AP PENDIX  A :  N I R  PHOTOME TRY  A N D  

LA  TE-TIME  OBSERVA  T I O N S  

Late-time observations are not al w ays critical for accurate forward- 

modelled photometry. When the surface-brightness profile of the host 

galaxy varies smoothly or has sharp features (e.g. galaxy nucleus, 

spiral arms) that do not o v erlap with the supernova, the forward- 

modelling code is able to cleanly separate the flux from the supernova 

Figure A1. We resample our model using a grid of α and β parameters for the prior beta distribution of the mixing ratio and plot the median values of the 

mixing ratio posteriors. The set of values used in our analysis is marked with a red star, and the set that produces a flat prior is marked with a black + . The 

inferred mixing ratio is not sensitive to variations in the initial beta distribution unless extremely strong priors are assumed. 
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Figure A2. We resample our model using a grid of standard deviation values for the prior distributions of μin and σ , and plot the median values of the posterior 

μin samples. The set of values used in our analysis is marked with a red star. Increasing σμ leads to the convergence issues we observed when using a flat prior, 

so we mask the runs where the average Gelman–Rubin ̂ R value across the sampled parameters is greater than 1.05. 

and galaxy. In these cases, a late-time observation does not provide 

new information, and the inferred photometry does not change. 

Ho we ver, there are supernova-galaxy configurations that critically 

dependent on late-time observations for accurate modelling. This 

moti v ates the use of a mixture model to simultaneously infer the 

parameters of both populations. 

For each SN, we create two ensembles of images; one with and 

one without late-time observations. This provides two values for 

the magnitude of the SN at each observed epoch, m ref and m 0 , 

respecti vely. The dif ferences �m = m ref − m 0 should be distributed 

about 0 mag if m ref and m 0 are normally distributed about the same 

mean. We use Stan to infer the population means, standard deviations, 

and the mixing ratio. 

Our priors are based on a crude analysis where we consider the 

subset | �m | ≤ 0 . 5 mag and | �m | > 0 . 5 mag, where 0.5 was chosen 

arbitrarily. The subset near 0 comprises 752 of our 832 observations. 

Our prior on the mixing ratio is a Beta distribution with α = 3 

and β = 0.3 such that the mean expectation value α
α+ β ≈ 752 / 832. 

The scale of α and β was chosen to create a moderately informed 

prior. Our priors on the population means (in magnitudes) are 

μin ∼ N (0 mag , 0 . 1 2 mag 2 ) for the tightly dispersed population, and 

μout ∼ U( −∞ , ∞ ) for the late-time sensitive population. Lastly, 

our priors on the standard deviations (in magnitudes) are σ ∼
N (0 mag , 2 2 mag 2 ), with 0 < σin < σout . 

We fit a Gaussian mixture-model to the photometric differences 

using Stan (Carpenter et al. 2017 ) and find 74.0 ± 2.3 per cent 

of the differences appear tightly dispersed ( �m ∼ N (0 . 01 ±
0 . 004 mag , (0 . 08 ± 0 . 005 mag ) 2 )), and the remaining 26.0 per cent 

vary much more dramatically ( �m ∼ N (0 . 33 ± 0 . 050 mag , (0 . 68 ±
0 . 037 mag ) 2 )). The fraction of targets reliant upon late-time ob- 

servations for accurate photometry is vastly exaggerated in this 

analysis because the subsample comprises only targets manually 

determined to need late-time observations. The critical information 

is the distribution of the tightly dispersed population, which de- 

scribes the effect late-time observations have on typical photometric 

measurements. 

We perform sensitivity analyses on the priors used for the mixing 

ratio and the population parameters of the tightly dispersed group. 

For testing the former, we tested prior beta distributions parametrized 

by α and β parameters drawn from a 30 by 30 grid spaced logarith- 

mically between 0.1 and 100. Fig. A1 shows that the reco v ered 

posterior estimate is not affected unless extreme values for α and 

β are assumed, corresponding to an extremely strong prior. More 

specifically, the reco v ered mixing ratio is within the joint uncertainty 

of the value inferred when using our the original priors ( α = 3, 

β = 0 . 3) unless α ≈ 100 while β � 5 or α � 3 β − 50 while β � 20. 

This implies that our inference of the mixing ratio is driven by data 

rather than the moderately informative prior we used. 
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Figure A3. Similar to Fig. A2 , but plotting the median values of the posterior σin samples rather than the μin samples. 

