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Abstract— In distributed learning systems, robustness threat
may arise from two major sources. On the one hand, due to
distributional shifts between training data and test data, the
trained model could exhibit poor out-of-sample performance.
On the other hand, a portion of working nodes might be
subject to Byzantine attacks, which could invalidate the learning
result. In this article, we propose a new research direction
that jointly considers distributional shifts and Byzantine attacks.
We illuminate the major challenges in addressing these two issues
simultaneously. Accordingly, we design a new algorithm that
equips distributed learning with both distributional robustness
and Byzantine robustness. Our algorithm is built on recent
advances in distributionally robust optimization (DRO) as well
as norm-based screening (NBS), a robust aggregation scheme
against Byzantine attacks. We provide convergence proofs in
three cases of the learning model being nonconvex, convex, and
strongly convex for the proposed algorithm, shedding light on
its convergence behaviors and endurability against Byzantine
attacks. In particular, we deduce that any algorithm employing
NBS (including ours) cannot converge when the percentage of
Byzantine nodes is (1/3) or higher, instead of (1/2), which is the
common belief in current literature. The experimental results
verify our theoretical findings (on the breakpoint of NBS and
others) and also demonstrate the effectiveness of our algorithm
against both robustness issues, justifying our choice of NBS over
other widely used robust aggregation schemes. To the best of our
knowledge, this is the first work to address distributional shifts
and Byzantine attacks simultaneously.

Index Terms— Byzantine attacks, distributed learning, dis-
tributional shifts, norm-based screening (NBS), Wasserstein
distance.

I. INTRODUCTION

D ISTRIBUTED learning usually refers to the paradigm
where a number of working nodes (workers) carry out

the overall task of training a model in parallel, coordinated
by a central node (server). It plays an increasingly important
role in solving large-scale machine learning problems for sev-
eral reasons, including its expandable computational/storage

Manuscript received 15 June 2022; revised 22 January 2023, 4 May 2023,
and 1 January 2024; accepted 15 March 2024. This work was supported in part
by the National Science Foundation under Grant 1939553, Grant 2003211,
Grant 2128596, Grant 2231209, and Grant 2413622. (Corresponding author:
Guanqiang Zhou.)

Guanqiang Zhou was with the Department of Electrical and Computer
Engineering, George Mason University, Fairfax, VA 22030 USA. He is now
with the Department of Electrical and Computer Engineering, University of
Iowa, Iowa City, IA 52242 USA (e-mail: gzhou4@gmu.edu).

Ping Xu is with the Department of Electrical and Computer Engineering,
University of Texas Rio Grande Valley, Edinburg, TX 78539 USA.

Yue Wang is with the Department of Computer Science, Georgia State
University, Atlanta, GA 30303 USA.

Zhi Tian is with the Department of Electrical and Computer Engineering,
George Mason University, Fairfax, VA 22030 USA.

Digital Object Identifier 10.1109/TNNLS.2024.3436149

capacities, growing size of modern datasets, and privacy
concerns [1], [2], [3], [4]. As the deployment of machine
learning becomes prevalent in modern safety-critical fields
(such as autonomous driving [5] and medical diagnosis [6])
where the cost of model failure is extremely high, it is crucial
to equip the learning systems with some robust features such
that the risk of model failure is minimized.

In distributed learning, there are two major robustness
issues that may pose a threat to model safety. The first
issue is distributional shifts, which exposes the vulnerability
of empirical risk minimization (ERM), the de facto training
paradigm in machine learning. In ERM, the model is trained
to minimize the training loss and then is applied to unseen
data, or test data, on the key assumption that training data
and test data are drawn from the same distribution. However,
this assumption rarely holds in a practical scenario due to
selection biases in training data [7], nonstationarity in the envi-
ronment [8], or even adversarial perturbations [12], leaving
the ERM-trained models susceptible to drastically degraded
performance under some minor level of distributional shifts.
Note that this issue is naturally encountered in distributed and
centralized settings alike.

