of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 536, 624-663 (2025)
Advance Access publication 2024 November 7

https://doi.org/10.1093/mnras/stae2501

Hawai‘i Supernova Flows: a peculiar velocity survey using over a
Thousand Supernovae in the near-infrared

Aaron Do ”,'** Benjamin J. Shappee ,> John L. Tonry *,> R. Brent Tully *',> Thomas de Jaeger =, >

David Rubin *,>* Chris Ashall *',>> Christopher R. Burns ,° Dhvanil D. Desai *,> Jason T. Hinkle ',
Willem B. Hoogendam “,> Mark E. Huber *,> David O. Jones *,> Kaisey S. Mandel ',

Anna V. Payne " Erik R. Peterson ,® Dan Scolnic *'® and Michael A. Tucker **-1%!1

Unstitute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 OHA, UK

2Institmtefor Astronomy, University of Hawai ‘i, 2680 Woodlawn Dr, Honolulu, HI 96822, USA

3CNRS/IN2P3, Sorbonne Université, Université Paris Cité, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75005 Paris, France
4Department of Physics and Astronomy, University of Hawai ‘i, Honolulu, HI 96822, USA

5Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

8The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA

TSpace Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

8Department of Physics, Duke University, Durham, NC 27708, USA

9 Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA
1ODepartmem‘ of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

" Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA

Accepted 2024 October 30. Received 2024 October 15; in original form 2024 March 8

ABSTRACT

We introduce the Hawai‘i Supernova Flows project and present summary statistics of the first 1217 astronomical transients
observed, 668 of which are spectroscopically classified Type Ia Supernovae (SNe Ia). Our project is designed to obtain
systematics-limited distances to SNe Ia while consuming minimal dedicated observational resources. To date, we have performed
almost 5000 near-infrared (NIR) observations of astronomical transients and have obtained spectra for over 200 host galaxies
lacking published spectroscopic redshifts. In this survey paper, we describe the methodology used to select targets, collect/reduce
data, calculate distances, and perform quality cuts. We compare our methods to those used in similar studies, finding general
agreement or mild improvement. Our summary statistics include various parametrizations of dispersion in the Hubble diagrams
produced using fits to several commonly used SN Ia models. We find the lowest dispersions using the SNooPy package’s
EBV _model2, with a root mean square deviation of 0.165 mag and a normalized median absolute deviation of 0.123 mag. The
full utility of the Hawai ‘i Supernova Flows data set far exceeds the analyses presented in this paper. Our photometry will provide
a valuable test bed for models of SN Ia incorporating NIR data. Differential cosmological studies comparing optical samples
and combined optical and NIR samples will have increased leverage for constraining chromatic effects like dust extinction. We
invite the community to explore our data by making the light curves, fits, and host galaxy redshifts publicly accessible.

Key words: catalogues — galaxies: distances and redshifts — (cosmology:) large-scale structure of Universe — transients: super-
novae.

The paper is organized as follows. In this Section, we review
the connection between large-scale structure and peculiar velocities,
describe the largest contemporary peculiar velocity surveys, and
motivate our use of SNe Ia. Section 2 describes the individual

1 INTRODUCTION

Hawai ‘i Supernova Flows is an ongoing effort to map the distribution
of mass in the local universe (z < 0.1) using near-infrared (NIR)

observations of Type Ia Supernovae (SNe la) in combination with
untargeted optical surveys. In this paper, we provide an overview
of the Hawai‘i Supernova Flows project to support future papers
examining detailed science cases using data from Hawai‘i Supernova
Flows.

* E-mail: ajmd6 @cam.ac.uk

components of the project: including the target selection process, the
observing facilities used, the photometric calibration and analysis,
the identification of host galaxies, and the determination of their
redshifts. Section 3 describes the three SN Ia fitting procedures we
employ and how each set of fitting parameters is converted to distance
moduli. We validate our fitting methodology and photometry using
data from the Dark Energy, Hy, and peculiar Velocities using Infrared
Light from Supernovae survey (DEHVILS; Peterson et al. 2023) and
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the Carnegie Supernova Project’s third data release (CSP-I DR3;
Krisciunas et al. 2017) in Section 4. Section 5 lists the quality cuts
used to define the various samples we describe, analyse, and discuss
in Section 6.

1.1 Peculiar velocities and the state-of-the-art

While the LSS contains some luminous, baryonic matter, the majority
of its mass may only be studied through its gravitational effects
(for a review of dark matter, consider Bertone & Hooper 2018). In
comoving coordinates, objects accelerate towards denser regions of
LSS and away from voids. This motion is called peculiar velocity
and its projection on our line of sight may be calculated as (Davis &
Scrimgeour 2014)

v =c < Zobs — Zcos(dL) ) , (1)
1 + Zcos(dL)

where z,,s is the observed redshift and z..(d;) is the redshift
at luminosity distance d; due to universal expansion in a given
cosmological model with deceleration parameter g, and Hubble
constant H, (Peebles 1993)

—1+\/1+2H2dL(1—610)}~ >

Peculiar velocities have been used to infer the distribution of
LSS through a variety of approaches like the POTENT method
(Bertschinger & Dekel 1989; Dekel, Bertschinger & Faber 1990;
Dekel et al. 1999), the Wiener Filter and constrained realizations
method (Ganon & Hoffman 1993; Zaroubi et al. 1995; Zaroubi,
Hoffman & Dekel 1999; Courtois et al. 2012), the unbiased minimal
variance estimator (Zaroubi 2002), and various Bayesian hierarchical
approaches (Lavaux 2016; Graziani et al. 2019; Valade et al. 2022).
These methods commonly assume the LSS formed through gravita-
tional instabilities, and is thus irrotational on large scales (V x v = 0)
(Peebles 1980). Variations between the methods typically represent
different approaches to minimizing the systematic effects of smooth-
ing, uneven sky coverage, and biases in peculiar-velocity surveys.
Modern cosmographic surveys are not limited by analytical tools,
but by the number and precision of distance measurements.

Many peculiar velocity surveys use either the fundamental plane
(FP; Djorgovski & Davis 1987; Dressler et al. 1987) or the Tully—
Fisher relation (TF; Tully & Fisher 1977) to measure distances
because these methods can be applied to a significant fraction of all
galaxies, whereas other methods require relatively rare phenomena
like a gravitational lens (Refsdal 1964), a maser (Herrnstein et al.
1999) or megamaser (Gao et al. 2016), a gravitational wave event
(Holz & Hughes 2005), or a supernova (SN). However, while the
FP and TF methods have significant advantages in target availability,
the resulting distance measurements are often five to ten times less
precise than measurements from more narrowly applicable distance
probes. The FP and TF methods, along with most photometric
measures of distance, produce errors in distance modulus, which
causes error to increase with the distance. This proportionality is
directly passed on to the uncertainties in peculiar velocity. While
independent peculiar velocity measurements of N neighbouring
galaxies can be combined to reduce the statistical uncertainty by
a factor of /N, galaxies have a finite amount of neighbours. A
volume-limited peculiar velocity survey will always find a noise
floor that scales with the uncertainty in the distance-measuring
technique and inversely with the root of galaxy number density.
Put another way, a survey with an explicit precision requirement has

Zcos ™~

1 —qo
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a maximum effective range that cannot be extended without more
precise measures of distance.

For this reason, two of the three largest homogeneous collections
of peculiar velocities extend no farther than a cosmic microwave
background (CMB) rest-frame redshift of zcys = 0.05. These are
the Cosmicflows-IV TF catalogue (CF4-TF, 9792 galaxies; Kourkchi
et al. 2020) and the FP-based 6-degree Field Galaxy Survey peculiar
velocity sample (6dFGSv, 8885 galaxies; Campbell et al. 2014;
Springob et al. 2014). The Sloan Digital Sky Survey (SDSS) peculiar
velocity catalogue (SDSS-PV, 34 059 galaxies; Howlett et al. 2022)
is the first FP- or TF-based survey to extend to zcms = 0.1, but
so far only covers the SDSS North Galactic Cap contiguous area
(7016 degz). The largest compilation of extragalactic distances is
the heterogeneous catalogue Cosmicflows-IV (CF4, 55 877 galaxies;
Tully et al. 2023), which consolidates these and other surveys and
uses both FP and TF measurements, as well as surface brightness
fluctuations (Tonry & Schneider 1988), core-collapse SNe (Hamuy &
Pinto 2002), and SNe Ia (Phillips 1993).

The SDSS-PV sample has not yet produced any detailed cos-
mographic studies, but the authors measured a bulk flow in mild
excess (p ~ 0.06-0.20 depending on cuts) of what a fiducial dark
energy and cold dark matter (ACDM) model would suggest. This
excess has been suggested before using various independent data sets
(e.g. Pike & Hudson 2005; Feldman & Watkins 2008; Kashlinsky
et al. 2008; Feldman, Watkins & Hudson 2010; Lavaux et al. 2010).
Contemporary analyses extend the scale of the issue, with Watkins
et al. (2023) finding that CF4 data indicate excess bulk flows on
scales of 200 h™' Mpc that have a 1.5 x 107 chance of occurring
in the standard cosmological model using CMB-derived parameters.
Howlett et al. (2022) theorize that the Shapley Supercluster as seen
in the 2M~++ redshift compilation (Carrick et al. 2015) could be
responsible, but because it is not in the SDSS-PV survey footprint it
will be difficult to test. A survey that trades depth for sky coverage
will still struggle to constrain the effects of the Shapley Supercluster,
as Carrick et al. (2015) find their bulk flow measurements prefer a
contribution from sources at z > 0.067 at a 5.1¢ level.

Thus far, the Hawai‘i Supernova Flows project has obtained
peculiar velocity measurements over three quarters of the sky to a
depth of z ~ 0.1. This encompasses the gravitational sources thought
to dominate local dynamics, including the Shapley supercluster, the
dipole repeller (Hoffman et al. 2017), and the cold spot repeller
(Courtois et al. 2017). Equation (1) shows that peculiar velocities
require an assumed cosmology and two measurements: an observed
redshift and a proper distance. The redshift can be measured to high
precision with a single spectrum, but measuring distances is more
difficult. Techniques have been developed and refined to excel in
various niches of a parameter space spanning applicability, maximum
range, and precision. Our project uses optical and NIR observations
of SNe Ia to measure distances.

1.2 Type Ia Supernovae

Following the discovery that SNe Ia could be used as standardizable
candles (Pskovskii 1977; Phillips 1993; Tripp 1998) there have been
continuous efforts to improve the accuracy and precision of SNe Ia
distance inference. These efforts include refining theoretical models
of SNe Ia progenitors and explosions (reviewed in Liu, Ropke & Han
2023); increasing the sample of well-studied SNe la (e.g. Amanullah
etal. 2010; Phillips et al. 2019; Scolnic et al. 2018; Brout et al. 2022);
and empirically identifying correlations between SNe Ia luminosities
and observable parameters like host-galaxy mass (Kelly et al. 2010;
Lampeitl et al. 2010; Sullivan et al. 2010), host-galaxy specific star
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formation rate (Uddin et al. 2017), local H , surface brightness
(Rigault et al. 2013), host-galaxy metallicity (Moreno-Raya et al.
2016), host-galaxy colours (Roman et al. 2018), ejecta velocity
(Léget et al. 2020), and more. Accompanying these efforts are
improvements to fitting and modelling techniques (Baye SN, Mandel
et al. 2009; Mandel, Narayan & Kirshner 2011; Thorp et al. 2021;
Mandel et al. 2022; Grayling et al. 2024; MLCS2k2', Jha, Riess &
Kirshner 2007; SALT?, Guy et al. 2005, 2007, 2010; Kenworthy
et al. 2021; Pierel et al. 2022; SiFTO, Conley et al. 2008; SNEMO?,
Saunders et al. 2018; SNooPy*, Burns et al. 2011, 2014; SUGAR?,
Léget et al. 2020). This body of work has established SNe la as
excellent probes of distance. We choose to use them over competing
distance measuring techniques for three reasons.

First, SNe Ia are abundant. With modern surveys across the globe
constantly scanning the sky, SNe are no longer rare targets of
opportunity, but are discovered every night. Desai et al. (2024) use
data from the All-Sky Automated Survey for SuperNovae (ASAS-
SN; Shappee et al. 2014; Kochanek et al. 2017; Hart et al. 2023) to
find an SN Ia volumetric rate of ~ 2.3 x 10* yr~! Gpc~*h3,, which
amounts to about 20 each night within z < 0.1. Wiseman et al. (2021)
use results from the Dark Energy Survey (DES) to calculate a rate
of SNe Ia per galaxy between one every 3000 yr to more than one
every 100 yr depending on host-galaxy properties. This means that
although the number of usable galaxies in an SNe Ia-based peculiar
velocity survey is relatively low compared to TF or FP surveys, it
scales with time and can exceed competing methods with enough
observational support.

Secondly, SNe Ia are bright enough to be used at the distances
we require. The demonstration of accelerating expansion relied on
measurements of SNe Ia at redshifts near unity (Riess et al. 1998;
Perlmutter et al. 1999). Our interests are more local, extending to
redshifts z < 0.1. The mean absolute magnitude of SNe Ia before
correcting for host-galaxy extinction is about —18.6 mag in B
and —18.7 mag in V (e.g. Ashall et al. 2016). At z = 0.1 this
corresponds to an apparent magnitude of about 19.6 or 19.5 mag,
within the limiting magnitude of two of the all-sky surveys described
in Section 2.1.

Lastly, SNe Ia-based distance measurements are far more precise
than those of competing methodologies. This is not to say that SNe
Ia are the most precise of all distance indicators. Distances based on
Cepheid period—luminosity relations (Leavitt & Pickering 1912) or
the Tip of the Red Giant Branch (Freedman et al. 2020; Anand et al.
2021) are typically more precise than those based on SNe Ia, but the
objects of study for these probes are about 13—16 mag fainter than
SNe Ia. This restricts them to z < 0.023 even with 22 HST orbits
per galaxy (PI D. Jones; proposal 16269). Hawai ‘i Supernova Flows
extends about 4 times farther. The SDSS-PV sample has used the FP
method to measure distances at z ~ 0.1, but these distances are only
precise to around 20 per cent. SNe la-based distances can be system-
atically corrected to a root mean square (RMS) scatter between 4 and
7 percent (Burns et al. 2018; Scolnic et al. 2018). This means that
it would take several dozens of independent TF or FP measurements
to reach the precision of a single SN Ia distance measurement.

Optical SNe Ia light curves have been used as standardizable
candles for several decades (e.g. Phillips 1993; Hamuy et al. 1995;

"Multicolour light-curve shapes.

2Spectral adaptive light-curve template.
3SuperNova Empirical MOdels.
4SuperNovae in Object Oriented Python.
3SUpernova Generator And Reconstructor.
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Riess et al. 1998; Perlmutter et al. 1999), but a growing body of
evidence (e.g. Kasen 2006; Wood-Vasey et al. 2008; Burns et al.
2011; Dhawan, Jha & Leibundgut 2018; Avelino et al. 2019) suggests
that the NIR may offer substantial advantages.

1.2.1 SNe la in the near-infrared

NIR bandpasses like Y, J, H, and K are 5-11 times less affected by
dust than the traditionally used B band (Cardelli, Clayton & Mathis
1989; O’Donnell 1994; Fitzpatrick 1999). The total-to-selective
extinction parameter Ry is known to vary based on the properties
of dust, even in our own galaxy (Draine 2003). Brout & Scolnic
(2021) and Popovic et al. (2023) proposed that the dispersion in
Hubble residuals of red SNe Ia may be largely due to the uncertain
properties of extragalactic dust, which varies as a function of position
in the host galaxy. The effects of dust correlate with the colour of
any given SN Ia, making any added uncertainty a systematic issue
that may not be resolved with a larger sample. Studying SNe Ia in
the NIR suppresses the systematic error associated with dust.

Additionally, SNe Ia have been claimed to be more uniform in
the NIR (e.g. Wood-Vasey et al. 2008; Barone-Nugent et al. 2012;
Kattner et al. 2012; Stanishev et al. 2018; Avelino et al. 2019; Galbany
et al. 2023; Jones et al. 2022). Avelino et al. (2019) used NIR light
curves to determine distances consistent with those determined using
optical light curves. Notably, Avelino et al. (2019) did not apply the
typical standardizations to the NIR light curves, but did correct the
optical light curves for decline rate, host-galaxy extinction, and host-
galaxy mass. The empirical regularity of SNe Ia peak magnitudes
in the NIR is supported by theory (Kasen 2006), with radiative
transfer calculations showing how decreases in bolometric flux are
balanced by increases in relative emission at longer wavelengths.
The remarkable uniformity of SNe Ia peak absolute magnitudes in
the NIR makes any distance measurement much more robust against
systematic uncertainties.

2 PROJECT COMPONENTS AND
OBSERVATIONAL FACILITIES

Initial testing showed that SNe Ia observations spanning the
NIR-peak produce RMS dispersions in Hubble residuals ~
10-30 per cent lower than values obtained for SNe Ia only observed
after the peak. Thus, to obtain distances to SNe Ia and recessional
velocities for their host galaxies, we require three types of data: high-
cadence photometry to find SNe la before they reach their NIR peaks,
NIR photometry of each SN Ia near their peaks, and spectroscopically
determined redshifts of their host-galaxies.

Fig. 1 illustrates the various components of the program, delineat-
ing what is supplied from the community and what requires dedicated
observing resources.

2.1 Triggers from All-SKky Surveys

The entire sky is imaged multiple times per night by All-Sky Surveys
like the Asteroid Terrestrial-impact Last Alert System (ATLAS;
Tonry et al. 2018), the Zwicky Transient Facility (ZTF; Bellm et al.
2019), and ASAS-SN. These surveys operate with different cadences
and depths to cover a range of science cases, but they all search the
sky for objects that vary on time-scales of hours, days, or months.
SNe Ia are in this class of astronomical objects, with light curves
that increase in brightness for a few weeks before peaking, declining
over a month, and then exponentially decaying. Here, we describe
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Figure 1. Our project uses archival and survey data as a foundation for supplementary observations. Whenever a new transient is reported, we collect optical
light curves from ATLAS, ASAS-SN, and ZTF. We trigger NIR observations for targets that are either classified as SNe Ia or are unclassified and have a
SN Ia-like light curve. About 53 percent of targets we observe are associated with galaxies that have spectroscopic redshifts, and we pursue spectroscopic
observations for the remaining 47 per cent with either the University of Hawai‘i (UH) 2.2 m telescope or Subaru depending on their surface brightness profiles.
The optical and NIR light curves allow us to infer luminosity distances, which we combine with host-galaxy redshifts to derive peculiar velocities.

the archival and observational facilities used, and how we access,
store, and process the data.

2.1.1 The Transient Name Server

The Transient Name Server (TNS)® is the official International
Astronomical Union repository for extragalactic transients. Large
observational campaigns such as Pan-STARRS (Chambers et al.
2016), GaiaAlerts” (Gaia Collaboration 2016, 2018), the surveys
described in the following sections, and many more automatically
generate reports within minutes to hours of exposure read-out.
Averaging overall reports from TNS, about 10 per cent of transients
receive observational follow-up and spectroscopic classification, and
of these, about 70 per cent are SNe Ia.® The majority of transients
fade and become unobservable without being classified.

The Hawai‘i Supernova Flows project uses the TNS-provided
PYTHON code’ to solicit new and recently updated reports every half
hour, and uses these reports to generate a list of SNe Ia candidates.
We ignore transients that are classified as anything other than an SN
Ia or non-peculiar sub-type, but still consider unclassified transients
as potential SNe Ia. This leads to some NIR observations of targets
that are later classified as non-SN Ia, but we cannot afford to wait for

Shttps://www.wis-tns.org/

"http://gsaweb.ast.cam.ac.uk/alerts
8https://www.wis-tns.org/stats-maps
https://www.wis-tns.org/sites/default/files/api/tns_api_search.py.zip

7 detection

N0 classification

0 0 10 20 30 40 50
Days after J band peak

Figure 2. The distribution of detection dates and public classification dates
for SNe Ia relative to the J-band maximum light. About 40 per cent of all
SNe Ia are classified more than a day before the NIR peak.

spectroscopic classification of each target, which often occurs after
the NIR-peak as seen in Fig. 2.