The priors on the population parameters of the tightly dispersed 

group encode the assumption that the magnitude differences �m 

should be 0 mag if the late-time observations are not providing new 

information to break model de generacies. Alternativ ely, one could 

assume that there is a systematic offset that must be estimated, which 

could make a flat uniform prior more appropriate. Ho we ver, this 

leads to convergence issues when sampling our model with 7 chains 

and 5000 steps using Stan’s no-U-Turn Hamiltonian Monte Carlo 

sampler. Instead, we examine the sensitivity of the posterior estimates 

to dif ferent le vels of v ariance in the priors μin ∼ N (0 mag , σ 2 
μ mag 2 ) 

and σ ∼ N (0 mag , σ 2 
σ mag 2 ) while maintaining σin < σout . We sam- 

ple our model using a 30 by 30 grid of σμ and σσ values logarith- 

mically spaced between 0.01 and 1 mag and between 0.1 and 10 

mag, respectively. As σμ increases, the distribution approaches a flat 

prior, and we observe similar convergence issues as σμ approaches 

1 mag. We mask the runs where the average Gelman–Rubin ̂ R 

value (Gelman & Rubin 1992 ) across all parameters is greater than 

1.05. Figs A2 and A3 show the medians of the posterior μin and 

σin samples, respectively, as a function of different values for the 

priors σμ and σσ . Convergence issues aside, the inferred population 

parameters describing the tightly dispersed group appear robust 

against variations in the priors. 

A joint sensitivity analysis examining the effects of varying more 

than two scalar priors at a time is possible, but given the insensitivity 

demonstrated in the abo v e analyses and the computational expense 

of increasing the dimensions of the problem, we deem that a joint 

analysis is not currently necessary. 

AP PENDIX  B:  H O S T  G A L A X Y  

IDENTIFIC ATIO N  A L G O R I T H M  

Before choosing to proceed with manual host galaxy identification, 

we investigated the Directional Light Radius method (Sulli v an et al. 

2006 ; Sako et al. 2018 ) which normalizes angular separation by 

the elliptical radius of a galaxy in the direction of the transient. 

The morphological data came from the NASA/IPAC Extragalactic 

Database 25 (NED; Helou et al. 1991 ; Mazzarella & NED Team 

2007 ), the Set of Identifications, Measurements and Bibliography 

for Astronomical Data 26 (SIMBAD; Wenger et al. 2000 ), and the 

GLADE + Galaxy Catalogue 27 (GLADE + ; D ́alya et al. 2022 ), which 

itself consolidates galaxies from the Gra vitational Wa ve Galaxy 

Catalogue (White, Daw & Dhillon 2011 ), HyperLEDA 
28 (Makarov 

et al. 2014 ), and the 2MASS Extended Source Catalogue (Jarrett et al. 

2000 ; Skrutskie et al. 2006 ). Unfortunately, the heterogeneity and 

sparsity of the available data presented several failure modes. First, 

the correct host galaxy could not be identified if it was not included in 

at least one of the aforementioned data bases or catalogues. Similarly, 

if a galaxy’s morphological data was not available, the DLR method 

could not be applied. Lastly, if multiple galaxies have categorically 

25 https:// ned.ipac.caltech.edu/ 
26 https:// simbad.u-strasbg.fr/ simbad/ 
27 https:// glade.elte.hu/ 
28 http:// leda.univ-lyon1.fr/ 
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distinct morphological measurements, either using different filters or 

different metrics, the DLR method would have been biased. 

APPENDIX  C :  A LT E R NAT I V E  SNOOPY 

C O N F I G U R AT I O N S  

In Section 3.1 , we describe the decisions that affect the inference of 

distance moduli given a set of photometry. Those decisions are: 

(i) Parametrizing shape with s BV instead of �m 15 . 

(ii) Performing fits with EBV model2 and the max model and 

not with the EBV model, max model2, Rv model, color model, 

SALT model, or MLCS model. 

(iii) Using the calibration from the full sample of Burns et al. 

( 2018 ) to describe the correlation between SN parameters and 

absolute magnitude. 

(iv) Using the F19 reddening law. 

In this section, we present the quantitative analyses that led to our 

choices of shape parameter, calibration, and reddening law. 

C1 Calibration 

The calibration used in the SNPY Max sample is defined based on 

our sample, but the calibration used in the SNPY EBV sample is 

selected from a list of available calibrations. We reproduce fits of 

our SNPY EBV sample using the calibrations from Tables C1 and 

C2 . We also reproduce our fits using �m 15 to parametrize shape and 

the calibrations from Table C3 . Each fit is performed assuming the 

default O94 reddening law (O’Donnell 1994 ). In the EBV model2, 

the calibration values are P 0 , P 1 , P 2 , and the host galaxy R V , with a 

fit dispersion of σint mag. 

We compare the χ2 values of the resultant fits to determine 

which calibration to use. All χ2 values are calculated as the square 

of the data-model residual divided by the quadrature sum of the 

uncertainties in the data and the model. Table C4 lists the median 

χ2 / DoF in the SNPY EBV sample fit using the listed calibrations. 

The table also includes the median χ2 
bp /N bp for each bandpass, 

where χ2 
bp is the sum of χ2 values in that bandpass and N bp is the 

corresponding number of photometric epochs. These are not reduced 

χ2 values because the four fitting parameters are not remo v ed from 

the DoF. As such, χ2 / DoF is not an average of the bandpass specific 

values 
∑ 

bp χ
2 
bp /N bp , but rather 

∑ 

bp χ
2 
bp / ( 

∑ 

bp N bp − 4). 

