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Abstract

Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in
peripheral tissues. However, the specific neurons involved and their impact on organismal aging
and health have remained incompletely understood. Here, we demonstrate that mitochondrial
stress in y-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans (C.
elegans) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive
capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass,
energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is
enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-
cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the
same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous
alterations in organismal stress tolerance and longevity. In summary, these data suggest the
crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-

autonomous changes throughout the organism.
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Introduction
Mitochondria are essential organelles involved in various cellular functions, including energy
production, calcium regulation, cell signaling, and apoptosis. Their reciprocal relationship with
aging is widely acknowledged, wherein mitochondrial dysfunction impacts organismal longevity
and health, and aging affects mitochondrial homeostasis across variable model animals 2. The
degree of mitochondrial dysfunction determines the effect on an organismal lifespan. Mild
mitochondrial disruption has been shown to increase lifespan in model animals such as C.
elegans, flies, and mice *'°. For instance, the lifespan of C. elegans is extended by inhibiting
mitochondria-related genes through genetic and RNA interference (RNAi) knockdown, including
isp-1 (an iron-sulfur subunit of complex Il of the mitochondrial electron transport chain (ETC)) ¢,
spg-7 (a mitochondrial quality control m-AAA protease) "', and clk-1 (a hydroxylase involved in
the biosynthesis of ubiquinone) *> . Like C. elegans clk-1 mutant, mice with the mclk1 mutation,
which exhibits normal growth and fertility, also exhibits an increase in lifespan '°.

The mechanisms underlying longevity enhancements through mitochondrial perturbations
bring forth the mitohormesis theory that enhanced stress response pathways contribute to longer

4, 16-21

lifespans . It has been demonstrated that some mitochondrial stress requires the

mitochondrial unfolded protein response (mitoUPR) pathway to trigger lifespan extension * '61°,
The forkhead transcription factor DAF-16/FoxO has also been reported as an additional mediator

20. 21 However, certain

responsible for extending the lifespan of C. elegans ETC mutants
mitochondrial perturbations and mutations in ETC genes can independently extend lifespan
without involving atfs-1, a key regulator of mitoUPR '"-22_ Similarly, it has been documented that
DAF-16/FoxO is not indispensable in mediating the lifespan extension in some ETC mutants °,
suggesting a complex regulation of organismal aging in response to mitochondrial dysfunction
through multiple pathways.

Aging is also accompanied by various changes in mitochondria, including the decreased

activity of mitochondrial enzymes, reduced mitochondrial oxygen consumption, increased ROS
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production, decreased mitochondrial biogenesis, and increased mutations in mitochondrial DNA
2327 Interestingly, different types and levels of mitochondrial DNA mutations accumulate in
various tissues during aging in humans and model animals 2% 2°. Even within a single tissue, such
as the brain and muscle, variations in mitochondrial DNA mutations have been reported %32, As
a result, there is growing interest in understanding how organisms respond to mitochondrial stress
in specific tissues and cells.

Recent studies have elucidated the phenomenon wherein perturbations in mitochondrial
function within a specific tissue can elicit lifespan extension and health improvement ¢ 3% 34,
Remarkably, the nervous system exhibits a particular role in detecting its intrinsic mitochondrial
stress and extending organismal lifespan '® 3% However, it remains unclear which neuronal
subtype is responsible for extending organismal longevity in response to their mitochondrial stress
and what mechanisms underlie the non-cell-autonomous changes in this regard.

y-aminobutyric acid (GABA) is a widely utilized neurotransmitter found in both vertebrate
and invertebrate nervous systems. In vertebrates, a substantial proportion, estimated to be
between 30% and 40%, of central nervous system synapses rely on GABA transmission ¥". GABA
levels tend to gradually decrease as organisms age, and disruptions in GABA neurotransmission
have been associated with various neurological disorders and age-related cognitive decline %% *°.
In C. elegans, 26 neurons have been anatomically and functionally characterized as GABAergic
neurons ***'. Interestingly, recent studies in C. elegans indicate that the GABA signaling pathway
plays an important role in regulating the lifespan and overall health of the organism, mitochondrial
unfolded protein response, and proteostasis in the post-synaptic muscle tissue 42#°.

In this study, we utilized C. elegans as a model organism to explore the role of GABAergic
neurons in regulating organismal health and aging in response to mitochondrial perturbations, as

well as the mechanisms underlying these effects. Our findings indicate that mitochondrial stress

in GABAergic neurons can influence the activity of DAF-16/FoxO in peripheral tissues through
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91  GABA signaling. This, in turn, leads to non-cell-autonomous alterations in the mitochondria

92  activity and organismal healthspan, reproductive capacity, and lifespan.

93

94  Results

95  Mitochondrial perturbations in GABAergic neurons are stufficient to prolong the

96 organismal lifespan

97 To explore the influence of mitochondrial dysfunction in GABAergic neurons on lifespan

98 and healthspan, we inhibited the functions of isp-71 and spg-7, well-documented genes that extend

99  organismal lifespan when their normal functions are disrupted "> 3% 4647 |n |ine with previous
100  studies, systemic RNA interference (hereinafter referred to as sRNAI) targeting isp-71 and spg-7
101  significantly extended the lifespan of wild-type N2 animals when compared to control animals
102 subjected to empty vector (EV) control RNAI (Figures 1A and 1B; Table S1). Tissue-specific RNAI
103 in GABAergic neurons (hereinafter referred to as gRNAIi) was accomplished by employing a
104  previously well-established transgenic animal **°. In this model, the function of rde-1, a member
105  of the PIWI/STING/Argonaute protein family, was specifically restored in GABAergic neurons by
106  introducing a transgene that expresses RDE-1 under the control of the GABAergic neuron-specific
107  promoter derived from the unc-47 gene (Pgaba) (Figure 1C) *® %53 Additionally, they expressed
108  sid-1, a gene responsible for dsRNA transport. When gRNAI against isp-7 was induced from the
109 L1 stage, it resulted in a median lifespan extension of 55.5% compared to the control (Figures 1D
110  and Table S1). spg-7(gRNAI) animals also showed an extended median lifespan of 33.3% (Figure
111 1E and Table S1).
112 To exclude the possibility of any remaining systemic RNAI effects in the rde-1 mutant
113 background, we carried out another tissue-specific RNAI strategy **. We expressed isp-1 double-
114  stranded RNAs (dsRNAs) in GABAergic neurons using the Pgaba promoter (hereinafter referred
115 to as Pgaba::iisp-1 dsRNA) in the sid-1(qt9) null mutant background, which lacks intercellular

116  dsRNA transport, preventing sRNAi (Figure 1F) °> 6. The expression of isp-1 dsRNAs in
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117  GABAergic neurons within the wild-type N2 animal background proved effective in upregulating
118 the expression of Phsp-6::GFP, which serves as a fluorescent reporter for mitoUPR activity,
119  specifically in the intestine, suggesting that this isp-7 dsRNA expression effectively induced
120  mitochondrial defects (Figure S1A and S1B) * * % Notably, we observed that Pgaba::isp-1
121  dsRNA expression in sid-1 null mutants also significantly extended organismal lifespan (Figures
122 1G and Table S1) %8 Additionally, in 9-day-old adult isp-1(gRNAI) and spg-7(gRNAI) animals,
123 we observed reduced lipofuscin fluorescence in the intestine, an aging hallmark that typically
124  increases progressively over time (Figures 1H and 11) 8'. These findings collectively suggest that
125  mitochondrial perturbation within GABAergic neurons is sufficient to prolong the organismal
126 lifespan and attenuate the aging process.