The reduction in efficiency can be mitigated in several ways.
The Hawai‘i Supernova Flows team relays targets of interest to
the Spectroscopic Classification of Astronomical Transients (SCAT)
program (Tucker et al. 2022). The SCAT team classifies astronomical
transients using spectra primarily from the University of Hawai‘i
(UH) 2.2 m telescope (instrumentation described in more detail in
Section 2.3.3), but has recently expanded to the Australian National
University 2.3 m telescope through a collaboration with Melbourne

MNRAS 536, 624-663 (2025)
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Table 1. The spectroscopic classifications of our observed targets show that
a strong majority of our targets receive classification, and most of those
classifications are some kind of SN Ia. We need to select targets before they
are classified in order to observe the NIR peak, which precedes the optical
peak by several days. This results in some observations of non-SN Ia objects,
but these targets are promptly removed from the observing queue.

Type Number

SN Ia-norm 637
SN Ia-91T-like 25
SN Ia-91bg-like 6
Unclassified 327
SN Ia-pec 3
SN Ia-CSM 2
SN Iax[02cx-like] 2
SN Ia-SC 1
SN II 93
SN IIn 15
SN Ic 12
SN Ib 11
CcvV

SN IIP

SN

SN Ibn

SN Ib/c

SNI

SN Ic-BL
Nova
SLSN-II
LRN

AGN

SN Ib-Ca-rich
Varstar
SLSN-I
Impostor-SN
ILRT

—_ e e = RN W W W R R Y

University. In a random sampling of TNS objects, one would expect
10 percent to be classified, but by providing SCAT with a list of
candidates to observe, we increase the fraction of classified transients
in our observed sample to about 73 per cent. Additionally, Moller &
de Boissiere (2020) demonstrated that using whole light curves, SNe
Ia and non-SNe Ia can be identified with up to 95 per cent accuracy, or
98 per cent accuracy when including host-galaxy information. Even
when restricting the light curves to early times, the difference in
light-curve shape between various SNe allows us to avoid observing
unclassified targets that are unlikely to be SNe Ia. The demographics
of Hawai ‘i Supernova Flows targets are presented in Table 1.

The following sections describe three untargeted surveys with
publicly available light-curve generation services that we use to
improve our triggering process, and as later detailed in Section 3,
improve our distance determinations.

2.1.2 ATLAS

ATLAS consists of four fully robotic, 0.5 m f/2 Wright Schmidt
telescopes that image the entire night sky about once every two days
(Tonry 2011; Tonry et al. 2018). This system was designed to identify
potentially hazardous asteroids, and optimizations for that purpose
affect the utility of ATLAS in studying astrophysical transients.

An object’s orbital elements are fairly decoupled from its spectral
properties, so to increase throughput, ATLAS uses two non-standard
broad filters, a ‘cyan’ filter covering 420-650 nm and an ‘orange’
filter covering 560-820 nm. This aids its primary science mission

MNRAS 536, 624-663 (2025)

by increasing ‘survey speed’ (Tonry 2011), but presents unique
challenges for integrating observations with other filter systems,
which we describe in Section 3.1.

Additionally, to specialize in moving object detection, the tele-
scope system observes each field of view with four 30-s exposures
over a 1-h interval. Under nominal conditions, each 30-s exposure
reaches a median 50 detection limit of o ~ 19.1 AB mag and
¢~ 19.6 AB mag. For stationary targets, these exposures can be
co-added to improve depth by about 0.75 AB mag and increase
the signal-to-noise-ratio (SNR) at a given brightness by a factor
of 2. However, we found that interobservational variation in point
spread function (PSF), pointing, and atmospheric conditions made
combining multiple exposures difficult. Instead, we combine the four
photometric measurements of each object using an inverse variance
weighted median, excluding any measurement more than three times
its uncertainty away from the median flux. Additionally, we ignore
measurements where the object is within 40 pixels of a chip edge or
has an axis ratio greater than 1.5 and measurements where the sky
brightness is under 16.

Although ATLAS specializes in astronomy at the Solar system
scale, it is a leading source of high-cadence data for studying
astrophysical transients. Smith et al. (2020) describe the utility of
ATLAS in this context and how to access data using the ATLAS
Forced Photometry server.'” Hawai‘i Supernova Flows continues to
use the proprietary channel we developed to access light curves
before the forced photometry server came online, but the data
collected exactly match the publicly available data.

2.1.3 ASAS-SN

ASAS-SN is a globally distributed system of 20 fully robotic
telescopes focused on discovering bright, nearby SNe (Shappee et al.
2014; Kochanek et al. 2017; Hart et al. 2023). Each of the five ASAS-
SN sites employs four 14 cm telescopes sharing a common mount.
The original two sites used the Johnson V-bandpass, but since 2019
all observations use the Sloan g-bandpass (Holoien et al. 2020). Each
pointing consists of three dithered 90 s exposures, reaching median
5o detection limits of 17.8 AB mag each (Kochanek et al. 2017).
These exposures can be co-added to improve depth by about 0.6 AB
mag and increase SNR by a factor of /3. The system images the
entire sky about once every 20 h, with few losses due to weather
because of the numerous sites.

The ASAS-SN light curve server described in Kochanek et al.
(2017) has grown into the ASAS-SN Sky Patrol,!' which serves
light curves for any position on the sky. As with ATLAS, we access
this publicly available data using a proprietary channel to minimize
overheads.

2.14 ZTF

ZTF uses the Palomar 48-in Schmidt telescope to pursue science
objectives across a range of cadences, depths, and areas, with an
emphasis on SNe (Bellm et al. 2019; Graham et al. 2019). Through
the public surveys, ZTF covered the night sky North of § = —31°
once every 3 d, increasing to once every 2 d with ZTF-II.

ZTF uses custom g-, r-, and i- band filters designed to avoid
prominent sky lines at the Palomar site. These filters reach 30-
s exposure 5o limiting magnitudes of 20.8, 20.6, and 19.9 mag,

10nhttps://fallingstar-data.com/forcedphot/
https://asas-sn.osu.edu/
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respectively. Each field of view is typically imaged twice, once in
ZTF-g and once in ZTF-r (Bellm et al. 2019).

The ZTF alert distribution system produces over a million alerts
each night, which feed into brokers that parse the data and make it
publicly available. We access ZTF light curves through the Automatic
Learning for the Rapid Classification of Events (ALeRCE) broker’s
Python client'? (Forster et al. 2021).

2.1.5 Triggering criteria

When our half-hourly sync with TNS reveals a new target, we obtain
light curves from ATLAS and ZTF, and if the target is brighter than
18 mag in any filter we also obtain an ASAS-SN light curve. We then
attempt to fit the data to an SN Ia model using SNooPy (Contreras
et al. 2010; Burns et al. 2011) and SALT3-NIR (Pierel et al. 2022)
(our fitting procedure is discussed further in Section 3). We manually
inspect the light curves and fits to address two points: is the candidate
consistent with an SN Ia and is it possible to obtain observations at
or before the NIR peak? If the candidate does not have spectroscopic
classification, we assess the quality of successful fits. If the residuals
indicate a poor fit to the data, or if the reduced yx? is greater than
2, we reject the candidate or defer judgment until more photometry
becomes available. We estimate the time of peak brightness in the
NIR using the best-fitting SALT3-NIR parameters. If the candidate
is either classified as an SN Ia or is photometrically consistent with
one, and if it has not yet reached its NIR peak, we pursue NIR
observations as described in the following section.

2.2 Hawai‘i Supernova Flows NIR photometry
2.2.1 UKIRT - WFCAM

For NIR observations, Hawai ‘i Supernova Flows uses the Wide Field
Camera (WFCAM) mounted on the UKIRT 3.8 m telescope owned
and operated by the University of Hawai‘i'* (Hodapp et al. 2018).
UKIRT is a 3.8-m Cassegrain telescope on the summit of Maunakea.
It has a declination limit of —40° < § < 60°07’, granting access
to about 3/4 of the sky. The Cambridge Astronomical Survey Unit
(CASU) continues to provide data processing services and the Wide
Field Astronomy Unit at the University of Edinburgh maintains the
WEFCAM Science Archive (Hambly et al. 2008) through which data
are distributed.

WFCAM is a NIR imager developed specifically for large-scale
surveys (Casali, M. et al. 2007). Its four detectors are Rockwell
Hawaii-II (HgCdTe 2,048x2,048) arrays (Hodapp et al. 2004)
each covering 13.65 x 13.65 at a scale of about 074 per pixel.
With its 0.9° diameter focal plane, WFCAM enabled the UKIRT
Infrared Deep Sky Survey (Lawrence et al. 2007) and the UKIRT
Hemisphere Survey (Dye et al. 2018). Hodgkin et al. (2009) explain
that an astrometric distortion causes the pixel scale to vary radially,
with per cent level differences in pixel area between the centre and
edge of the focal plane. This changes the flux from the sky in each
pixel, but their equation (1) provides a method for correcting this
effect. We confirm this spatial variation and its resolution through
the provided correction.

WFCAM uses a set of five broad-band filters, ZYJHK, and two
narrow-band filters, H2 1-0 S1 and 1.644 Fe 11. Each detector is
equipped with its own set of filters, with inter-detector filter variations

2https://alerce.readthedocs.io/en/latest/
Bhttps://about.ifa.hawaii.edu/ukirt/
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leading to photometric differences of no more than 0.01 mag (Hewett
et al. 2006). The performance of WFCAM in the above filters
was analysed in Hodgkin et al. (2009), who compared instrumental
magnitudes against the Two Micron All Sky Survey (2MASS) Point
Source Catalogue (Skrutskie et al. 2006). We use the J-band colour
equation they derive to convert 2MASS J and H magnitudes to
WFCAM J magnitudes, which we use to calculate zero-points for
each image.

Hodgkin et al. (2009) also identified spatially correlated photomet-
ric variability, even when accounting for the astrometric distortion
mentioned previously. The exact cause of the issue is unknown,
but CASU provides an empirically derived table of corrections on
a monthly basis. We address this spatial correlation independently
by treating each image’s zero-point as a second-order 2D polyno-
mial centred on the SN candidate, inferred with the probabilistic
programming language Stan (implemented through PyStan Riddell;
Hartikainen & Carter 2021) for each image (Carpenter et al. 2017;
Stan Development Team 2024). Stan provides a framework for
specitying fully Bayesian statistical models and conditioning them on
data using a no-U-turn sampler (NUTS; Hoffman & Gelman 2011;
Betancourt 2013; Hoffman & Gelman 2014), an adaptive variant
of Hamiltonian Monte Carlo sampling (HMC; Duane et al. 1987;
MacKay 2003; Neal 2011). The scale of the effect is ~0.021 mag
from the centre to the edges of the image, comparable to the tables
provided by CASU.

2.2.2 Source characterization and galaxy subtraction

The data distributed through the WFCAM Science Archive include
catalogues of photometric parameters for sources extracted with
the program imcore.'* Initial testing highlighted issues in the
catalogues when point sources coincided with extended sources.
This compromised the photometry of most SNe Ia that were not
exceptionally well separated from their host-galaxy.

Leveraging the multiplicity of our observations, we analysed each
supernova and host-galaxy image series as an ensemble using the
forward-model (or scene-model) code from Rubin et al. (2021). In
short, this procedure assumes a series of images contains a time-
independent 2D surface (modelled with splines) and a time-varying
point-source. This allows for degeneracies when ‘sharp’ features in
the galaxy (such as the nucleus) coincide with the SN Ia, but late-time
observations of the galaxy taken after the SN Ia has faded resolve
this issue by essentially providing a traditional reference image for
subtraction. We manually determine which host-galaxies require late-
time observations using diagnostic images such as those in Fig. 3.
We pursue late-time observations if the galaxy model exhibits sharp
features at the site of the SN, or if the residuals after subtracting
either the galaxy or the galaxy and SN appear to have spatial
structure.

We use the subsample of targets with late-time observations to
validate our methodology against an independent data reduction
process using traditional image subtraction performed with ISIS
(Alard & Lupton 1998, 1999) and source characterization using
tphot (Sonnett et al. 2013). The differences between the forward-
modelled and image-subtracted photometry have a median of 0.008
mag and a standard deviation of 0.07 mag. We also examine how the
forward-modelling code performs without late-time observations,
and find the median difference remains low at 0.02 mag, but the
standard deviation increases to 0.826 mag. This increase is driven

http://casu.ast.cam.ac.uk/surveys-projects/software-release/imcore
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Figure 3. The forward-modelling code used to make photometric measurements produces diagnostic images showing the observed flux, the galaxy model,
the residuals after subtracting the galaxy model (‘Residuals from Galaxy Model’), and the residuals after subtracting both the galaxy and supernova models
(‘Residuals from Model’). We present a few examples representative of bad subtractions. SN 2020tul shows spatially correlated structure after galaxy subtraction,
indicating the galaxy was not accurately modelled. Additionally, the supernova appears oversubtracted. This effect is more clearly seen in SN 2020xyh, which
occurred near the nucleus of its host galaxy. The images on the left seem to show the galaxy has been subtracted, leaving only point sources at the location of
the supernova and two nearby galaxies, but the images on the right show that SN 2020xyh appears to leave a small hole in some unmodelled structure.

by a few cases where the forward-modelling code struggled to
separate the galaxy and the transient. Fig. 4 shows the average
difference in a galaxy’s forward-modelled photometry with and
without late-time observations as a function of projected separation
between the supernova and host-galaxy nucleus. The histogram
shows that in the majority of cases, late-time observations do not
result in significantly different photometry. In a few cases, the
observations break degeneracies in the forward-modelling process,
resulting in photometry up to a few magnitudes different. These
cases are visually conspicuous, as seen in Fig. 3. In Appendix A,
we fit a Gaussian mixture-model to the photometric differences
(Am) using Stan (Carpenter et al. 2017; Stan Development Team
2024) and find 74.0 percent of the differences appear tightly
dispersed (Am ~ N(0.01 4 0.004 mag, (0.08 £ 0.005 mag)?)), and
the remaining 26.0 percent vary much more dramatically (Am ~
N(0.33 & 0.050 mag, (0.68 % 0.037 mag)?)). The fraction of targets
reliant upon late-time observations for accurate photometry is vastly
exaggerated in this analysis because the subsample comprises only
targets manually determined to potentially benefit from late-time
observations. Forward-modelled photometry is thus as accurate as
traditional image subtraction, and more economical in that it often
does not require a late-time observation.

2.3 Host galaxy redshifts

Although dozens of surveys have collectively measured redshifts
for millions of galaxies, about half of the SNe Ia in our sample
have host galaxies with no publicly available redshifts. Furthermore,
the redshift measurements that are publicly available come from

MNRAS 536, 624-663 (2025)

heterogeneous methodologies and at times are inconsistent with other
measurements of the same galaxy. Here, we describe how we identify
host-galaxies for each SN Ia, incorporate data from extant surveys,
and obtain redshifts for galaxies that do not have publicly available
spectroscopic redshifts.

2.3.1 Identifying host galaxies

All SN host galaxies in our survey were identified manually. This
decision introduces an unquantified systematic error in our final
peculiar velocity measurements due to the possibility of inaccurate
host galaxy identification. Without a detailed simulation, it is unclear
how often we misidentify host galaxies. However, the error rate is
definitively lower than an algorithmic approach we tested, which
produced obvious misidentifications. This alternative approach is
detailed in Appendix B.

The SN Ia-galaxy associations produced manually were flagged if
the host galaxy was ambiguous or otherwise problematic. These
manual flags allow us to exclude these SNe Ia in our analyses,
but introduce a hard-to-quantify bias (Gupta et al. 2016), and will
not scale well if operations significantly expand. Recent work (e.g.
Aggarwal et al. 2021; Qin et al. 2022) has formalized various
methods of associating transient events with their host-galaxies using
objective parameters, but still critically depends on the completeness
and accuracy of galaxy catalogues. Automatic association will
become necessary when our sample expands, but we will continue
to associate SNe la and their host galaxies manually while it remains
accurate and practical.
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Figure 4. The differences between measurements made with and without late-time observations are minimal for a large number of targets, indicating accurate
reconstruction of the galaxy surface profile. However, there are many targets where a late-time observation is crucial for decoupling the SN and host galaxy. The
abundance of targets needing late-time observation is biased high in the plotted data because all targets were manually determined to potentially benefit from

late-time observations.

2.3.2 Incorporating redshifts from literature

Before we pursue spectroscopic observations to find each host-
galaxy’s redshift, we search for existing measurements in the
HyperLEDA data base (Paturel et al. 2003a, b; Makarov et al.
2014), which is based on the Lyon-Meudon Extragalactic Database
(LEDA; Paturel et al. 1988) and Hypercat (Prugniel & Simien 1996).
This significantly reduces our observational needs, but the variety
of measurement techniques necessitates the careful handling of
systematic differences. HyperLEDA uses a system of quality flags"
to hierarchically combine optical and radio redshift measurements,
and applies corrections on a reference by reference level to minimize
systematic offsets between data sources (Paturel et al. 1997). If a host
galaxy does not have a radial velocity in HyperLEDA, we pursue
spectroscopic observations.

2.3.3 UH 2.2 m— SNIFS

The primary instrument we use for measuring host-galaxy redshifts
is the Supernova Integral Field Spectrograph (SNIFS; Lantz et al.
2004) on the UH 2.2 m Telescope. SNIFS samples a 6” x 6” field
with 074 x 074 spaxels, each of which produces two spectra, one
blue (320-560 nm, R(430 nm) ~ 1000) and one red (520-1000 nm,
R(760 nm) ~ 1300). Our exposure times are manually chosen based
on galaxy surface brightness, atmospheric conditions, and galaxy
spectral type, with late-type galaxies typically featuring emission
lines and thus requiring less integration. The average exposure time
was 1800 s. We use the data reduction pipeline described in Tucker
et al. (2022) to produce 1D spectra. Absolute wavelength calibration

Bhttp://leda.univ-lyon1.fr/al10/

is provided by arc-lamp exposures taken immediately after each
science exposure. We include the average discrepancies between the
arc spectra and their models when calculating redshift uncertainties,
though the contribution is typically sub-dominant at ~1 km s . All
galaxy spectra are converted to the heliocentric rest frame.

2.3.4 Subaru — FOCAS

When a galaxy is too faint for SNIFS, we use the 8.2 m Sub-
aru telescope’s Faint Object Camera and Spectrograph (FOCAS;
Kashikawa et al. 2002) with its 300B grating with no filter (365—
830 nm, R(550 nm) ~ 700) and a 076 or 0”8 wide slit depending on
the atmospheric conditions (Ebizuka et al. 2011). Subaru’s mirror has
over 13 times more light-gathering power than the UH 2.2 m mirror.
This allows us to increase our limiting magnitude from r < 19.1 to
r < 22.9 mag using comparable exposure times.