The χ2 / DoF values are consistently lowest in the calibrations 

sourced from table 1 of Burns et al. ( 2018 ). Calibration 8, which was 

calculated without SNe Ia with s BV < 0 . 5, has the lowest χ2 / DoF 

of all. Ho we ver, gi ven that our uncut sample contains SNe Ia with 

s BV < 0 . 5 we choose to use calibration 6 for all EBV model2 fits. 

The ZTF g- and r-bandpasses and the ATLAS o-bandpass have 

χ2 
bp /N bp v alues belo w 1 across all calibrations, suggesting that the 

uncertainties in the photometry or in the model may be o v erestimated. 

Our decision to combine photometry from each ATLAS quad into a 

single measurement based on a weighted median (see Section 2.1.2 ) 

could produce such an o v erestimate, but it is not clear why χ2 
c /N c 

would be consistently larger than χ2 
o /N o . 

C2 Reddening Law 

A thorough re vie w of the ef fects of dust (e.g. McCall 2004 ; 

Gontcharo v 2016 ), ev en limited to studies of SNe Ia (e.g. Brout & 

Riess 2023 ), is beyond the scope of this work, but we will re vie w a 

few definitions to contextualize the present analysis and our decision. 

Extinction is parametrized as a function of wavelength, where the 

observed flux at wavelength λ is decreased by A ( λ) mag due to 

dust. The extinction curve A ( λ) is roughly inversely proportional 

to wavelength, meaning the intrinsic colour of an object is red- 

dened. This reddening, or colour excess, is conventionally defined 

as the differential or selectiv e e xtinction between the Johnson–

Cousins B and V bands ( E( B − V ) = A ( B) − A ( V )). The total- 

to-selectiv e e xtinction parameter R is defined as the ratio between 

the total extinction at a given wavelength and the colour excess 

( R λ = A ( λ) /E( B − V )). Both the total and selective extinction are 

linearly proportional to the amount of dust along the line of sight, 

which leaves R constant across different amounts of interposing dust. 

Ho we ver, the scattering cross-section of dust varies with the shape 

and size of the dust grains, producing div erse e xtinction curv es and 

R values. Cardelli et al. ( 1989 ) found that the stellar samples from 

Fitzpatrick & Massa ( 1986 , 1988 ) permitted normalized extinction 

curves from the ultraviolet (UV) to the NIR that depend on only one 

parameter chosen to be R V . This is an example of a ‘reddening law’ 

or ‘e xtinction la w’ which is a function that uses R V (or additional 

parameters, e.g. Gordon et al. 2016 ) to infer R at a giv en wav elength 

or integrated across a given bandpass. 

The definition of SNooPy ’s EBV model2 (equation 4 ) involves 

two terms that describe an R value multiplied by an estimate of 

colour excess; one to account for Galactic extinction and one for host 

galaxy extinction. The rescaled SFD dust map provides estimates of 

Galactic colour excess while the colour excesses of the host galaxies 

are inferred during the fitting process. The inference of colour excess 

is largely degenerate with the inference of R values, so the model 

requires the assumption of a reddening law and R V values for the 

Milky Way and the host galaxies. 

We reproduce the fits of SNPY EBV sample using three reddening 

laws: O94 (O’Donnell 1994 ), F99 (Fitzpatrick 1999 ), and F19 

(Fitzpatrick et al. 2019 ). These specific reddening laws are chosen 

for the following reasons. O94 is the default reddening law used 

in SNooPy and in the deri v ation of the Folatelli et al. ( 2010 ) 

calibrations. The analysis of Schlafly & Finkbeiner ( 2011 ) found 

that the reddening measured in SDSS stellar spectra agreed with 

the rescaled SFD dust map better when using the F99 reddening 

law than when using the O94 law. The F19 reddening law presents 

sev eral impro v ements o v er the F99 la w. The foundational data used 

to derive the F19 law are spectrophotometric, which allows for 

normalization based on a single wavelength (4400 and 5500 Å) rather 

than broadband photometry ( B and V bands). Additionally, the new 

data set spans the gap between the UV and optical regimes with 

homogeneous co v erage whereas other reddening laws extrapolate or 

interpolate between qualitati vely dif ferent data sets to co v er this gap. 