The second issue is Byzantine attacks. In a typical dis-
tributed training iteration, each worker is supposed to send
its honest and accurate local update to the server, which
uses the average of these local updates to refine the model.
However, due to a myriad of system glitches such as data
corruption, computational error, and transmission interference,
a portion of workers could send unwarranted updates to the
server, thus polluting the refined model [41]. Even worse,
an adversary might intentionally insert malicious workers into
the system to attack the model. Such a scenario is especially
likely in federated learning where the server usually does
not have a chance to thoroughly verify the honesty and
competency of all participating devices. Due to the difficulty
in modeling each type of system error separately, as well as
the concern of malicious workers, researchers in this field
often model them uniformly as Byzantine attacks [27], where
a malfunctional/Byzantine worker can send arbitrary messages
to the server. It is well known that even a single Byzantine
worker can totally invalidate the learning result and cause
model failure [39].

In this article, we propose a new research direction that
jointly considers distributional shifts and Byzantine attacks in
distributed learning. Such an effort is worthwhile in order to
attain overall model safety/robustness since a Byzantine-robust
model may not necessarily be resilient to distributional shifts
(as shown in our simulations) and vice versa. It is worth noting
that there appears to be a growing interest in simultaneously
satisfying multiple well-known constraints that are relevant in
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federated learning, such as communication efficiency, fairness,
robustness, and privacy [2], [3], [4]. Yet, when robustness
is considered as one of the design goals, it almost exclu-
sively refers to Byzantine robustness [47], [48], [49], [50],
[51]. We want to point out that Byzantine robustness is not
an all-around safety measure and mitigating distributional
shifts is of equal importance as far as model safety is
concerned.

Despite extensive efforts to address distributional shifts
and Byzantine attacks separately, we observe that there has
not yet been any work that claims to resolve both issues
simultaneously, which may encounter two hurdles. The first
hurdle is that the issue of distributional shifts has been
conventionally considered in the centralized setting where
a single machine has access to all the data. Consequently,
the established approaches often lead to solving some form
of convex programs, such as linear programs [19], semi-
definite programs [13], and second-order cone programs [14],
which are not directly solvable in a distributed network
where data scatter across multiple local devices. The second
hurdle along this path, although being less known, is that
Byzantine-robust approaches only have quite limited success
in providing theoretical convergence guarantees [33] since
they usually require strong assumptions (such as subex-
ponential [42] and sub-Gaussian [43]) on the distribution
of local gradients. These assumptions often fall short of
proper justifications, and they become even harder to justify
when training a distributionally robust model as opposed
to ERM.

A. Our Work
In this article, we aim to fill this gap by proposing a

robust distributed learning algorithm that is resilient to both
distributional shifts and Byzantine attacks. To address the
aforementioned first obstacle, we utilize a recent work on
Wasserstein distributionally robust optimization (DRO) [22],
which leads to a reformulation that can be solved in a
distributed fashion (see Section II-A1). To bypass the sec-
ond obstacle, we implement norm-based screening (NBS),
a simple robust aggregation scheme. We formulate a robust
property of NBS, which enables us to avoid making unjustified
assumptions on local gradients while providing convergence
guarantees (see Section III). These two adopted techniques
equip our algorithm with robust features against distributional
shifts and Byzantine attacks. We further derive theoretical con-
vergence guarantees of the proposed algorithm for nonconvex,
convex, and strongly convex learning problems. We note that
these convergence guarantees are built upon the theoretical
robust property of NBS, which differentiates NBS from other
robust aggregation measures and makes it suitable for our
theoretical framework. The theoretical results offer valuable
insights into the convergence behaviors of our algorithm (see
Section VI-B), the considerations in selecting certain parame-
ters effectively (see Section VI-D), and the breakpoint of NBS
(see Section VI-C). In particular, we point out the common
misconception that the breakpoint of NBS is (1/2) (of workers
being abnormal) and correct it as (1/3). We empirically verify
our algorithm’s effectiveness against both distributional shifts
and Byzantine attacks on the Spambase dataset [56], through
which the empirical superiority of NBS is illuminated. In addi-
tion, it is shown that our algorithm’s outstanding performance
is not sensitive to the selection of hyperparameters, which is
desirable in practical implementations.

Our main contributions are summarized as follows.
1) We propose a new research direction aiming to level

up the overall model robustness in distributed learning
in which distributional shifts and Byzantine attacks are
addressed jointly. To achieve this goal, we design a dis-
tributed learning algorithm with robust features against
both robustness issues, the very first of its kind.