In addition to the increased light-gathering power, FOCAS’s slit
spectroscopy has proven necessary for very diffuse galaxies. Our
reduction pipeline for SNIFS spectra struggles with sky subtraction
if the entire 6” x 6” microlens array is filled. In such a case, we would
need to obtain a sky observation for proper subtraction, doubling the
exposure time required per object. For each galaxy, we perform a
900 s exposure and examine the summit-pipeline-reduced spectrum.
If the galaxy has no strong emission lines, we pursue one or two
additional 900 s exposures as deemed necessary by the observer.
We perform bias subtraction and flat-fielding data using the routines
described in the FOCAS Cookbook.'® We use skylines for relative
wavelength calibration, and use Subaru’s location, the time of each

16https://subarutelescope.org/Observing/DataReduction/Cookbooks/
FOCAS _cookbook_2010jan05.pdf
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Figure 5. We compare the differences between our measured SNIFS veloci-
ties and HyperLEDA's aggregated velocities, finding two distinct groups. The
12 galaxies on the left side of the histogram have an average difference of
27kms ' and astandard deviation of 48 kms . The four galaxies on the right
are offset by several hundred km s~ Three of the four HyperLEDA velocities
come from relatively older sources, and could be the result of inaccurate
methodologies. Each galaxy in the histogram also has a marker with a y-
value corresponding to its rescaled H, equivalent width. The presence of
weak equivalent widths in the sample with low velocity differences suggests
that the four discrepancies are not due to weak spectral features.

exposure, and the position of each target to transform all spectra to a
heliocentric rest frame.

2.3.5 Redshift determination and uncertainties

Once we have spectra from either SNIFS or FOCAS, we com-
pare them with spectral templates from SDSS DR5!” (Adelman-
McCarthy et al. 2007) using the weighted cross-correlation routine in
the SeeChange Tools'® (Hayden et al. 2021). We tested the accuracy
of this method by calculating redshifts for 158 galaxies using spectra
from SDSS DR12, removing cross-correlations with an r-value less
than 5 (as defined in Tonry & Davis 1979), and comparing our
recession velocities with those in HyperLEDA. The differences
averaged to ~7 km s with a standard deviation of ~45 km s ™.
Thus, we include a 45 km s uncertainty when inferring host-galaxy
redshifts using this cross-correlation technique.

Additionally, we looked for systematic differences in absolute
wavelength calibration between redshifts from literature and redshifts
from our SNIFS and FOCAS spectra. We observed 24 galaxies
with redshifts available in HyperLEDA using SNIFS, and 4 using
FOCAS. Five of our SNIFS spectra had insufficient SNR and are
not included in this analysis. The 19 remaining spectra yielded
redshifts within about 100 km s~ of their HyperLEDA values, with
a few exceptions. We measure five galaxies to have redshifts several
hundred km s~ greater than their literature values. In descending
order of discrepancy, these galaxies are PGC 40363, 4579, 29889,
13428, and 1033041, shown in the right side of Fig. 5. These
galaxies include early and late-type morphologies, emission and
absorption spectra, and their colours are not at the extremes of the
19 galaxy sample. The only unifying theme is that HyperLEDA
sources the PGC 40363, 4579, and 13428 from relatively older

Thttps://classic.sdss.org/dr5/algorithms/spectemplates/spectemplatesDR2.
tar.gz
8https://zenodo.org/record/4064139#.YHKLvC 1h2X0
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sources (Eastmond & Abell 1978; Sakai, Giovanelli & Wegner
1994; Thoraval, Boissé & Duvert 1999), whereas PGC 29 889 and
1033 041 have more recent measurements, such as those from SDSS
or 6dF. HyperLEDA aggregates and weights various sources, which
should privilege more accurate observations, but these galaxies have
only been spectroscopically observed once or twice before our
observations with SNIFS. It is unclear why our measured redshifts
are uniformly greater than their literature values. Disregarding these
five exceptions, the average difference between the SNIFS-derived
and HyperLEDA redshifts is ~27 km s~ with a standard deviation of
~48kms . Including them, the average and standard deviation rise
to ~81 and ~102kms ', respectively. We subtract ~27 km s from
our SNIFS-derived redshifts and interpret the ~48 km s~ standard
deviation as a rough confirmation of the previously identified ~45 km
s uncertainty. We also note that redshifts in HyperLEDA that
have not been verified through repeated observations could benefit
from additional measurements. Fig. 6 shows the distributions of
heliocentric redshifts and g-band Kron magnitudes for the values
taken from the literature and the values calculated with either SNIFS
or FOCAS.

We note that galaxies in larger groups will have an additional
velocity term due to intracluster dynamics, and that using the group
redshift would likely probe large-scale flows more robustly, as
done in Peterson et al. (2022). However, pursuing spectroscopic
observations for all members of an associated group would reduce
the number of SNe Ia host galaxies we could observe. We note
that our analysis will benefit from future large spectroscopic surveys
such as the Multi-Object Spectroscopy of Transient Hosts survey
(MOST Hosts; Soumagnac et al. 2024) Dark Energy Spectroscopic
Instrument (DESI; Collaboration 2022).

All redshift uncertainties are converted to uncertainties in distance
modulus via the distance-redshift relation for an empty universe
presented in Kessler et al. (2009b):

. 5 14z
Ou =% <ln10> (A +2/2) L)

Different cosmological models produce negligible differences in
o, which is already subdominant compared to other sources of
uncertainty in the distance modulus.

3 DISTANCE DETERMINATION

In this section, we describe the specific methodology used to convert
our data into distance moduli using SNooPy and SALT3-NIR as
they were the only publicly available fitting programs that can utilize
optical and NIR observations when our analyses began. We only
intend to describe our fitting procedures to contextualize the results
presented in Section 6, and as such we will not be claiming one
program is more accurate or more appropriate for our use case. We
leave such an analysis for future work, where we will also incorporate
fits from BayeSN, which was made public with Mandel et al. (2022),
and has been updated with Grayling et al. (2024).

3.1 SNooPy

SNooPy is a Python package designed for fitting light-curves of
SNe Ia from the Carnegie Supernova Project (CSP; Contreras et al.
2010; Burns et al. 2011). It estimates luminosity distances by
comparing data spanning flux, phase, and a shape parameter to
filter-specific 3D models (Burns et al. 2011). These models were
produced using high-cadence observations of SNe Ia in the CSP
photometric system (Hamuy et al. 2006). We use version 2.6.0, which
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Figure 6. The normalized histograms of targets from SNIFS, FOCAS, and literature in z show distinct redshift distributions. Each galaxy’s Pan-STARRS g
Kron mag is plotted against redshift to show that the distribution in magnitudes are also distinct. Triggering only on transients in galaxies with redshifts in the
literature biases the sample towards lower redshifts and brighter galaxies. By triggering on galaxies regardless of redshift availability, we mitigate this issue.

does not yet include the improved models of Lu et al. (2023). We
look forward to reprocessing our sample when SNooPy incorporates
these templates. Decreased systematic uncertainties in the NIR SED
could increase the weight of J-band photometry in a multiband fit.

SNooPy is described by the CSP'® as ‘not a fixed algorithm for
fitting light curves, but rather a collection of tools that are useful for
building your own fitter (or fitting interactively)’. As such, there are
a variety of non-trivial decisions that influence the distance moduli
inferred using SNooPy. In version 2.6.0, there are three primary
decisions:

(i) Parametrizing shape with Am s or spy.

(ii) Selecting one of the available models: EBV_model,
EBV_model2, max_model, max_model2, Rv_model, color_model,
SALT_model, and MLCS_model.

(iii) Selecting a ‘calibration’ to describe the correlation between
SN parameters and absolute magnitude.

(iv) Selecting a reddening law.

We describe and qualitatively justify our choices here, but refer the

reader to Appendix C for a quantitative analysis exploring alternative
decisions.

https://csp.obs.carnegiescience.edu/data/snpy

3.1.1 Choice of shape parameter

SNooPy offers two distinct ways to characterize the shape of an SN
Ia light curve; one being the decline rate parameter (Ams; Phillips
et al. 1999), and the other being the colour-stretch parameter (spy;
Burns et al. 2014). The latter is less sensitive to changes in reddening
(varying ~ 1 per cent across Ay = 3 mag) and does not become
degenerate for fast-declining SNe Ia (spy < 0.7), as seen with Am s
(Burns et al. 2014). As such, we use szy when characterizing light
curves with SNooPy.

3.1.2 Choice of model

The SNooPy models are described more comprehensively in the
online documentation?’, but we summarize them here to provide
context for our decision.

The EBV _model and EBV_model2 use light curves in numerous
filters to infer four parameters of each SN Ia: the shape, the time of B-
band maximum, the colour excess of the host galaxy (E(B — V )post),
and distance modulus (i4¢es). The EBV_model is restricted to using
Ams while the EBV_model2 can use that or sgy to parametrize
shape. They also differ in that the former model approximates
the luminosity—shape correlation as a linear function using the six
calibrations presented in Folatelli et al. (2010), whereas the latter

20https://users.obs.carnegiescience.edu/cburns/SNooPyDocs/html/models.
html
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model uses a quadratic function calibrated with additional CSP
data. In the EBV_model2, the cosmological distance modulus ficos
is related to the observed apparent magnitude in observer-frame
bandpass O F at time ¢ since B-band maximum (m¢r(t)) using a
template in rest-frame bandpass RF with shape factor spy at de-
redshifted time since B-band maximum ¢ (Tgg(t', sgy)) with the
following equation:

mop(t) = Trr(t', spy) + Po + Pi(sgy — 1) + Pa(spy — 1)
+/1-cos + ROFE(B - V)MW + RRFE(B - V)host
+ Kor rr(Trr(t', sgv), 2, RoF, Rrr), (€]

where Py, P;, and P, are polynomial coefficients defined by the
calibration, Rpr and Rgp are the total-to-selective absorptions
of the Galactic and host galaxy dust, and Kop gr is the cross-
band k-correction (described in Section 3.1.6). Ror and Rgp are
calculated by using an Ry-dependent reddening law to compute
synthetic extinction values. We assume the Galactic average of
Ry = 3.1 (Schlafly & Finkbeiner 2011) for calculating RoF, and
calculate Rgp with the calibration-provided value for host galaxy
Ry . If parametrizing shape with Am s, the template term changes to
Trr(t', Amys) and the shape polynomial’s (sgy — 1) terms change
to (Amls — 11)

The max_model and max_model2 also simultaneously fit light
curves in multiple bandpasses, but relax the requirement that the
photometry follows a well-characterized reddening law. Like the
previous models, the two max_models fit for a global shape parameter
and time of B-band maximum, but rather than fit for a distance
modulus and host galaxy colour excess, these models fit for a peak
apparent magnitude in each rest-frame bandpass (mgr).

mop(t) = Trp(t', sgy) + mrp + Rop E(B — V)mw
+ Korp rr(Trr(t', spv), 2) ©)

mpgp is not necessarily equal to mgp(t = 0) because the evolution
of SN Ia SEDs produces peaks in different bandpasses at different
times (e.g. Kasen, Thomas & Nugent 2006; Krisciunas et al. 2009;
Phillips 2012; Burns et al. 2014). While distance moduli are not
fitting parameters, they can be calculated based on each apparent
maximum using a Tripp-like formula, such as the one presented in
equation (4) of Burns et al. (2018):

my = Py + Pi(spy — 1) + Pa(spy — 1)*+1hcostBmax(my — mz),
(6)

where my, my, and my are the peak apparent magnitudes determined
by the max_model fit in the bandpasses X, Y, and Z (these arbitrary
labels are not to be confused with the ¥ or Z bandpasses). The
difference between the max_model and max_model2 is that the latter
allows for each bandpass to correspond to a unique time of B-band
maximum light.

The Rv_model is similar to the EBV_model, in that it uses Am s
and models the luminosity—shape correlation as a linear function.
The primary difference is that the total-to-selective extinction of the
host galaxy is a fitting parameter rather than a global constant taken
from the calibration. Additionally, rather than using the Folatelli
et al. (2010) values for calibrating luminosity, shape, and colour, this
model uses values from Burns et al. (2011).

The color_model infers the shape parameter (only spy ), the time
of B-band maximum, and the peak apparent B magnitude, but also
uses the difference between the observed colours and the intrinsic
colours found in the 81 SNe Ia in Burns et al. (2014) to infer the
host galaxy colour excess and Ry . Unfortunately, this model requires
observations in the rest-frame B band, and as such we cannot evaluate

MNRAS 536, 624-663 (2025)

this model. It is possible to use cross-band k-corrections to infer
a rest-frame B-band light curve, but doing so would increase our
vulnerability to differences between the real and modelled SED.

Lastly, the SALT_model and MLCS_model are wrappers for
running the SALT2 and MLCS2Kk?2 fitters in the SNooPy framework.
Neither SALT2 (Guy et al. 2007) nor MLCS2k2 support NIR
bandpasses (Jha et al. 2007), so we do not consider these models
for Hawai ‘i Supernova Flows.

We decide to use EBV_model2 and the max_model because they
support the use of spy and quadratic luminosity—shape correlations,
both of which are favoured over their alternatives (Burns et al. 2014).
Furthermore, recent work has made use of both the EBV_model2
(Jones et al. 2022; Phillips et al. 2022; Pierel et al. 2022; Peterson
etal. 2023) and the max_model (Burns et al. 2018; Phillips et al. 2022;
Lu et al. 2023; Uddin et al. 2023). We do not use the color_model
because our observed bandpasses do not overlap with rest-frame B
band in the majority of the redshift range we cover. We do not use the
max_model2 because our J-band light curves are sparse and often
times insufficient for estimating the time of B-band maximum alone.

3.1.3 Choice of calibration

The choice of ‘calibration’ refers to the values parametrizing the
correlation between luminosity, shape, and colour (e.g. Py, Py, P»,
and Bnax in equation 6). These values come from fits to samples
of SNe Ia observed by CSP. While the method of fitting varies (2
minimization in Folatelli et al. (2010) and Markov chain Monte Carlo
(MCMC) methods in Burns et al. (2011, 2014, 2018)), differences
in calibration values are primarily driven by variation in the samples
used. As an example, the first calibration from Burns et al. (2018)
was produced from 137 SNe Ia, but there are alternative calibrations,
one excluding SNe Ia with sgy values less than 0.5, one excluding
those with m g—my pseudo-colours greater than 0.5 mag, and one
excluding those that meet either criteria. For our EBV _model2 fits,
we use the calibration from Burns et al. (2018) based on the full
sample since the reduced x? values of the fits using the Burns et al.
(2018) calibrations are typically lower than those using the Folatelli
et al. (2010) calibrations (details in Appendix C) and because there
are SNe Ia in our sample that have spy values less than 0.5 and
mpg—my colours greater than 0.5 mag. For our max_model fits we use
Stan (Carpenter et al. 2017; Stan Development Team 2024) to infer
the nuisance parameters Py, Py, P>, and B,,,, using our photometry.
We omit the term correlating luminosity and host-galaxy mass to
maintain consistency with EBV_model2, which does not factor in
galaxy mass.

3.1.4 Choice of reddening law

The final decision point is the choice of reddening law. SNooPy’s
default reddening law (094; O’Donnell 1994) is a corrected version
of the CCMB89 reddening law (Cardelli et al. 1989). It also natively
supports the original, uncorrected version, as well as the redden-
ing laws F99 (Fitzpatrick 1999) and FMO07 Fitzpatrick & Massa
(2007). We have performed minor modifications to the SNooPy
source code?! to accommodate the reddening laws provided in the
dust_extinction package (Gordon 2024). After comparing fits
produced with the 094, F99, and F19 (also referred to as F20;
Fitzpatrick et al. 2019) reddening laws (details in Appendix C) we
find that the reduced x2 values are typically lowest when using

2Modified version available at https:/github.com/ado8/snpy
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the F19 reddening law. Thus we use the F19 reddening law for
all SNooPy fits, which applies to both host galaxy and Galactic
extinction in the EBV_model2, but only Galactic extinction in the
max_model. We assume the total-to-selective extinction parameter
for Galactic dust is Ry = 3.1 and use the Ry value defined in the
Burns et al. (2018) calibration for host galaxy dust. Galactic colour
excess values comes from the SFD dust map (Schlegel, Finkbeiner &
Davis 1998) with the 0.86 scaling factor described in Schlafly &
Finkbeiner (2011) (hereafter, the rescaled SFD dust map).

3.1.5 Estimating uncertainties

SNooPy provides estimates of statistical uncertainty in all inferred
parameters following either frequentist or Bayesian conventions.
Initial fits without priors produce statistical errors using the standard
frequentist convention of inverting the Hessian matrix at the best-
fitting parameters to produce a covariance matrix.?> When this matrix
is singular, as can happen with undersampled light curves or for
light curves of non-SNe Ia, the model becomes insensitive to one
or more parameters and will not infer values for any of them. After
the initial fit, SNooPy offers an MCMC method which samples
their posterior distributions with the package emcee (Foreman-
Mackey et al. 2013). The default priors are based on previous
work with the CSP sample, but can be overwritten with arbitrary
functions.

In addition to providing statistical errors, SNooPy provides an un-
certainty floor for each parameter. The floor in the distance modulus
reflects the uncertainty in the various terms used to standardize SNe
Ia luminosities. These terms depend on the model used, but generally
include filter-specific measurements of peak absolute magnitude and
how that changes with spy . Thus, the distance modulus accuracy has
a systematic floor determined by the sample used to calibrate it and
becomes less accurate as the shape factor deviates from its normal
value. The other floors have constant values derived from various
analyses. The uncertainty floor in sgy is 0.03, and comes from the
dispersion around a quadratic fit of sgy to the SALT x; parameter
(discussed in Section 3.2) (Burns et al. 2014). The host galaxy
colour excess floor is 0.06 mag, coming from the intrinsic dispersion
of the mg—my colours in the CSP sample after correcting for
reddening. In the max_model, the peak magnitudes in each bandpass
are presented with uncertainty floors based on Folatelli et al. (2010).
Lastly, the time of B-band maximum is fixed to have an uncertainty
floor of 0.34 d. We define the uncertainty on each parameter
estimate as the quadrature sum of the statistical uncertainty and the
floor.

3.1.6 K- and S-corrections

Observations of SNe Ia at significant redshift can lead to a mismatch
between the observed and rest-frame spectral energy distribution
(SEDs). One could almost trivially account for this issue in spectral
observations if the redshift is known (telluric corrections aside), but
photometric observations require some knowledge of the underlying
SED to determine what is shifted into and out of the effective
bandpass. The adjustments needed to compensate for the mismatches
between observed and emitted SEDs are called ‘K-corrections’
(Humason, Mayall & Sandage 1956; Oke & Sandage 1968).

22https://users.obs.carnegiescience.edu/cburns/SNooPyDocs/html/
fitting_LM.html
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Similarly, variations in an optical system’s transmission function
leads to differences in instrumental magnitudes that depend on the
SED observed. SNooPy models are defined in the CSP photometric
system, and using data from other bandpasses would introduce
systematic errors in the parameter inferences. The typical treatment
for managing multiple filter sets is to observe a range of standard
stars and perform linear fits of colour terms to transform one set
to the other. Using stellar standards produces equations capable of
converting stellar observations between filter sets, but SNe Ia have
non-stellar SEDs, and there are no perennially available standard SNe
Ia. The solution is to apply an ‘S-correction’ (Burns et al. 2011).

SNooPy applies both of these corrections simultaneously by
calculating a ‘cross-band K-correction’ (Kim, Goobar & Perlmutter
1996) using the spectral library from Hsiao et al. (2007), which com-
bines ~ 600 heterogeneous spectra of ~ 100 SNe Ia. Although the
library covers a wide breadth, the available spectra cannot represent
every kind of SN Ia at every possible epoch. To account for levels of
reddening and intrinsic colours not seen in the spectral library, Hsiao
etal. (2007) describe a ‘mangling’ process by which template spectra
can be multiplied by a smoothly varying spline to match observed
colours. The statistical error on each K-correction and mangling
varies between about 0.01 and 0.04 mag depending the amount of
overlap between the redshifted rest-frame CSP bandpass and the
observed bandpass. Pairs with little overlap rely on extrapolation,
and are more sensitive to the spectral template used (Hsiao et al.
2007), whereas a rest-frame bandpass that maps exactly on to an
observed bandpass would be completely insensitive to the underlying
spectrum. The ATLAS ¢ and o bandpasses are wider than those in
the CSP photometric system, and so they necessarily belong to the
former category.

