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Abstract

We study the problem of fitting a piecewise affine (PWA) function to input—output data. Our
algorithm divides the input domain into finitely many regions whose shapes are specified by a
user-provided template and such that the input-output data in each region are fit by an affine
function within a user-provided error tolerance. We first prove that this problem is NP-hard.
Then, we present a top-down algorithmic approach for solving the problem. The algorithm
considers subsets of the data points in a systematic manner, trying to fit an affine function for
each subset using linear regression. If regression fails on a subset, the algorithm extracts a
minimal set of points from the subset (an unsatisfiable core) that is responsible for the failure.
The identified core is then used to split the current subset into smaller ones. By combining this
top-down scheme with a set-covering algorithm, we derive an overall approach that provides
optimal PWA models for a given error tolerance, where optimality refers to minimizing the
number of pieces of the PWA model. We demonstrate our approach on three numerical
examples that include PWA approximations of a widely used nonlinear insulin-glucose
regulation model and a double inverted pendulum with soft contacts.

Introduction

The problem of identifying models from data is central to designing and verifying cyber-physical
systems (CPS). These models can predict the output of a subsystem for a given input or the next
state of a dynamical system from the current state. Even if there is a physical basis for
constructing a model of the system under investigation, it is often necessary to use data-driven
modeling to augment these models to incorporate aspects of the system that cannot be easily
modeled. CPS are often nonlinear and multimodal, wherein different regions of the input/state
space have different laws that govern the relationship between the inputs and outputs. In this
paper, we study piecewise affine (PWA) regression. The goal of PWA regression is to fit
a PWA function to a given data set of input-output pairs { (xx, y) }2_,. The PWA function splits
the input domain into finitely many regions Hi,...,H), and associates an affine function
fi(x) = Aix + b; to each region H;. This is illustrated in Figure 1.

Further, we seek a PWA model that fits the given data while respecting a user-provided error
bound ¢ and minimizing the number of regions (pieces). This problem has numerous
applications including the identification of hybrid systems with state-based switching and
simplifying nonlinear models using PWA approximations. Existing PWA regression
approaches usually do not restrict how the input domain is split. For instance, an approach
that simply specifies that the input domain is covered by polyhedral sets leads to high
computational complexity for the regression algorithm (Lauer and Bloch 2019).

In this paper, we restrict the possible shape of the polyhedral regions by requiring that each
region H; is described by a vector inequality p(x) < ¢;, wherein p is a fixed, user-provided,
vector-valued function, called the template, while the regions are obtained by varying the offset
vector ¢;. The resulting problem, called template-based PWA regression, allows us to split the
input domain into prespecified shapes using a suitable template. For instance, in Figure 1, the
input domain is divided into rectangular regions. Our contributions are as follows:

After introducing and formalizing the problem of template-based PWA regression (Sec.
‘Problem Statement’), we show that — similarly to the classical PWA regression problem (Lauer
and Bloch 2019) - the problem of template-based PWA regression is NP-hard in the dimension
of the input space and the size of the template, but polynomial in the size of the data set (Sec.
‘Computational Complexity’). Next, we provide an algorithm for optimal bounded-error
template-based PWA regression, i.e., with minimal number of regions while fitting the data
within the given error tolerance (Sec. “Top-Down Algorithm’). Our algorithm is top-down
because it breaks large sets of data into smaller ones until those can be fit by an affine function. A
more detailed overview of the algorithm is provided later in this introduction, after the ‘Related
Work’. Finally, we apply our algorithm on two practical problems (Sec. ‘Numerical
Experiments’): the approximation of a nonlinear system, namely the insulin-glucose regulation
process (Dalla Man, Rizza, and Cobelli 2007), with affine functions with rectangular domains,
and the identification of a hybrid linear system consisting in an inverted double pendulum with
soft contacts on the joints. For both applications, we show that template-based PWA regression
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Figure 1. PWA regression of a set of input-output data points with rectangular template.

is favorable compared to classical PW A regression both in terms
of computation time and our ability to formulate models from
the results. We also compare different templates for the
identification of a hybrid linear system consisting of two carts
with springs.

This paper is an extension of a preliminary version that
appeared as part of the Learning for Decision and Control (L4DC)
conference in May 2023 (Berger and Sankaranarayanan 2023).
This paper extends our previous version by providing more
detailed explanations of the algorithms and complete proofs of all
the results. We have also added a new numerical example involving
the identification of a hybrid linear system consisting of two carts
with springs.

Related work

PWA systems and hybrid linear systems appear naturally in a wide
range of applications (Jungers 2009), or as approximations of more
complex systems (Breiman 1993). Therefore, the problems of
switched affine (SA) and PWA regression have received a lot of
attention in the literature; see, e.g., Paoletti et al. (2007) and Lauer
and Bloch (2019) for surveys. Both problems are known to be NP-
hard (Lauer and Bloch 2019). The problem of SA regression can be
formulated as a Mixed-Integer Program (MIP) and solved using
MIP solvers, but the complexity is exponential in the number of
data points (Paoletti et al. 2007). Vidal et al. (2003) propose an
efficient algebraic approach to solve the problem, but it is
restricted to noiseless data. Heuristics to solve the problem in
the general case include greedy algorithms (Bemporad et al.
2005), continuous relaxations of the MIP (Miinz and Krebs
2005), block—coordinate descent (similar to k-mean regression)
algorithms (Bradley and Mangasarian 2000; Lauer 2013) and
refinement of the algebraic approach using sum-of-squares
relaxations (Ozay, Lagoa, and Sznaier 2009); however, these
methods offer no guarantees of finding an (optimal) solution to
the problem. As for PWA regression, classical approaches
include clustering-based methods (Ferrari-Trecate et al. 2003),
data classification followed by geometric clustering (Nakada,
Takaba, and Katayama 2005) and block-coordinate descent
algorithms (Bemporad 2023); however, these methods are not
guaranteed to find a (minimal) PWA model. In this regard, our
approach considers a novel ‘top-down’ approach that focuses on
searching for subsets of the data that can be part of the same
affine model for the given error bounds.
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Our approach contrasts with most other approaches in that it is
top-down and focuses on refining the domains (using the template
assumption) of the pieces until affine fitting is possible. Indeed,
most approaches for PWA regression (e.g., Bemporad et al. 2005,
Ferrari-Trecate et al. 2003, Bemporad 2023) use a two-step
approach in which the data are first clustered by solving a SA
regression problem and then the clusters are separated into
polyhedral regions. Medhat et al. (2015) and Yuan et al. (2019)
use a similar two-step approach for learning hybrid linear
automata. There are also approaches that learn the function and
the domains in one step: for instance, Breiman (1993) for a
special class of continuous PWA functions called Hinging
Hyperplanes, Sadraddini and Belta (2018) using mixed-integer
linear programming (MILP), and Berger, Narasimhamurthy,
and Sankaranarayanan (2024) for a class of PWA systems, called
guarded linear systems. The class of Hinging Hyperplanes and
guarded linear systems are not comparable in general with those
studied in this work.! Soto, Henzinger, and Schilling (2021) also
learn the function and the domains simultaneously for hybrid
linear systems; however, their incremental approach is greedy,
so that it does not come with guarantees of minimality. By
contrast, our approach guarantees to find a PWA function with
minimal number of regions from the template.