2) We provide convergence proofs for our algorithm on
nonconvex, convex, and strongly convex learning prob-
lems, respectively, giving insights into our algorithm’s
convergence behaviors, endurability against Byzantine
attacks, and parameter selection strategies.

3) For the first time, we debunk the widely held miscon-
ception that the breakpoint of NBS is (1/2), and we
deduce that it should have been (1/3).

4) We conduct thorough experiments to explore and
identify the scenarios in which NBS outperforms
other widely implemented robust aggregation schemes.
Specifically, we found that NBS enjoys distinct advan-
tages in the challenging setting with heterogeneous
dataset.

B. Notations
Throughout, the norm notation ∥·∥ refers to the L2 norm if

not otherwise specified.

II. RELATED WORK

A. Distributionally Robust Optimization
To combat distributional shifts, the conventional approach

is robust optimization where the hypothetical data shifts are
restricted to be within a deterministic uncertainty set [9], [10],
[11], [12], and the goal is to find the optimal model for the
worst case set of data. However, these works are found to
be intractable except for specially structured losses [22] and
they tend to promote overconservative solutions [19]. DRO,
on the other hand, treats the data uncertainty in a probabilistic
way and has been the more favored approach to dealing
with distributional shifts, due to its appealing theoretical
guarantees [20], computational tractability, and extraordinary
empirical performance [21].

The goal of DRO is to find a model θ that minimizes
the worst case expected loss supQ∈� Ex∼Q f (θ; x) over an
ambiguity set �, which encompasses a cluster of data distri-
butions. In practice, � is constructed based on the information
of P̂N , the empirical distribution of training data. If � is
selected judiciously such that it is able to capture the test
data distribution (under reasonable levels of perturbation),
then the solution θDRO is guaranteed to have robust out-
of-sample performance. Meanwhile, we want to make �
small enough to exclude irregular distributions that are not
representative of the test data and incentivize overconservative
results. Note that DRO reduces to ERM when � shrinks to a
singleton P̂N .

Previous works have considered constructing � based on
moment conditions [15], [16], as well as probability distance
measures such as f -divergence [17], [18] and Wasserstein
distance [19], [20], [21], [22]. Although many of these works
demonstrate appealing theoretical guarantees and computa-
tional tractability, most of them do not admit a distributed
implementation as explained previously. To this end, we resort
to the Wasserstein DRO framework in [22], which not only
admits a reformulation that is solvable in the distributed setting
but also provides certified robustness under moderate levels of
distributional shifts.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: George Mason University. Downloaded on January 18,2025 at 18:17:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: ROBUST DISTRIBUTED LEARNING AGAINST BOTH DISTRIBUTIONAL SHIFTS AND BYZANTINE ATTACKS 3

1) Wasserstein DRO: In Wasserstein DRO, the ambiguity
set � is chosen as a Wasserstein ball Bρ(P̂N ) = {Q :

Wc(Q, P̂N ) ≤ ρ} with P̂N at the center and ρ being
the radius, and Wc(·, ·) is the Wasserstein distance between
two probability distributions with c(·, ·) being the trans-
portation cost between two data points. Following a duality
result, Sinha et al. [22, Proposition 1] prove the equal-
ity supQ∈Bρ (P̂N ) Ex∼Q f (θ; x) = infλ≥0{λρ + Ex∼P̂N

φλ(θ; x)},
where φλ(θ; x) = supz{ f (θ; z) − λc(z, x)} represents the
robust surrogate of f (θ; x) and λ is the dual variable. Relaxing
the original problem with a prespecified ρ, i.e.,

min
θ

sup
Q:Wc(Q,P̂N )≤ρ

Ex∼Q f (θ; x). (1)

Sinha et al. [22] instead seek to solve an easier problem

min
θ

Ex∼P̂N
φλ(θ; x) (2)

with a fixed λ ≥ 0. Note that when λ approaches infinity,
(2) boils down to ERM. To justify the switch from (1) to (2),
Sinha et al. [22] provide a certificate of robustness for any ρ
in (1), which corresponds to a specific λ by duality. In this way,
the original infinite-dimensional optimization problem (1) is
transformed into a tractable ERM-like problem (2). Moreover,
since the objective function in (2) is simply the average of a
cluster of empirical losses each defined by a single sample
x in the training set, (2) immediately admits a distributed
implementation where each worker can calculate gradient-like
updates based on its own local data. This attribute differenti-
ates (2) from other centralized DRO reformulations and makes
it suitable for our work.