3.2 SALT

SALT fits SNe Ia light curves using a different approach (Guy et al.
2005, 2007, 2010). Roughly speaking, where SNooPy attempts to
fit observed light curves to well studied light curves, SALT attempts
to fit observed light curves to a spectral time series. This model is
built from a term that describes the phase-independent effect of the
colour law (CL(A)) and two or more surfaces spanning flux, phase
(p), and wavelength (1), whose combinations describe the spectral
flux and evolution of all SNe Ia:

F(p, ) = xo[Mo(p, M+x1 M (p, M)+ ...] x exp[c x CL(M)],
N

where M; is the ith surface, x; scales how much that surface
contributes to the spectral flux, and ¢ scales the colour law (Guy et al.
2007). The surfaces are empirically derived, with M, encapsulating
the ‘standard’ SN Ia spectral time series while the remaining surfaces
describe all other modes of variation. This means the surfaces
themselves may not correlate exactly with the physical parameters
of SNe Ia, but instead may be understood as principal components.
With that said, x; is often considered a shape factor like spy or
Ams since light-curve shape seems to be the dominant mode of
variation. Each combination of x terms defines an SED and evolution
that can be further sculpted by ¢, the colour law, and redshift.
At any observational epoch, a filter set’s transmission function is
used to make synthetic magnitudes, which can be compared to real
photometry. Thus one can infer the most likely SALT parameters and
their uncertainties given observations of a particular SN Ia. These
parameters provide a distance modulus (1) by the equation

w=my—M+ax — Bc, (8

MNRAS 536, 624-663 (2025)

Gz0z Aenuer g1 uo 1senb Aq 965£688//129/1/9ES/301E/SeIuW /W00 dno olwapede//:sdiy Woil papeojuMO(]



636 A. Do etal

where m7, is the rest-frame Bessell B-band magnitude (Perlmutter
et al. 1997), M is the absolute magnitude of an SN Ia with x; =
¢ =0, and « and 8 are standardization coefficients. While m7 can
be approximated by —2.51og,,(x) + const., we calculate its value
using synthetic photometry based on model parameters.

Rubin (2020) suggested that SNe la luminosity variability may
consist of three to five independent parameters. Attempts to stan-
dardize SNe Ia luminosities using one or two parameters report an
‘intrinsic scatter’ that cannot be explained by measurement error
alone (e.g. Scolnic et al. 2018; Brout et al. 2022). Rose et al. (2020)
explored the differences between two and seven-component fits using
SNEMO (Saunders et al. 2018), and found that only CSP data had the
SNR and coverage to constrain the additional parameters. Put another
way, a two-component fit with SALT compares to a seven-component
fit with SNEMO for all but the most extensively covered light curves.
With that in mind, we use the two-component fits of SALT3-NIR
(Pierel et al. 2022). The only other SALT model that can process
NIR light curves is SALT2-Extended, but it was trained on optical
data extrapolated to the NIR and is thus insensitive to correlations
between SALT parameters and NIR light-curve properties (Pierel
et al. 2018). SALT3-NIR was jointly trained on the optical sample of
1083 SNe Ia from Kenworthy et al. (2021) and 166 SNe Ia with NIR
data (Pierel et al. 2022). We access the SALT3-NIR model through
the Python package SNCosmo version 2.10.4 (Barbary et al. 2022),
and utilize the convenience functions therein to account for Galactic
extinction using the rescaled SFD dust map and the reddening
law from Fitzpatrick et al. (2019) with Ry = 3.1. Notably, we use
SNCosmo to calculate model fluxes given a set of SN Ia parameters,
but do not use the built-in functions to estimate those parameters.
Instead, we use the fitting methodology of Rubin et al. (2023),
defining a x? function and using a downhill-simplex algorithm to
iteratively identify the SALT parameters that minimize that function.

3.2.1 Estimating uncertainties

The covariance matrices we obtain for each object’s best-fitting SALT
parameters (time of B-band maximum light, xo, x|, and ¢) reflect
three sources of uncertainty. Our NIR photometric methods produce
correlation matrices, but we assume the measurements and errors
from ATLAS, ASAS-SN, and ZTF are completely independent. We
incorporate the SALT3-NIR model uncertainties during our fitting
process. Lastly, we repeat each fit with slightly varied inputs to
calculate derivatives between the fitting parameters and quantities
like redshift, Galactic colour excess, and the photometric zero-point
in each bandpass.

The error explicitly associated with K-corrections and S-
corrections is ostensibly removed due to SALT’s use of spectra when
fitting. However, if the intrinsic SED of an SN Ia differs from the
form of equation (7) truncated after i = 1, the synthetic photometry
will be inaccurate. We assume these errors are encapsulated in the
model uncertainties.

The distance modulus in equation (8) requires specifying the
standardization coefficients o and §, which are typically calibrated
empirically. Fitting for « and 8 by minimizing dispersion in the
Hubble residuals introduces a form of Eddington bias due to
uncertainties in x; and c¢. We estimate the standardization coefficients
using a Bayesian framework called UNITY (Unified Nonlinear
Inference for Type-Ia cosmologY; Rubin et al. 2015, 2023). UNITY
assumes a Gaussian and skew normal distribution for the population
distributions of the true value of each SN’s x; and c, respectively, and
uses flat hyperpriors for the means of each distribution and the log
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of their standard deviations. This approach avoids Eddington bias,
which would suppress both coefficients. Although UNITY can model
o and B as broken-linear functions, we assume the coefficients are
constants. In Section 6.2, we identify and discuss a systematic issue
tied to this decision.

4 VALIDATING DATA AND METHODOLOGY

In this section, we validate our data reduction and modelling
techniques by partially reproducing the analysis of the DEHVILS
survey (Peterson et al. 2023) using our NIR photometry and fit-
ting methodologies. To evaluate the differences produced by these
variations, we compare each inferred distance modulus (ug) and
the theoretical distance modulus at its corresponding redshift in a
fiducial cosmology (icos)- These Hubble residuals are calculated as

Ap = g — Heos ©)

cZcMmB 1+ Zhel I —qo
=5 [(592) (22 (4 52 )] 25
" 0g9 Ho 1 zeun + 2 Zems | |+
(10)

where H) is the Hubble constant and ¢ is the cosmic deceleration
parameter, which we take as —0.53 (Planck Collaboration et al.
2020). As stated in Burns et al. (2018), the factor of (1 4 zpe)/(1 +
zcmB) accounts for observational effects which should be corrected
in a heliocentric rest frame. In each sample we define H, such that
the inverse-variance weighted average of the Hubble residuals is 0
mag.

The dispersion in Ap is typically characterized through RMS
(e.g. Blondin, Mandel & Kirshner 2011; Foley et al. 2017; Avelino
et al. 2019; Jones et al. 2022; Pierel et al. 2022; Peterson et al.
2023); inverse-variance weighted RMS (WRMS; e.g. Blondin et al.
2011; Foley et al. 2017; Avelino et al. 2019), or normalized median
absolute deviation (NMAD; e.g. Boone et al. 2021; Peterson et al.
2023). SNe Ia analyses repeatedly find that measurement uncertainty
alone cannot explain the observed dispersion, indicating that SNe Ia
luminosities include some unmodelled variance commonly called
intrinsic scatter (oiy; €.g. Blondin et al. 2011; Burns et al. 2018;
Scolnic et al. 2018).

Lastly, we validate our treatment of max_-model parameters by
using photometry from CSP-I DR3 (Krisciunas et al. 2017) to re-
derive the Tripp calibration parameters in table 1 of Burns et al.
(2018).

4.1 Comparisons with DEHVILS

The DEHVILS survey collected data in tandem with Hawai‘i
Supernova Flows, also using UKIRT’s WFCAM to collect NIR
observations of SNe Ia (Peterson et al. 2023). Our programs differ in
that DEHVILS collected photometry in the Y, J, and H bands and
pursued more observations (median 6 epochs per bandpass) for fewer
SNe (N = 96). We shared J-band observations near peak to avoid
redundancy, but reduced the data through independent photometric
pipelines. The DEHVILS analysis employs the following quality
cuts: |x;| < 3,0, < 1,04 <2, E(B— V)uw < 0.2 mag, and Type
Ia LC fit probability Ps > 0.01. oy, and oy, refer to the uncertainty
in the SALT parameter x; and the estimated time of maximum light,
while Py, is defined in SNANA as the fraction of the x? distribution
with k degrees of freedom above a given x? value (Kessler et al.
2009a):

1 o0
Pu(k, x2) = Kot gy 11
(k. ) F(k/z)/xz/z e (11
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Further, the target’s host galaxy must have a spectroscopic redshift.
There are differences between the redshifts in the DEHVILS sample
and the redshifts assembled following the methods described in
Section 2.3. In this section, we use the published DEHVILS redshifts
for a fairer comparison. The sample analysed in Peterson et al. (2023)
comprises 47 of the 83 spectroscopically classified normal SNe Ia
with DEHVILS photometry. Using fitting parameters to define cuts
means differences in fitting methods may lead to differences in the
objects cut. When we apply the same cuts using our implementation
of the SALT3-NIR model we find that 56 of the optical-only (ATLAS
co) fits pass all cuts, 47 fits using optical (ATLAS co) and DEHVILS-
reduced NIR? (Y J H) photometry pass, and 30 DEHVILS-reduced
NIR-only (Y J H) fits pass. Refitting the 83 SNe Ia assuming the
reddening law from Fitzpatrick (1999) for Milky Way extinction
does not lead to any difference in the objects cut.

4.1.1 Varying sample selection and fitting methodology

The 47 SNe Ia analysed in Peterson et al. (2023) do not exactly
match the 47 that pass the same cuts in our analysis, indicating a
difference between our methodologies. Identifying the exact point of
departure is of intrinsic interest, but more immediately concerning
are the consequences of such a difference. Our goal in this section is
to compare the dispersion of Hubble residuals found in Peterson
et al. (2023) to our values calculated with the same photometry but
different methods. We assume there are negligible differences in our
ATLAS photometry and that there are no unstated quality cuts in the
DEHVILS analysis.

We use DEHVILS photometric measurements for all NIR data
and fit each of the normal SNe Ia in host galaxies with spectroscopic
redshifts using SNooPy’s EBV_model2, SNooPy’s max_model, and
SALT3-NIR using the bandpass combinations co, coY JH,and Y J H
for all three fitters. The DEHVILS cuts are based on the SALT
fitting parameter x;, which we approximate in the SNooPy fits as
0.65 < sgy < 1.40 using a conversion we empirically determine in
equation (14) of Section 5.3.1. We also use this equation to convert
the o, < 1 cuttooy,, < 0.125.

The 83 normal SNe Ia are defined as such based on their
spectroscopic classification as SN Ia on TNS, but after visually
inspecting the light curves we believe there are nine non-normal
SNe Ia in this sample. We find four underluminous candidates
(SNe 2020jsa, 2020rlj, 2020unl, and 2021mim), four SN 2006bt-
like candidates (SNe 2020naj, 2020sme, 2020mbf, 2020tkp), and
one la-pec candidate (SN 2020kzn). These targets are eliminated
by the P cut in the DEHVILS analysis and are excluded from
the analyses in this section based on their suspected classification.
These targets are not explicitly excluded in the main sample selection
process described in Section 5, but all are removed by either quality
cuts or the outlier detection methods described in Section 5.3 except
for SN 2021 mim.

The SNooPy-based fits produce higher x? values than the SALT3-
NIR fits for targets that were successfully fit and passed quality cuts
(excluding the Py, cut). Andrae, Schulze-Hartung & Melchior (2010)
review the inherent problems with using x2 values and degrees of
freedom to assess model performance (especially non-linear models),
but the Py cut is a function of those parameters. The median ratio
between x2/DoF values from EBV_model?2 fits and SALT3-NIR
fits using the coY JH bandpasses is about 2.22. However, when
excluding model variance in both sets of x 2 calculations, the median

23 Available at https://github.com/erikpeterson23/DEHVILSDRI1
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ratio is 0.88. This reversal when excluding model variance applies
to fits using other bandpass combinations, with the ratio falling from
1.37 to 0.94 in the optical only fits, and from 2.31 to 0.8 in the NIR
only fits. This indicates the uncertainties in the SALT3-NIR model
may be overestimated, at least compared to the SNooPy model
uncertainties which may themselves be underestimated. This finding
is similar to that of Taylor et al. (2023) who compared SALT2 and
SALT3 models trained on identical data and found that the SALT3
model showed multiple indicators of overestimated model-plus-data
uncertainties. However, this is inconsistent with Peterson et al. (2023)
who performed a visual inspection of their fits and suspected the
model uncertainties may be underestimated, leading to significant
cuts due to fit probability. Regardless of the reason for the different
x? values found by different models, the application of a Py, > 0.01
cut will produce imbalanced sample sizes cut at different quantiles of
Py, which will skew the comparison of Hubble residual dispersions.
Instead, we define model-specific samples based on the 47 highest
Pyg; values from each model’s fits to the coY J H bandpasses. This
is consistent with the DEHVILS analysis, which analysed the same
47 SNe Ia when fit with optical-only, optical and NIR, or NIR-only
photometry. The x2/DoF cut values are 1.31 for SALT3-NIR fits,
4.14 for EBV _model? fits, and 4.51 for max_model fits.

With the differences in sample selection defined, we now describe
the differences in fitting methodology. By equation (6), calculat-
ing distance moduli using the max_model requires specifying a
bandpass (myx) and a colour (my—mz), which makes comparisons
between max_model fits subject to systematic discrepancies when the
bandpasses differ. There is no bandpass and colour common to the
bandpass combinations we examine, but we may still compare each
implementation of the max_model against the DEHVILS results. For
the co combination, we use the V bandpass and the V — r colour; for
coYJH,weuse J and V —r; and for YJH,weuse J and ¥ — J.
We calculate SALT-based distance moduli using o and  parameters
derived with UNITY (Rubin et al. 2015), except for the YJH
sample which encountered numerous problems during modelling
and produced an anomalously low and noisy g = 0.14 & 1.80. For
this sample, we calculate the o and S values that minimize the
standard deviation of the Hubble residuals. The standardization
coefficients for the co, coYJH, and YJH samples are («, B)
= (0.155, 3.3), (0.138, 3.702), and (0.111, 2.475), respectively. For
comparison, Peterson et al. (2023) used standardization coefficients
of («, B) = (0.145, 2.359) and (0.075, 2.903) for the co and coY JH
samples, with no standardization applied to the Y J H sample. They
characterize the dispersion in Hubble residuals using NMAD and
standard deviation (STD), so we use the same statistics in this section.

Our methods noticeably differ in fitting one of the bandpass
combinations. In the DEHVILS analysis, the fit parameters x; and ¢
were held fixed at O for the NIR-only sample. Our methodology does
not hold these parameters fixed, and we found greater dispersion.
This is consistent with their finding that keeping ¢ constant while
allowing x to vary led to increased scatter. For the other co bandpass
combination, we found dispersions in Hubble residuals roughly
consistent with the DEHVILS values and errors presented in Peterson
et al. (2023) and reproduced in Table 2. Our NMAD values were
lower and our STD values higher, implying our Hubble residuals are
heavier-tailed than a Gaussian distribution. This could be an effect of
different sample selection, different treatment of ATLAS photometry,
or different standardization coefficients. For the coY J H bandpass
combination, our analysis with SNooPy’s EBV_model2 is consistent
with the DEHVILS values, but the other two models tend to produce
higher dispersion values. We note that in our SALT3-NIR analysis,
if we use the o and B values that minimize the standard deviation
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Table 2. We highlight any differences due to methodology by using
DEHVILS photometry and approximating their quality cuts. We did not
replicate their findings when using only Y J H photometry, which is where
our methodologies differ the most. The DEHVILS team fixed x; and ¢ to O for
those fits and we allowed them to vary. For the co bandpass combination, our
methodology produced Hubble residual dispersions consistent with the values
reported by DEHVILS. We find mixed results with the coY J H combination,
with our max_model analysis producing larger dispersions, and our SALT3-
NIR analysis producing consistent results only if we solve for the « and
values that minimize dispersion in the Hubble residuals.

Model Filters N NMAD (mag) STD (mag)
DEHVILS co 47 0.177(029) 0.221(043)
DEHVILS coYJH 47 0.132(025) 0.175(034)
DEHVILS YJH 47 0.139(026) 0.172(027)
EBV_model2 co 55 0.177(041) 0.327(065)
EBV_model2 coYJH 47 0.126(023) 0.131(014)
EBV_model2 YJH 50 0.152(025) 0.165(022)
max_model co 51 0.215(039) 0.234(032)
max-model coYJH 47 0.159(027) 0.153(015)
max_model YJH 47 0.181(034) 0.182(023)
SALT3-NIR co 56 0.225(043) 0.246(025)
SALT3-NIR coYJH 47 0.184(030) 0.186(023)
SALT3-NIR YJH 30 0.164(036) 0.161(020)

(0.100 and 3.052, respectively), we find a value of 0.162 mag and a
NMAD of 0.124 mag, which is consistent with the DEHVILS values.
Our max_model analysis is also not optimized against dispersion.
We use the J-band peak magnitude and V — r pseudo-colour to
infer distances because that is the methodology we apply to our own
photometry, which does not include Y- or H-band observations.

The consistency between the dispersion values we measure and
the values reported in Peterson et al. (2023) suggests that our
methodology is comparable for fits when using optical data or
optical and NIR data. Our methodology is inferior for fits using
only NIR photometry, and max_model fits using coY J H photometry,
indicating that we would need to adapt our methodology if we were
to collect Y- and H-band data like the DEHVILS team and produce
NIR-only samples. The samples we produce using our own J-band
data always include optical data.

Our samples are distinct from the one analysed in Peterson et al.
(2023). However, the effects of a few mismatched SNe should be
suppressed after bootstrap resampling the Hubble residuals. As in
the DEHVILS analysis, for each sample we perform 5000 iterations
of randomly choosing 47 residuals with replacement. The dispersion
values and uncertainties presented in Table 2 are the averages and
standard deviations of the values measured across the 5000 iterations
(shown in Figs 7 and 8).

4.1.2 Varying photometry

We repeat the comparative analysis of the previous section, this time
isolating the effects of differing photometry. We fit ATLAS and either
our J-band data or that of the DEHVILS survey to create two sets
of fits for each of our three models. We apply the model-specific
x2/DoF cuts based on the greater value between the fits using our
photometry or that of DEHVILS.

Once more, we bootstrap resample the Hubble residuals to estimate
the uncertainties in our dispersion measurements, but we include
an additional set of statistics. When varying methodology, we
could only compare the distributions of our resampled dispersion
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Table 3. We use our methodology to calculate Hubble residuals using AT-
LAS photometry and either our J-band photometry or that of the DEHVILS
survey. Bootstrap resampling these residuals 5000 times shows the dispersion
measurements are insensitive to any differences between our photometry. In
SNooPy’s EBV_model2 and max_model and in SALT3-NIR, the change in
dispersion is consistent with 0.

Model J data N NMAD (mag) STD (mag)
EBV_model2 HSF 48 0.109(022) 0.143(020)
EBV_model2 DEHVILS 48 0.142(024) 0.152(017)
max_model HSF 50 0.144(032) 0.196(029)
max_model DEHVILS 50 0.165(029) 0.161(015)
SALT3-NIR HSF 49 0.180(034) 0.197(022)
SALT3-NIR DEHVILS 49 0.218(044) 0.227(021)

measurements with the values reported in Peterson et al. (2023),
but in this analysis we can make pairwise comparisons between
individual iterations of the resampling process. For each iteration, we
randomly choose SNe la with replacement, record the NMAD and
STD of their Hubble residuals in our six samples, and additionally
calculate the differences in dispersion between each model’s sample
using our J-band photometry and using DEHVILS photometry
(AD = DHSF — DDEHVILS where D is either NMAD or STD) Thl,lS,
we not only produce distributions of NMAD and STD, but also
distributions of ANMAD and ASTD.