The three reddening laws we examine were defined using data 

spanning specific ranges in wavelength and R V . O94 is based on 

data spanning wavelengths between about 3030 and 9090 Å and R V 

values between 2.85 and 5.6. F99 uses spectra from the International 

Ultraviolet Explorer (IUE; Boggess et al. 1978a , b ) and photometry 

in the Johnson broadband UBVRIJHKLM system and intermediate- 

band Str ̈omgren uvby system, ef fecti vely spanning wavelengths 

between 1150 Å and 6 μm . The fit assumes that A ( λ) approaches 0 

as wavelength approaches infinity, but the author cautions that the 

curve ‘should be treated as very approximate’ beyond 6 μm . The R V 

values of the data range between about 2 and 6. The F19 law uses 

spectra spanning 1150 to 10000 Å and 2MASS photometry in the 

J H K-bandpasses which extends the red end to about 2 . 2 μm . This 

fit also assumes that A ( λ) approaches 0 as wavelength approaches 

infinity. The R V values of the data span a slightly smaller range than 

the data used to define the F99 law, spanning about 2.5–6. The J - 
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Table C1. The calibrations available for the EBV model2 in SNooPy version 2.6.0. All bandpasses are from the natural CSP photometric system. The 

shape factor used to calculate these values is s BV . 

Calibration Sample Bandpass P 0 P 1 P 2 R V σint 

number description (mag) (mag) (mag) (mag) 

0 u -band s BV > 0 . 5 B −19.310(025) −0.675(110) 3 .415(387) 1.518(082) 0.072 

V −19.264(022) −0.727(092) 2 .161(341) 1.518(082) 0.067 

u −18.945(035) −1.077(163) 4 .066(533) 1.518(082) 0.148 

g −19.345(023) −0.719(102) 2 .760(364) 1.518(082) 0.067 

r −19.146(023) −0.619(094) 1 .968(347) 1.518(082) 0.076 

i −18.529(024) −0.541(102) 0 .705(382) 1.518(082) 0.092 

Y −18.532(025) −0.387(112) 0 .232(416) 1.518(082) 0.105 

J −18.646(026) −0.719(126) −0 .714(462) 1.518(082) 0.117 

H −18.470(034) −0.456(171) −0 .192(622) 1.518(082) 0.172 

1 u -band ( m B − m V ) < 0 . 3 B −19.317(025) −0.655(108) 3 .500(378) 1.746(180) 0.071 