2) Distributed Implementation of DRO: Even though
most conventional solutions of DRO tend not to be paral-
lelizable/decomposable, a few works take the initiative to
implement DRO in the distributed setting. For example,
Sadeghi et al. [23] also consider the Wasserstein ambiguity
set and propose a framework called distributionally robust
federated learning (DRFL) where the dual variable λ is
simultaneously updated with the model parameter θ during
the outer minimization step. Subsequently, Shen et al. [24]
consider DRFL in an adversarial setting with Byzantine attacks
and propose a two-stage attack strategy based on reinforcement
learning to jeopardize the performance of DRFL. Our work
differs from these two works in that we consider the Byzantine
issue from the defender’s point of view and we establish
certified robustness accordingly.

In order to address concerns of data heterogeneity in fed-
erated learning, Mohri et al. [25] propose agnostic federated
learning (AFL), a minimax optimization scheme whose ambi-
guity set is formed by a mixture of local distributions with the
weight vector w confined to a regular simplex. Mohri et al.
[25] show that AFL naturally promotes a sense of fairness
by minimizing the training loss of the worst-off client among
all workers. To alleviate the huge communication overhead
of AFL and enhance its scalability, Deng et al. [26] propose
a communication-efficient algorithm called distributionally
robust federated averaging (DRFA) by infrequently updating
the weight vector w. Note that although works [25], [26] fall
under the category of DRO, their motivation differs from ours
since they try to prevent the model from overfitting any specific
worker and thus exhibit poor generalization performance.
In addition, these two works do not consider Byzantine attacks
as does in this article.

B. Byzantine-Robust Distributed Learning

Under the default protocol of distributed learning, the server
takes a simple average of the gradients collected from local
nodes, some of which might be malicious. Since a Byzantine
device can send any message containing arbitrary values,
its influence on the aggregated sum, hence the deviation of
the updated model, cannot be upper bounded, thus inflicting
unbounded harm. In recent years, a host of works are proposed
to tackle this issue, and we observe a common theme through-
out these works. Intuitively, the retrievability of untainted
global gradient in the presence of corrupted local gradients
clearly indicates the existence of redundant information within
the system. Based on different sources of redundancy, existing
works aimed at achieving Byzantine robustness can be largely
classified into three categories [29]: coding-based schemes,
reference-based schemes, and robust aggregation schemes,
which are introduced as follows.

Coding-based schemes assign each worker redundant data
and rely on this redundancy to neutralize the effect of erro-
neous gradients [32], [33], [34]. Such an idea is originally
proposed to mitigate stragglers so that the true global gradient
can be computed even if some workers fail to report their
local gradients to the server [31] and subsequently evolves into
other stronger variants such as DRACO [32] and DETOX [33]
that are able to handle Byzantine workers. Although this
approach can recover the global gradient precisely, it does so
at the cost of prohibitively high computational overhead [54].
Furthermore, in federated learning where data are generated
locally and cannot be replicated and reassigned for user
privacy, coding-based schemes are not applicable.

Reference-based schemes assume that the server has access
to a set of auxiliary clean data that are similar to local data but
smaller in size and use this auxiliary dataset as a reference to
eliminate oddly behaving gradients that are potentially Byzan-
tine. Typical examples in this category include Zeno [35],
Cao and Lai [36], FLTrust [37], and ByGARS [38]. With
the assistance of external information, this line of work can
recover the global gradient even if over half of the workers
are Byzantine. However, the auxiliary dataset is not always
available, which restricts the applicability of this approach.