PWA systems with constraints on the domain appear naturally
in several applications including biology (Porreca et al. 2009) and
mechanical systems with contact forces (Aydinoglu, Preciado, and
Posa 2020), or as approximations of nonlinear systems (Smarra
et al. 2020). Techniques for PWA regression with rectangular
domains have been proposed in Miinz and Krebs (2002) and
Smarra et al. (2020); however, these approaches impose further
restrictions on the arrangement of the domains of the functions
(e.g., forming a grid) and they are not guaranteed to find a solution
with a minimal number of pieces. In the one-dimensional case
(time series), optimal time series segmentation can be computed
efficiently by using dynamic programming (Bellman 1961;
Bellman and Roth 1969; Ozay et al. 2012; Ozay 2016), but the
approach does not extend to higher dimension and solves a
different problem (min. # switches vs. min. # pieces). Our approach
bears similarities with the ‘split-and-merge’ algorithm of Pavlidis
and Horowitz (1974), except that (i) we only split regions and
never merge them because by construction merging would lead to
incompatible regions; (ii) our algorithm comes with guarantees of
optimality; and (iii) we address the problem of PWA regression
and not segmentation. As for the application involving mechanical
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systems with contact forces, a recent work by Jin et al. (2022)
proposes a heuristic based on minimizing a loss function to learn
linear complementary systems.

Approach at a glance

Figure 2 below shows the working of our algorithm on a
simple data set with N = 11 points (x, ;) € R x R (see PlotI).
We seek a PWA function that fits the data with error tolerance
¢ = 0.1 and with the smallest number of affine pieces (green
lines in III, V and VI).

The algorithm works as follows. At the very first step, the
approach tries to fit a single straight line through all the 11 points.
This corresponds to the index set Iy = {1,...,11} (see II) where
the points are indexed as in I. However, no such line can fit the
points for the given e. Hence, our approach generates an
infeasibility certificate that identifies the indices C, = {4, 5,6} as
a cause of infeasibility (see II). In other words, we cannot have all
three points in C, be part of the same piece of the PWA function we
seek. As explained in the paper, infeasibility certificates can be
computed efficiently using Linear Programming. Moreover, in case
of infeasibility, we can always find an infeasibility certificate with
cardinality at most d + 2, where d is the dimension of the input (here,
d = 1).2 Our approach then splits I into two subsets I, = {1,...,5}
and I, = {5,...,11}. These two sets are maximal intervals with
respect to set inclusion and do not contain Cy. The set I; can be fitby a
single straight line with tolerance ¢ (see III). However, considering I,,
we notice once again that a single straight line cannot be fit (see IV).
We identify the set C, = {6, 7,8} as an infeasibility certificate and
our algorithm splits I, into maximal subsets I; = {5,6,7} and
I, = {7,...,11}.Each of these subsets can be fit by a straight line (see
V and VI). Thus, our approach finishes by discovering three affine
pieces that cover all the points {1,...,11}. Note that although the
data point indexed by 5 is part of two pieces, we can resolve this ‘tie’ in
an arbitrary manner by assigning 5 to the first piece and removing it
from the second; the same holds for the data point indexed by 7.

Notation Given two vectors or matrices u and v, their horizontal
(resp. vertical) concatenation is denoted by [u, v] (resp. [u, v]). For
positive integers d and e and a scalar a, we denote by [a], (resp.
[a], ;) the vector in R¥(resp. matrix in R**¢) whose components
are all equal to a. Finally, given an natural number n, we
let [n] ={1,...,n}

Problem statement

Given a data set Ne&N,, of input-output pairs
{(xe, 7)1, C RY x R, the problem of PWA regression aims
at finding a PWA function that fits the data within some given
error tolerance ¢ > 0. Formally, a PWA function f overa D C R4
domain is defined by covering D with M regions H,..., Hy; and
associating an affine function f;(x) = A;x + b; with each H;:

Ax+b, if x€ H],
A2x+ bz if X € Hz,
flx) = :

Note that if H; N H; # () for some i =j, then f is no longer a
function. However, in such a case, we may ‘break the tie’ by
defining f(x) = f;(x) wherein i = min {j: x € H,}.
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Problem 1. (PWA regression). Given a data set {(x, y;)}Y_, and

an error bound € > 0, find M regions H; C R4and affine functions
fi(x) = Ajx + b; such that

Vk,Ji:xx €H and Vk Vi:x€H = y—filx)le <e. (1)

Furthermore, we restrict the domain H; of each affine piece by
specifying a template, which can be any function p: RY — R".
Given a template p and a vector ¢ € R", we define the set H(c) as

H(c) = {x e R?: p(x) < c}, (2)

wherein < is elementwise and ¢ € R" parameterizes the set H(c).
We let 'H = {H(c) :c € R"} denote the set of all regions in
Redescribed by the template p.