127

128  Mitochondrial stress in GABAergic neurons increases the stress tolerance of the organism
129 Next, we sought to determine whether mitochondrial stress in GABAergic neurons could
130  also alter the parameters of a healthspan. We tested thermal and oxidative stresses during aging,
131  which are healthspan parameters closely linked to longevity across species %% (Figure 2A). In
132 mid-age adults (3-day-old adult) groups, gRNAI against isp-1 and spg-7 increased survivability
133  against paraquat exposure compared to controls (Figure 2B). This improvement was also
134  observed in older adult groups (Figures 2C and 2D). Moreover, isp-1(gRNAi) and spg-7(gRNAI)
135 animals displayed a significant increase in survival when exposed to thermal stress at 35 °C
136  (Figures 2E-2G). To validate the efficacy of RNAIi, we maximized the RNAI effect by culturing
137  animals under the feeding RNAIi condition against spg-7 for three generations (Figure S2A) and
138  observed consistently improved survival rates in response to both oxidative stress (Figures S2B
139 and S2C) and thermal stress (Figures S3D and S3E). In addition, sid-7 null mutants expressing
140  Pgaba::isp-1 dsRNA expression also exhibited enhanced tolerance to thermal and paraquat
141  stresses (Figures 2H and 2I). These findings suggest that mitochondrial stress in GABAergic

142  neurons can enhance healthspan parameters.
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143

144  GABAergic neuronal mitochondrial stress alters reproduction

145 While depletion of some mitochondrial ETC in the entire nervous system of C. elegans
146  and flies increases lifespan in a non-cell-autonomous manner, it does not consistently affect
147  fertility ® °. Therefore, we sought to determine if mitochondrial dysfunction in GABAergic neurons
148  similarly has no impact on reproduction. C. elegans exists as a hermaphrodite and produces a
149  limited number of sperm in the L4 stage. In the adult stage, it undergoes oocyte development and
150  self-fertilizes to produce embryos (Figure 3A) -, While isp-1 mutant has a prolonged lifespan,
151 it has been shown to have a reduced brood size . Interestingly, isp-7 gRNAi was sufficient to
152 reduce the number of fertile animals (Figure 3B). The total number of embryos produced by fertile
153  isp-1(gRNAI) animals was also significantly decreased (P < 0.0001) (Figure 3C). When we
154  assessed reproductive activity daily, fertile isp-1(gRNAI) animals displayed a reproductive period
155  similar to that of the control group. However, brood sizes from the 2-day-old stage to the 4-day-
156  old stage were significantly reduced (P<0.005 for the 2 and 3-day-old stages and P<0.0001 for
157  the 4-day-old stage) (Figure 3D). Intrigued by these results, we evaluated the impact of isp-
158  1(gRNAI) on the three critical stages of germline development including mitotic germ cell
159  proliferation, meiotic germ cell apoptosis, and oogenesis (Figure 3A). Although the length of the
160  mitotic area was not significantly affected by isp-1(gRNAI) (Figures 3E and S3A), the total number
161  of mitotic germ cells was decreased during the early reproductive periods (1 to 3 days after the
162 L4 stage) (Figure 3F). The number of apoptotic germ cells in the meiotic gonadal loop region,
163  undergoing germline apoptosis, was not different from that in control animals at the 2-day-old
164  adult stage, but it was substantially decreased at the 3-day-old stage (Figure 3G) "°. Thus, an
165 increased loss of meiotic germ cells was not likely the primary cause of the reduced brood size.
166  Interestingly, 2-day-old adult isp-1(gRNAi) animals displayed large DNA aggregates in the
167  proximal gonad, a characteristic feature of an endomitotic oocyte phenotype (Figures 3H and 3lI)

168 ™. Once embryos were produced, most of them were hatched in isp-1(gRNAI) animals (Figure
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169  S3B). Our results indicated that disruption of the mitochondrial ETC in GABAergic neurons
170  negatively affected germline development and reproductive ability.

171

172 Mitochondrial stress in GABAergic neurons enhances mitochondrial function in the

173  peripheral tissues

174 Accumulated evidence indicates that aging is linked to a decline in mitochondrial function
175 and biogenesis "#7°. Additionally, experimentally increasing mitochondrial membrane potential
176  and biogenesis is associated with lifespan extension " 76, Therefore, we hypothesized that the
177  mitochondrial stress specific to GABAergic neurons could impact the function and homeostasis
178  of mitochondria in other peripheral tissues. At the 2-day-old stage, staining animals with the
179  mitochondrial membrane potential-dependent MitoTracker Red CMXRos dye revealed a higher
180  mitochondrial membrane potential in both the whole body (Figures 4A and 4B) and the intestine
181  (Figure 4C) of isp-1(gRNAI) and spg-7(gRNAI) animals compared to that in the control group "
182 8. Additionally, whole-body extracts from isp-1(gRNAI) animals showed a marked increase in
183  ATP levels (Figure 4D). spg-7(gRNAI) animals showed somewhat higher ATP levels compared
184  to the control group, but it was not significant (Figure 4D). Next, we stained isp-1(gRNAi) and spg-
185  7(gRNAI) animals using the MitoTracker FM Green dye that accumulates in mitochondria in a
186  membrane potential-independent manner, indicating the mass of mitochondria ”°. We observed
187  that both isp-1(gRNAi) and spg-7(gRNAi) animals exhibited higher MitoTracker FM Green
188  fluorescence in the whole body than the control animals, suggesting an increase in mitochondrial
189  mass (Figures 4E and 4F). In agreement with these results, the copy number of mitochondrial
190  DNA was increased in isp-1(gRNAi) and spg-7(gRNAi) animals compared to control animals
191  (Figure 4G). The expression of mitochondrial DNA polymerase gamma polg-1 was also

35, 80, 81

192 significantly upregulated in isp-1(gRNAJ) animals (Figure 4H) . Notably, staining isp-

193  1(gRNAI) and spg-7(gRNAI) animals with the ROS indicator DCF-DA showed lower ROS levels
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194  compared to the control animals (Figures 4I-4K) ®. Altogether, these results suggest that
195  disturbances in mitochondrial homeostasis within GABAergic neurons could systemically
196 increase overall mitochondrial membrane potential, ATP levels, and mitochondrial mass while
197  decreasing ROS levels.

198

199  GABAergic neuronal Mitochondrial Stress Enhances the DAF-16/FoxO Pathway

200 Despite the increased total mitochondrial mass and activity, the decreased ROS levels in
201  isp-1(gRNAI) and spg-7(gRNAI) animals suggest the possibility that their ability to mitigate
202  oxidative stress has improved. Therefore, we analyzed changes in stress response regulators
203  associated with mitochondria and ROS, including DAF-16/FoxO, mitoUPR, and SKN-1/Nrf 2! 57
204 8% |t has been demonstrated that mutations in isp-7 and RNAI targeting isp-1 (isp-1 sRNAI)
205  result in enhanced expression of reporter genes associated with the mitoUPR pathway, such as
206  hsp-6 or hsp-60 *3* > In line with this, when the expression of Pgaba::isp-1 dsRNA was induced
207  in N2 wild-type worms, leading to systemic isp-7 RNAI, a significant increase in Phsp-6::GFP
208  expression was observed (Figures S1A and S1B). Additionally, we observed that sRNAi against
209  isp-1 effectively triggered the expression of Phsp-6::GFP, and this induction was dependent on
210  atfs-1, a crucial mediator of the mitoUPR pathway ® (Figure S4A). These findings indicate the
211  efficiency of our RNAI feeding conditions. However, isp-1 gRNAI did not significantly elevate the
212 mRNA levels of hsp-60 and hsp-6, as evaluated by quantitative reverse transcription PCR (RT-
213 gPCR) analysis (Figure 5A). The mRNA level of gst-4, a downstream target of the SKN-1/Nrf
214  pathway, was also not significantly increased by isp-1(gRNAI) (Figure 5A) 88 In contrast, the
215  mRNA levels of three DAF-16/FoxO downstream genes, including sod-3, hsp-16.2, and dlk-1,
216  were substantially increased by isp-1(gRNAI) (Figure 5A) ®°'. Additionally, sid-71(eq9) null
217  mutants expressing isp-1 dsRNA in GABAergic neurons also showed increased expression of
218 DAF-16/FoxO target genes (Figure 5B). The intensity of a fluorescent reporter for the DAF-

219  16/FoxO pathway (muls84 [Psod-3::gfp]) was also enhanced in this condition (Figures 5C and
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220  5D). The elevated expression of sod-3 and dlk-1 induced by isp-1(gRNAI) was suppressed by the
221 loss of DAF-16, suggesting that their expression is mediated by the DAF-16/FoxO pathway
222 (Figure 5E).