Robust aggregation schemes replace the averaging (of local
gradients) step with a robust aggregation operation, such as
Krum [39], Bulyan [40], geometric median [41], coordinate-
wise median (CM) [42], iterative filtering [43], signSGD [44],
and NBS [45], [46], [47], [48]. This line of work does not
require redundantly coded local data or auxiliary data and it
simply capitalizes on the redundancy (or homogeneity) within
the honest gradients themselves. In the most homogeneous
scenario where each worker has the same data, Byzantine
gradients can be easily singled out since all the honest gradi-
ents are exactly the same. On the other hand, in case where
the honest gradients all point to very different directions, off-
setting Byzantine gradients becomes theoretically intractable
since there is no exploitable redundancy. Due to its wide
variety of aggregation rules and broad applicability, robust
aggregation is commonly viewed as the mainstream approach
to mitigating Byzantine attacks and is also the focus of this
article. In practice, one has to select or create a feasible setting
with sufficient amount of redundancy before implementing
robust aggregation measures, which may require controlling
the level of data heterogeneity and the percentage of Byzantine
workers.
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Algorithm 1 NBS
Input: g1, . . . , gm (m vector inputs), screening percentage β

Output: G = Norm_Screenβ(g1, . . . , gm)

1: generate a new set of indices (1), . . . , (m), such that
∥g(1)∥ ≤ · · · ≤ ∥g(m)∥

2: define an index set U = {(1), . . . , ((1 − β)m)}, which
specifies the unscreened inputs

3: calculate the output by averaging the unscreened inputs
G =

1
|U |

∑
i∈U gi

III. NORM-BASED SCREENING

As a robust aggregation measure, the idea of NBS is fairly
simple: leave out the vector inputs (i.e., local updates) with
large norms and take the average of the remaining inputs as
output. In this way, the influence of an erroneous/malicious
input is properly bounded. It is either filtered out for having a
large norm or can only finitely impact the output with a norm
comparable to some benign inputs. We formally define NBS
as a function “Norm_Screen,” as detailed in Algorithm 1.

Although NBS has previously been applied to screen
Byzantine-prone local gradients [45], [46], [47] and Newton
updates [48], we argue that NBS did not get its fair share of
appreciation and publicity, partly because its robust property
has not been formally stated and theorized. To fill this gap,
we formulate an important property of NBS as explicated in
Theorem 1, whose proof is deferred to Appendix A.

Theorem 1: Suppose that a percentage of α ≤ (1/2)
among m inputs g1, . . . , gm are Byzantine, whose indices
compose a set B (|B| = αm), and the index set of hon-
est inputs is denoted as M (|M| = (1 − α)m). With
G = Norm_Screenβ(g1, . . . , gm) and β ≥ α, the following
inequality holds:

∥G − S∥ ≤
2α

1 − β
∥S∥ + max

i∈M
∥gi − S∥ (3)

where S can be any vector with the same dimension as G.
Theorem 1 plays an essential role in the convergence

analysis of our algorithm, as it properly upper bounds the
distance between the robustly aggregated gradient and the true
global gradient without making any unjustified assumptions on
the distribution of local gradients (see Lemma 2). In addition,
as shown in Section VI-C, our intuition on the breakpoint of
NBS is drawn from Lemma 2, which is credited to the explicit
exposition of Theorem 1.

We note that a similar result to (3) has appeared in the
existing work [45, Sec. 9.1] as an intermediate step in the
derivation, though being mixed with other terms. While giv-
ing [45] its due credit, we argue that a more formal statement
of this property is well-deserved.

IV. PROBLEM STATEMENT

In this section, we formulate the problem of robust dis-
tributed learning under both distributional shifts and Byzantine
attacks.

A. Basic Setting
We consider a typical distributed learning scenario with

one central server and m parallel workers, among whom
a total of N data points x1, . . . , xN are allocated/collected
for training. For simplicity and clear exposition, we assume

an even data-split scenario where worker i holds n samples
x(i−1)n+1, . . . , x(i−1)n+n for i = 1, . . . , m with mn = N . Note
that uneven data-split cases can easily fit into our framework
with minor adjustment.

B. Learning Goal
Let f (θ; x j ) be the loss function contingent upon model

parameter θ and sample x j . We aim for a model that has robust
performance on the test data, which may exhibit some degree
of distributional shifts from the training data. According to
the discussion in Section II-A1, such a model can be acquired
by solving (2), whose solution enjoys theoretically proven
robustness against data perturbations. Specifically, we seek
to minimize the objective F(θ) = (1/N )

∑N
j=1 φλ(θ; x j ) in

which φλ(θ; x j ) = supz{ f (θ; z)−λc(z, x j )} is the robustified
version of f (θ; x j ).