The averages and standard deviations of these values are presented
in Table 3 and the histograms of dispersions and differences are
plotted in Figs 9 and 10. None of the distributions indicate that
using our photometry instead of DEHVILS photometry leads to
increased dispersion measurements. The averages are within one
standard deviation of each other, and the differences within one
standard deviation of no change in dispersion.

4.2 Comparison with CSP

The EBV_model2 produces Hubble residuals with lower dispersion
than those produced by either SALT3-NIR or the max_-model.
The greater dispersion in the max_model was unexpected since
the EBV_model2 is calibrated to CSP observations of 36 SNe,
whereas in this analysis we derived standardization coefficients for
the max_model using our observations of 47 SNe.

4.2.1 Validating Tripp calibration

To test our derivation process, we used photometry from CSP-I
DR3 (Krisciunas et al. 2017) to solve for the calibration coefficients
presented in table 1 of Burns et al. (2018). We fit all CSP photometry
with the SNooPy max_model, parametrizing light-curve shape with
sgy. We use the heliocentric redshifts provided in the data release
rather than redshifts from HyperLEDA to focus on differences due
to methodology. Our equation (6) does not include a term for host-
galaxy mass, but in order to match the CSP derivation methodology
we reintroduce this term:

my = Py+ Pi(spy — 1)+ Pa(sgy — 1* + Lcos
+ Bunax(my — mz) + ay (log (M../ Mg) — Mo), (12)

where oy is the coefficient correlating magnitude and host-galaxy
stellar mass (M,) and M, is an arbitrary mass zero point, taken as
10" M. We follow the methodology in appendix B of Burns et al.
(2018) for assembling host-galaxy stellar masses, primarily drawing
from the 2MASS Extended Source Catalogue (Jarrett et al. 2000),
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Figure 7. We show the distributions of NMAD in 5000 bootstrap resamplings of each set of Hubble residuals. The columns correspond to the fitting model used
the rows to the bandpass combination. The solid and dashed vertical lines show the values and uncertainties of the NMAD reported in the DEHVILS survey.
Our methodology produces Hubble residuals with dispersions consistent with the values reported by the DEHVILS survey using SNooPy’s EBV_model2, but
not when using SALT3-NIR or SNooPy’s max-model.
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Figure 8. The same set of plots as Fig. 7, but showing standard deviation instead of NMAD.
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Figure 9. The histograms in the left panels show the distributions of NMAD dispersion measurements after 5000 iterations of bootstrap resampling Hubble
residuals. The histograms in the right panels show the distributions of differences in dispersion between the samples using HSF photometry and the samples
using DEHVILS photometry in each iteration. Using our measurements instead of DEHVILS photometry may lead to a decrease in the dispersion of the Hubble

residuals, but it is not statistically significant.

which we convert from K -band apparent magnitudes to stellar masses
assuming a constant mass-to-light ratio.

log,y (My/Mg) = —0.4(mg + ) + C, (13)

where p is the distance modulus and C is a constant which CSP
determined to be 1.04 dex by comparing masses from the 2MASS
catalogue with mass estimates from Neill et al. (2009). We verify that
this is the best-fitting value from a simple least-squares regression.
When there is no K -band magnitude available, we use estimates from
Neill et al. (2009) and Chang et al. (2015) when possible, as Burns
et al. (2018) did.

The coefficients in equation (6) derived in Burns et al. (2018)
and re-derived with our methods are presented in Table 4. The
average deviation between the two sets of coefficients is 0.582 times
the quadrature sum of the uncertainties. Additionally, we derive a
set of coefficients while not accounting for host-galaxy mass. As
expected, the average difference between this set and the original
values is greater, albeit only slightly at 0.598 times the combined
uncertainty.

We conclude that our methodology for calibrating the Tripp
method is consistent with the method used in Burns et al. (2018). The
difference in dispersion in Hubble residuals between the max_model
and EBV_model2 seen in Section 4.1.1 is not due to errors in
determining the calibration coefficients. Additionally, we do not find
a significant difference in dispersion between the two models when
examining the CSP data. Using the max_model, the Hubble residuals
have an NMAD dispersion of 0.163 mag and a standard deviation of
0.233 mag, which is only marginally greater than the same values
using EBV_model2: 0.157 and 0.227 mag.

MNRAS 536, 624-663 (2025)

5 SAMPLE SELECTION

We have NIR observations of 1217 unique transients, but only about a
quarter of those are presently useful for cosmology. Our final sample
is comprised of targets that pass three sets of cuts: one based on
observational data, one based on fitting parameters, and one based on
several outlier detection algorithms. The number of targets discarded
and remaining after each cut are presented in Tables 5 and 6.

5.1 First cut: observational data

The set of all our observed transients includes unclassified or
misclassified non-SNe Ia, galaxies with photometric or unknown
redshifts, and SNe Ila missing coverage near maximum light in
one or more all-sky survey bandpasses. In future work we intend
to incorporate the unclassified transients that are photometrically
consistent with SN Ia light curves, but for this paper, we do not
include them in our analysis. Vincenzi et al. (2023) describe the
magnitude of biases in cosmological measurements when using
photometrically classified samples and discuss various methods for
mitigating them to sub- percent levels when estimating the dark
energy equation of state parameter w.

Of the 1217 observed transients, 668 have been spectroscopically
classified as usable SNe Ia. This number does not include SNe Ia
subtypes that are unsuitable for distance inference using SALT3-
NIR or SNooPy: 2002cx-like SNe (sometimes called SNe Iax, Li
etal.2003),2002ic-like SNe (sometimes called SNe Ia-CSM, Hamuy
et al. 2003), 2003fg-like SNe (formerly called super-Chandrasekhar
SNe or SNe Ia-SC, Howell et al. 2006; Hicken et al. 2007; Ashall
et al. 2021), and generally peculiar SNe Ia (Ia-pec). This number
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Table 4. We show some of the Tripp calibration coefficients presented in Table 1 of Burns et al. (2018) and our derivations using the same data with our
methodology. Our values differ from the original values by an average of 0.582 times the combined uncertainty. When not accounting for host-galaxy
masses, the average difference slightly increases to 0.598 times the combined uncertainty.

Derivation Py Py Py Bmax gal Oint Upec ]
(mag) (mag) (mag) (mag/dex) (mag) (kms )
CSP —18.633(062) —-0.37(12) 0.61(32) 0.36(10) —0.056(029) 0.11 336
This Work —18.626(028)  —0.407(128) —0.021(344) 0.292(096) —0.044(032) 0.083(033) 384(57)
This Work (No Masses) —18.607(024)  —0.352(126) 0.102(346) 0.270(097) N/A 0.093(032) 384(57)

Table 5. Our first set of cuts is independent of the fitting model used and applies to all targets observed.

Cuts Number cut Remaining sample
Spec. classification 327 890
SN Ia 222 668
Spec. redshift 65 603
E(B—V)uw < 0.3 8 595
Nobs = 5 0 595
Successful spectroscopic reduction 76 519
Successful photometric reduction 15 504

Table 6. The second set of cuts is based on the fitting model used, the SNPY_EBYV sample using SNooPy’s EBV_model2, the SNPY_Max sample using
the max_model, and the SALT sample using SALT3-NIR. We calculate the x2/DoF thresholds based on our comparison to the DEHVILS cut based on
SNANA'’s fit probability parameter. Our final two cuts are based on outlier detection. dy refers to the Mahalanobis distance described in Section 5.3.1.

Cuts SNPY_EBV Cut Remaining SNPY Max Cut Remaining SALT Cut Remaining
Successful fit 2 502 2 502 1 503
Rest frame mj, my, and m, 100 402

0.6 <spy <13 24 478 41 361

Ospy <02 2 476 2 359

E(B — V)host < 0.3 mag 75 401

[x1]<3 20 483
oy < 1.5 4 479
lc] <0.3 43 436
o, <02 1 435
Phase requirements 0 401 1 358 2 433
Reduced x2 < 4.14/4.51/1.31 38 363 28 330 65 368
dy < 504y, 4 359 4 326 4 364
UNITY outlier 2 357 2 324 2 362

does include several 2006bt-like candidates, which we discuss in
Section 5.3.

Spectroscopic host-galaxy redshifts are available or have been
successfully measured for 603 of these 668 SNe Ila. The remaining
65 include galaxies scheduled for spectroscopic observation, galaxies
with spectral features manually judged to be too weak for accurate
redshift determination, and galaxies with exceptionally low surface
brightness, such that spectroscopic observation is prohibitively
expensive. We remove additional eight targets that have Galactic
reddening greater than 0.3 mag according to Schlafly & Finkbeiner
(2011). As the last cut in this set, we remove targets with fewer than
5 optical and NIR observations, counting each quartet of ATLAS
exposures as a single observation. Of the remaining 595 SNe Ia,
76 are in galaxies for which we have unreduced spectroscopic
observations, and 15 encountered errors during photometric analysis,
leaving 504 SNe Ia.

5.2 Second cut: fitting parameters

Removing targets based on fitting parameters necessarily requires
successfully running each model’s fitting procedure, which is not
guaranteed for each possible permutation of input data. Without

sufficient phase coverage in photometry, the shape parameter of
a SN Ia becomes underconstrained. The same is true for insuffi-
cient wavelength coverage and the colour parameter or host-galaxy
extinction. These produce singular covariance matrices, indicating
degeneracy in the fitting parameters. Additionally, the models span
finite combinations of phase and wavelength, making comparisons to
some observations interpolative at best and often times extrapolative.
The fit is unsuccessful if all data in a given bandpass lie outside the
model domain. However, the phase of any observation is dependent
on the estimated time of maximum light, which itself is a fitting
parameter. This means that the success of a fit is partially dependent
on how the fitting parameters are initialized. When a fit fails because
one of the bandpasses has no data in a model’s domain, we attempt
to perform the same fit without data from the behaviour bandpass. If
that succeeds, we use those fitting parameters to initialize a new fit,
reintroducing the excluded data. Sometimes this leads to a successful
fit using all available bandpasses, at other times a subset of available
bandpasses, and occasionally the fit cannot be salvaged. The success
or failure of a fit acts as a cut. We now define three distinct samples
based on the three fitting models: SNPY_EBV with 502 fits from
SNooPy’s EBV_model2, SNPY _Max with 502 fits from SNooPy’s
max_model, and SALT with 503 fits from SALT3-NIR.

MNRAS 536, 624-663 (2025)
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Figure 10. The same set of histograms as Fig. 9, but applied to standard deviation rather than NMAD. Again, using our measurements instead of DEHVILS
photometry does not lead to a statistically significant difference in the dispersion of the Hubble residuals. The closest case is the standard deviation in the
max-model, which increases by an average of 0.014 £ 0.022 mag. The more robust NMAD decreases by 0.015 + 0.038 mag, indicating the increase in standard
deviation is due to a few discrepant values rather than a systematically preferred set of photometry.
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Figure 11. Left: The spy values of each SN are inferred using the same data, and either SNooPy’s EBV_model2 or max_model. The one-to-one line is plotted
in dotted black. Right: Each SN’s inverse-variance weighted average spy value is compared to the x| value inferred by SALT3-NIR. We plot the linear (dotted
black), quadratic (solid orange), and cubic (dashed magenta) polynomial fits determined through orthogonal distance regression. The Bayesian information
criterion favours the cubic fit. In both plots, outliers identified through divergent model inferences are red and have circle markers. These outliers are ignored
when calculating the parameter transformation equations.
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Figure 13. We identify outliers (red) based on disagreement between the
three models inferences for an SN’s time of maximum, shape, and colour.
After transforming the SNooPy parameters sgy, E(B — V)post, and my —
my to x1, ¢, and ¢, we calculate the standard deviations in each SN’s three
inferred values for 7o, x1, and c. We then parametrize disagreement using
the Mahalanobis distance between the standard deviations (oy,,;, 0y, ., and
oc,;) and a distribution centred at the origin. When the three models produce
consistent estimates the standard deviation is relatively low, but when they
diverge the standard deviation increases.

After fitting, we apply the following cuts. In the SNPY samples
we use quality cuts from Jones et al. (2022), rejecting fits with
shape factors outside the interval 0.6 < sgy < 1.3 (their ‘loose’ cut)
or with uncertainty oy,, > 0.2, and for SNPY_EBY, rejecting fits
with host-galaxy E(B — V)pest > 0.3. In the SNPY_Max sample,
the rest-frame bandpasses used for calculating distances depend
on both the observed bandpasses and the redshift. Since we infer
distances using the J band and the V — r colour, we cut SNe from

SNPY _Max whenever the max_model does not provide inferences for
the maximum apparent magnitudes in those bandpasses. While it is
possible to force SNooPy to map to these bandpasses, the cross-band
K-corrections required become much more sensitive to differences
between the assumed and actual SED. This acts as a cut based on
redshift. In the SALT sample we reject fits where |x;| > 3,0y, > 1.5,
lc| > 0.3, 0or o, > 0.2 (Foley et al. 2017; Scolnic et al. 2018; Scolnic
et al. 2022). We use the temporal coverage cut from Rubin et al.
(2023), which is based on the calculated time of maximum light (¢;),
the phase of the initial observation (#;), and the phase of the final
observation (¢7). Given that #; can vary between the three samples,
we apply this cut to each sample independently. Adequately observed
SNe Ia meet at least one of two sets of criteria. The first set requires
t; no more than 2 d after 1y, ¢, at least 8 d after #y, and ¢, — #; must
span at least 10 d. The second set allows for a later #;, up to 6 d
after t, as long as ty —t; spans at least 15 d. Lastly, we remove
fits with reduced x2 values above 4.14, 4.51, or 1.31 for fits in the
SNPY_EBV, SNPY _Max, and SALT samples, respectively. These
cut values come from the comparison to the DEHVILS sample in
Section 4.1. This leaves our three samples with 363/502 objects in
SNPY _EBY, 330/502 in SNPY _Max, and 368/503 in SALT.

5.3 Third cut: outlier detection

There are many vectors for outliers to appear in our sample:
spectroscopic misclassification of core-collapse SNe, incorrectly
assigned host-galaxy redshifts, errors in photometric reduction, or
errors in fitting. Even with ‘perfect’ data and methods, an outlier
could arise from anomalous astrophysical properties (e.g. an exotic
progenitor system or detonation mechanism) or unclassified Type-Ia
peculiarity. In particular, 2006bt-like SNe are difficult to identify
without i band or NIR observations (Stritzinger et al. 2011; Phillips
2012). There are several objects in our sample that are classified as

MNRAS 536, 624-663 (2025)

Gz0z Aenuer g1 uo 1senb Aq 965£688//129/1/9ES/301E/SeIuW /W00 dno olwapede//:sdiy Woil papeojuMO(]



644 A. Do et al.

38

36

34

u (mag)

32

30

0.00 0.02 0.04

0.06

ZcmB

0.08 0.10 0.12

Figure 14. The top panel shows the Hubble diagram of the SNPY_EBV sample with residuals plotted below. The value of Hy is degenerate with the absolute
magnitude of SNe Ia, amounting to a constant vertical offset. The solid black line shows the ACDM model that zeros the inverse-variance weighted residuals.
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The dashed lines show the combined uncertainty due to the sample’s oi,; and 250 km s of uncertainty in peculiar velocity converted to uncertainty in distance

modulus via equation (3).

SNe Ia on TNS, but have NIR light-curves suggestive of 2006bt-like
SNe: SN 2020naj, SN 2020tkp, SN 2020mbf, and SN 2020sme. We
employ two kinds of outlier detection methods. The first compares
inferred parameters for common targets between the samples, and
the second is based on the mixture model of Kunz, Bassett & Hlozek
(2007) as implemented through UNITY (Rubin et al. 2015).

5.3.1 Divergent model inferences

In a Bayesian framework, the physical parameters inferred by each
fitting model should draw from the same posterior distribution of
‘true’ physical parameters. This common quantity allows for simple
error detection in the 246 SNe common to all samples. Where the
estimates of the same parameter vary significantly, at least one model
is likely to have converged on a local maximum in likelihood and
is not reliable for inferring other parameters. The SNPY and SALT
samples share a common definition for the time of maximum light,
but differ in exactly how they quantify light-curve shape and colour.
Burns et al. (2018) described a linear transformation between the
x; parameter in SALT2 and the spy parameter in SNooPy. We
use orthogonal distance regression and find a slightly different
relationship, potentially due to differences between SALT2 and
SALT3-NIR. After testing linear, quadratic, and cubic polynomial
fits, the Bayesian information criterion favours a cubic relationship

MNRAS 536, 624-663 (2025)

(102.6, 103.5, 77.2):

x; = —0.09(02) + 8.9727)(szy — 1)
—4.73(92)(sgy — 1)

—34.35(04)(sgy — 1)>. (14)

Here, spy is the average between the values inferred by SNooPy’s
two models. The relationship between szy values from the two
SNooPy models as well as the relationship between their average
and the SALT x; parameter is shown in Fig. 11.

The c parameter in SALT represents both intrinsic colour variation
in SNe Ia and reddening from dust, while the E(B — V )y fitting
parameter in SNooPy is strictly concerned with the latter. However,
Brout & Scolnic (2021) found that the correlation between intrinsic
colour and luminosity may be weak, and that dust can provide the
observed diversity of colours. We test linear, quadratic, and cubic fits,
and the Bayesian information criterion supports a linear fit (—245.4,
—239.9, —234.7):

¢ = —0.05(00) + 0.96(03)E(B — V )poq mag™". (15)

Our colour information in the SNPY_Max sample comes from the dif-
ferences in apparent maxima. To more effectively parametrize dust,
we use the my — m, pseudo-colour. We test the same polynomial
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Figure 15. Same as Fig. 14, but using the SNPY_Max sample. The limited redshift range is due to the cut requiring the observed filters to map to the CSP V

and r filters in the rest frame.
fits, and find support for a cubic fit (364.2, 369.4, 340.9):

¢ = 0.12(02) — 0.17(10)(my — m ) mag™!
—1.21(23)(my — my)? mag™>

—0.85(16)(my — my)> mag™> (16)

The relationships between the colour parameters are shown in
Fig. 12.

After converting the SNooPy parameters into SALT parameters,
we can directly compare each model’s inferences for each SN to find
where they disagree. We define oy, ;, 0y, ;, and o.; as the standard
deviation between the transformed fitting parameters of SN i in the
SNPY samples its parameters in the SALT sample. We account for
correlations between the differences by calculating the Mahalanobis
distance between each point m; = (0y,,, 0y, i, 0c,;) and a distribution
D centred at the origin with covariance matrix ¥ (Mahalanobis
1930). We approximate ¥ by bootstrap resampling the parameter
differences 5000 times, calculating each sample covariance S, and
defining each element X; ; as the average of all sample elements S ;.
Each distance d;(m;, D) = \/m;Z~'m!, and can be understood as
the number of standard deviations between point m; and distribution
D. The quadrature sum of the standard deviations is a similar metric
if all dimensions are normalized to have unit variance, but does not
account for correlations. Fig. 13 shows the histogram of distances.
There are 4 SNe with distances greater than 5 times the standard
deviation in d, indicating significant disagreement between the
models. We recalculated the parameter transformation equations and
Mahalanobis distances excluding these 4, and identified no additional

outliers. The equations and figures presented are the recalculated
versions. Disagreement alone leaves room for one or two of the
models to have accurately fit the data, but while manual inspection
often reveals which models fit the data well and which do not, we err
on the side of caution by removing these 4 SNe from all three samples.