223

224 The non-cell-autonomous effects of GABAergic neuronal mitochondrial defects require
225  DAF-16/FoxO

226 Further investigations were conducted to evaluate the functional involvement of DAF-
227  16/FoxO in the non-cell-autonomous effects of mitochondrial stress in GABAergic neurons. It was
228  found that sRNAI against isp-1 required DAF-16/FoxO function to extend lifespan, as previously
229  reported (Figure S4B and Table S1) % 2", DAF-16/FoxO was also necessary for the enhanced
230  tolerance against paraquat in isp-7(sRNAi) worms (Figure S4C). Notably, the lifespan extension
231 by isp-1 gRNAI was suppressed in daf-16(mgDf47) null mutants (Figure 6A). Additionally, DAF-
232 16/FoxO was required for the increased stress tolerance against thermal (Figure 6B) and
233 paraquat (Figure 6C) stresses in isp-1(gRNAi) animals. DAF-16 loss also suppressed the
234 upregulation of mitochondrial membrane potential (Figures 6D and 6E) and mitochondrial mass
235  (Figures 6F and 6G) induced by isp-7 gRNAi. Moreover, gRNAi against isp-1 in the daf-
236  16(mgDf47) null mutant background failed to increase mitochondrial DNA copy number (Figure
237  6H) and polg-1 mRNA levels (Figure 6l). Finally, the daf-16 null mutation suppressed the
238  abnormalities in daily reproductive ability (Figure 6J) and total brood size (Figure 6K) caused by
239  isp-1 gRNAI. Interestingly, the double RNAi knockdown of isp-7 and daf-16 in GABAergic neurons
240  (isp-1+daf-16 gRNAI) also resulted in a normal lifespan, to a level similar to that displayed in
241  EV(gRNA|) and daf-16(gRNAi) conditions, suggesting that DAF-16 function in GABAergic
242 neurons is required to mediate the lifespan extension (Figure S4D and Table S1). These findings
243 collectively suggest that DAF-16/FoxO plays a critical role in mediating non-cell autonomous
244 changes resulting from GABAergic neuronal mitochondrial stress, influencing organismal lifespan,

245  stress tolerance, mitochondrial homeostasis, and reproductive capacity.
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246

247  Mitochondrial stress in GABAergic neurons causes non-cell-autonomous changes by
248  acting on the same mechanisms as GABA signaling

249 Recent studies in C. elegans have revealed that GABA signaling plays a role not only in
250  the regulation of GABAergic neuronal function but also in governing organismal longevity.
251  Specifically, loss of unc-25, which encodes glutamic acid decarboxylase, has been shown to
252 prolong lifespan and enhance stress tolerance ** 3. Hence, we conducted epistatic tests to
253  investigate the possible interaction between the loss of GABA signaling and isp-1 knockdown
254  conditions in GABAergic neurons and their impact on organismal health and longevity. We found
255  that targeting isp-1 specifically in GABAergic neurons by expressing Pgaba:.:isp-1 dsRNAs in sid-
256  1(qt9) mutants did not lead to a further extension of lifespan in unc-25 null mutants (Figures 7A
257 and S5A; Table S1). Additionally, GABAergic neuronal mitochondrial stress did not lead to an
258  additive increase in stress tolerance beyond the levels observed in unc-25(e156); sid-1(qt9)
259  mutants (Figures 7B and 7C). The enhanced GFP expression driven by the sod-3 promoter due
260  to isp-1 dsRNA expression in GABAergic neurons was not further increased in the unc-25 null
261  mutant condition (Figure 7D).

262 Next, we assess if GABAergic neuronal mitochondrial stress affects GABA function by
263  testing the sensitivity of animals to aldicarb, an acetylcholinesterase inhibitor that can cause post-
264  synaptic receptor hyperstimulation and paralysis due to reduced acetylcholine breakdown %. As
265  previously reported, depletion of GABA in unc-25 mutants increased the sensitivity to aldicarb %%
266 % (Figures 7E). GABAergic neuronal expression of isp-1 dsRNA also significantly elevated the
267  sensitivity to aldicarb, particularly when animals were exposed to it for a prolonged period (120
268 min). The expression of Pgaba::isp-1 dsRNA did not further increase the hypersensitivity to
269  aldicarb in unc-25 mutants, indicating that they function in the same pathway. Together, these
270  findings suggest that diminished GABA signaling and mitochondrial stress within GABAergic

271  neurons trigger alterations in organismal lifespan and healthspan through a common pathway.
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272

273  Neuropeptide signaling in GABAergic neurons regulates organismal aging and health
274  without additive effects with mitochondrial stress in GABAergic neurons

275 Next, we tested the potential roles of neuropeptide signaling in the non-cell autonomous
276  effects of GABA neuronal mitochondrial stress *. We measured the lifespan of mutants with
277  mutations in unc-31, required for dense-core vesicle exocytosis %. In agreement with the previous
278  report, unc-31(e928) mutants exhibited prolonged lifespan (Figure 8A and Table S1). There is no
279  additive lifespan increase by Pgaba::isp-1 dsRNA expression in the unc-37 mutant background,
280  suggesting the potential involvement of neuropeptide signaling in regulating lifespan (Figure 8A
281 and Table S1). GABAergic neurons have been suggested to express several neuropeptides,
282  including flp-10, fip-11, flp-13, and flp-22 *°7_In line with previous studies, flp-13 was expressed
283  in a subset of C. elegans GABAergic motor neurons (Figure S6A) %" %8, We found that flp-13+EV
284  gRNAI extended the lifespan of animals compared to control animals, indicating its non-cell
285  autonomous function in GABAergic neurons in regulating organismal lifespan (Figure 8B); Table
286  S1). Double gRNAI against flp-13 and isp-1 did not further increase lifespan compared to fip-
287  13+EV gRNAI alone, suggesting that depletion of FLP-13 and mitochondrial disruption in GABA
288  neurons could extend lifespan through a common mechanism (Figure 8B and Table S1). While
289  gRNAI against flp-13+EV did not affect the tolerance of animals against heat stress, it improved
290  stress tolerance against paraquat to a level comparable to that observed in animals treated with
291  flp-13+isp-1 double gRNAI (Figures 8C and 8D). Maximal treatment of flp-13 gRNAI, without
292 mixing with EV bacteria, did not significantly increase the heat tolerance compared to the control
293 group, suggesting that the lack of impact of flp-13+EV gRNAI on heat stress is unlikely to be
294  attributed to a diluted RNAI efficiency due to the double RNAi method (Figure S6B). Additionally,
295  maximal treatment of flp-13 gRNAI still showed enhanced paraquat tolerance and lifespan
296  (Figures S6C and S6D; Table S1). Collectively, these findings indicate a novel role for the

297  neuropeptide FLP-13 in regulating organismal aging and health. This regulation appears to be
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298  mediated by a common mechanism associated with non-cell autonomous effects resulting from
299  GABA neuronal mitochondrial dysfunction. The selective response of flp-13 mutants to specific
300 stressors implies the existence of additional mechanisms that respond to mitochondrial stress
301  within GABAergic neurons.

302

303  Discussion

304 Our findings suggest that GABAergic neurons play a critical role in sensing mitochondrial
305  stress and regulating longevity. Additionally, disrupting the mitochondria in GABAergic neurons
306 alone was sufficient to induce alterations in organismal health and reproduction. Enhanced DAF-
307 16/FoxO activity is necessary for mediating the non-cell autonomous changes observed in
308 animals. Furthermore, we identified GABA signaling and one neuropeptide signaling as a factor
309 associated with the non-cell autonomous effects caused by mitochondrial stress in GABAergic
310  neurons.

311 Previous studies have demonstrated that mitochondrial stress in all neurons is sufficient
312 to extend organismal lifespan. However, it remains incompletely understood which neurons
313  respond to their mitochondrial stress to mediate this non-cell autonomous effects on organismal
314 lifespan. Sha and colleagues have tested 18 neurons out of the total 302 in C. elegans regarding
315 their potential to activate non-cell-autonomous effects and demonstrated that a specific subset,
316 consisting of ASK, AWA, AWC, and AIA neurons, exhibits the capacity to induce non-cell-
317 autonomous activation of the mitoUPR pathway in response to mitochondrial stress their

318  mitochondria perturbation *

. Interestingly, these conditions do not alter organismal lifespan,
319  suggesting an unlink between mitoUPR and lifespan in certain conditions 3.

320 The specific role of GABAergic neurons in non-cell autonomous regulation of aging and
321  health in response to mitochondrial dysfunction has not been reported. This could be because
322  these GABAergic neurons have not been tested or that previous studies primarily focused on

323 neurons that non-cell autonomously affect the mitoUPR pathway in the peripheral tissues ¢ 333,
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324  However, a recent study reveals that induced ROS production in GABAergic neurons can trigger
325 mitoUPR induction in other peripheral tissues through activating UNC-49/GABAA receptor
326  signaling, suggesting a central role of GABAergic neurons in regulating organismal stress
327  response *. In our study, we prioritized monitoring changes in the lifespan rather than detecting
328  mitoUPR reporter activity and found that inducing mitochondrial stress, specifically in GABAergic
329  neurons, was sufficient to extend the lifespan of the animal. We employed two independent RNAI
330 strategies to knock down two genes related to mitochondria. The tissue-specific RNAi approach,
331  utilizing the rde-1(ne219) null mutant background and exclusively restoring rde-1 in target tissues,
332 has been successfully utilized in multiple studies “® % %" 33 To eliminate the possibility of
333  incomplete gRNAI, we also conducted isp-1 knockdown in GABAergic neurons by expressing isp-
334 1 dsRNAs in sid-1 null mutant backgrounds, and we consistently observed an extension in
335 lifespan in both RNAI strategies. isp-1 mutants and Pgaba::isp-1 dsRNA expression in wildtype
336  animals robustly increase mitoUPR. In contrast, our qPCR results showed that there was no
337 increase in mitoUPR reporter expression in isp-1(gRNAJ) animals *. Additionally, the isp-1(gRNAI)
338 animals did not fully recapitulate the phenotypes of isp-7 mutants, including normal ATP level,

339 increased ROS level, and decreased mitochondrial membrane potential %°-1%2

, supporting that our
340  two isp-1 knockdown conditions did not occur systemically other than in GABAergic neurons.