V −19.278(024) −0.718(094) 2 .249(341) 1.746(180) 0.068 

u −18.972(031) −1.028(143) 4 .416(418) 1.746(180) 0.124 

g −19.349(024) −0.710(100) 2 .782(352) 1.746(180) 0.065 

r −19.162(025) −0.613(095) 2 .049(351) 1.746(180) 0.077 

i −18.550(026) −0.530(103) 0 .848(384) 1.746(180) 0.092 

Y −18.547(026) −0.378(114) 0 .320(427) 1.746(180) 0.106 

J −18.665(028) −0.697(129) −0 .538(475) 1.746(180) 0.119 

H −18.490(036) −0.431(176) −0 .005(637) 1.746(180) 0.175 

2 u -band all objects B −19.325(022) −0.676(103) 3 .804(262) 1.531(081) 0.069 

V −19.277(020) −0.732(088) 2 .422(222) 1.531(081) 0.065 

u −18.969(032) −1.123(142) 4 .742(253) 1.531(081) 0.153 

g −19.359(021) −0.719(095) 3 .098(243) 1.531(081) 0.065 

r −19.154(020) −0.637(089) 2 .048(221) 1.531(081) 0.074 

i −18.555(021) −0.510(099) 1 .378(240) 1.531(081) 0.092 

Y −18.560(022) −0.350(112) 0 .975(269) 1.531(081) 0.107 

J −18.686(026) −0.639(143) 0 .460(313) 1.531(081) 0.140 

H −18.499(030) −0.416(165) 0 .637(354) 1.531(081) 0.168 

3 No u -band s BV > 0 . 5 B −19.271(024) −0.753(116) 2 .928(411) 1.699(089) 0.078 

V −19.246(021) −0.791(093) 1 .867(343) 1.699(089) 0.066 

g −19.315(022) −0.785(105) 2 .369(375) 1.699(089) 0.070 

r −19.134(021) −0.678(094) 1 .728(346) 1.699(089) 0.075 

i −18.518(023) −0.599(100) 0 .476(374) 1.699(089) 0.090 

Y −18.528(023) −0.415(108) 0 .123(398) 1.699(089) 0.102 

J −18.638(025) −0.743(122) −0 .827(445) 1.699(089) 0.112 

H −18.462(032) −0.513(168) −0 .374(606) 1.699(089) 0.169 

4 No u -band ( m B − m V ) < 0 . 3 B −19.276(025) −0.730(116) 3 .053(412) 1.716(202) 0.078 

V −19.247(022) −0.780(095) 1 .909(351) 1.716(202) 0.068 

g −19.311(023) −0.782(106) 2 .363(383) 1.716(202) 0.070 

r −19.134(023) −0.672(095) 1 .744(354) 1.716(202) 0.076 

i −18.524(024) −0.589(101) 0 .557(381) 1.716(202) 0.092 

Y −18.529(025) −0.409(111) 0 .146(418) 1.716(202) 0.104 

J −18.646(026) −0.728(126) −0 .720(465) 1.716(202) 0.115 

H −18.477(035) −0.489(174) −0 .188(644) 1.716(202) 0.175 

5 No u -band all objects B −19.304(022) −0.682(113) 3 .916(321) 1.729(089) 0.077 

V −19.270(019) −0.751(092) 2 .460(254) 1.729(089) 0.065 

g −19.344(021) −0.727(102) 3 .166(292) 1.729(089) 0.067 

r −19.154(019) −0.655(092) 2 .155(238) 1.729(089) 0.074 

i −18.553(020) −0.536(099) 1 .409(238) 1.729(089) 0.089 

Y −18.561(021) −0.360(107) 1 .024(244) 1.729(089) 0.103 

J −18.687(025) −0.633(139) 0 .639(296) 1.729(089) 0.139 

H −18.495(028) −0.456(161) 0 .594(331) 1.729(089) 0.164 

band data used in our project is redder than the data used to calculate 

the O94 law, and the host galaxy R V values in calibration 6 (1.1–1.9) 

are all below the minimum R V values used to define the O94, F99, 

and F19 laws. The low R V values are likely due to the conflation 

of intrinsic SN Ia colour and the effects of host galaxy extinction in 

the EBV model2. We edit the allowed wavelength and R V ranges in 

the dust extinction package (Gordon 2024 ) to allow for the 

extrapolations we require. 

The χ2 / DoF values presented in Table C5 are similar across the 

three reddening laws, which implies that the choice of reddening 

law does not significantly impact the accuracy of the EBV model2. 

The fits using the F99 law have the lo west χ2 / DoF v alue, but this is 



660 A. Do et al. 

MNRAS 536, 624–663 (2025) 

Table C2. Similar to Table C1 , except the values are those presented in table 1 of Burns et al. ( 2018 ). 

Calibration Sample Bandpass P 0 P 1 P 2 R V σint 

number description (mag) (mag) (mag) (mag) 

6 Full sample B −19.182(062) −0.89(11) −0 .02(30) 1.65(08) 0.13 

V −19.181(061) −0.89(11) −0 .02(30) 1.65(08) 0.13 

u −18.818(097) −1.28(17) 0 .32(44) 1.13(52) 0.22 

g −19.229(084) −0.90(11) −0 .13(31) 1.57(09) 0.13 

r −19.099(059) −0.74(10) 0 .38(27) 1.78(08) 0.12 

i −18.523(059) −0.48(10) 0 .41(27) 1.85(09) 0.12 

Y −18.517(077) −0.07(11) 1 .19(30) 1.34(21) 0.12 

J −18.633(062) −0.37(12) 0 .61(32) 1.27(36) 0.11 

H −18.431(062) −0.05(12) 1 .18(31) 1.28(57) 0.11 

0 ( m B − m V ) < 0 . 5 B −19.161(062) −0.94(11) −0 .36(43) 1.54(14) 0.13 

V −19.161(061) −0.94(11) −0 .37(44) 1.54(14) 0.13 

u −18.793(095) −1.35(18) −0 .47(64) 1.12(51) 0.21 

g −19.206(082) −0.97(11) −0 .57(43) 1.48(14) 0.13 

r −19.081(060) −0.77(10) 0 .12(41) 1.67(13) 0.13 

i −18.501(060) −0.52(10) −0 .10(41) 1.79(17) 0.13 

Y −18.497(076) −0.10(11) 0 .34(41) 1.69(35) 0.12 

J −18.601(062) −0.43(11) −0 .42(45) 1.51(58) 0.11 

H −18.400(062) −0.10(12) 0 .17(47) 1.33(85) 0.11 

0 s BV > 0 . 5 B −19.159(062) −0.93(12) −0 .61(43) 1.64(09) 0.13 

V −19.159(061) −0.94(11) −0 .62(43) 1.64(09) 0.13 

u −18.790(097) −1.32(18) −0 .35(70) 1.10(45) 0.22 

g −19.204(084) −0.96(12) −0 .80(43) 1.56(09) 0.13 

r −19.081(060) −0.77(11) −0 .05(39) 1.76(08) 0.12 

i −18.499(059) −0.52(10) −0 .21(38) 1.82(10) 0.12 

Y −18.480(076) −0.11(11) 0 .32(42) 1.18(22) 0.11 

J −18.593(060) −0.44(12) −0 .35(45) 1.02(36) 0.11 

H −18.394(061) −0.10(12) 0 .13(47) 0.82(52) 0.11 

0 s BV > 0 . 5( m B − m V ) < 0 . 5 B −19.162(061) −0.94(11) −0 .30(46) 1.55(14) 0.13 

V −19.163(061) −0.94(11) −0 .31(46) 1.55(14) 0.13 

u −18.796(095) −1.35(17) −0 .42(69) 1.12(51) 0.21 

g −19.207(083) −0.96(11) −0 .53(46) 1.48(15) 0.13 

r −19.083(060) −0.77(10) 0 .17(42) 1.68(13) 0.13 

i −18.501(061) −0.52(10) −0 .10(43) 1.78(17) 0.13 

Y −18.489(075) −0.10(10) 0 .15(42) 1.59(35) 0.12 

J −18.598(063) −0.43(12) −0 .48(47) 1.48(57) 0.11 

H −18.395(061) −0.11(12) 0 .03(48) 1.24(84) 0.11 

Table C3. Similar to Table C1 , except the shape parameter used is �m 15 . 