5.3.2 Mixture-model analysis

The mixture model introduced as BEAMS (Bayesian Estimate
Applied to Multiple Species; Kunz et al. 2007) posits that an
imperfect SNe Ia survey will lead to measurements following
the sum of multiple distributions. Measurements of real SNe Ia
should feature relatively low dispersion whereas measurements
of survey contaminants will be more dispersed, and may have a
different mean. As implemented in UNITY, both populations are
assumed to be Gaussian around a common mean, and the outlier
population is assumed to have variances of one in my, x;, and ¢
(Rubin et al. 2015). UNITY’s use of SALT parameters means in
its present version it can only process the SALT sample. Since
the mixture-model framework is generalizable to arbitrary fitting
parameters, future work could allow UNITY to process results
from SNooPy. At such a time comparing outliers between samples
could indicate whether the SNe Ia is astrophysically exceptional, or
whether one of the models is unreliable. For now we are limited to
examining SALT.

As UNITY sifts the data through its Bayesian hierarchical model,
it produces a population level estimate of the fraction of outliers
in the sample (with a prior of log f°*/! ~ A/(—3,0.5%)), and a pair

MNRAS 536, 624-663 (2025)
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Figure 16. Same as Fig. 14, but using the SALT sample.
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Figure 17. The difference between Hubble residuals from the SNPY_EBV
sample (Asnpy_gsv) and the SALT sample (Asarr) is anticorrelated with
redshift. We fit a linear trend to the data, finding a slope of -1.4(3) mag. The
contours show the 1o and 20 uncertainties.

of estimates for each object describing the likelihood it belongs
to the normal or outlier population. Our sample has an estimated
outlier fraction of 0.012+0.004 and there are 2 SNe more likely
to be outliers than a part of the normal population. As before, we
take the conservative approach of removing these objects from all
samples. Some of the two may have been eliminated from the SNPY
samples by previous cuts, which is why the number cut at this stage
may vary across the samples.

MNRAS 536, 624-663 (2025)

direct result of the data as explained in Section 3. To reiterate, Hy is
degenerate with the absolute magnitude of SNe Ia and we do not use
alternative distance probes to estimate that magnitude.

The Hubble diagrams of each sample are presented in Figs 14,
15, and 16 and their dispersion measurements in Table 7. The
same measurements of the targets common to all three samples are
presented in Table 8.

6.2 Trend with redshift

There is a trend between the Hubble residuals and redshift in the
SNPY_EBV and SALT samples. We perform linear fits using the
Bayesian approach detailed in Jaynes & Crow (1999), using flat
priors in sin(slope) and intercept, and a Jeffreys prior on scatter
(Jeffreys 1946).

Apsney gpv = —0.6(3)zcms mag + 0.03(02) mag (17)
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Figure 18. We compare the Hubble residuals in the SNPY_EBV sample, the residuals in the SALT sample, and their differences to the SNooPy fitting
parameters spy and E(B — V)noqt and SALT fitting parameters x; and c. The best-fitting linear relation is plotted with a solid red line and the 95 percent
confidence interval in light red contours. The strong correlation with colour parameters implies the standardization coefficient § is not calibrated correctly for
our sample, and that the reddening law assumed in the EBV_model2 may be inappropriate for our sample.

Apsney Max = 0.0(5)zcms mag + 0.01(02) mag (18)

AI/LSALT = O~4(4)ZCMB mag — 002(02) mag. (19)

The Hubble residuals in the SNPY _Max sample do not appear to trend
with redshift. The differing signs in the slopes of the SNPY_EBV
and SALT samples indicate that the issue is due to differences in the
fitters rather than a real trend in the data or an issue in the estimation
of [eos. A review of the SNooPy and SNCosmo code revealed no
issue with the programmatic implementation of the methods in the
literature (Guy et al. 2005, 2007; Burns et al. 2011, 2014; Kenworthy
et al. 2021; Pierel et al. 2022).

The difference between SNPY_EBV and SALT Hubble residuals
is seen most clearly in Fig. 17. Comparing residuals accounts for
the zero-point offset in inferred u in each sample and suppresses
astrophysical properties that should affect both inferences equally,
such as peculiar velocity or intrinsic variation in luminosity. We cal-
culate uncertainties for the differences using the Pearson correlation
between the distance modulus uncertainties in each sample.

We tested the SNooPy EBV_model2 and SALT3-NIR by fitting
the r- and i-band photometry of an SN Ia at zcmp & 0.72 using
both programs.”* Using the Hy and M values from the SNPY_EBV
and SALT samples, we found the corresponding fitters produced

24SN 05D4ev from Guy et al. (2010).

residual distance moduli of 0.095 +0.167 and —0.315 £ 0.167.
This indicates that any trend between residual distance modulus and
redshift does not continue at higher redshifts.

The trend with redshift could be the result of differences in how
the fitters account for shape or colour, which could both evolve
with redshift due to selection effects. We investigated whether the
SNPY _EBV residuals, SALT residuals, or their differences were
correlated with the fitting parameters sgy, E(B — V)post, X1, and
¢, plotting the results in Fig. 18. Correlations imply the fitter is
not properly accounting for the effect shape or colour has on the
luminosity. In SALT this would mean the standardization parameters
o or B are improperly calibrated. In SNooPy’s EBV_model2 a
correlation between the Hubble residuals and sgy would imply
there is a systematic difference between the light curves in our
sample and the light curves used for interpolation. A correlation
with E(B — V)nose Would imply that the reddening law assumed in
the EBV_model2 does not fully capture the dust properties affecting
our observations.

The residuals appear correlated with the colour parameters E(B —
V)host and ¢, with the correlation most obvious in the SALT residuals
and the residual differences. This calls our 8 coefficient into question,
which comes from an analysis of the SALT sample performed in
UNITY. The coefficients are not inferred by minimizing dispersion
in the Hubble residuals, but by maximizing a likelihood in a Bayesian
hierarchical model. UNITY models the ‘true’ x; and ¢ parameters
of an SN Ia as latent variables to account for Eddington bias. The

MNRAS 536, 624-663 (2025)
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Figure 19. UNITY models the ‘true’ values of x; and ¢ as latent variables in its hierarchical model. We compare these against the ‘observed’ values that
come from SALT3-NIR fits, with one-to-one correspondence lines plotted in black. The standardization coefficients from UNITY are calibrated against the true
values, and will not minimize Hubble residuals when used with the observed values.
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Figure 20. We parametrize the difference between the ‘true’ and ‘observed’
x1 and ¢ parameters as Ax; and Ac. The errors in each difference are
estimated using the sample Pearson correlation coefficient. The red markers
and errorbars show the medians and standard deviations of differences in bins
0.005 wide in redshift space. The standard deviations generally increase with
redshift until z ~ 0.09, where data is relatively sparse. Ac appears offset from
0, especially at lower redshifts. This could imply that the hyperparameters
UNITY uses to describe the distribution of ¢ may require more flexibility to
accurately model our observations.

standardization coefficients operate on these ‘true’ values rather than
the ‘observed’ values that come from a light-curve fit. We compare
the ‘true’ and ‘observed’ x; and c parameters in Fig. 19. Deviations
from one-to-one correspondence come from both statistical error and
Eddington bias, which manifests as ‘observed’ parameters scattering
away from O.
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Figure 21. We analyse subsets of the SALT sample using UNITY and show
the inferred B values as a function of redshift cut value zi,, . The data
connected by the line show the results from subsets defined by a maximum
redshift z < z/. B is relatively stable as the sample expands to include higher
redshift targets. The unconnected data are from redshift bins centred on z’
and 0.01 wide, such that |z — 2’| < 0.005. SNe in higher redshift bins prefer
lower B values, which could be a result of Eddington bias becoming more
significant at greater distances.

Fig. 20 shows that the bias seems more prevalent at higher
redshifts. Parameter differences in bins at higher redshifts gener-
ally have larger standard deviations, with sample incompleteness
heavily affecting bins beyond z ~ 0.09. This could indicate that the
uncertainties in x; or ¢ are underestimated in fits to noisier data, but
verifying such a claim would require simulations beyond the scope
of this paper (such as those in Peterson et al. 2024). Additionally, the
median differences in ¢ appear non-zero, especially in lower redshift
bins. We have not identified a definitive cause for this behaviour,
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but speculate that our choice of hyperparameters in UNITY does not
allow for the flexibility needed to model the distribution of ¢ over
the parameter space spanned by our sample. This could produce
a correlation between SALT Hubble residuals and redshift or ¢
independent of .

To ascertain the validity of using a single S value over the
entire redshift range, we analysed subsets of the SALT sample in
UNITY. We examined subsets consisting of targets within redshift
bins of width 0.01, as well as a cumulative sum including all
targets below a series of redshifts. Fig. 21shows that the inferred
B decreases in higher redshift bins, but that it remains relatively
stable in the cumulative case. This suggests the hyperparameters
describing the distribution of ¢ are robust against higher redshift
SNe Ia, but that these SNe prefer a lower value for B. This
assumes the ¢ parameter follows a single distribution over the whole
sample, rendering measurements that may suggest otherwise an
effect of bias. UNITY permits alternative parametrizations, such as a
broken-linear form for g, but adding such complexity is beyond
the scope of this paper. Similarly, more sophisticated analyses
of dust properties using SNooPy have been performed with its
color_model (e.g. Burns et al. 2018; Johansson et al. 2021) or by
using more of the colour information in the max_model (e.g. Uddin
et al. 2020, 2023). Implementing and evaluating these approaches
will be necessary before using our data for robust cosmological
analyses.

Thus, we do not find a satisfactory solution to eliminate the cor-
relations between Hubble residuals and redshift or colour parameter.
Empirical corrections are possible using equations (17), but such an
approach is neither physically motivated nor statistically rigorous.
More detailed analyses are required to fully understand and rectify
this issue.

6.3 The effect of NIR photometry on distance measurements

As mentioned in Section 1.2.1, NIR photometry offers two key
benefits when analysing SNe Ia. The effects of dust are suppressed
and SNe Ia demonstrate less variable peak luminosities in the NIR.
We examine the benefits of NIR photometry by comparing fits using
NIR and optical photometry to fits using only optical photometry.
We split our three samples into six: SNPY_EBV_0J, SNPY _Max_OJ,
and SALT_OJ (the OJ samples), which include optical and J-band
photometry and SNPY_EBV_O, SNPY_Max_O, and SALT_O (the
O samples), which are their optical-only counterparts. Unlike the
SNPY_EBV, SNPY _Max, and SALT samples, which vary in size,
target selection, and even bandpasses used to fit a given target,
we enforce parity between the OJ and O samples. To do this
we prepare the O samples following the same methodology used
to produce SNPY_EBYV, SNPY_Max, and SALT except without
J-band photometry. The number of SNe discarded at each cut
and the size of the final samples are listed in Table 9. The six
samples are made of the SNe common to both the O and OJ
samples.

We modify the outlier detection method described in Section
5.3.1 to highlight disagreement between the OJ and O samples
rather than between SNPY_EBV, SNPY_Max, and SALT. This
precludes the need to transform SNooPy fitting parameters into
SALT parameters. The fitting parameters of SNe in the OJ and
O samples produce difference vectors: m = (8ty, dspy, SE(B —
V)host) for differences between SNPY_EBV_OJ and SNPY_EBV _O,
m = (8ty, §spy, 6(V — r)) for differences between SNPY _Max_OJ
and SNPY Max_O, and m = (8ty, dmy, 6x;, 6c) for differences be-
tween SALT_OJ and SALT_O. We use the Mahalanobis distance
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d(m, D) = ¥vmZ~!m" to identify outliers, once again approximat-
ing the covariance matrix X by bootstrap resampling the parameter
differences 5000 times and averaging the sample covariances. The
distributions of Mahalanobis distances for samples the three pairs of
samples are given in Fig. 22.

Measurements of dispersion in each sample’s Hubble residuals are
presented in Table 10. We characterize the differences between the OJ
and O samples with the bootstrapping method we used when varying
photometry in Section 4.1.2. The values and uncertainties in Table 10
are the averages and standard deviations of this process. Histograms
of the resampled dispersion differences are plotted in Fig. 23. The
various dispersion estimators show a general decrease when adding
J-band photometry to the O samples, but most of the differences
are within one standard deviation of no change. The exceptions are
the NMAD in the SALT and SNPY_EBV samples and the RMS
in the SALT sample. Interpreting these exceptions as indicators of
decreased dispersion while ignoring the other measures is a classic
case of the multiple comparisons problem. To control the family-wise
error rate we use the sequentially rejective Bonferroni test (Holm
1979). None of the distributions are far enough from 0 to claim
that including J-band photometry leads to statistically significant
decreases in dispersion. This does not imply other methodologies
do not or cannot benefit from the J-band photometry, but that with
our samples, cuts, and methods, we cannot definitively say NIR
photometry leads to smaller Hubble residuals.

7 DISCUSSION

The RMS of the Hubble residuals is 0.165 mag in the SNPY_EBV
sample (N = 357), 0.245 mag in the SNPY Max sample (N = 324),
and 0.186 mag in the SALT sample (N = 362). Our result goes
against a number of studies that support the use of NIR photometry
in deriving distances to SNe Ia, but is not alone in finding relatively
large dispersions. Stanishev et al. (2018) combine optical and NIR
light curves from numerous sources, including new observations, and
find RMS values of ~0.15 mag (N ~ 120) while Johansson et al.
(2021) did the same and found an RMS of 0.19 mag (N = 165).
Notably, the sub-sample of 16 new SNe la presented in Stanishev
et al. (2018) were only imaged once or twice in the NIR, and the
RMS of their residuals is ~0.2. Sparsity may play a role in the
greater dispersion, but Miiller-Bravo et al. (2022) found that the
effect is relatively small, bringing an RMS of 0.166 mag to 0.180
mag (N = 36) when removing all but one epoch from J-band light
curves.

One key difference between our work and those which find smaller
dispersions is that our analysis does not force SNe Ia to be standard
candles in the NIR. It may be possible that variation in SN Ia NIR
luminosity, if it does vary, is not parametrized by the correlations
observed in the optical. In our comparison with Peterson et al.
(2023) we found that our fitting methods applied to their Y J H data
resulted in large dispersion, whereas they fixed the shape and colour
parameters in the NIR-only fits to be 0, removing any variation in
luminosity between SNe, and measured lower dispersion than when
using bandpass combinations including optical data from ATLAS.
This is similar to Avelino et al. (2019), who treated SNe Ia as standard
candles in the NIR and found that smaller Hubble residuals than
those from optical-only fits using SNooPy or SALT2. That said,
not all studies favour this approach. Jones et al. (2022) measured
Hubble residual scatter over several analyses of 79 SNe la and
measured an RMS of ~0.17 mag using SNooPy to fit only NIR
data, and ~0.14 mag when including optical data with Ry = 1.52.

MNRAS 536, 624-663 (2025)
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Table 7. We present various parametrizations of the dispersion in Hubble residuals in the SNPY_EBYV, SNPY _Max, and SALT samples, as
well as the intrinsic dispersion needed to reconcile the propagated uncertainties and measured dispersion. The samples overlap significantly,
but they are not identical. For comparison purposes, we provide measurements of the common subset in Table 8.

Sample N RMS (mag) WRMS (mag) NMAD (mag) Oint (Mag)
SNPY_EBV 357 0.165(010) 0.152(008) 0.123(010) 0.121(011)
SNPY _Max 324 0.245(024) 0.214(028) 0.164(011) 0.212(028)
SALT 362 0.186(011) 0.174(009) 0.153(010) 0.123(011)

Table 8. We present the values from Table 7 derived from the intersection between the SNPY_EBV, SNPY_Max, and SALT samples. All

samples are comprised of the same 240 objects.

Sample RMS (mag) WRMS (mag) NMAD (mag) Oint (Mag)
SNPY_EBV 0.137(008) 0.133(007) 0.116(011) 0.098(010)
SNPY _Max 0.171(011) 0.148(009) 0.147(012) 0.135(010)
SALT 0.146(007) 0.150(008) 0.142(012) 0.103(010)

Table 9. Similar to Table 6, we list the number of SNe discarded at each cut for our optical-only samples. We begin after the survey wide cuts of Table 5,
starting with the number of successful fits in SNooPy’s EBV_model2 (SNPY_EBV_0), max_model (SNPY _Max_O), and SALT3-NIR (SALT_O). Our final

two cuts are based on outlier detection.

Cuts SNPY_EBV_O Cut  Remaining SNPY_Max_O Cut  Remaining  SALT_O Cut  Remaining
Passed sample wide cuts 504 504 504
Successful fit 2 502 2 502 1 503
Rest frame my and m, 92 410

0.6 <spy < 1.3 23 479 40 370

Oy <02 3 476 7 363

E(B — V)post < 0.3 mag 66 410

lx1] <3 22 481
oy < 1.5 5 476
le] < 0.3 38 438
o, <02 5 433
Phase requirements 1 409 1 362 2 431
Reduced x2 < 4.14/4.51/1.31 21 388 21 341 40 391
Also In O J sample 173 215 166 175 36 355
dy < 504, 2 213 1 174 5 350
UNITY outlier 1 212 0 174 2 348

The optical and NIR RMS increased to ~0.18 mag when using a
Milky Way-like value of Ry = 3.1, emphasizing the importance of
assumptions regarding dust. Similarly, Pierel et al. (2022) examined
the performance of SALT3-NIR, SALT3, and SNooPy over various
bandpass combinations and model parametrizations. They found a
Hubble residual RMS of ~0.12 mag (N = 24) when using SALT3-
NIR with optical and Y JH data, fitting for shape and colour, and
a greater RMS of ~0.13 mag for the same sample using only
YJH data and keeping the shape and colour parameters fixed
at 0.

As explored in Section 6.2, there is a trend between redshift and
the Hubble residuals in SNPY_EBV and SALT. Correcting this trend
empirically will decrease the dispersion of the Hubble residuals,
but such an a posteriori treatment invites bias. There are several
other obvious ways to decrease the measured dispersion. One could
calibrate & or 8 by minimizing Hubble residuals, employ corrections
by the redshift bin, or use cuts based on Hubble residuals such as
Chauvanet’s crietrion or o -clipping. There is ample motivation for
using such techniques. Our robust measure of dispersion, NMAD, is
consistently lower than RMS and WRMS in all three samples, which
suggests that there are SNe Ia in our samples could be considered
outliers. However, we choose to present our results as we found them
to avoid contaminating them with ad hoc corrections.

MNRAS 536, 624-663 (2025)

The study of SNe Ia in the NIR has advanced as more data have
become available, but there are still challenges that must be met
to maximize the potential benefits. At the moment it is unclear
whether SNe Ia are standard candles in the NIR or simply require
less standardization than in the optical. Similarly, it is not clear if
the shape—luminosity correlation observed in the optical is still the
primary mode of variation in the NIR. Answering these questions
will require various kinds of data. Spectral time series provide
unique views into the physical mechanisms of SNe la, while also
improving the accuracy of K-corrections. High-cadence, multiband
observations like those pursued by the DEHVILS survey are vital
for building standardization models. The Hawai‘i Supernova Flows
project provides a valuable test bed for SN Ia research through its
unprecedented sample size.

8 CONCLUSION

This paper introduces the Hawai‘i Supernova Flows project, a
peculiar velocity survey designed to obtain systematics-limited dis-
tances to SNe Ia while consuming minimal dedicated observational
resources. We review the observational components of our project:
optical photometry from public all-sky surveys, NIR photometry
from UKIRT, and optical spectroscopy from the UH 2.2 m and
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Figure 22. Our first outlier detection algorithm is based on agreement
between models fit with and without J-band photometry as quantified by
the Mahalanobis distance between parameter differences and the origin,
representing an SN with identical estimates in the OJ and O samples. A
greater distance indicates greater disagreement between fits, with significant
disagreement indicating at least one of the models is unreliable.