341 Longevity is associated with healthspan, but not in all cases '®. Our results show that
342 mitochondrial stress in GABAergic neurons not only prolonged lifespan but also improved stress
343  tolerance, a typical healthspan parameter. Notably, we also found enhancements in mitochondria
344  activity and ATP levels. These improvements in mitochondria could be, in part, a result of an
345  increase in mitochondria population evidenced by increases in mitochondrial DNA copy number
346  and mass. Consistently this notion, we also found increased mMRNA levels of polg-1, encoding the
347  mitochondrial DNA polymerase that is responsible for the replication of the mitochondrial genome,

348  suggesting a potential increase in mitochondria biogenesis by GABAergic neuronal mitochondrial

349  stress ** "% The concept of aging in model organisms has long been linked to a decrease in
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350  mitochondrial function and biogenesis *. Similarly, in humans, mitochondrial function declines with
351 age?'%. Enhancing mitochondrial function has been proposed as an intervention strategy against
352 aging. In mice, the brain-specific overexpression of Sirt1, a pivotal regulator of mitochondrial
353  biogenesis through PGC-1a, not only extended lifespan but also induced non-cell-autonomous
354  effects in skeletal muscle including improved mitochondria homeostasis °. A recent study
355 indicates that experimentally rejuvenated mitochondrial membrane potential is sufficient to extend
356 C. elegans lifespan "®. Additionally, while isp-1 mutants have been shown to have elevated levels
357 of ROS, a central factor in aging, our findings suggest that knockdown of isp-1 in GABAergic
358 neurons leads to a reduction in ROS levels, despite an increased mitochondrial population and
359 heightened activity & 92 1% Therefore, both enhanced mitochondrial homeostasis and reduced
360 ROS levels could contribute to the non-cell-autonomous enhancement in aging and health.

361 The reduced ROS also proposed the potential involvement of the stress response pathway
362 against ROS. Strikingly, our gPCR results showed no evidence supporting the activation of
363  mitoUPR by GABAergic-neuronal mitochondrial stress '® 3% |t has been shown that afts-1 acts
364  cell-autonomously in certain neurons to mediate non-cell autonomous effects of mitochondrial
365 stress in specific neurons *. Thus, it is still possible that mitoUPR activation in GABAergic
366 neurons plays a role in mediating lifespan extension and improving stress resistance. Recent
367  studies have demonstrated that experimentally enhanced ROS production in GABAergic neurons
368 activates the mitoUPR and this requires UNC-49 GABAa receptor *°. However, unc-49 mutants
369  exhibit a normal lifespan ** **. Therefore, the extended lifespan resulting from mitochondrial
370  defects in GABAergic neurons is not primarily mediated by increased ROS production and non-
371  cell-autonomous activation of mitoUPR.

372 Our results suggested that GABAergic neuronal mitochondrial stress requires DAF-
373  16/FoxO. We found that GABA-neuronal mitochondrial stress promoted the expression of sod-3,
374  hsp-16.2, and dlk-1, which are regulated by DAF-16 8°' A recent study also reveals that ROS

375 induction in GABAergic neurons results in non-cell autonomously increased expression of sod-3
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376  along with hsp-6 *°. DAF-16 is another pathway suggested to be activated by mitochondrial
377  dysfunction, contributing to the extended lifespan observed in C. elegans with whole-body
378  mitochondrial dysfunction 2. However, another study reports that while DAF-16 is required for the
379  longevity of mitochondrial mutants in certain conditions, it was not sufficient to fully account for
380 the observed lifespan extension . We found that depletion of DAF-16 suppressed a series of non-
381 cell-autonomous changes in lifespan, stress resistance, mitochondrial DNA (mtDNA) copy
382  number, and polg-1 expression. These results indicate the functional importance of DAF-16 in
383  mediating the non-cell autonomous effects of mitochondrial disruption in GABAergic neurons.

384 Recent studies on C. elegans have reported that GABA signaling regulates lifespan and
385 health ** *3. Notably, GABA loss increases DAF-16/FoxO activity in the intestine, thereby
386 increasing organismal longevity and health span ** 3. Additionally, GABA signaling modulates
387  protein homeostasis in C. elegans post-synaptic muscle cells **. In contrast to the role of GABA
388 signaling in C. elegans lifespan, knockdown of the Drosophila GABAg receptor shorts lifespan %7,
389  Nevertheless, these results indicate that GABA signals could have a conserved role in regulating
390 organismal health and aging. Our aldicarb assay results suggest that GABAergic neuronal
391  mitochondrial stress could interfere with GABAergic neuronal activity. It has been revealed that
392  mitochondria abundantly accumulate at the presynapse and affect synaptic activity by regulating
393  the supply of ATP and calcium homeostasis, which are required for proper neurotransmitter

394 release and recycling "%¢'"3,

Our previous studies have demonstrated that over 75% of
395  mitochondria localize at the presynapse in GABAergic motor neurons in C. elegans '"*. A screen
396  for essential genes required for GABAergic neuronal function, utilizing a GABAergic neuron-
397 specific feeding RNAi in C. elegans, has identified several mitochondrial-related genes.
398  Knockdown of these genes in GABAergic neurons triggers hypersensitivity against aldicarb 2.
399  Therefore, GABAergic neuronal mitochondrial perturbation could mimic effects induced by a

400 reduction in GABA signaling. This hypothesis is supported by our epistatic analysis results,

401  suggesting that GABAergic neuronal mitochondrial stress and the loss of GABA signaling in unc-
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402 25 mutants may share a common mechanism influencing longevity, stress tolerance, and sod-3
403  expression. Understanding how mitochondrial stress can modulate downstream mediators such
404  as DAF-16 through altering GABA singling and ultimately affecting longevity and health can be
405  complex. Mitochondrial stress in GABAergic neurons may partially reduce GABA signaling to

ff 112 115 Moreover, GABA signaling

406  varying degrees rather than completely turning it o
407  differentially regulates lifespan and each healthspan parameter through three receptors and a
408  combination of four downstream pathways **. Thus, reduced GABA signaling caused by GABA
409  mitochondrial stress could affect each downstream receptor pathway to varying degrees,
410  depending on the ability of each receptor to respond to GABA ligands.

411 It has been well-documented that cell-autonomous responses to mitochondrial defects
412  can vary depending on the stressor conditions, including disruptions in each ETC component and
413  disruption modes, pathological conditions, and environmental stressors '°" ', These variations
414  highlight the complex responses to mitochondrial disturbances. Interestingly, the non-cell
415  autonomous longevity changes also differ depending on the type of mitochondrial perturbation. It
416  has been reported that inhibition of spg-7 and cco-1, encoding a cytochrome c oxidase-1, in the
417  entire nervous system prolongs lifespan '® *, but it was not suppressed by mitoUPR loss.
418  Mitochondrial stress induced by pan-neuronal expression of polyglutamine repeats (polyQ40) and
419  mutation in ucp-4, encoding a mitochondrial uncoupling protein-4, do not further prolong the
420  lifespan than wild-type animals, but mitoUPR function is required to preserve normal lifespan .
421  Also, the deletion of spg-7 in AlY neurons is sufficient to induce mitoUPR in distal tissues but
422 does not prolong lifespan "323°_ Additionally, pan-neuronal expression of KillerRed, which induces
423  oxidative stress, resulted in a reduced lifespan, despite an enhanced mitoUPR pathway in remote
424  tissues *. In this study, we targeted to inhibition of isp-7 and spg-7 in GABAergic neurons and
425  observed consistent changes in lifespan and stress resistance. Notably, isp-7 gRNAI resulted in
426  decreased reproductive ability. Previous studies report that depletion of CCO-1, a component of

427  mitochondria ETC, in the nervous system results in mitoUPR activation in the peripheral tissues
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428  and prolongs lifespan without affecting brood size '®*3. Similarly, in Drosophila, ETC reduction in
429  the nervous system increases longevity but maintains normal fertility . However, it remains
430  unclear whether other mitochondrial stressors in GABAergic neurons can produce similar non-
431  cell-autonomous effects as seen with isp-71 and spg-7 knockdown, which could be one reason the
432  role of GABAergic neurons in regulating the non-cell-autonomous effects of mitochondrial
433  disturbance has not been elucidated previously.