Calibration Sample Bandpass P 0 P 1 P 2 R V σint 

number description (mag) (mag) (mag) (mag) 

10 u -band s BV > 0 . 5 B −19.360(030) 0.433(090) 2 .356(293) 1.533(084) 0.076 

V −19.282(027) 0.540(080) 1 .253(260) 1.533(084) 0.070 

u −18.979(042) 0.751(136) 2 .526(433) 1.533(084) 0.150 

g −19.380(028) 0.473(084) 1 .958(275) 1.533(084) 0.069 

r −19.171(027) 0.489(081) 1 .187(262) 1.533(084) 0.077 

i −18.548(027) 0.379(088) 0 .383(278) 1.533(084) 0.093 

Y −18.549(027) 0.082(091) 0 .372(282) 1.533(084) 0.095 

J −18.662(028) 0.175(100) 0 .152(311) 1.533(084) 0.107 

H −18.475(037) 0.143(136) 0 .035(418) 1.533(084) 0.165 

11 u -band ( m B − m V ) < 0 . 3 B −19.369(030) 0.419(089) 2 .425(297) 1.589(155) 0.076 

V −19.292(028) 0.528(080) 1 .322(265) 1.589(155) 0.070 

u −19.016(039) 0.717(120) 2 .788(393) 1.589(155) 0.126 

g −19.384(029) 0.464(082) 1 .992(274) 1.589(155) 0.066 

r −19.182(029) 0.478(081) 1 .256(266) 1.589(155) 0.079 

i −18.568(029) 0.362(088) 0 .511(283) 1.589(155) 0.093 

Y −18.560(028) 0.070(091) 0 .446(285) 1.589(155) 0.094 

J −18.679(029) 0.156(100) 0 .274(312) 1.589(155) 0.108 

H −18.494(038) 0.122(136) 0 .176(424) 1.589(155) 0.165 
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Table C3 – continued 

Calibration Sample Bandpass P 0 P 1 P 2 R V σint 

number description (mag) (mag) (mag) (mag) 