Fixing a template allows to control the complexity of the
domains, and thus of the overall PWA function. This allows among
others to mitigate overfitting. The rectangular template
p(x) = [x; —x] defines regions H(c) that form boxes in R?. Indeed,
for two vectors ¢ <¢,, H([c;;—¢;]) defines the box
{x ER¥ ¢ <x< cz}. Similarly, allowing pairwise differences
between individual variables as components of p yields the octagon
domain (Miné 2006). Figure 1 illustrates PWA functions with
rectangular domains. Thus, we define the template-based piece-
wise affine (TPWA) regression problem:

Problem 2. (TPWA regression). Given a data set {(x;, y,) 1y, a
template p : R? — R" and an error bound ¢ >0, find M regions
H; € H and affine functions f;(x) = A;x + b; such that (1) is
satisfied.

Prob. 2 can be posed as a decision problem: Given a bound M, is
there a TPWA function with M < M pieces? Alternatively, we can
pose it as an optimization problem: Find a TPWA function with
minimum number M of pieces.

Although a solution to the decision problem can be used
repeatedly to solve the optimization problem, we will focus on
directly solving the optimization problem in this paper. Prob. 2 is
closely related to the well-known problem of SA regression, in
which one aims to explain the data with a finite number of affine
functions, but there is no assumption on which function may
explain each data point (xy, yx ). In other words, SA aims to identify
a sufficient number of modes and dynamics corresponding to each
mode without necessarily explaining how the modes are assigned
to each point in the domain.

Problem 3. (SA regression). Given a data set {(x;, y;)}+_, and an
error bound ¢ > 0, find M affine functions f;(x) = A;x + b; such
that Vk, 3 i ||y — fi(%)||oo < &

Computational complexity

The problem of SA regression (Prob. 3) is known to be NP-hard,
even for M = 2 (Lauer and Bloch 2019, Sec. 5.2.4). In this section, we
show that the same holds for the decision version of
Prob. 2. We study the problem in the RAM model, wherein the
problem input size is N(d + e) + h, where p : R — R,
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Figure 2. Left. Illustration of our algorithm on a simple data set with 11 data points (x,,y,) € R x R. Right. the index sets explored by our algorithm.

Theorem 1. (NP-hardness). The decision version of Prob. 2 is NP-
hard, even for M = 2 and rectangular templates (p(x) = [x; —x]).

The proof reduces Prob. 3 which is known to be NP-hard to
Prob. 2.

Proof. Without loss of generality, we restrict to piecewise linear
models since PWA models can be obtained from linear ones by
augmenting each data point x; with a component equal to 1.

We reduce Prob. 3 to Prob. 2 as follows. Consider an instance of
Prob. 3 consisting of a data set D = {(x;, yx) }¥_, € R? x R® and
tolerance . From D, we build another data set 7’ C RN x Re
with |D'| = 4N as follows. For each k € [N], we let be the indicator
vector of the k™ component. We define

- U Ut

oe{—1,1} k=1

(loxis x> o7x) ([[0as Xl [o€]. ) }]

In other words, for each data point (x,y;) in the
original dataset D, we add four data points of the form
([xk;Xk]ayk)a ([_xk;XkL _yk)a ([[O]d> XkL[g]e)? ([[O]d;Xk]v[_E}e)
wherein y is a vector of size N with a 1 entry in the k* position and
a 0 entry everywhere else and [0],; is a vector of d zeros wherein [¢],
is a vector with e entries each of which is ¢.

Also, we let 72 : R¥N — R2@N) be the rectangular template
in RN,

Main step: We show that Prob. 3 with D, ¢ and M = 2 has a
solution if and only if Prob. 2 with D/, p, ¢ and M =2 has a
solution.

Proof of ‘if direction’. Assume that Prob. 2 has a solution given
by and, and for each i, decompose A; = [B;, C;], wherein and . We
will show that B, B, provide a solution to Prob. 3.

Therefore, fix k € [N]. Using the pigeon-hole principle, let
i € {1,2} be such that at least two points in {[xx xx, [ Xk)>
[[0]4 x«]} belong to H;. Then, by the convexity of H;, it holds that
[[0]: xx] € H;. For definiteness, assume that [x;; x,] € H;. Since
H,,H, and A, A, provide a solution to Prob. 2, it follows that

H Yk — Bixk - CszHoc < €,

The last two conditions imply that C;x; =0, so that

Il ¥« — Bixklloo < €. Since k was arbitrary, this shows that B, B,
provide a solution to Prob. 3; thereby proving the ‘if direction’.
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Proof of ‘only if direction’. Assume that Prob. 3 has a solution
given by . Then, for each k € [N], define the intervals as follows:
L =10,1]if || yx — Axillo < & and I, = {0} otherwise. Now,
define the rectangular regions as follows: . Also define the matrices
as follows: B; = [A;,[0], x]. We will show that H,, H, and By, B,
provide a solution to Prob. 2.

Therefore, fix k€ [N] and i€ {l,2}.
| ¥ — Aixi |l <e. We show that (a) [xs Xz
[[0] 45 xx] belong to H;, and (b)

First, assume
[—xxx] and

|| Yk — Bi[ka; Xk]”oo < =

By[[0]45 xillloe < &

| v — Bilxis xilllo < &5
Il (el —

This is direct (a) by the definition of I;;, and (b) by the
definition of B;. Now, assume that || y, — A;x||s < & does not
hold. We show that [x;; xx], [—%i; x&] do not belong to H;. This is
direct since 1¢ I;. Thus, we have shown that H;, H, and By, B,
provide a solution to Prob. 2; thereby proving the ‘only if direction’.