434 Finally, studies have demonstrated that neuropeptide signaling mediates the non-cell
435  autonomous regulation of mitoUPR and organismal aging in response to mitochondrial stress in
436  specific neurons “> 17122 For instance, mitochondrial stress in ASK, AWA, AWC, and AlA neurons
437  utilizes the FLP-2 neuropeptide to induce mitoUPR in peripheral tissues 3. These results suggest
438  that there could be additional signaling molecules mediating the non-cell autonomous effects of
439  GABAergic neuronal mitochondrial stress. GABAergic neurons have been found to express
440  several neuropeptides, including flp-10, flp-11, fp-13, and flp-22 %97, Our finding indicates that
441  gRNAi against unc-31 increased lifespan resulting from depletion of dense core vesicle exocytosis
442 was not further increased by GABA-neuronal mitochondrial stress, suggesting that neuropeptide
443  signaling could be involved in non-autonomous changes caused by GABA-neuronal mitochondrial

95

444  damage . FLP-13 loss increased lifespan and stress resistance, which is similar to the
445  phenotype of animals with mitochondrial perturbations in GABAergic neurons. Animals with both
446  conditions did show significant changes in stress resistance and lifespan compared to animals
447  with either single condition, indicating that they work through the same mechanism to mediate
448  non-cell autonomous effects. Therefore, it is possible that GABAergic neuronal mitochondrial
449  stress reduces FLP-13 function, which inhibits lifespan and healthspan. Future studies are
450 needed to elucidate the specific role of FLP-13 and other neuropeptides in the non-cell-
451  autonomous effects of GABA-neuronal mitochondrial stress.

452

453
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484  Material and Methods.

485 C. elegans strains

486  All C. elegans strains were maintained at 20 °C on nematode growth medium (NGM) plates
487  seeded with the OP50 strain of Escherichia coli (E. coli) as described before '2. A list of strains
488  used in this study is the following: N2 (Wild type), XE1375 (wpls36 |; wpSi1 Il; eri-1(mg366) 1V;
489  rde-1(ne219) V; lin-16B(n744) X), SJ4100 (zcls13 [hsp-6p::gfp]), CB156 (unc-25(e156) Ill), ,
490 HC196 (sid-1(qt9) V), GR1352 (daf-16(mgDf47)Il), TI356 (zIs356 IV [daf-16p::daf-16a/b.:gfp; rol-
491  6(su1006)]), CF1553 (muls84 [(pAD76) sod-3p::gfp + rol-6(su1006)]), CL2166 (dvis19 llI
492 [(pAF15)gst-4p::gfp::NLS]). HAN260 (daf-16(mgDf47) I, wpls36 I; wpSi1 Il; eri-1(mg366) IV; rde-
493  1(ne219) V; lin-15B(n744) X), HAN186 (unc-25(e156); sid-1(qt9)), HAN356 (unc-25(e156); sid-
494  1(qt9)+ sSbsEx27 [unc-47p:isp-1 sense+ unc-47p:isp-1 antisense]), HAN357 (sid-
495  1(qt9)+sbsEx27 [unc-47p::isp-1 sense+ unc-47p::isp-1 antisensel).

496

497  RNAi assay

498  RNAi was performed by the feeding method '2* 2%, Briefly, freshly streaked single colonies of
499  HT115(DE3) bacteria containing either empty L4440 vector (control) or isp-1 and spg-7 RNAI
500  plasmid were grown overnight at 37 °C in Luria broth (LB) medium supplemented with carbenicillin
501 (25 ug/ml). HT115(DE3) bacterial feeding strains were obtained from the genome-wide library %,
502 PCR and sequencing were used to confirm that strains contained the correct clones. RNAI

503  bacteria were seeded on NGM plates containing IPTG (1 mM) and cultured overnight before
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504  transferring animals. To prevent undesired non-specific effects, we did not use 5-fluoro-2'-
505  deoxyuridine (FUdR) in seeded RNAI plates. Duplex RNAi was performed by mixing two
506 HT115(DE3) bacterial strains, each containing the desired RNAIi plasmid or empty vector in a 1:1
507  volume ratio. The efficiency of double RNAI, which involves feeding a 1:1 volume ratio mixture of
508  bacteria strains targeting two different genes, was compared to that of single gene RNAI, which
509 involves feeding a 1:1 volume ratio mixture of bacteria strains targeting one gene and an empty
510  vector.

511

512  Lifespan assay

513  Age-synchronized animals were prepared by egg prep from adult animals cultured on each RNAI
514  orregular NGM plate at 20°C '?°. The isolated embryos were transferred and allowed to hatch on
515 RNAI NGM plates for the desired gene or regular NGM plates. Then, approximately 50 animals
516  at the L4 stage were transferred to fresh RNAI plates. Every day, animals that failed to respond
517 to gentle prodding with platinum wire were scored as dead. Lifespan data were statistically
518 analyzed for significance by the log-rank test, comparing survival curves using GraphPad Prism
519  software. Lifespan assays were performed at least in triplicate. To prevent undesired non-specific
520  effects, we did not use 5-fluoro-2'-deoxyuridine (FUdR) in the seeded RNAI plates.

521

522  Aldicarb sensitivity assay

523 Aldicarb sensitivity assay was performed as described previously . Briefly, approximately 40-50
524  mutant animals were grown on OP50-seeded NGM plates at 20 °C for 72 hours. Approximately
525 40 L4 stage mutant animals were then picked and placed on 35 mm OP50-seeded NGM plates
526  containing 0.5 mM aldicarb (Sigma Aldrich, 33386: prepared aldicarb NGM plates 1 day before
527  the assay) and scored for paralysis every 30 minutes over a 120-minute period. Animals were
528  considered paralyzed when they failed to show any movements in response to touching at a fixed

529 time. This assay was carried out in triplicate for each experimental condition.
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530

531 Reproductive assay

532  After pre-exposure to spg-7 and isp-1 RNAi from the L1 stage, age-synchronized XE1375 animals
533  atthe L4 stage (n=~20-30) were individually transferred to fresh spg-7 and isp-7 RNAi NGM plates.
534  Every day, we moved mother animals to new spg-7 and isp-7 RNAi NGM plates until egg-laying
535  stopped. The embryos produced daily were counted, and the total number of produced embryos
536  was used to calculate the brood size. The egg production period was used to calculate the
537  reproductive span, and the number of embryos produced each day was used to analyze
538 reproductive trends. The hatching rate was scored 24 hours after egg-laying. The brood size,
539  reproductive span, hatching rate, and reproductive trend data were generated from independent
540  experiments. At least three replicate experiments were performed for each assay.

541

542  Stress assays

543  For the paraquat assay, 30-50 age-synchronized animals were pretreated to RNAi for each gene
544  from the L1 stage. Then, 2-day-old adult animals were transferred to 96-well plates containing M9
545  with paraquat, a reactive oxygen species generator (Sigma-Aldrich, 36541-100MG), at a
546  concentration of 0 mM, 50 mM, 100 mM, and 150 mM in a total volume of 100 ul per well. The
547  survival of animals was evaluated after 24 hours, and animals that failed to respond to platinum
548  wire touch were scored as dead. In the heat stress resistance assay, age-synchronized adult
549  animals pretreated with isp-1 or spg-7 RNAi were exposed to thermal stress at 37°C for 5 hours.
550  The survival after heat shock was recorded every hour for 5 hours by gently prodding with a
551  platinum loop. Animals that failed to respond were scored as dead. All experiment was
552 independently repeated at least three times.

553

554  Staining assays for ROS level and mitochondrial homeostasis
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555  We used the fluorescent probe H.DCF-DA dye (Invitrogen, D399) to detect ROS levels in vivo,
556  as previously described 2. 2-day-old adult stage mutants or XE1375 animals pretreated with spg-
557 7, isp-1, or control EV RNAIi from the L1 stage were washed with M9 buffer to remove the bacteria.
558  After washing 3 times, animals were collected in 300 pl of PTw buffer (1xPBS with 0.1% tween20).
559  Then, around 30-35 animals were transferred to 96-well plates containing 10 mM H.DCF-DA. The
560 fluorescence was recorded using Spectra Max M2 multimode microplate reader (Molecular
561  Devices) at 485 nm excitation and 530 nm emission. The change in fluorescence was recorded
562  for 120 min at 20 min intervals at 37 °C. The experiment was performed 3 times independently.
563  To perform the H.DCF-DA assay using an image, we transferred 30-40 pretreated spg-7 and isp-
564 1 RNAI animals in 500 yl M9 buffer and washed 3 times. Afterward, animals were incubated in
565 500 pl M9 buffer containing 10 mM H2DCF-DA for 1 hour. Animals were washed with M9 buffer
566  atleast 3 times, transferred to 2% agarose pads on glass slides, and visualized using a GFP filter
567 andimaged using a 40x objective (Andor, DSD2 spinning disk confocal, Andor, Zyra4.2 camera).
568 To evaluate mitochondrial membrane potential and mass, we used MitoTracker CMXRos
569  (Invitrogen, M7512) and FM green dye (Invitrogen, M7514), respectively, as described in previous
570  studies "2 The lyophilized dyes were dissolved in DMSO and made to the final concentration
571  of 100 uM. Animals were pretreated from the L1 stage to spg-7 and isp-1 gRNAI. L4 stage animals
572  (n=30-40) were transferred to spg-7 and isp-17 RNAi plates with MitoTracker CMXRos or
573  MitoTracker FM green dye and incubated for 48 hours at room temperature under dark conditions.
574  Next, stained animals were transferred to fresh NGM plates (without the dye) for 1 hour to remove
575  the bacterial fluorescent background inside the gut. The animals were observed using a 10x
576  magnification to visualize the whole-body staining and a 40x objective to observe the anterior
577  body, including the intestine.