Subaru. We validate our methods and data against external sources.
We use SDSS spectra to find that our redshift inferences are typically
within 45 km s of the values in HyperLEDA. The absolute
wavelength calibration of our spectroscopic observations introduces
minimal error, producing redshifts typically within 48 km s of
their published values. Using our methodology to fit data from our
partner program DEHVILS, we found no increase in the dispersion
of Hubble residuals when using only optical data, or using optical and
NIR data with SNooPy’s EBV_model2. The increase in dispersion
seen when using SALT3-NIR seems to come from our choice
to calibrate the standardization coefficients with UNITY instead
of only using the Hubble residuals. Our independent photometric
reductions of the same J-band observations are consistent, producing
similar dispersions. Given cuts on both SNooPy and SALT fitting
parameters, our three final samples include 357, 324, and 362 SNe.
The RMS values of their Hubble residuals are 0.165, 0.245, and
0.186 mag.

The Nancy Grace Roman space telescope will obtain rest-frame
NIR observations of SNe Ia within z ~ 0.7 (Hounsell et al. 2018;
Rose et al. 2021), necessitating the maturation of SN Ia cosmology
in the NIR. Thus far, the majority of publicly available NIR SN
Ia light-curves have come from CSP-I (N = 123, Krisciunas et al.

Hawai ‘i Supernova Flows 651

2017), CfAIR2 (N = 94; Friedman et al. 2015), or recent work from
our partner program DEHVILS (N = 96; Peterson et al. 2023). Data
from CSP-II (N = 214; Hsiao et al. 2019; Phillips et al. 2019), the
SIRAH program (N = 24, HST-GO 15889; Jha et al. 2019), and other
exciting projects are expected in the near future. Upon publication
of this work, we will release NIR observations of 1217 transients,
including 668 spectroscopically classified SNe Ia, 437 of which are
in at least one of our final samples, and 215 spectroscopic redshifts
for SN Ia host-galaxies that have not been previously measured.
The NIR photometry of the Hawai‘i Supernova Flows project is the
largest homogeneous collection of its kind in terms of unique SNe Ia.
This growing sample will provide increasing resolution into peculiar
velocities as a function of position on the sky and redshift, permitting
us to map the structure of dark matter.
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Table 10. Adding NIR photometry does not lead to statistically significant decreases in the various measures of dispersion.
Each estimator is calculated after bootstrap resampling the Hubble residuals 5000 times. The value is the average and the
uncertainty is the standard deviation.

Sample RMS (mag) WRMS (mag) NMAD (mag) Oint (Mag)
SNPY_EBV_0OJ 0.166(012) 0.154(010) 0.120(011) 0.122(014)
SNPY_EBV_O 0.171(011) 0.162(010) 0.149(012) 0.127(014)
SNPY Max_0OJ 0.281(037) 0.245(047) 0.173(019) 0.237(044)
SNPY Max_O 0.276(028) 0.227(021) 0.188(022) 0.248(028)
SALT_OJ 0.170(008) 0.171(009) 0.146(010) 0.122(011)
SALT.O 0.185(009) 0.184(010) 0.162(011) 0.129(012)
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Figure 23. We recorded various measures of dispersion over 5000 iterations of bootstrap resampling, and show the distributions of differences between the OJ
and O samples with the averages given by the solid red lines. Including J-band photometry with the optical data typically leads to decreases in the three tested
measures of dispersion in Hubble residuals and the inferred intrinsic dispersion, but those differences are usually within one standard deviation (red dashed

lines) of 0 mag (solid black lines).
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DATA AVAILABILITY

The following data are available at https://www.github.com/ado8/hs
f_ DR1:

(i) J-band light curves of all observed targets regardless of
spectroscopic classification.
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(i) Weighted cross-correlation results for all galaxies we observed
with SNIFS or FOCAS.

(iii) Multiple sets of fitting parameters and uncertainties for all
spectroscopically confirmed SNe Ia, with sets covering all combina-
tions of fitting model (EBV _model2, max_model, SALT3-NIR) and
data used (optical only or optical and NIR).

(iv) Additional sets of fitting parameters for SNe Ia used in our
comparisons with DEHVILS and CSP.

The code used in our analysis can be found at https://www.github.c
om/ado8/hsf_code. Data such as images and spectra may be available
upon reasonable request.
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APPENDIX A: NIR PHOTOMETRY AND
LATE-TIME OBSERVATIONS

Late-time observations are not always critical for accurate forward-
modelled photometry. When the surface-brightness profile of the host
galaxy varies smoothly or has sharp features (e.g. galaxy nucleus,
spiral arms) that do not overlap with the supernova, the forward-
modelling code is able to cleanly separate the flux from the supernova
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Figure Al. We resample our model using a grid of o and B parameters for the prior beta distribution of the mixing ratio and plot the median values of the

mixing ratio posteriors. The set of values used in our analysis is marked with a red star, and the set that produces a flat prior is marked with a black 4. The

inferred mixing ratio is not sensitive to variations in the initial beta distribution unless extremely strong priors are assumed.
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Figure A2. We resample our model using a grid of standard deviation values for the prior distributions of ui, and o, and plot the median values of the posterior
win samples. The set of values used in our analysis is marked with a red star. Increasing o, leads to the convergence issues we observed when using a flat prior,
so we mask the runs where the average Gelman—Rubin R value across the sampled parameters is greater than 1.05.

and galaxy. In these cases, a late-time observation does not provide
new information, and the inferred photometry does not change.
However, there are supernova-galaxy configurations that critically
dependent on late-time observations for accurate modelling. This
motivates the use of a mixture model to simultaneously infer the
parameters of both populations.

For each SN, we create two ensembles of images; one with and
one without late-time observations. This provides two values for
the magnitude of the SN at each observed epoch, m.s and my,
respectively. The differences Am = m; — mq should be distributed
about 0 mag if m,s and m are normally distributed about the same
mean. We use Stan to infer the population means, standard deviations,
and the mixing ratio.

Our priors are based on a crude analysis where we consider the
subset |[Am| < 0.5 mag and |Am| > 0.5 mag, where 0.5 was chosen
arbitrarily. The subset near 0 comprises 752 of our 832 observations.
Our prior on the mixing ratio is a Beta distribution with o = 3
and B = 0.3 such that the mean expectation value ﬁ ~ 752/832.
The scale of « and 8 was chosen to create a moderately informed
prior. Our priors on the population means (in magnitudes) are
Win ~ N(0 mag, 0.1 mag?) for the tightly dispersed population, and
Hout ~ U(—00, 00) for the late-time sensitive population. Lastly,
our priors on the standard deviations (in magnitudes) are o ~
N (0 mag, 22 mag?), with 0 < oy, < Oou.

MNRAS 536, 624-663 (2025)

We fit a Gaussian mixture-model to the photometric differences
using Stan (Carpenter et al. 2017) and find 74.0 £ 2.3 percent
of the differences appear tightly dispersed (Am ~ N(0.01 £
0.004 mag, (0.08 & 0.005 mag)?)), and the remaining 26.0 per cent
vary much more dramatically (Am ~ N(0.33 & 0.050 mag, (0.68 &
0.037 mag)?)). The fraction of targets reliant upon late-time ob-
servations for accurate photometry is vastly exaggerated in this
analysis because the subsample comprises only targets manually
determined to need late-time observations. The critical information
is the distribution of the tightly dispersed population, which de-
scribes the effect late-time observations have on typical photometric
measurements.

We perform sensitivity analyses on the priors used for the mixing
ratio and the population parameters of the tightly dispersed group.
For testing the former, we tested prior beta distributions parametrized
by o and B parameters drawn from a 30 by 30 grid spaced logarith-
mically between 0.1 and 100. Fig. A1 shows that the recovered
posterior estimate is not affected unless extreme values for « and
B are assumed, corresponding to an extremely strong prior. More
specifically, the recovered mixing ratio is within the joint uncertainty
of the value inferred when using our the original priors (o = 3,
B =0.3)unlessa =~ 100 while 8 < S5ora < 38 — 50 while 8 2 20.
This implies that our inference of the mixing ratio is driven by data
rather than the moderately informative prior we used.
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Figure A3. Similar to Fig. A2, but plotting the median values of the posterior oj, samples rather than the i, samples.

The priors on the population parameters of the tightly dispersed
group encode the assumption that the magnitude differences Am
should be 0 mag if the late-time observations are not providing new
information to break model degeneracies. Alternatively, one could
assume that there is a systematic offset that must be estimated, which
could make a flat uniform prior more appropriate. However, this
leads to convergence issues when sampling our model with 7 chains
and 5000 steps using Stan’s no-U-Turn Hamiltonian Monte Carlo
sampler. Instead, we examine the sensitivity of the posterior estimates
to different levels of variance in the priors i, ~ N(0 mag, alf mag?)
and o ~ N(0 mag, o2 mag?) while maintaining o, < Gou. We sam-
ple our model using a 30 by 30 grid of 0, and o, values logarith-
mically spaced between 0.01 and 1 mag and between 0.1 and 10
mag, respectively. As o, increases, the distribution approaches a flat
prior, and we observe similar convergence issues as o, approaches
1 mag. We mask the runs where the average Gelman—Rubin R
value (Gelman & Rubin 1992) across all parameters is greater than
1.05. Figs A2 and A3 show the medians of the posterior p;, and
oin samples, respectively, as a function of different values for the
priors o, and o,. Convergence issues aside, the inferred population
parameters describing the tightly dispersed group appear robust
against variations in the priors.

A joint sensitivity analysis examining the effects of varying more
than two scalar priors at a time is possible, but given the insensitivity
demonstrated in the above analyses and the computational expense
of increasing the dimensions of the problem, we deem that a joint
analysis is not currently necessary.

APPENDIX B: HOST GALAXY
IDENTIFICATION ALGORITHM

Before choosing to proceed with manual host galaxy identification,
we investigated the Directional Light Radius method (Sullivan et al.
2006; Sako et al. 2018) which normalizes angular separation by
the elliptical radius of a galaxy in the direction of the transient.
The morphological data came from the NASA/IPAC Extragalactic
Database® (NED; Helou et al. 1991; Mazzarella & NED Team
2007), the Set of Identifications, Measurements and Bibliography
for Astronomical Data’® (SIMBAD; Wenger et al. 2000), and the
GLADE + Galaxy Catalogue?’ (GLADE+; Dilya et al. 2022), which
itself consolidates galaxies from the Gravitational Wave Galaxy
Catalogue (White, Daw & Dhillon 2011), HyperLEDA?® (Makarov
etal. 2014), and the 2MASS Extended Source Catalogue (Jarrett et al.
2000; Skrutskie et al. 2006). Unfortunately, the heterogeneity and
sparsity of the available data presented several failure modes. First,
the correct host galaxy could not be identified if it was not included in
at least one of the aforementioned data bases or catalogues. Similarly,
if a galaxy’s morphological data was not available, the DLR method
could not be applied. Lastly, if multiple galaxies have categorically

ZShttps://ned.ipac.caltech.edu/
2https://simbad.u-strasbg.fr/simbad/
?Thttps://glade.elte.hu/
2http://leda.univ-lyon1.fr/
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distinct morphological measurements, either using different filters or
different metrics, the DLR method would have been biased.

APPENDIX C: ALTERNATIVE SNOOPY
CONFIGURATIONS

In Section 3.1, we describe the decisions that affect the inference of
distance moduli given a set of photometry. Those decisions are:

(i) Parametrizing shape with spy instead of Ams.

(ii) Performing fits with EBV_model2 and the max_model and
not with the EBV_model, max_model2, Rv_model, color_model,
SALT _model, or MLCS_model.

(iii) Using the calibration from the full sample of Burns et al.
(2018) to describe the correlation between SN parameters and
absolute magnitude.

(iv) Using the F19 reddening law.

In this section, we present the quantitative analyses that led to our
choices of shape parameter, calibration, and reddening law.

C1 Calibration

The calibration used in the SNPY _Max sample is defined based on
our sample, but the calibration used in the SNPY_EBV sample is
selected from a list of available calibrations. We reproduce fits of
our SNPY_EBYV sample using the calibrations from Tables C1 and
C2. We also reproduce our fits using Am s to parametrize shape and
the calibrations from Table C3. Each fit is performed assuming the
default 094 reddening law (O’Donnell 1994). In the EBV _model2,
the calibration values are Py, P, P>, and the host galaxy Ry, with a
fit dispersion of oy, mag.

We compare the x? values of the resultant fits to determine
which calibration to use. All x? values are calculated as the square
of the data-model residual divided by the quadrature sum of the
uncertainties in the data and the model. Table C4 lists the median
x2/DoF in the SNPY _EBYV sample fit using the listed calibrations.
The table also includes the median Xﬁp /Nyp for each bandpass,
where szp is the sum of x? values in that bandpass and Nyp is the
corresponding number of photometric epochs. These are not reduced
x? values because the four fitting parameters are not removed from
the DoF. As such, x2/DoF is not an average of the bandpass specific
values 3y Xp,/ Nops but rather 35, xi /(3 Nop — 4).

The x2/DoF values are consistently lowest in the calibrations
sourced from table 1 of Burns et al. (2018). Calibration 8, which was
calculated without SNe Ia with szy < 0.5, has the lowest x> /DoF
of all. However, given that our uncut sample contains SNe Ia with
sgy < 0.5 we choose to use calibration 6 for all EBV_model?2 fits.

The ZTF g- and r-bandpasses and the ATLAS o-bandpass have
szp /Nup values below 1 across all calibrations, suggesting that the
uncertainties in the photometry or in the model may be overestimated.
Our decision to combine photometry from each ATLAS quad into a
single measurement based on a weighted median (see Section 2.1.2)
could produce such an overestimate, but it is not clear why xf /N,
would be consistently larger than x2/N,.

C2 Reddening Law

A thorough review of the effects of dust (e.g. McCall 2004;
Gontcharov 2016), even limited to studies of SNe Ia (e.g. Brout &
Riess 2023), is beyond the scope of this work, but we will review a
few definitions to contextualize the present analysis and our decision.

MNRAS 536, 624-663 (2025)

Extinction is parametrized as a function of wavelength, where the
observed flux at wavelength XA is decreased by A(A) mag due to
dust. The extinction curve A(A) is roughly inversely proportional
to wavelength, meaning the intrinsic colour of an object is red-
dened. This reddening, or colour excess, is conventionally defined
as the differential or selective extinction between the Johnson—
Cousins B and V bands (E(B — V) = A(B) — A(V)). The total-
to-selective extinction parameter R is defined as the ratio between
the total extinction at a given wavelength and the colour excess
(R, = A(\)/E(B — V)). Both the total and selective extinction are
linearly proportional to the amount of dust along the line of sight,
which leaves R constant across different amounts of interposing dust.
However, the scattering cross-section of dust varies with the shape
and size of the dust grains, producing diverse extinction curves and
R values. Cardelli et al. (1989) found that the stellar samples from
Fitzpatrick & Massa (1986, 1988) permitted normalized extinction
curves from the ultraviolet (UV) to the NIR that depend on only one
parameter chosen to be Ry . This is an example of a ‘reddening law’
or ‘extinction law’ which is a function that uses Ry (or additional
parameters, e.g. Gordon et al. 2016) to infer R at a given wavelength
or integrated across a given bandpass.

The definition of SNooPy’s EBV_model2 (equation 4) involves
two terms that describe an R value multiplied by an estimate of
colour excess; one to account for Galactic extinction and one for host
galaxy extinction. The rescaled SFD dust map provides estimates of
Galactic colour excess while the colour excesses of the host galaxies
are inferred during the fitting process. The inference of colour excess
is largely degenerate with the inference of R values, so the model
requires the assumption of a reddening law and Ry values for the
Milky Way and the host galaxies.

We reproduce the fits of SNPY_EBYV sample using three reddening
laws: 094 (O’Donnell 1994), F99 (Fitzpatrick 1999), and F19
(Fitzpatrick et al. 2019). These specific reddening laws are chosen
for the following reasons. 094 is the default reddening law used
in SNooPy and in the derivation of the Folatelli et al. (2010)
calibrations. The analysis of Schlafly & Finkbeiner (2011) found
that the reddening measured in SDSS stellar spectra agreed with
the rescaled SFD dust map better when using the F99 reddening
law than when using the 094 law. The F19 reddening law presents
several improvements over the F99 law. The foundational data used
to derive the F19 law are spectrophotometric, which allows for
normalization based on a single wavelength (4400 and 5500 A) rather
than broadband photometry (B and V bands). Additionally, the new
data set spans the gap between the UV and optical regimes with
homogeneous coverage whereas other reddening laws extrapolate or
interpolate between qualitatively different data sets to cover this gap.

The three reddening laws we examine were defined using data
spanning specific ranges in wavelength and Ry. 094 is based on
data spanning wavelengths between about 3030 and 9090 A and Ry
values between 2.85 and 5.6. F99 uses spectra from the International
Ultraviolet Explorer (IUE; Boggess et al. 1978a, b) and photometry
in the Johnson broadband UBVRIJHKLM system and intermediate-
band Stromgren uvby system, effectively spanning wavelengths
between 1150 A and 6 wm. The fit assumes that A(}) approaches 0
as wavelength approaches infinity, but the author cautions that the
curve ‘should be treated as very approximate’ beyond 6 um. The Ry
values of the data range between about 2 and 6. The F19 law uses
spectra spanning 1150 to 10000 A and 2MASS photometry in the
J H K -bandpasses which extends the red end to about 2.2um. This
fit also assumes that A(X) approaches 0 as wavelength approaches
infinity. The Ry values of the data span a slightly smaller range than
the data used to define the F99 law, spanning about 2.5-6. The J-
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Table C1. The calibrations available for the EBV_model2 in SNooPy version 2.6.0. All bandpasses are from the natural CSP photometric system. The

shape factor used to calculate these values is spy .