Hence, we have built a polynomial-time reduction from Prob. 3
to Prob. 2. Since Prob. 3 is NP-hard (Lauer and Bloch 2019,
Sec. 5.2.4), this shows that Prob. 2 is NP-hard as well. O

Remark 1. Note that the reduction from Prob. 3 to Prob. 2 in the
above proof relies on the fact that M = 2. Two comments are due
here. First, the fact that Prob. 2 is NP-hard with M = 2 implies that
Prob. 2 is NP-hard with any M2. Indeed, if Prob. 2 can be solved in
polynomial time for some M = M > 2, then one can add spurious
data points (e.g., at a far distance of the original data points) to
enforce the value of M — 2 affine pieces of the PWA function. The
satisfiability of Prob. 2 with M = M and the augmented data set is
then equivalent to the satisfiability of Prob. 2 with M = 2 and the
original data set. Second, given M2 and any template p, a
construction similar to the one used in the above proof can be used
to reduce Prob. 3 to Prob. 2 at the cost of introducing a small gap in
the reduction. Indeed, fix A >0 and consider the data set . Then,
one can show that if Prob. 2 with 7/, p, e = £(1 — %) and M = M

has a solution, then Prob. 3 with D, e = ¢ and M =M has a
solution. The gap corresponds to the factor 1 — 3, which can be
made arbitrarily close to one. N

So, we showed that Prob. 2 is NP-hard, thereby implying no
known algorithm with complexity polynomial in the problem
input size N(d 4 e) + h. Nevertheless, one can show that for fixed
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dimension d, template size h and number of pieces M, the
complexity is polynomial in the data size N.

Theorem 2. (Polynomial complexity in N). For fixed dimension d,
template p : R — R and number of pieces M, the complexity of
Prob. 2 is bounded by O(NM").

The following notation will be useful in the proof of Theorem 2
below and also later in the paper. For every ce€ R", let
I(c) ={k € [N] : x; € H(c)} be the set of all indices k such that
x € H(c). Also, let Z = {I(c) : c € R"} be the set of all such

index sets.

Proof. The crux of the proof is to realize that |Z| < N" + 1.

For every ¢ € R”, define P(c) = {p(x;) : k € [N], p(xz) < ¢}
and let P = {P(c) : c € R"}. First, we prove that |P| < N" + 1.
For convenience, we write p(x) = [p'(x),...,p"(x)]. Note that for
any ¢ € R" such that P(c) # 0), it holds that P(c) = P(¢) where
¢ =max({p(x;) : k € [N], p(x;) < ¢}) and the ‘max’ is element-
wise. Therefore, we can identify at most h elements x; ,...,x,
wherein k,...,k, € [N] such that ¢ € {[p'(x,),....p"(x,)] :
ky, ...,k € [N]}. Each element can be seen as ‘fixing’ the maximum
value along some dimension of p(x). Hence, there are at most N"
distinct such ¢ This implies that there are at most N* distinct
nonempty sets P(c), concluding the proof that [P| < N" + 1.

Next, observe that there is a one-to-one correspondence
between P and Z given by: P(c) — I(c). Indeed, it is clear that if
I(¢;) = I(cy), then P(c;) = P(c,). On the other hand, if I(c;) €
I(c,), then there is at least one k such that p(x;) < ¢, but . This
implies that P(c;) & P(c,). Therefore, |P| = [Z| € O(N").

Now, Prob. 2 can be solved by enumerating the L = N"
nonempty index sets I, ..., I; in Z, and keeping only those I, for
which we can fit an affine function over the data { (x, yx) }e;, with
error bound €. Next, we enumerate all combinations of M such
index sets that cover the indices [N]. There are at most L™ such
combinations. This concludes the proof of the theorem. [

Remark 2. Note that a similar result holds for Prob. 3 (Lauer and
Bloch 2019, Theorem 5.4). The proof of Theorem 2 is however
simpler than that in Lauer and Bloch 2019 because in our case we
can use the template to build the different regions. N

The algorithm presented in the proof of Theorem 2, although
polynomial in the size of the dataset, can be quite expensive in
practice. For instance, in dimension d = 2, with rectangular regions
(ie, h=4) and N = 100 data points, one would need to solve
N" = 10® regression problems,’ each of which is a linear program.

In the next section, we present an algorithm for TPWA
regression that is generally several orders of magnitude faster by
using a top-down approach that avoids having to systematically
enumerate all the elements in 7.

Top-down algorithm

We first define the concept of compatible and maximal compatible
index sets. We will assume an instance of Prob. 2 with data
{(x, yx) 1> template p, and error bound .

Definition 1. (Maximal compatible index set.) An index
set I C [N] is compatible if (a) I € Z and (b) there is an affine
function f(x) = Ax+b such that Vke I, || ye — f (%) |l < &
A compatible index set I is maximal if there is no compatible index
set I’ such that I C I'.
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The key idea is that we can restrict ourselves to searching for
maximal compatible index sets in order to find a solution to Prob. 2.

Lemma 1. Let M be given. Prob. 2 has a solution if and only if it has a
solution wherein the regions correspond to maximal compatible
index sets.

Proof. The ‘if direction’ is clear. We prove the ‘only if direction’.
Consider a solution of Prob. 2 with regions H, ..., Hy;. For each
i € [M], there is a maximal compatible index set I; = I(c;) such
that H; N {xc 1L, € H(e;). Since {x}i_,) € U{L, H, it holds
that {x}{,_,) € U{L, H(c;). Hence, H(c,), ..., H(c,), along with
affine functions f;(x) = A;x + b; satisfying (b) in Def. 1, provide a
solution to Prob. 2, concluding the proof. O

The main result of this section is that maximal compatible index
sets can be computed by using a recursive top-down approach as
follows (implemented in Algo. 1). Consider the lattice (Z,C)
consisting of elements of 7 ordered by set inclusion. Our algorithm
starts at the very top of follows (implementethis lattice with a set of
points I = [N] and descends until we find maximal compatible
index sets. At each step, we consider a current set I € Z (initially,
I = [N]) that is a candidate for being compatible and check it for
compatibility. If I is not compatible, we find subsets I, ..., I¢ C I
using the FINDSUBSETS procedure, which is required to be
consistent, as defined below:

Definition 2. (Consistency). Given a noncompatible index set
I € T,acollection of index sets I, ..., Is € 7 is said to be consistent
w.r.t. I if (a) for each s, I; C I and (b) for every compatible index set
J C I, there is s such that J C I..