C. Byzantine Attack
We assume that a percentage α of local workers are Byzan-

tine and the remaining 1 − α are normal/honest. The sets of
Byzantine workers and honest workers are denoted as B and
M, respectively, with |B| = αm and |M| = (1−α)m. During
each training iteration, the server would ask all workers to
conduct certain computational task based on their respective
local data and to report the result back to the server. While
honest workers would follow the given instructions faithfully,
Byzantine workers need not to obey the protocol and can send
arbitrary messages to the server. By convention, we assume
that Byzantine workers have complete knowledge of the sys-
tem and learning algorithms, which allows them to generate
the most damaging updates to attack the system.

V. PROPOSED ALGORITHM

On the macro level, our algorithm is based on distributed
gradient descent combined with robust aggregation, through
the following three key components.

A. Gradient Computation
We first consider a single unit of the objective function, i.e.,

φλ(θ; x j ). To calculate its gradient on a fixed model θt , Sinha
et al. [22] propose to first find the maximizer, i.e., z∗j (θt ) =

arg supz{ f (θt ; z) − λc(z, x j )}, and then take the gradient of
f (θ; z∗j (θt )) before replacing θ with θt . The correctness of
this approach is guaranteed by the following equation:

∇θφλ

(
θ; x j

)
|θ=θt = ∇θ

[
f
(
θ; z∗j (θt )

)
− λc

(
z∗j (θt ), x j

)]
θ=θt

= ∇θ f
(
θ; z∗j (θt )

)
|θ=θt . (4)

To simplify notations, we denote ∇θ f (θ; z)|θ=θt as
∇θ f (θt ; z) where z, sometimes taking the form of z(θt ),
is always treated as a constant in the differentiation step.

B. ε-Approximation
In most cases, the maximizer z∗j (θt ) does not have a

closed-form solution and thus can only be solved to a
certain precision via iterative methods. Therefore, we only
require workers to obtain an ε-optimal maximizer zε

j (θt ),
satisfying ∥zε

j (θt ) − z∗j (θt )∥ ≤ ε. This approximation offers a
tradeoff between computational cost and model accuracy. In
Section VI, we will analyze both the effects of
ε-approximation on model convergence and the cost of
obtaining such an ε-optimal maximizer.
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Algorithm 2 Distributional and Byzantine-Robust Distributed
Gradient Descent
Input: screening percentage β (≥ α), learning rate η, model

initialization θ0, total iteration T
Output: completed model θT

1: for t = 0, 1, . . . , T − 1 do
2: Server: send θt to all workers
3: for i = 1, 2, . . . , m do
4: Worker i : receive model θt from the server
5: obtain zε

j (θt ) for each local sample x j by solving
supz{ f (θt ; z) − λc(z, x j )} to ε-precision

6: compute local gradient gi (θt ) ={ 1
n

∑(i−1)n+n
j=(i−1)n+1 ∇θ f (θt ; zε

j (θt )) i ∈ M
⋆ i ∈ B

7: send gi (θt ) to the server
8: end for
9: Server: collect g1(θt ), . . . , gm(θt ) from the workers

10: compute the aggregated gradient G(θt ) =

Norm_Screenβ(g1(θt ), . . . , gm(θt ))

11: update model θt+1 = θt − η · G(θt )

12: end for

C. Robust Aggregation
After obtaining the ε-optimally perturbed samples, each

honest worker computes its (approximate) local gradient
before sending it to the server, while Byzantine workers would
craft their own ill-intended gradients (denoted as ⋆). On the
other end, the server robustly aggregates the received local
gradients via NBS and uses the result to update the model.
Here, we assume that the proportion α of Byzantine workers
is known, and we always enforce that β ≥ α.

The detailed procedure of our algorithm is given in
Algorithm 2.

VI. CONVERGENCE ANALYSIS

A. Preliminaries
To delineate the convergence behavior of the proposed

algorithm, we adopt some widely used assumptions as follows.
Assumptions 1–3 concern the distributional shifts as in [22],
which hold for tractable scenarios. Assumption 4 upper bounds
the distance between the average gradient and the gradient with
respect to a single sample, which is characteristic of gradient
averaging methods and clearly holds.