578

579  ATP assay
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580 We used previously reported protocols with a minor modification 2. Approximately 150 age-
581  synchronized animals treated with spg-7 and isp-1 RNAI from the L1 stage were prepared.1-day-
582  old adult animals were washed 5 times with M9 buffer to remove the intestinal bacteria and
583  washed with TE buffer. The animals were frozen at -80 °C. The sample was sonicated for 15
584  seconds with a 15-second interval, followed by boiling for 10 minutes to release ATP and block
585  ATPase activity. Debris was removed by centrifuging at 4 °C for 10 minutes. The supernatant was
586  collected, and the ATP levels were measured using the bioluminescence detection kit (Promega
587 ENLITEN ATP Assay System, FF2000) and Spectra Max M2 multimode microplate reader
588  (Molecular Devices). Luminescence was normalized to protein content measured with a Pierce
589  BCA protein determination kit (Thermo Scientific, 23227).

590

591 mtDNA quantification

592  mtDNA quantification was performed using a quantitative PCR (qPCR) based method '*°. About
593 30 age-synchronized L4 staged spg-7(gRNAI) and isp-1(gRNAI) animals were collected in 30 pl
594  oflysis buffer (freshly added proteinase K) and frozen immediately at —80 °C for 10 minutes before
595 lysis at 65 °C for 1 hour, followed by 95 °C for 15 minutes, and then maintained at 4 °C. Relative
596  quantification was used for determining the fold changes in mtDNA. 2 pul of lysate sample was
597 used as template DNA in each triplicate reaction. gqPCR was performed using the SYBR green
598  mixture in a CFX96 Touch Real-Time PCR System (Bio-Rad). Primers (mtDNA target-specific

599  primer) for cox-4 and nd-1 were used to determine the mtDNA copy number. The cox-4 forward

600  primer 5" GCCGACTGGAAGAACTTGTC-3’ and reverse primer 5-
601 GCGGAGATCACCTTCCAGTA-3". The nd-1 forward primer 5'-
602 AGCGTCATTTATTGGGAAGAAGAC-3’ and reverse primer 5'-

603 AAGCTTGTGCTAATCCCATAAATGT-3". All gPCR results were performed in triplicates.
604

605  Quantitative reverse transcriptase PCR
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606  RNA isolation and quantitative reverse transcriptase PCR (QRT-PCR) analysis were performed
607  as previously described '*°. Animals raised on spg-7 or isp-1 gRNAI plates were synchronized by
608  egg prep. Then, total RNA was extracted using the TRIzol (Invitrogen, 15596026) method from
609  age-synchronized animals (approximately 1,500 animals at the 3-day-old adult stage). RNA was
610 purified using a Qiagen Rneasy kit, and 2 ug RNA was used for cDNA synthesis (Thermo
611  Scientific, Verso cDNA synthesis kit, AB1453A). gPCR was performed using SYBR Green master
612 mix (Bio-Rad Laboratories). qPCR primers are listed below. Act-1 Forward 5'-
613 GCTGGACGTGATCTTACTGATTACC-3’, act-1 Reverse 5'-
614 GTAGCAGAGCTTCTCCTTGATGTC-3', daf-16 Forward 5-CCAACACATTCATCCCAGTG-3’,
615 daf-16 Reverse 5 -GATGGGATAGAGGTAGCATT-3’, sod-3 Forward 5-
616 CTGATGGACACTATTAAGCG-3’, sod-3 Reverse 5 -AAGTGGGACCATTCCTTCCAA-3’, gst-
617 4 Forward 5 -GCTGAGCCAATCCGTAT-3, gst-4 Reverse 5-GTAAAATGGGAAGCTGGC-
618 3°, dk-1 Forward 5-TCGACGCTATCTCCGAACTT-3", dlk-1 Reverse 5-
619 TGCTTGATCTCGGTCTCCTT-3", hsp-6 Forward 5-CGAAAGCTATTTGGGAACCA-3’, hsp-6
620 Reverse 5-GCTCGTTGATGACACGAAGA-3’, hsp-60 Forward 5'-
621 CCGTCTCTGTCACTATGGGC-3', hsp-60 Reverse 5'-CTCGAATCCCTCTTTGGCGA-3’, polg-1
622  Forward 5-GTTACGGCCGACGAGATACG-3’, polg-1 Reverse 5-
623 CGTAGCTTCCGGACTCCAAA-3". All gPCR results were performed at least in triplicates.

624

625  Statistics

626  Statistics were performed using GraphPad PRISM (version 9 and 10). No statistical method was
627  used to pre-determine sample size. For Figures 5D and 7D, outliers were identified using the
628  ROUT method at Q = 1% and excluded from further analysis. Within experimental groups, animals
629  were randomized for each experimental replicate. The qPCR experiments were analyzed using
630 the delta-delta Ct method '?'. All experiments were reliably reproduced at least 3 times

631 independently. For the qPCR assays, in cases where the control and subjects were not paired,
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632  the average control delta Ct value was utilized to calculate delta-delta Ct values. However, if the
633  control and experimental groups were paired, individual control delta Ct values were used to

634  calculate delta-delta Ct values for each paired experimental group.
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Figure Legend

Figure 1. Mitochondrial stress in GABAergic neurons is sufficient to prolong the
organismal lifespan.

(A and B) Lifespan analysis of systemic isp-1(sRNAi) and spg-7(sRNAi) animals. (C) GABA-
neuron-specific RNAi system. The gRNAi system is based on the rde-17 mosaic mutant
background, which carries a loss-of-function mutation in rde-1, thereby preventing RNA| 48 %0 31.
%3.%6.131 This system also involves eri-1 and lin-15 loss-of-function mutant backgrounds, resulting
in hyperactivated RNAi sensitivity in all neurons “® 2, Restricted feeding RNAi to GABAergic
neurons is achieved by exclusive RDE-1 expression in GABAergic neurons, along with the SID-
1 dsRNA channel protein “8. (D and E) Lifespan analysis of isp-1(gRNAI) and spg-7(gRNAI)
animals. (F) GABAergic neuron-specific isp-1 RNAI through in vivo transcription of sense and
antisense RNAs in GABAergic neurons under the sid-71(eq9) null mutant background. (G) Lifespan
analysis of sid-1(qt9) and sid-1(qt9)+Pgaba::isp-1 dsRNA animals. The significance of the
lifespan curves (A, B, D, E, and G) was assessed using a Log-rank (Mantel-Cox) test. (H and [)
The levels of lipofuscin in isp-1(gRNAI) and spg-7(gRNAI) animals at the 9-day-old adult stage
were compared to those in control animals. (H) Representative images of lipofuscin fluorescence
in the whole body of animals under the indicated conditions. Bar, 50 ym. () Quantification of
lipofuscin fluorescence intensity. Each dot represents a single animal. ****P < 0.0001; one-way

ANOVA test. Data are expressed as means + SEM. Created with https://www.biorender.com/.

Figure 2. Mitochondrial stress in GABAergic neurons enhances stress resistance

(A) A diagram illustrating the paraquat and thermal stress experimental procedures is provided.
(B-D) The survival rate of animals cultured in indicated concentrations of paraquat for 24 hours
was measured at 3, 6, and 9-day-old adult stages. (E-G) The survival rate after incubation at 35°C
for 5 hours was measured in animals at 3, 6, and 9-day-old adult stages. At least 30 animals were

tested for each set. Statistical significance is indicated as follows: (H-I) Survival rates of animals
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at the 3-day-old adult stage after 100 mM paraquat treatment for 24 hours (H) and 24 hours after
incubation at 35°C for 5 hours (I) were measured. *P < 0.05, **P < 0.005, ***P < 0.0005, ****P <

0.0001; one-way ANOVA test. Data are expressed as means + SEM.