We will assume that the procedure FINDSUBSETS is imple-
mented such that for any noncompatible index set I, the collection
of sets I, ..., Is output by FINDSUBSETS(I) is consistent w.r.t I.

Theorem 3. (Correctness of Algo.1). If FINDSUBSETS satisfies that
for every noncompatible index set I € Z, the output of FINDSUB-
SETS(I) is consistent w.r.t. I, then Algo. 1 always terminates and the
output S contains all the maximal compatible index sets.

Proof. Termination follows from the fact that each index setI € Z
is picked at most once, because when some I € 7 is picked, it is
then added to the collection V of visited index sets, so that it cannot
be added a second time to ¢ (line 12). Since 7 is finite, this implies
that the algorithm terminates in a finite number of steps.

Now, we prove that, upon termination, any maximal
compatible index set is in the output S of the algorithm. Therefore,
let J be a maximal compatible index set. Then, among all sets I
picked during the execution of the algorithm and satisfying J C I,
let I* have minimal cardinality. Such an index set exists since
J C [N]. We will show that:

Main result. I* = ].

Proof of main result. For a proof by contradiction, assume that
I* =/ ]. Since J is maximal and J € I*, I* is not compatible. Hence,
the index sets (I,...,I5) = FindSubsets(I*) were added to U
(line 11). Using the assumption on FINDSUBSETS, let s be such
that J C I, € I*. Since I; must have been picked during the
execution of the algorithm, this contradicts the minimality of the
cardinality of I*, concluding the proof of the main result.

Thus, ] was picked during the execution of the algorithm. Since
it is compatible, it was added to S at the iteration at which it was
picked (line 8), and since it is maximal, it is not removed at later
iterations. Hence, upon termination, ] € S. Since ] was arbitrary,
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Algorithm 1. Top-down algorithm to compute maximal compatible index sets

Data: Data set {(x/\,,y/\,)}lk\il, template p

Result: Collection S of all maximal compatible index sets

1 S0

2 U — {[N]}

3V 0

4 while Y #0 do

5 Pop an index set I from U

6 if I is a subset of a set of S then
‘ // do nothing

// compatible sets so far
// sets to be processed
// already explored

// removes I from U

Remove strict subsets of I from S // Removed sets are not maximal

// must be consistent

7 else if I is compatible then
8 AddIto S
:
10 else
1 (Iy, . .., Is) < FinnSusseTs(I)
12 Add to U all I, . . ., Ig that are not in V
13 end
14 AddItoV
15 end

16 return S

Algorithm 2. An implementation of FINDSUBSETS using infeasibility certificates

Data: Data set {(x,\,,yk)}i\il, template p = [p] e

, ph], non-compatible index set

I=1(c) where c=[c!,..., M, infeasibility certificate C C I

Result: A collection of index sets I, . .
1 foreachs=1,...,hdo

., Is consistent w.r.t. [

2 | & e max{p(xy) s ke, pilxp) < max ¢ pilx )}
3 Define I, = I([c!, ..., &, ¢, .., ch])

4 end

5 return all nonempty index sets Iy, ..., I,

we conclude that upon termination, S contains all maximal
compatible index sets.

Finally, we show that upon termination, S contains only
maximal compatible index sets. This follows from the fact that, at each
iteration of the algorithm, for any distinct I}, I, € S, itholds thatI; ¢
L, and I, ¢ I;. Indeed, when I, is added to S, all subsets of I, are
removed from S (line 9) and are ignored at later iterations (line 6).
The same holds for I,. This concludes the proof of the theorem. []

Implementation of FiNDSUBSETS using infeasibility certificates

We now explain how to implement FINDSUBSETS so that it is
consistent. For that, we use infeasibility certificates, which are
index sets that are not compatible.

Definition 3. (Infeasibility certificate). An index set C C [N]is an
infeasibility certificate if there is no affine function f(x) = Ax + b
such that Vk € C, || yi — f(x)]lc < &.

Note that any incompatible index set I contains an infeasibility
certificate C C I (e.g., C = I). However, it is quite useful to extract
an infeasibility certificate C that is as small as possible. We explain
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below how to compute small infeasibility certificates. Thereafter,
from an infeasibility certificate C C I, one can compute a
consistent collection of index subsets of I by tightening each
component of the template independently, in order to exclude a
minimal nonzero number of indices from the infeasibility
certificate, while keeping the other components unchanged. This
results in an implementation of FINDSUBSETS that satisfies the
consistency property, described in Algo. 2. Figure 3 below shows an
illustration for rectangular regions.

Theorem 4. (Correctness of Algo. 2). For every noncompatible
index set I € I, the output I, ..., I of Algo. 2 is consistent w.r.t. I.

Proof. Observe that if C is an infeasibility certificate, then every
I C [N] satistying C C I is not compatible. Now, let ] C I be
compatible. Using that C ¢ J, let s be a component such that
maxyey p*(xy) < maxgec p*(xy). It holds that J C I. Since J was
arbitrary, this concludes the proof. O

Finding infeasibility certificates

We outline the process of finding an infeasibility certificate C C I
for a given noncompatible index set I C [N]. Recall that the data is
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of the form {(x, yx)}Y_,, wherein for each k € [N], x; € R? and
¥« € Re For simplicity, assume that the output is scalar, i.e., e = 1,
or equivalently, y; € R for all k € [N]. We will subsequently show
how technique for the scalar case will extend to the case of e > 1.
For the scalar case, the goal is to find an affine function
f(x) = a"x + b wherein a € R? and b € R so that for all k € I,
Iyx —f(xx)] < e. However, since I is noncompatible, no such
function exists by definition. Therefore, the system of linear
inequalities involving unknowns (a, b) € R? x R is infeasible:

< e Vkel,
< ¢ Vkel

xea+b -y
—xla—b+y

Note that each constraint of the form |a| < f is expanded as
two constraints @ < fand —a < f. By applying Farkas’ Lemma or
a theorem of the alternative (Rockafellar 1970, Theorem 21.3), and
simplifying the result, we conclude that the system of inequalities
above is infeasible (i.e., I is noncompatible) if and only if there
exists a multiplier A; € R for each k € I such that the following
system of linear constraints is feasible:

> ker Mex = [0]4,
> ket M =0,

D ket AW T D ker|Mle < — 1.