12 u -band all objects B −19.394(029) 0.370(089) 2 .820(267) 1.593(084) 0.074 

V −19.320(025) 0.472(077) 1 .736(214) 1.593(084) 0.067 

u −19.056(042) 0.579(144) 3 .793(373) 1.593(084) 0.173 

g −19.409(027) 0.424(082) 2 .306(243) 1.593(084) 0.067 

r −19.205(024) 0.430(078) 1 .591(204) 1.593(084) 0.075 

i −18.598(025) 0.279(085) 1 .070(207) 1.593(084) 0.093 

Y −18.594(024) −0.010(088) 1 .013(207) 1.593(084) 0.095 

J −18.707(027) 0.087(103) 0 .825(228) 1.593(084) 0.123 

H −18.509(032) 0.066(128) 0 .559(275) 1.593(084) 0.161 

13 No u -band s BV > 0 . 5 B −19.281(030) 0.516(095) 1 .768(306) 1.727(097) 0.086 

V −19.235(026) 0.613(081) 0 .840(259) 1.727(097) 0.071 

g −19.314(028) 0.547(087) 1 .454(282) 1.727(097) 0.074 

r −19.134(026) 0.558(081) 0 .833(258) 1.727(097) 0.077 

i −18.516(026) 0.445(088) 0 .064(276) 1.727(097) 0.092 

Y −18.529(026) 0.123(090) 0 .180(277) 1.727(097) 0.095 

J −18.643(027) 0.202(098) −0 .000(301) 1.727(097) 0.107 

H −18.453(036) 0.211(136) −0 .212(418) 1.727(097) 0.168 

14 No u -band ( m B − m V ) < 0 . 3 B −19.287(031) 0.512(096) 1 .824(314) 1.544(181) 0.087 

V −19.228(027) 0.610(081) 0 .840(265) 1.544(181) 0.073 

g −19.308(028) 0.554(088) 1 .430(286) 1.544(181) 0.075 

r −19.125(027) 0.552(081) 0 .826(262) 1.544(181) 0.078 

i −18.516(028) 0.435(087) 0 .112(278) 1.544(181) 0.092 

Y −18.523(027) 0.121(090) 0 .173(282) 1.544(181) 0.095 

J −18.644(028) 0.205(098) 0 .016(307) 1.544(181) 0.108 

H −18.465(038) 0.207(138) −0 .129(434) 1.544(181) 0.169 

15 No u -band all objects B −19.335(028) 0.410(092) 2 .559(273) 1.824(096) 0.084 

V −19.288(023) 0.515(076) 1 .549(209) 1.824(096) 0.067 

g −19.360(025) 0.463(083) 2 .065(247) 1.824(096) 0.070 

r −19.182(022) 0.469(076) 1 .447(190) 1.824(096) 0.074 

i −18.582(022) 0.308(082) 1 .013(184) 1.824(096) 0.093 

Y −18.586(022) 0.002(084) 1 .017(178) 1.824(096) 0.096 

J −18.704(025) 0.070(100) 0 .961(203) 1.824(096) 0.125 

H −18.512(031) 0.072(128) 0 .737(250) 1.824(096) 0.171 

Table C4. Various χ2 metrics are presented for the SNPY EBV sample fit with the 16 calibrations listed in Tables C1 , C2 , and C3 . After the 

χ2 /DoF column, each column lists the sum of χ2 values in the subscripted bandpass divided by the corresponding number of photometric 

epochs. Each listed value is the median across all SNe Ia in the SNPY EBV sample fit with the calibration in the first column. The c- and 

o-bandpasses are from ATLAS and the g- and r-bandpasses are from ZTF. 

Calibration χ2 /DoF χ2 
g /N g χ2 

c /N c χ2 
r /N r χ2 

o /N o χ2 
J /N J 

0 1.051 0.491 1.021 0.782 0.876 1.234 

1 1.036 0.491 1.013 0.760 0.866 1.189 

2 1.045 0.471 0.980 0.777 0.858 1.233 

3 1.015 0.489 1.010 0.753 0.867 1.126 

4 1.012 0.491 1.013 0.746 0.865 1.148 

5 1.011 0.470 0.978 0.731 0.848 1.108 

6 0.955 0.484 1.105 0.636 0.846 1.052 

7 0.953 0.467 0.963 0.667 0.866 1.002 

8 0.937 0.460 0.974 0.637 0.867 1.032 

9 0.947 0.458 0.963 0.657 0.874 0.997 

10 1.009 0.570 1.115 0.670 0.892 1.181 

11 1.002 0.576 1.102 0.657 0.891 1.157 

12 0.991 0.559 1.115 0.648 0.891 1.142 

13 0.996 0.548 1.085 0.592 0.887 1.123 

14 1.008 0.567 1.108 0.613 0.888 1.162 

15 0.968 0.555 1.101 0.588 0.871 1.115 
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Table C5. Similar to Table C4 , but presenting various χ2 metrics for the O94, F99, and F19 reddening laws rather than the calibrations. 

Reddening law χ2 / DoF χ2 
g /N g χ2 

c /N c χ2 
r /N r χ2 

o /N o χ2 
J /N J 

O94 0.955 0.484 1.105 0.636 0.846 1.052 

F99 0.947 0.464 1.139 0.609 0.844 1.135 

F19 0.961 0.493 1.089 0.633 0.837 1.004 

not the case o v er all bandpasses. The F99 law produces the lowest 

χ2 
bp /N bp values for the ZTF g and r bands, while simultaneously 

producing the highest values the ATLAS c band and the J band. The 

ATLAS, ZTF, and Hawai‘i Supernova Flows observing strategies 

produce more epochs of photometry in the former two bandpasses 

than the latter two, which accounts for the lower χ2 / DoF in F99 

via weighting. Ho we ver, we do not presently understand why the 

χ2 
bp /N bp values are so much lower than 1 for the gro-bands, and note 

that the F19 law produces the lo west v alues for the coJ -bands. Even 

though the median χ2 / DoF value is highest in the fits assuming the 

F19 law, it is still indicative of a good set of fits. Thus, we choose to 

adopt the F19 reddening law for our EBV model2 fits. 

APPENDIX  D :  ALL-SKY  SURV EY  

I N D E P E N D E N C E  

When multiple observers record photometric time series of a single 

source, the correlation between the resultant light curves is based 

primarily on the time-evolution of the astrophysical source, but is 

also affected by correlated observational or instrumental effects. For 

example, the orbital motion of the Earth Doppler shifts the SED of 

an y observ ed target, leading to slight annual correlations for non-flat 

SEDs. Unmodelled variability in reference stars used by multiple 

surv e ys could lead to common errors in zero-point calibration. We 

assume independence between the ATLAS, ASAS-SN, and ZTF 

photometry in the sense that we consider any correlated observational 

or instrumental effects as insignificant. 