Figure 3. Reproductive effects of mitochondrial perturbation in GABAergic neurons.

(A) A diagram of the C. elegans hermaphrodite reproductive system was presented, showing the
distal gonad with the mitotic area for germ cell proliferation, the meiotic germ area for meiosis,
and an area undergoing germ cell apoptosis, the proximal area with oogenesis, the spermatheca
for sperm storage, and the uterus for fertilized egg storage. (B) Sterility in isp-1(gRNAi) animals
compared to control animals. (C) The total number of embryos in fertile isp-1(gRNAi) and spg-
7(gRNAI) animals. (D) The daily brood size in fertile isp-1(gRNAi) and spg-7(gRNAI) animals. (E)
Representative images of dissected distal gonad arms stained with DAPI from 2-day-old isp-
1(gRNAI) and control animals. The dashed lines indicate the endpoint of the mitotic area. (F)
Quantitative analysis of germ cell numbers in the mitotic regions of isp-1(gRNAi) and control
animals. (G) A violin plot is presented, displaying the median (solid line) and quartiles (dashed
lines), illustrating the apoptotic germ cells in the loop regions of isp-1(gRNAI) and control animals.
(H) Representative images of dissected proximal gonad stained with DAPI from 2-day-old isp-
1(gRNAi) and control animals. The arrowheads indicate stained oocyte chromosomes. (l)
Quantitative analysis of endomitotic nuclei in diakinesis oocytes in the proximal gonad of isp-
1(gRNAI) and control animals. Statistical significance is indicated as follows: *P < 0.05, ***P <
0.0005, ****P < 0.0001; two-tailed Mann—Whitney test. Each dot represents an individual worm
(C and D) and gonad arm (F, G, and I). Additionally, each dot indicates an individual group (B and
1), animal (C and D), and gonad (F and G). Data are expressed as means + SEM except (G).

Created with https://www.biorender.com/.
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Figure 4. GABAergic neuronal mitochondrial stress alters the mitochondrial homeostasis

in peripheral tissues of animals.

(A) Representative images of mitochondrial membrane potential in isp-1(gRNAi) and spg-
7(gRNAI) animals after MitoTracker CMXRos dye staining at 3-day-old adults. (B and C)
Quantitative analysis of MitoTracker CMXRos fluorescent intensity measured by microscopy with
a 100x magnification in the indicated animals at 3-day-old adult stage (B) and in the anterior
intestine region assessed by microscopy with a 400x magnification (C). (D) The ATP
bioluminescence assay measured ATP levels in the whole-body extracts of isp-1(gRNAI) and spg-
7(gRNAI) animals. (E) Representative image of MitoTracker FM Green fluorescence in animals
at 3-day-old adults to visualize mitochondrial mass. (F) Quantitative MitoTracker FM Green
fluorescence intensity in isp-1(gRNAI) and spg-7(gRNAi) animals (G) Relative mtDNA copy
number analyzed by the qPCR method in isp-1(gRNAi) and spg-7(gRNAi) animals. (H) Relative
transcript levels of mitochondrial DNA polymerase gamma polg-1 gene expression measured by
gPCR in isp-1(gRNAI) animals at the 2-day-old adult stage. () Representative images of isp-
1(gRNAI) and spg-7(gRNAI) animals stained with H2DCF-DA dye to measure ROS levels in the
whole body. (J) Quantitative analysis of H2DCF fluorescent intensity monitored by a
spectrophotometer in isp-1(gRNAi) and spg-7(gRNAi) animals at 3-day-old adults. (K)
Quantitative fluorescence intensity in the anterior intestine of animals after H2DCF-DA staining
with a 400x magnification. Statistical significance is indicated as follows: *P < 0.05, **P < 0.005,
**P < 0.0005, ™**P < 0.0001; one-way ANOVA test for (B, C, D, F, G, J, and K) and two-tailed
student's t-test for (H). Each dot indicates an individual worm (B, C, F, J, and K). Data are

expressed as means + SEM. Bars, 50 ym.

Figure 5. GABAergic neuronal mitochondria stress elevated the DAF-16/FoxO pathway.


https://doi.org/10.1101/2024.03.20.585932

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.585932; this version posted March 25, 2024. The copyright holder has placed this
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse,
remix, or adapt this material for any purpose without crediting the original authors.

(A) RT-gPCR analysis to assess the relative transcript levels of mitoUPR, SKN-1/Nrf, and DAF-
16/FoxO signaling target genes in isp-1(gRNAI) animals compared to control EV(gRNAI) animals.
The expression levels of each gene were normalized to the reference gene act-2 which encodes
actin. (B) RT-gPCR analysis was conducted to assess the relative transcript levels of sod-3 in sid-
1(qt9) null mutants expressing isp-1 dsRNA in GABAergic neurons. (C and D) Representative
images and the quantification of Psod-3::GFP expression, a reporter for DAF-16/FoxO activity, in
sid-1(qt9) control animals and sid-1(qt9)+ Pgaba::isp-1 dsRNA animals. Each dot indicates an
individual worm. (E) RT-gPCR analysis was performed to assess the relative transcript levels of
sod-3 and dlk-1 in daf-16(mgDf47) null mutants, both with and without isp-17 gRNAI treatment.
Statistical significance is indicated as follows: **P < 0.005, ***P < 0.0005, ****P < 0.0001; two-
tailed student's t-test (B); two-tailed Mann-Whitney test (D); two -way ANOVA (A and E). Data

are expressed as means + SEM.

Figure 6. GABAergic neuronal mitochondria stress requires DAF-16/FoxO to trigger the

non-cell-autonomous effects.

(A) Lifespan analysis to evaluate the role of daf-16 in the extended lifespan induced by Pgaba::isp-
1 dsRNA. The significance of the lifespan curves was assessed using a Log-rank (Mantel-Cox)
test. (B and C) Stress tolerance assays. In a daf-16(mgDf47) mutant background, Pgaba::isp-1
dsRNA expression failed to increase resistance to heat stress (B) or paraquat stress (C)
compared to control EV gRNA.. (D and E) Representative images (D) and quantification (E) of
mitochondrial membrane potential assessed by MitoTracker Red CMXRos dye staining at 3-day-
old adults. (F and G) Representative images (F) and quantification (G) of MitoTracker FM Green
fluorescent staining at 3-day-old adults to monitor mitochondria mass. (H and |) Relative mtDNA
copy number (H) and polg-1 gene expression level (1) were analyzed by qPCR in EV(gRNAI) and

isp-1(gRNAI) under daf-16(mgDf47) null mutant background. (J) Comparison of the mean number
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of eggs laid each day between daf-16(mgDf47)+isp-1(gRNAi) and control daf-16(mgDf47);
EV(gRNAI) animals. (K) The total number of embryos in fertile daf-16(mgDf47)+isp-1(gRNAI) and
control daf-16(mgDf47); EV(gRNAI) animals. Each dot represents an individual animal (E, G, J,
and K). Statistical significance is indicated as follows: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P
< 0.0001; a one-way ANOVA test for B and C, and a two-tailed Mann—Whitney test for E, G, H, |,

J, and K. Data are expressed as means + SEM. Bars, 50 ym.

Figure 7. Non-cell autonomous effects of GABAergic neuronal mitochondrial stress were
not additively enhanced by the loss of GABA signaling.

(A) Lifespan analysis was conducted on animals with indicated genetic backgrounds to investigate
the relationship between GABA signaling and mitochondrial stress in GABAergic neurons. (B and
C) Paraquat and thermal stress assays were performed on unc-25 null mutants with and without
GABAergic neuronal mitochondrial stress induced by Pgaba::iisp-1 dsRNA expression to
elucidate their relationship. (D) Assessment of the fluorescence intensity of the Psod-3::GFP
reporter, indicative of DAF-16/FoxO activity, in the specified mutants. (E) Evaluation of aldicarb
sensitivity in response to the expression of isp-7 dsRNAs in GABAergic neurons. Each dot
represents an individual group in B, D, and E and individual animal in D. *P < 0.05, **P < 0.005,
***P < 0.005, ****P < 0.001; Log-rank (Mantel-Cox) test for A; one-way ANOVA test for B, C, D,

and E. Data were expressed as means £+ SEM.

Figure 8. FLP-13 neuropeptides modulate organismal lifespan and stress tolerance,
without expanding the non-cell autonomous effects of GABAergic neuronal mitochondrial
stress. (A and B) Lifespan assays were conducted to evaluate the role of unc-31 (A) and flp-13
(B) in regulating organismal longevity. (C and D) Quantitative analysis of the thermal (C) and

paraquat (D) stress resistance assays was performed after double gRNAI, induced by feeding
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worms a 50:50 mixture of two bacterial strains expressing either EV, flp-13, or isp-1 dsRNAs. *P
< 0.05, **P < 0.005, ***P < 0.005, ****P < 0.001; Log-rank (Mantel-Cox) test for A and B; one-way

ANOVA test for H and |. Data were expressed as means + SEM.
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Figure S1. (Related to Figure 1). Global induction of mitoUPR reporter upon isp-71 dsRNAs
expression in GABAergic neurons of wild-type animals.