Thus, in order to check whether a given index set I is
noncompatible, we simply formulate the system of inequalities (3)
involving unknowns A, € R for each k € I and attempt to find a
feasible solution using a Linear Programming (LP) solver. If
feasible, we conclude that I is noncompatible. In fact, given any
solution () to the system of inequalities above, we can extract
a corresponding infeasibility certificate as C = {k € I : A\, =/ 0}.Tt
is easy to see why: any k € I with A\, = 0 indicates that I\{k}
remains a noncompatible set since such a variable A\, can be
removed from the system of inequalities while retaining feasibility.

3)

Lemma 2. If I is noncompatible, then there exists an infeasibility
certificate C C I such that |C| < d + 2.

Proof. The system of constraints (3) has |I| unknowns and d + 2
constraints of which d + 1 are equality constraints. We may write
M =a— P for variables a,fr >0 and therefore
|Ak| = & + Pr. Under this transformation, the system of con-
straints can be rewritten as

> ker(a = B)xi = (0],

> ker(ax — ) =0,

> ket @ = Bi) vk + D ker (o + Br)e < —1,
(ak,ﬂk) 2 O,Vk c I

(%
(ak

With this transformation, the system above is a standard-form
Linear Program with d + 2 constraints and decision variables
ay, 10 for each k € I. We treat the objective function for this LP as
the constant 0. Any basic feasible solution will have at most d + 2
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1 O CI)
" e $® Figure 3. FinoSussers implemented by Algo. 2 with rectan-
- gular regions. The red dots represent the infeasibility
I hd certificate C. Each /s excludes at least one point from C by
4

moving one face of the box but keeping the others unchanged.

nonzero variables. Furthermore, from the theory of linear
programming, we know that if a system is feasible, then it has a
basic feasible solution (Vanderbei 2020). Translating this back to
the original system (3), we get that there is a solution involving at
most d + 2 nonzero values for ). That is, there exists an
infeasibility certificate C such that |C|] < d + 2. O

So far, we have assumed that the outputs y; are scalar, i.e.,e = 1.
However, if e>1, we can simply use the previous analysis by
focusing separately on each component of the output vectors yy.
This is possible because if a given index set I is noncompatible, then
there must exist a component s € [e] such that I is noncompatible
even if the data set is restricted to { (xx, y{ )}, wherein y; denotes
the s component of y;. Indeed, if it were not the case, then for each
component s, we could find an affine function f,(x) = alx + b,
such that for all k € I, |f;(x;) fyi’ < e.Byletting A = [af ...;a]]
and b = [by,...,b,]", we see that f(x) = Ax + b satisfies that for
all k € I || f(xx) — ¥llo < e. This contradicts the assumption
that I is noncompatible. Thus, the infeasibility certificate for
e > 1 is extracted by simply considering each output component
in turn, thus reducing the problem to the scalar case
considered above.

We conclude that checking whether a set I is noncompatible
and if so, finding an infeasibility certificate C C I, can be solved by
posing the system of constraints (3) and solving it using an
algorithm such as the simplex algorithm.

Good infeasibility certificates for the top-down approach

The implementation of FINDSUBSETS boils down to finding
infeasibility certificates, which can be done as explained above.
However, not all certificates will be as good in terms of overall
complexity of the top-down approach. To exclude noncompatible
index sets more rapidly, it is desirable that the points in the certificate
are ‘spatially concentrated’ in the input domain. This means that the
points {x; }rcc are close to each other w.r.t. some distance metric.

We illustrate the benefit of spatially concentrated certificates
with the example used to illustrate the top-down approach in the
introduction.

Example 1. Consider the TPWA regression problem in Figure 2,
introduced in the section ‘Approach at a glance’. In Plot II, we
obtained the infeasibility certificate Cy = {4,5,6}. Note that
Co = {1,5, 11} is another infeasibilitty certificate that could have
been obtained as a result of solving the system (3). However, Cj is
more ‘spatially concentrated’ in the sense that the points in C, are
closer to each other than those in C,.

Recall that using C, as the infeasibility certificate allowed to find
the compatible subset I, = {1,...,5} directly and the compatible
subsets I; = {5,6,7} and I, = {7,...,11} at the subsequent steps.

However, if the certificate C, = {1,5,11} were used, then we
would have obtained I, = {2,...,11} and I, = {1,...,10}. Note
that both I;,I, are noncompatible because they contain C, and
thus further steps of our procedure are needed until we find
maximally compatible sets. <
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Figure 4. Illustration of FINDSuBSETS with a spatially concentrated certificate. The
green and orange hatched rectangles illustrate two possible cases for H(c,) output by
FINDSUBSETS.

We now refine the above argument with a volume-contraction
argument to discuss what would be the complexity of the overall
top-down algorithm if all certificates are spatially concentrated in
the input domain.

Example 2. Consider a PWA function f with M pieces whose
domains Hj, ..., Hy; are rectangles, as illustrated in Figure 4. Let
N € N, and consider a data set D = {(xi, yx) }}_,. We aim to
solve Prob. 2 with D, ¢ = 0 and the rectangular template. We will
discuss the complexity of the top-down approach presented in
Algo. 1 if all certificates are spatially concentrated. This means that
{X }rec consists in d 4 2 points concentrated around the center x
of H(c), where C is the certificate for I(c) (see Figure 4).