Calibration Sample Bandpass Py Py P, Ry Oint
number description (mag) (mag) (mag) (mag)
0 u-band spy > 0.5 B —19.310(025) —0.675(110) 3.415(387) 1.518(082) 0.072
\% —19.264(022) —0.727(092) 2.161(341) 1.518(082) 0.067
u —18.945(035) —1.077(163) 4.066(533) 1.518(082) 0.148
g —19.345(023) —0.719(102) 2.760(364) 1.518(082) 0.067
r —19.146(023) —0.619(094) 1.968(347) 1.518(082) 0.076
i —18.529(024) —0.541(102) 0.705(382) 1.518(082) 0.092
Y —18.532(025) —0.387(112) 0.232(416) 1.518(082) 0.105
J —18.646(026) —0.719(126) —0.714(462) 1.518(082) 0.117
H —18.470(034) —0.456(171) —0.192(622) 1.518(082) 0.172
1 u-band (mp —my) < 0.3 B —19.317(025) —0.655(108) 3.500(378) 1.746(180) 0.071
\% —19.278(024) —0.718(094) 2.249(341) 1.746(180) 0.068
u —18.972(031) —1.028(143) 4.416(418) 1.746(180) 0.124
g —19.349(024) —0.710(100) 2.782(352) 1.746(180) 0.065
r —19.162(025) —0.613(095) 2.049(351) 1.746(180) 0.077
i —18.550(026) —0.530(103) 0.848(384) 1.746(180) 0.092
Y —18.547(026) —0.378(114) 0.320(427) 1.746(180) 0.106
J —18.665(028) —0.697(129) —0.538(475) 1.746(180) 0.119
H —18.490(036) —0.431(176) —0.005(637) 1.746(180) 0.175
2 u-band all objects B —19.325(022) —0.676(103) 3.804(262) 1.531(081) 0.069
Vv —19.277(020) —0.732(088) 2.422(222) 1.531(081) 0.065
u —18.969(032) —1.123(142) 4.742(253) 1.531(081) 0.153
g —19.359(021) —0.719(095) 3.098(243) 1.531(081) 0.065
r —19.154(020) —0.637(089) 2.048(221) 1.531(081) 0.074
i —18.555(021) —0.510(099) 1.378(240) 1.531(081) 0.092
Y —18.560(022) —0.350(112) 0.975(269) 1.531(081) 0.107
J —18.686(026) —0.639(143) 0.460(313) 1.531(081) 0.140
H —18.499(030) —0.416(165) 0.637(354) 1.531(081) 0.168
3 No u-band sy > 0.5 B —19.271(024) —0.753(116) 2.928(411) 1.699(089) 0.078
\% —19.246(021) —0.791(093) 1.867(343) 1.699(089) 0.066
g —19.315(022) —0.785(105) 2.369(375) 1.699(089) 0.070
r —19.134(021) —0.678(094) 1.728(346) 1.699(089) 0.075
i —18.518(023) —0.599(100) 0.476(374) 1.699(089) 0.090
Y —18.528(023) —0.415(108) 0.123(398) 1.699(089) 0.102
J —18.638(025) —0.743(122) —0.827(445) 1.699(089) 0.112
H —18.462(032) —0.513(168) —0.374(606) 1.699(089) 0.169
4 No u-band (mp —my) < 0.3 B —19.276(025) —0.730(116) 3.053(412) 1.716(202) 0.078
\% —19.247(022) —0.780(095) 1.909(351) 1.716(202) 0.068
g —19.311(023) —0.782(106) 2.363(383) 1.716(202) 0.070
r —19.134(023) —0.672(095) 1.744(354) 1.716(202) 0.076
i —18.524(024) —0.589(101) 0.557(381) 1.716(202) 0.092
Y —18.529(025) —0.409(111) 0.146(418) 1.716(202) 0.104
J —18.646(026) —0.728(126) —0.720(465) 1.716(202) 0.115
H —18.477(035) —0.489(174) —0.188(644) 1.716(202) 0.175
5 No u-band all objects B —19.304(022) —0.682(113) 3.916(321) 1.729(089) 0.077
Vv —19.270(019) —0.751(092) 2.460(254) 1.729(089) 0.065
g —19.344(021) —0.727(102) 3.166(292) 1.729(089) 0.067
r —19.154(019) —0.655(092) 2.155(238) 1.729(089) 0.074
i —18.553(020) —0.536(099) 1.409(238) 1.729(089) 0.089
Y —18.561(021) —0.360(107) 1.024(244) 1.729(089) 0.103
J —18.687(025) —0.633(139) 0.639(296) 1.729(089) 0.139
H —18.495(028) —0.456(161) 0.594(331) 1.729(089) 0.164

band data used in our project is redder than the data used to calculate
the O94 law, and the host galaxy Ry values in calibration 6 (1.1-1.9)
are all below the minimum Ry values used to define the 094, F99,
and F19 laws. The low Ry values are likely due to the conflation
of intrinsic SN Ia colour and the effects of host galaxy extinction in
the EBV_model2. We edit the allowed wavelength and Ry ranges in

the dust _extinction package (Gordon 2024) to allow for the
extrapolations we require.

The yx2/DoF values presented in Table C5 are similar across the
three reddening laws, which implies that the choice of reddening
law does not significantly impact the accuracy of the EBV_model2.
The fits using the F99 law have the lowest x2/DoF value, but this is
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Table C2. Similar to Table C1, except the values are those presented in table 1 of Burns et al. (2018).

Calibration Sample Bandpass Py P P, Ry Tint
number description (mag) (mag) (mag) (mag)
6 Full sample B —19.182(062) —0.89(11) —0.02(30) 1.65(08) 0.13
\% —19.181(061) —0.89(11) —0.02(30) 1.65(08) 0.13
u —18.818(097) —1.28(17) 0.32(44) 1.13(52) 0.22
g —19.229(084) —0.90(11) —0.13(31) 1.57(09) 0.13
r —19.099(059) —0.74(10) 0.38(27) 1.78(08) 0.12
i —18.523(059) —0.48(10) 0.41(27) 1.85(09) 0.12
Y —18.517(077) —0.07(11) 1.19(30) 1.34(21) 0.12
J —18.633(062) —0.37(12) 0.61(32) 1.27(36) 0.11
H —18.431(062) —0.05(12) 1.18(31) 1.28(57) 0.11
0 (mp —my) <0.5 B —19.161(062) —0.94(11) —0.36(43) 1.54(14) 0.13
% —19.161(061) —0.94(11) —0.37(44) 1.54(14) 0.13
u —18.793(095) —1.35(18) —0.47(64) 1.12(51) 0.21
g —19.206(082) —0.97(11) —0.57(43) 1.48(14) 0.13
r —19.081(060) —0.77(10) 0.12(41) 1.67(13) 0.13
i —18.501(060) —0.52(10) —0.10(41) 1.79(17) 0.13
Y —18.497(076) —0.10(11) 0.34(41) 1.69(35) 0.12
J —18.601(062) —0.43(11) —0.42(45) 1.51(58) 0.11
H —18.400(062) —0.10(12) 0.17(47) 1.33(85) 0.11
0 spv > 0.5 B —19.159(062) —0.93(12) —0.61(43) 1.64(09) 0.13
\%4 —19.159(061) —0.94(11) —0.62(43) 1.64(09) 0.13
u —18.790(097) —1.32(18) —0.35(70) 1.10(45) 0.22
g —19.204(084) —0.96(12) —0.80(43) 1.56(09) 0.13
r —19.081(060) —0.77(11) —0.05(39) 1.76(08) 0.12
i —18.499(059) —0.52(10) —0.21(38) 1.82(10) 0.12
Y —18.480(076) —0.11(11) 0.32(42) 1.18(22) 0.11
J —18.593(060) —0.44(12) —0.35(45) 1.02(36) 0.11
H —18.394(061) —0.10(12) 0.13(47) 0.82(52) 0.11
0 sgy > 0.5(mp —my) < 0.5 B —19.162(061) —0.94(11) —0.30(46) 1.55(14) 0.13
% —19.163(061) —0.94(11) —0.31(46) 1.55(14) 0.13
u —18.796(095) —1.35(17) —0.42(69) 1.12(51) 0.21
g —19.207(083) —0.96(11) —0.53(46) 1.48(15) 0.13
r —19.083(060) —0.77(10) 0.17(42) 1.68(13) 0.13
i —18.501(061) —0.52(10) —0.10(43) 1.78(17) 0.13
Y —18.489(075) —0.10(10) 0.15(42) 1.59(35) 0.12
J —18.598(063) —0.43(12) —0.48(47) 1.48(57) 0.11
H —18.395(061) —0.11(12) 0.03(48) 1.24(84) 0.11
Table C3. Similar to Table C1, except the shape parameter used is Ams.
Calibration Sample Bandpass Py Py P, Ry Tint
number description (mag) (mag) (mag) (mag)
10 u-band spy > 0.5 B —19.360(030) 0.433(090) 2.356(293) 1.533(084) 0.076
Vv —19.282(027) 0.540(080) 1.253(260) 1.533(084) 0.070
u —18.979(042) 0.751(136) 2.526(433) 1.533(084) 0.150
g —19.380(028) 0.473(084) 1.958(275) 1.533(084) 0.069
r —19.171(027) 0.489(081) 1.187(262) 1.533(084) 0.077
i —18.548(027) 0.379(088) 0.383(278) 1.533(084) 0.093
Y —18.549(027) 0.082(091) 0.372(282) 1.533(084) 0.095
J —18.662(028) 0.175(100) 0.152(311) 1.533(084) 0.107
H —18.475(037) 0.143(136) 0.035(418) 1.533(084) 0.165
11 u-band (mp —my) < 0.3 B —19.369(030) 0.419(089) 2.425(297) 1.589(155) 0.076
Vv —19.292(028) 0.528(080) 1.322(265) 1.589(155) 0.070
u —19.016(039) 0.717(120) 2.788(393) 1.589(155) 0.126
g —19.384(029) 0.464(082) 1.992(274) 1.589(155) 0.066
r —19.182(029) 0.478(081) 1.256(266) 1.589(155) 0.079
i —18.568(029) 0.362(088) 0.511(283) 1.589(155) 0.093
Y —18.560(028) 0.070(091) 0.446(285) 1.589(155) 0.094
J —18.679(029) 0.156(100) 0.274(312) 1.589(155) 0.108
H —18.494(038) 0.122(136) 0.176(424) 1.589(155) 0.165
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Table C3 - continued

Calibration Sample Bandpass Py P P, Ry Oint
number description (mag) (mag) (mag) (mag)
12 u-band all objects B —19.394(029) 0.370(089) 2.820(267) 1.593(084) 0.074
\%4 —19.320(025) 0.472(077) 1.736(214) 1.593(084) 0.067
u —19.056(042) 0.579(144) 3.793(373) 1.593(084) 0.173
g —19.409(027) 0.424(082) 2.306(243) 1.593(084) 0.067
r —19.205(024) 0.430(078) 1.591(204) 1.593(084) 0.075
i —18.598(025) 0.279(085) 1.070(207) 1.593(084) 0.093
Y —18.594(024) —0.010(088) 1.013(207) 1.593(084) 0.095
J —18.707(027) 0.087(103) 0.825(228) 1.593(084) 0.123
H —18.509(032) 0.066(128) 0.559(275) 1.593(084) 0.161
13 No u-band sgy > 0.5 B —19.281(030) 0.516(095) 1.768(306) 1.727(097) 0.086
Vv —19.235(026) 0.613(081) 0.840(259) 1.727(097) 0.071
g —19.314(028) 0.547(087) 1.454(282) 1.727(097) 0.074
r —19.134(026) 0.558(081) 0.833(258) 1.727(097) 0.077
i —18.516(026) 0.445(088) 0.064(276) 1.727(097) 0.092
Y —18.529(026) 0.123(090) 0.180(277) 1.727(097) 0.095
J —18.643(027) 0.202(098) —0.000(301) 1.727(097) 0.107
H —18.453(036) 0.211(136) —0.212(418) 1.727(097) 0.168
14 No u-band (mp —my) < 0.3 B —19.287(031) 0.512(096) 1.824(314) 1.544(181) 0.087
\%4 —19.228(027) 0.610(081) 0.840(265) 1.544(181) 0.073
g —19.308(028) 0.554(088) 1.430(286) 1.544(181) 0.075
r —19.125(027) 0.552(081) 0.826(262) 1.544(181) 0.078
i —18.516(028) 0.435(087) 0.112(278) 1.544(181) 0.092
Y —18.523(027) 0.121(090) 0.173(282) 1.544(181) 0.095
J —18.644(028) 0.205(098) 0.016(307) 1.544(181) 0.108
H —18.465(038) 0.207(138) —0.129(434) 1.544(181) 0.169
15 No u-band all objects B —19.335(028) 0.410(092) 2.559(273) 1.824(096) 0.084
\%4 —19.288(023) 0.515(076) 1.549(209) 1.824(096) 0.067
g —19.360(025) 0.463(083) 2.065(247) 1.824(096) 0.070
r —19.182(022) 0.469(076) 1.447(190) 1.824(096) 0.074
i —18.582(022) 0.308(082) 1.013(184) 1.824(096) 0.093
Y —18.586(022) 0.002(084) 1.017(178) 1.824(096) 0.096
J —18.704(025) 0.070(100) 0.961(203) 1.824(096) 0.125
H —18.512(031) 0.072(128) 0.737(250) 1.824(096) 0.171

Table C4. Various xz metrics are presented for the SNPY_EBV sample fit with the 16 calibrations listed in Tables C1, C2, and C3. After the
x>/DoF column, each column lists the sum of x> values in the subscripted bandpass divided by the corresponding number of photometric
epochs. Each listed value is the median across all SNe Ia in the SNPY_EBV sample fit with the calibration in the first column. The ¢- and
o-bandpasses are from ATLAS and the g- and r-bandpasses are from ZTF.

Calibration X 2/DoF x2/Ng X2/ N, X2/ N, x2/No x3/Ny
0 1.051 0.491 1.021 0.782 0.876 1.234
1 1.036 0.491 1.013 0.760 0.866 1.189
2 1.045 0.471 0.980 0.777 0.858 1.233
3 1.015 0.489 1.010 0.753 0.867 1.126
4 1.012 0.491 1.013 0.746 0.865 1.148
5 1.011 0.470 0.978 0.731 0.848 1.108
6 0.955 0.484 1.105 0.636 0.846 1.052
7 0.953 0.467 0.963 0.667 0.866 1.002
8 0.937 0.460 0.974 0.637 0.867 1.032
9 0.947 0.458 0.963 0.657 0.874 0.997
10 1.009 0.570 1.115 0.670 0.892 1.181
11 1.002 0.576 1.102 0.657 0.891 1.157
12 0.991 0.559 1.115 0.648 0.891 1.142
13 0.996 0.548 1.085 0.592 0.887 1.123
14 1.008 0.567 1.108 0.613 0.888 1.162
15 0.968 0.555 1.101 0.588 0.871 1.115
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Table C5. Similar to Table C4, but presenting various X2 metrics for the 094, F99, and F19 reddening laws rather than the calibrations.

Reddening law XZ/DOF X;/Ng Xf/Nc X,.Z/N, )(Z/Ng X;/N_[
094 0.955 0.484 1.105 0.636 0.846 1.052
F99 0.947 0.464 1.139 0.609 0.844 1.135
F19 0.961 0.493 1.089 0.633 0.837 1.004

not the case over all bandpasses. The F99 law produces the lowest
szp /Npp values for the ZTF g and r bands, while simultaneously
producing the highest values the ATLAS ¢ band and the J band. The
ATLAS, ZTF, and Hawai‘i Supernova Flows observing strategies
produce more epochs of photometry in the former two bandpasses
than the latter two, which accounts for the lower x2/DoF in F99
via weighting. However, we do not presently understand why the
szp / Npp values are so much lower than 1 for the gro-bands, and note
that the F19 law produces the lowest values for the coJ-bands. Even
though the median x2/DoF value is highest in the fits assuming the
F19 law, it is still indicative of a good set of fits. Thus, we choose to
adopt the F19 reddening law for our EBV_model?2 fits.

APPENDIX D: ALL-SKY SURVEY
INDEPENDENCE

When multiple observers record photometric time series of a single
source, the correlation between the resultant light curves is based
primarily on the time-evolution of the astrophysical source, but is
also affected by correlated observational or instrumental effects. For
example, the orbital motion of the Earth Doppler shifts the SED of
any observed target, leading to slight annual correlations for non-flat
SEDs. Unmodelled variability in reference stars used by multiple
surveys could lead to common errors in zero-point calibration. We
assume independence between the ATLAS, ASAS-SN, and ZTF
photometry in the sense that we consider any correlated observational
or instrumental effects as insignificant.

To justify this assumption, we analyse forced photometry of
CALSPEC stars in the footprint of all surveys and fainter than
15 mag in V to avoid saturation. To account for proper motion,
we access ASAS-SN lightcurves from the ASAS-SN Sky Patrol?
(Shappee et al. 2014; Hart et al. 2023) and ZTF lightcurves from the
ZTF DR 21 archive (Masci et al. 2019) hosted at the NASA/IPAC

Dhttp://asas-sn.ifa. hawaii.edu/skypatrol/
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Infrared Science Archive.’® The CALSPEC targets in NGC 6681 are
excluded due to crowding. The list of CALSPEC stars and their
synthetic magnitudes in the bandpasses of the three surveys are
presented in Table D1 CALSPEC stars demonstrate minimal stellar
variability (Rubin et al. 2022), which we use to exclude astrophysical
time-evolution as a source of correlation between light curves. As
mentioned in Section 2.1.2, we combine ATLAS data from the same
nights with a weighted median.

For the 10 bandpass pairs possible using ATLAS ¢, ATLAS o,
ASAS-SN g, ZTF g, and ZTF r, we identify observations where a
given star was observed in both bandpasses within 12 h. This makes
our analysis sensitive to correlated effects on characteristic time-
scales greater than half a day, but insensitive to effects that vary
on shorter time-scales. We calculate observed-synthetic magnitude
residuals and normalize by the recorded uncertainties to produce z-
scores. We do not include pairs where either observation is in the
bottom or top 5 per cent of z-scores for that bandpass and star. We
concatenate the rest of the z-score pairs into equal length sets for
both bandpasses. Table D2 shows the calculated Pearson correlation
coefficients between those sets.

All bandpass pairs besides ZTF g and ZTF r are consistent
with a correlation coefficient of 0 at the 95 percent level. The
correlation between the two ZTF bandpasses implies there is at least
one observational or instrumental effect that applies to both sets of
observations, but the magnitude of such a correlation is small at
about 0.05. This is to be expected since both sets of observations
come from the Palomar 48 inch Schmidt telescope. Perhaps more
surprising is that the ATLAS ¢ and o data do not appear correlated.
This could be due to the distribution of observations across multiple
sites (Haleakala and Maunaloa in Hawai‘i, El Sauce Observatory in
Chile, Sutherland Observing Station in South Africa), or due to the
low number of observations in both bandpasses.

3Onttps://irsa.ipac.caltech.edu/Missions/ztf.htm]
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Table D1. This table lists the CALSPEC stars used in our analysis, which were selected to be fainter than 16 mag in V to avoid saturation
issues. We do not include the stars in NGC 6681 due to crowding. The columns list the synthetic magnitudes in the five bandpasses examined.

Name ATLAS ¢ ATLAS o ASAS-SN g ZTF g ZTFr

(mag) (mag) (mag) (mag) (mag)
C26202 16.55 16.32 16.73 16.69 16.34
HS2027 + 0651 16.56 16.96 16.39 16.44 16.89
NGC2506 — G31 17.99 17.66 18.24 18.18 17.69
SDSS132811 17.05 17.33 17.01 16.99 17.28
SDSSJ151421 15.81 16.23 15.66 15.68 16.16
SF1615 + 001A 16.82 16.48 17.07 17.01 16.52
SNAP-2 16.29 15.98 16.53 16.47 16.01
VB8 17.04 14.2 17.85 17.57 15.58
WD0947 + 857 15.66 16.14 15.47 15.51 16.06
WD1026 + 453 16.03 16.5 15.85 15.88 16.43
WD1657 + 343 16.35 16.83 16.15 16.2 16.75

Table D2. We present correlation measurements between the 10 bandpass pairs between the five survey bandpasses. For each pair we
assemble all N observations of common targets performed on the same date and calculate the Pearson correlation coefficient r. We present
the 95 per cent confidence intervals (CI 95 per cent) and p-values, finding that all combinations but ZTF g and ZTF r are consistent with no
correlation and are not significant at the p<0.05 level.

Bandpass 1 Bandpass 2 N r CI 95 percent p-value
ATLAS ¢ ATLAS o 53 0.011 (—0.26, 0.28) 0.940
ATLAS ¢ ASAS-SN g 345 —0.057 (—0.16, 0.05) 0.291
ATLAS ¢ ZTF g 235 —0.086 (=0.21, 0.04) 0.188
ATLAS ¢ ZTF r 244 —0.031 (—0.16, 0.09) 0.628
ATLAS o ASAS-SN g 922 —0.012 (—0.08, 0.05) 0.719
ATLAS o ZTF g 629 0.020 (—0.06, 0.1) 0.613
ATLAS o ZTF r 686 0.035 (—0.04,0.11) 0.359
ASAS-SN g ZTF g 804 0.030 (—0.04,0.1) 0.396
ASAS-SN g ZTFr 808 —0.012 (—0.08, 0.06) 0.741
ZTF g ZTF r 1669 0.053 (0.01,0.1) 0.030
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