(A) Representative image showing the increased expression of Phsp-6::gfp transgene in the
animals with transcription of isp-1 sense and antisense RNAs in vivo under the GABAergic
neuron-specific promoter. Note that the N2 wild-type background allowed the systemic RNAi
effects on peripheral tissues. (B) Quantitation of the Phsp-6::GFP fluorescence intensity in the
intestine showing the non-cell-autonomous effects of in vivo transcription of isp-7 dsRNAs in
GABAergic neurons. Each dot represents an individual animal. Data were expressed as

means = SEM. A two-tailed Mann-Whitney test.
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Figure S2. (Related to Figure 2). Continuous gRNAIi against spg-7 over three generations
led to altered organismal stress resistance.

(A) A diagram showing the experimental procedure of paraquat and thermal stress response
assays in spg-7(gRNAi) animals after continuous RNAI for three generations. (B and C)
Quantification of paraquat stress assays in spg-7(gRNAi) animals at 1-day or 9-day-old adult
stages. (D and E) Quantification of thermal stress assays in spg-7(gRNAi) animals at the L4 and
9-day-old adult stages. Animals were exposed to 35 °C for 5 hours. Data were expressed as
means + SEM. *P.<0.05, **P.<0.005, ***P.<0.005, ****P.<0.001; two-tailed student’s t-test.

Created with https://www.biorender.com/.
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Figure S3. (Related to Figure 3). Non-cell autonomous effects of GABA neuronal
mitochondrial stress on the reproductive system.

(A) Diameter of the mitotic area in the distal gonad in isp-1(gRNAi) animals. (B) Hatching rates of
embryos in isp-1(GABA-RNAI|) and spg-7(GABA-RNAI) animals. *P.<0.05, **P.<0.005; a two-
tailed Mann-Whitney test for A; ne-way ANOVA test for B. Data were expressed as

means + SEM.
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Figure S4. (Related to Figure 6). The role of DAF-16 in the non-cell autonomous effects of

GABA neuronal mitochondrial stress.

(A) Quantification of the Phsp-6::GFP intensity in the indicated sRNAI strains. (B and C) Lifespan
(B) and paraquat tolerance (C) assays of isp-1 sRNAi under the daf-16(mgDf47) null mutant
background. (D) Lifespan was tested after gRNAI induction by feeding GABAergic neuronal-
specific RNAI strain (XE1375) worms with a 50:50 mixture of bacteria producing either EV, isp-1,
or daf-16 dsRNAs.*P.<0.05, **P.<0.005, ***P.<0.005, ****P.<0.001; a two-tailed Mann—Whitney
test was used for A; Log-rank (Mantel-Cox) test for B and D; one-way ANOVA test for C. Data

were expressed as means + SEM.


https://doi.org/10.1101/2024.03.20.585932

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.585932; this version posted March 25, 2024. The copyright holder has placed this
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse,
remix, or adapt this material for any purpose without crediting the original authors.

A unc-25(0);
— unc-25(0); sid-1(0) :I ns :|ns

— unc-25(0); sid-1(0)+Pgaba::isp-1 dsRNA

100

Survival (%)
(9] ~
o a

| |

N
(8]
1

0 T T T i 1
0 5 10 15 20 25
Days after L4
Figure S5 (Related to Figure 7): Assessing the impact of mitochondrial stress in
GABAergic neurons on lifespan in unc-25 null mutants.

(A) Repeated lifespan analysis of unc-25(qt9) mutants with and without isp-1(sRNAi). The

significance was analyzed by a Log-rank (Mantel-Cox) test.
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Figure S6. (Related to Figure 8). The effects of single GABA-RNAI inhibition against flp-13

and isp-1 on lifespan and stress response.

(A) Representative images of Pflp-13::GFP expression. GABA neurons are visualized by mCherry
derived by unc-47 promoter. Arrowheads indicate the cell body of GABA neurons on the ventral
nerve cord with GFP expression. Arrows indicate the cell bodies only with mCherry signals. The
dashed boxes are magnified below. (A, B, and C) Lifespan and stress tolerance were tested after
gRNAI induction by feeding GABAergic neuronal-specific RNAi strain (XE1375) worms with
bacteria producing either isp-1 or flp-13 dsRNAs alone for each condition. (B) The survival rate
after incubation at 35°C for 5 hours was measured in animals at the 3-day-old adult stage. At least
30 animals were tested for each set. (C) The survival rate of animals cultured in indicated

concentrations of paraquat for 24 hours was measured at the 3-day-old adult stage. (D) Lifespan
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assay of isp-1(gRNAI) and flp-13(gRNAI) animals. **P < 0.005, ****P < 0.001; one-way ANOVA

test for B and C; a Log-rank (Mantel-Cox) test for D. Data were expressed as means + SEM.
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Table S1. Related to Figs. 1, 6, 7, S4, and S5. Lifespan summary. For P values, stars in the
‘Genotype’ column are provided to denote the genotype (within the group delimited by color)
against which the comparison was performed. Actual P values are provided in the ‘significance’

column. The results indicate the total lifespan summary of triplicates.

Related RNAI Median | No. of P (Log-rank
: Background genotype treatment lifespan total 9
Figure : test)
against (days) | worms
EV 16 174
Figure 1A Wild-type N2
isp-1 23 172 P < 0.0001
EV 14 150
Figure 1B Wild-type N2
spg-7 15 153 P =0.0001
wpls36 I; wpSit Il; eri-1(mg366) EV 9 127
Figure 1D IV; rde-1(ne219) V; lin-
15B(n744) X Isp-1 14 140 P < 0.0001
wpls36 I; wpSit Il; eri-1(mg366) EV 12 72
Figure 1E IV; rde-1(ne219) V; lin-
15B(n744) X spg-7 16 69 P < 0.0001
*Wild-type N2 15 144
Figure 1G **sid-1(qt9) 14.5 140 *P=0.59
, Pgaba::isp-1 *P < 0.0001
sid-1(qt9) PdsRNA. 16 15T | »p<0.0001
wpls36 I; wpSit Il; eri-1(mg366) *EV 11 137
IV; rde-1(ne219) V; lin-
15B(n744) X **isp-1 12 113 *P < 0.0001
Figure 6A Hedkk 117 *P =
daf-16(mgdf47) wpls36 I; wpSi1 EV B p=077
Il; eri-1(mg366) 1V; rde-1(ne219) *P =0.045
V; lin-15B(n744) X) isp-1 11 148 **P < 0.0001
***P =0.097
unc-25(e156); sid-1(qt9) 19.50 96
Figure 7A 5
C o Pgaba::isp-1 B}
unc-25(e156); sid-1(qt9) dsRNA 20 138 P=0.0029
*Wild-type N2 14 126
**unc-31(e928) 17 145 *P < 0.0001
Figure 8A ***sid-1(qt9) Pgaba::isp-1 16 154 *P < 0.0001
dsRNA *P=0.11
. *P < 0.0001
unc-31(€928); sid-1(qt9) Pgaba:isp-1 16 151 **p 0 8_%%
dsRNA #p = 0,59
Figure 8B *EV 8 149
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**isp-1+EV 9 149 *P < 0.0001
wpls36 I; wpSit Il; eri-1(mg366) i *P < 0.0001
IV: rde-1(ne219) V. lin- e E 1521 wp =008
15B(n744) X *P < 0.0001
flp-13+isp-1 14 135 ** P <0.0001
*** P =0.02
Figure daf-16(mgdf47) BV 11 100
S48 daf-16(mgdf47) isp-1 11 126 *P=0.16
*EV 11 142
**isp-1+EV 14 147 *P =0.0001
Figure wpls36 I; wpSit Il; eri-1(mg366)
S4D IV; rde-1(ne219) V; lin- ***daf-16+ EV 11 150
15B(n744) X P =076
daf-16 + isp-1 11 140 **P < 0.0001
**P=0.48
*unc-25(e156) 15 157
F&“Ae “unc-25(e156); sid-1(qt9) 16 152 *P=0.72
. Pgaba::isp-1 *P=0.56
unc-25(e156); sid-1(qt9) dsRNA 15 159 **p=0.31
*EV 8 149
Fiqure wpls36 I; wpSit Il; eri-1(mg366) -~ "
896D IV; rde-1(ne219) V; lin- isp-1 13 135 P<0.0001
15B(n744) X *P<0.0001
fip-13 o 155 |« p=0.0001
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