This will imply that the rectangles H(c,), ..., H(c,) computed
by FINDSUBSETS satisfy that for all s € [h], either the volume of
H(c,) is half of that of H(c) since one face is tight at X (see the green
rectangle in Figure 4) or H(c,) has one more face near the
boundary of H; compared to H(c) (see the orange rectangle in
Figure 4). By adding the natural assumption that all regions H;
have a volume of at least v € (0,1] and discarding regions with
volume smaller than v, we get that the algorithm cannot divide the
volume of a region more than —og, (v) times. Hence, the depth of
the tree underlying the algorithm is upper bounded by h — log, (v).
Since, each node of the tree has at most  children (the subsets
given by FINDSUBSETS), the number of rectangles encountered
during the algorithm is upper bounded by #*~1°&(*), Note that this
upper bound on the complexity of the algorithm is independent of
the data size N. This concludes the example. N

To conclude this section on good certificates, we explain briefly
how spatially concentrated certificates can be computed by adding
a cost function to the Linear Program (3). For simplicity, we will
assume that the output dimension e = 1. For the case when e > 1,
we can apply our approach to each component of the output
in turn.

Given a center point X = % >_;c; X; for a noncompatible index
set I C [N], we consider the following Linear Program with
variables \; € R for each k € I,

minimize Y ;| M| || % — EHZ
s.t. > ker M = (0],
> ket A =0, )

D ket Mk + Do le < -1
kel

The objective function of (4) tends to put zero value to A,
whenever || x, — % || is large. This promotes proximity of the point
x; to X when )\, =/ 0.4
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Early stopping using set cover algorithms

Finally, Algo. 1 can be made more efficient by enabling early
termination if [N] is optimally covered by the compatible index sets
computed so far. For that, we add an extra step at the beginning of
each iteration, that consists in (i) computing a lower bound f on the
size of an optimal cover of [N] with compatible index sets and (ii)
checking whether we can extract from S a collection of # index sets
that form a cover of [N]. The extra step returns break if (ii) is
successful. An implementation of the extra step is provided in Algo. 3.
The soundness of Algo. 3 follows from the following lemma.

Lemma 3. Let § be as in Algo. 3. Then, any cover of [N] with
compatible index sets has size at least .

Proof. The crux of the proof relies on the observation from the
proof of Theorem 3 that for any compatible index set I € Z, there is
J € SUU such that I C J. It follows that for any cover of [N] with
M compatible index sets, there is a cover of [N] with M index sets in
S UU. Since f is the smallest size of such a cover, this concludes the

proof. O

The implementation of the extra step in Algo. 1 is provided in
Algo. 4. The correctness of the algorithm follows from that of Algo.
1 (Theorem 3) and Algo. 3 (Lemma 3). In conclusion, we provided
an algorithm for optimal TPWA regression.

Theorem 5. (Optimal TPWA regression). Algo. 4 solves Prob. 2
with minimal M.

Proof. LetI,,..., I be the output of Algo. 4. For each i € [M], let
H; = H(c;) where I, = I(c;) and let f;(x) = A;x + b; be as in (b) of
Def. 1. The fact that Hy,...,H); and f;,...,fy is a solution to
Prob. 2 follows from the fact that I, .. ., I;; is a cover of [N] and the
definition of f, ..., fi;. The fact that it is a solution with minimal M
follows from the optimality of I}, ..., I); among all covers of [N]
with compatible index sets. O

Remark 3. To solve the optimal set cover problems (known to be
NP-hard in general) in Algo. 3, we use MILP formulations. The
complexity of solving these MILPs grows as 2/l and 2/ V4l
respectively. However, in our numerical experiments (see next
section), we observed that the gain of stopping the algorithm early if
an optimal cover is found systematically outbalanced the computa-
tional cost of solving the set cover problems. Furthermore, if one is
satisfied with a suboptimal solution, they can use an approximation
algorithm, such as the greedy algorithm, which outputs a cover whose
size is within some factor t(N) > 1 of the optimal set cover size
(Chvatal 1979). In this case, Algo. 3 outputs break if @ < t(N)p. <

Numerical experiments

In this section, we demonstrate the applicability of our algorithm
on three numerical examples.” We also compare it with the MILP
and Piecewise Affine Regression and Classification (PARC)
(Bemporad 2023) approaches to solve SA and PWA regression,
and we discuss the impact of different templates in terms of
simplicity of the model and efficiency of the algorithm.

PWA approximation of insulin-glucose regulation model

Dalla Man, Rizza, and Cobelli (2007) present a nonlinear model of
insulin—glucose regulation that has been widely used to test
artificial pancreas devices for treatment of type-1 diabetes. The
model is nonlinear and involves 10 state variables. However, the
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Algorithm 3. Extra step at the beginning of each iteration of Algo. 1

Data: S and U/ at the iteration, N

Result: BREAK if we can extract from S an optimal cover of [N] with compatible

index sets; otherwise, CONTINUE

1 Let  be the size of an optimal cover of [N] by index sets in S

// Note:

=00 if [N] cannot be covered by S.
2 Let B be the size of an optimal cover of [N] by index sets in S UU
3 if o < B then return BREAK else return CONTINUE

Algorithm 4. Top-down algorithm for Prob. 2.

// Lines 1-3 from Algo. 1
1 while rrue do

2 if Algo. 3 outputs Break then return an optimal cover of [N] using index sets

from S
// Lines 5-14 from Algo. 1
3 end

nonlinearity arises mainly from the term Uy, (insulin-dependent
glucose utilization) involving two state variables, say x; and x,
(namely, the level of insulin in the interstitial fluid, and the glucose
mass in rapidly equilibrating tissue):

(3.2667 + 0.0313x, )x,
253.52 + x, '

U(x1,%,) =

We consider the problem of approximating Uy with a PWA
model, thus converting the entire model into a PWA model.
Therefore, we simulated trajectories and collected N = 100 values
of x1, x, and Uy (xy, x,); see Figure 5(a). For three different values
of the error tolerance, € € {0.2,0.1,0.05}, we used Algo. 4 to
compute a PWA regression of the data with rectangular domains.
The results of the computations are shown in Figure 5(b,c,d). The
computation times are, respectively, 1, 22, and 112 s. Finally, we
evaluate the accuracy of the PWA regression for the modeling
of the glucose-insulin evolution by simulating the system
with Uy replaced by the PWA models. The results are shown in
Figure 5(e, f). We see that the PWA model with € = 0.05 induces a
prediction error less than 2 % over the whole simulation interval,
which is a significant improvement compared to the PWA models
with only 1 affine piece (¢ = 0.2) or 2 affine pieces (¢ = 0.1).