Assumption 1: The loss function f (θ; z) satisfies the Lips-
chitzian smoothness conditions

∥∇θ f (θ1; z) −∇θ f (θ2; z)∥ ≤ Lθθ∥θ1 − θ2∥

∥∇θ f (θ; z1) −∇θ f (θ; z2)∥ ≤ Lθ z∥z1 − z2∥

∥∇z f (θ1; z) −∇z f (θ2; z)∥ ≤ L zθ∥θ1 − θ2∥

∥∇z f (θ; z1) −∇z f (θ; z2)∥ ≤ L zz∥z1 − z2∥.

Assumption 2: The function c(z, x) defined in the Wasser-
stein metric is Lc-smooth and 1-strongly convex with respect
to z.

Assumption 3: The dual variable λ satisfies λ > L zz , where
L zz is defined in Assumption 1.

Assumption 4: For any specific θt , it holds that

max
1≤k≤N

∥∥∥∥∥∥∇θ f
(
θt ; z∗k(θt )

)
−

1
N

N∑
j=1

∇θ f
(
θt ; z∗j (θt )

)∥∥∥∥∥∥ ≤ σ. (5)

Based on the above assumptions, we formulate two lemmas
that will serve as core building blocks of the ensuing theorems
on convergence. We should note that Lemma 1 is a direct result
of [22, Lemma 1]. For completeness, we summarize the proof
of Lemma 1, matching the notations of this article.

Lemma 1: Under Assumptions 1–3, the objective function
F(θ) = (1/N )

∑N
j=1 φλ(θ; x j ) is L F -smooth with L F =

Lθθ + (Lθ z L zθ/(λ − L zz)).
Lemma 1 specifies the smoothness level of the objective

function, thus allowing standard gradient descent to make
steady progress with a proper step size, such as (1/L F ). How-
ever, in our problem, the error-free gradient is unattainable due
to the Byzantine nodes. To this end, we propose Lemma 2 that
quantifies the deviation of our implemented gradient from the
true global gradient ∇F(θt ). The proof of Lemma 2 is deferred
to Appendix C.

Lemma 2: Under Assumptions 1–4, for any specific θt ,
it holds that

∥G(θt ) −∇F(θt )∥ ≤
2α

1 − β
∥∇F(θt )∥ + (Lθ zε + σ) (6)

where G(θt ) is the aggregated gradient in Algorithm 2
(line 10).

B. Main Theorems
1) Nonconvex Losses: We first consider the most general

case of the loss function f (θ; z) being nonconvex in θ , such as
in neural network training. For this case, we derive Theorem 2
that guarantees convergence of our algorithm to a stationary
point of the objective function. The proof of Theorem 2 is
deferred to Appendix D.

Theorem 2: Suppose that Assumptions 1–4 hold and α <
(1/3). Taking η = (1/L F ), Algorithm 2 satisfies

1
T

T−1∑
t=0

∥∇F(θt )∥
2
≤

2L F

(1 − (1 + r)C2
α)T

[F(θ0) − F(θ∗)]

+
(1 + 1/r)(Lθ zε + σ)2

1 − (1 + r)C2
α

(7)

where θ∗ is the global minimizer of F(θ), Cα = (2α/(1 − β)),
and r should satisfy 0 < r < ((1 − β)/2α)2

− 1.
2) Convex Losses: Now, we consider the case where the

loss function is convex as in Assumption 5. In addition,
we make Assumption 6 suggesting that all the intermediate
iterations would not be infinitely worse than the initialization
θ0. We propose Theorem 3 that grants our algorithm conver-
gence guarantee in the convex regime. The proof of Theorem 3
is deferred to Appendix E.

Assumption 5: The loss function f (θ; z) is convex with
respect to θ .

Assumption 6: There exists a fixed k such that ∥θt − θ∗
∥ ≤

k∥θ0 − θ∗
∥ holds for t = 0, 1, . . . , T − 1.

Theorem 3: Suppose that Assumptions 1–6 hold and α <
(1/3). Taking η = (1/L F ), Algorithm 2 satisfies

F(θT ) − F(θ∗)

≤ max

{
4L F D2

(1 − (1 + r)C2
α)T

,

√
2(1 + 1/r)

1 − (1 + r)C2
α

D(Lθ zε + σ)

+
(1 + 1/r)(Lθ zε + σ)2

2L F

}
(8)
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where D = k∥θ0 − θ∗
∥ and Cα and r are the same as in

Theorem 2.
3) Strongly Convex Losses: Finally, we assume strong con-

vexity on the objective function as in Assumption 7, in which
case we propose Theorem 4 that guarantees convergence of our
algorithm to the optimal model θ∗. The proof of Theorem 4
is deferred to Appendix F.