To justify this assumption, we analyse forced photometry of 

CALSPEC stars in the footprint of all surv e ys and fainter than 

15 mag in V to a v oid saturation. To account for proper motion, 

we access ASAS-SN lightcurves from the ASAS-SN Sk y P atrol 29 

(Shappee et al. 2014 ; Hart et al. 2023 ) and ZTF lightcurves from the 

ZTF DR 21 archive (Masci et al. 2019 ) hosted at the NASA/IPAC 

29 http:// asas-sn.ifa.hawaii.edu/skypatrol/ 

Infrared Science Archive. 30 The CALSPEC targets in NGC 6681 are 

excluded due to crowding. The list of CALSPEC stars and their 

synthetic magnitudes in the bandpasses of the three surv e ys are 

presented in Table D1 CALSPEC stars demonstrate minimal stellar 

variability (Rubin et al. 2022 ), which we use to exclude astrophysical 

time-evolution as a source of correlation between light curves. As 

mentioned in Section 2.1.2 , we combine ATLAS data from the same 

nights with a weighted median. 

For the 10 bandpass pairs possible using A TLAS c, A TLAS o, 

ASAS-SN g, ZTF g, and ZTF r , we identify observations where a 

given star was observed in both bandpasses within 12 h. This makes 

our analysis sensitive to correlated effects on characteristic time- 

scales greater than half a day, but insensitive to effects that vary 

on shorter time-scales. We calculate observed-synthetic magnitude 

residuals and normalize by the recorded uncertainties to produce z - 

scores. We do not include pairs where either observation is in the 

bottom or top 5 per cent of z -scores for that bandpass and star. We 

concatenate the rest of the z -score pairs into equal length sets for 

both bandpasses. Table D2 shows the calculated Pearson correlation 

coefficients between those sets. 

All bandpass pairs besides ZTF g and ZTF r are consistent 

with a correlation coefficient of 0 at the 95 per cent level. The 

correlation between the two ZTF bandpasses implies there is at least 

one observational or instrumental effect that applies to both sets of 

observations, but the magnitude of such a correlation is small at 

about 0.05. This is to be expected since both sets of observations 

come from the Palomar 48 inch Schmidt telescope. Perhaps more 

surprising is that the ATLAS c and o data do not appear correlated. 

This could be due to the distribution of observations across multiple 

sites (Haleakala and Maunaloa in Hawai‘i, El Sauce Observatory in 

Chile, Sutherland Observing Station in South Africa), or due to the 

low number of observations in both bandpasses. 

30 ht tps://irsa.ipac.calt ech.edu/Missions/ztf.html 
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Table D1. This table lists the CALSPEC stars used in our analysis, which were selected to be fainter than 16 mag in V to a v oid saturation 

issues. We do not include the stars in NGC 6681 due to crowding. The columns list the synthetic magnitudes in the five bandpasses examined. 

Name ATLAS c ATLAS o ASAS-SN g ZTF g ZTF r 

(mag) (mag) (mag) (mag) (mag) 

C26202 16.55 16.32 16.73 16.69 16.34 

HS2027 + 0651 16.56 16.96 16.39 16.44 16.89 

NGC2506 – G31 17.99 17.66 18.24 18.18 17.69 

SDSS132811 17.05 17.33 17.01 16.99 17.28 

SDSSJ151421 15.81 16.23 15.66 15.68 16.16 

SF1615 + 001A 16.82 16.48 17.07 17.01 16.52 

SNAP-2 16.29 15.98 16.53 16.47 16.01 

VB8 17.04 14.2 17.85 17.57 15.58 

WD0947 + 857 15.66 16.14 15.47 15.51 16.06 

WD1026 + 453 16.03 16.5 15.85 15.88 16.43 

WD1657 + 343 16.35 16.83 16.15 16.2 16.75 

Table D2. We present correlation measurements between the 10 bandpass pairs between the fiv e surv e y bandpasses. F or each pair we 

assemble all N observations of common targets performed on the same date and calculate the Pearson correlation coefficient r . We present 

the 95 per cent confidence intervals (CI 95 per cent) and p -values, finding that all combinations but ZTF g and ZTF r are consistent with no 

correlation and are not significant at the p<0 . 05 level. 

Bandpass 1 Bandpass 2 N r CI 95 per cent p -value 

ATLAS c ATLAS o 53 0 .011 ( −0.26, 0.28) 0.940 

ATLAS c ASAS-SN g 345 −0 .057 ( −0.16, 0.05) 0.291 

ATLAS c ZTF g 235 −0 .086 ( −0.21, 0.04) 0.188 

ATLAS c ZTF r 244 −0 .031 ( −0.16, 0.09) 0.628 

ATLAS o ASAS-SN g 922 −0 .012 ( −0.08, 0.05) 0.719 

ATLAS o ZTF g 629 0 .020 ( −0.06, 0.1) 0.613 

ATLAS o ZTF r 686 0 .035 ( −0.04, 0.11) 0.359 

ASAS-SN g ZTF g 804 0 .030 ( −0.04, 0.1) 0.396 

ASAS-SN g ZTF r 808 −0 .012 ( −0.08, 0.06) 0.741 

ZTF g ZTF r 1669 0 .053 (0.01, 0.1) 0.030 
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