Finally, we compare with SA regression and classical PWA
regression. To find a SA model, we solved Prob. 3 with € = 0.05
and M = 3 using a MILP approach. The computation is very fast
(<0.5 s); however, the computed clusters of data points (see
Figure 6) do not allow to learn a (simple) PWA model, thereby
hindering the derivation of a model for U4 that can be used for
simulation and analysis.

Hybrid system identification: double pendulum with soft
contacts

We consider a hybrid linear system consisting in an inverted
double pendulum with soft contacts at the joints, as depicted in
Figure 7(a). This system has nine linear modes, depending on
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whether the contact force of each joint is inactive, active on the left
or active on the right (Aydinoglu, Preciado, and Posa 2020). Our
goal is to learn these linear modes as well as their domain of
validity, from data. For that, we simulated trajectories and collected
N =250 sampled values of 6,, 6, and the force applied on the
lower joint. We used Algo. 4 to compute a PWA regression of the
data with rectangular domains and with error tolerance € = 0.01.
The result is shown in Figure 7(b). The number of iterations of the
algorithm was about 23,000 for a total time of 800 s.

We see that the affine pieces roughly divide the state space into a
grid of 3 x 3 regions. This is consistent with our ground-truth model,
in which the contact force at each joint has three linear modes
depending only on the angle made at the joint. The PWA regression
provided by Algo. 4 allows us to learn this feature of the system from
data, without assuming anything about the system except that the
domains of the affine pieces are rectangular.

We compare with SA regression and classical PWA regression.
The MILP approach to solve the SA regression (Prob. 3) with
€ =0.01 and M =9 could not handle more than 51 data points
within reasonable time (1000 s); see Figure 8(a). Furthermore, the
computed clusters of data points (see Figure 6) do not allow to
learn a (simple) PWA model, thereby hindering to learn important
features of the system. Last but not least, we compare with the
recent tool PARC (Bemporad 2023).% The fitting accuracy on
training data is high (R*> = 0.995). The resulting partition of the
input space is depicted in Figure 8(b). As we can see, PARC finds a
PWA function with 8 modes, although an upper bound (K) of 10
was given. However, the regions do not align with the axis (as this is
not enforced by the algorithm). Consequently, regions with a small
number of samples (e.g., lower-right) are missing, while regions
with many samples (e.g., central) are overly divided.

Hybrid system identification: carts with springs

We consider a hybrid linear system consisting in two carts with
springs, as depicted in Figure 9(a). The force applied on the left cart
has four linear modes, depending on the values of x; and x,. Our
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using the nonlinear model versus the PWA approximations. (f) Error between nonlinear and PWA models averaged over 50 simulations with different initial conditions.
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data with rectangular-octagonal domains. (d): Optimal TPWA regression of the data with rectangular domains.

goal is to learn these linear modes as well as their domain of
validity, from data. For that, we used N = 400 data obtained by
gridding the input domain [0, L]* uniformly. We used Algo. 4 to
compute a PWA regression with error tolerance ¢ = 0.01. We
considered two templates: first the ‘rectangular-octagonal’
template wherein each region can have up to eight faces consisting

https://doi.org/10.1017/cbp.2024.3 Published online by Cambridge University Press

in horizontal, vertical and oblique lines (see Figure 9(b) for an
example); then, we compared with the rectangular template.

The results are shown in Figure 9(c,d). The running time of the
algorithm was about 950 secs for the rectangular-octagonal
template, and 120 s for the rectangular template. It is natural that
the rectangular-octagonal template takes more time because we
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allow for degrees of freedom in the shape of the regions. However,
we observe in Figure 9(c,d) that the most expressive template gives
better result in terms of simplicity of the PWA function.

Conclusion

To conclude, we have presented an algorithm for fitting PWA
models wherein each piece ranges over a region whose shape is
dictated by a user-provided template. The complexity of the
problem has been analyzed in terms of the number of data points,
the dimension of the input domain and the template, X the desired
number of pieces of the model. We have presented a top-down
algorithm that explores subsets of the data guided by the concept of
infeasibility certificates. Finally, our implementation provides
some interesting applications of this approach to cyber-physical
systems. Despite these contributions, the problem of identifying
hybrid systems from data remains a computationally hard problem
and the computational challenges of providing precise solutions
with mathematical guarantees remain formidable. Our future work
will investigate the use of better data structures to help scale our
algorithms to larger and higher dimensional data sets. We are also
investigating other approaches to PWA identification involving
regions that are separated by arbitrary hyperplanes rather than fixed
templates. Finally, we are interested in connections between the
approach presented here and ideas from computational geometry. In
particular, the link between the VC dimension of the shapes used to
specify the regions in our PWA model and the complexity of the
regression procedure offers interesting venues for future work.
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Notes

1 See for instance the example in Berger, Narasimhamurthy, and
Sankaranarayanan (2024, Lemma 2.5) for a system that can be described with
the rectangular template but not as a guarded linear system.

2 This is a consequence of Farkas’ Lemma and Carathéodory’s Theorem; see
Lemma 2.

3 In theory, by using Sauer—Shelah’s lemma (see, e.g., Har-Peled 2011, Lemma

6.2.2), this number can be reduced to f‘:l <IK> ~ 4 x 10°. This is because

the VC dimension of rectangular regions in R? is 2d.

4 Note that L' regularization costs are often used in machine learning to induce
sparsity of the optimal solution (Boyd and Vandenberghe 2004, p. 304). Here,
we use a weighted L' regularization cost to induce a sparsity pattern dictated by
the geometry of the problem.

5 The implementation is made in Julia, with Gurobi 11.0, under academic
license, as LP and MILP solver (including for the optimal set cover problems).
Our approach uses the standard set data structures available in Julia for
manipulating index sets in order to implement the key steps of Algorithm 1. All
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computations were made on a laptop with processor Intel Core i7-7600u and
16GB RAM running Windows.

6 We used the default parameters proposed on the webpage https://github.co
m/bemporad/PyPARC.
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