Assumption 7: The objective function F(θ) is λF -strongly
convex.

Theorem 4: Suppose that Assumptions 1–4 and 7 hold, and
α < (1/(1 + 2L F/λF )) < (1/3). Taking η = (2/(L F + λF )),
Algorithm 2 satisfies (with Cα = (2α/(1 − β)))

∥θT − θ∗
∥ ≤

(
2L F Cα + L F − λF

L F + λF

)T

∥θ0 − θ∗
∥

+
Lθ zε + σ

λF − L F Cα

. (9)

Observations: According to Theorems 2–4, Algorithm 2 is
able to achieve some sense of convergence under all three
cases. Meanwhile, we can clearly identify the effects of Byzan-
tine percentage α and suboptimality level ε on convergence; a
larger α (entailing larger Cα) not only decreases convergence
speed but also increases convergence error, whereas ε only
affects the convergence error and has no impact on the
convergence rate.

C. Breakpoint of NBS
We define the breakpoint of a certain algorithm as the

minimum Byzantine percentage at which that algorithm cannot
converge. According to Theorems 2–4, the breakpoint of
our algorithm is (1/3). [Although Theorem 4 requires that
α < (1/(1 + 2L F/λF )), it can still converge as in (7) under
α < (1/3) by taking η = (1/L F ).] In fact, based on
the derivations in Appendixes D and F, we assert that for
any algorithm that incorporates NBS to converge, it always
should hold that α < (1/3). This insight can be drawn from
Lemma 2, where the distance between G(θt ) and ∇F(θt )
is upper bounded by two terms. In the convergence proofs,
we found that the coefficient of the first term must be less
than 1, i.e., (2α/(1 − β)) < 1, which, combined with β ≥ α,
imposes that α < (1/3).

We also notice that previous works implementing NBS for
Byzantine robustness uniformly claimed that the breakpoint
of their algorithms is (1/2) [45], [46], [47], [48]. The fallacy
of this claim can be illustrated by a simple counterexample;
suppose that there are four Byzantine updates g1, g2, g3,
and g4 and six honest updates g5, g6, . . . , g10 (in norm-
descending order). If the Byzantine updates are crafted such
that g1 = g2 = g3 = g4 = −g9, then the NBS output with
β = α = 0.4 is totally dominated by Byzantine updates as
G = ((g1 + g2 + g3 + g4 + g9 + g10)/6). If this happens for
every iteration, then the algorithm surely would not converge
to the correct solution.

To the best of our knowledge, our claim that the breakpoint
of NBS is (1/3) is new in the literature.

D. Discussion
1) Cost of Computing ε-Optimal Maximizer: To obtain

each perturbed sample zε
j (θt ), we need to maximize g(z) =

f (θt , z) − λc(z, x j ) (at fixed θt and x j ) to ε-optimality.
It turns out that g(z) is both smooth and strongly con-
cave, which, according to optimization theory, suggests that

maximizing g(z) enjoys a linear convergence rate using a
gradient method. Specifically, according to Assumption 1,
−L zz · I ⪯ ∇

2
z f (θ; z) ⪯ L zz · I; according to Assumption 2,

1 · I ⪯ ∇
2
z c(z, x) ⪯ Lc · I. Therefore, −(λLc + L zz) ·

I ⪯ ∇
2
z g(z) ⪯ −(λ − L zz) · I, which means that g(z) is

Lg-smooth and λg-strongly concave with Lg = λLc + L zz
and λg = λ − L zz . According to the convergence analysis
similar to that of Appendix F, by iterating zt+1 = zt +

ηz∇g(zt ) with ηz = (2/(Lg + λg)) = (2/(λLc + λ)), we have
∥zT − z∗∥ ≤ pT

∥z0 − z∗∥ with the exact maximizer z∗
and the convergence factor p = (Lg − λg)/(Lg + λg) =

(2L zz + λLc − λ)/(λLc + λ). As a result, to obtain an ε-
optimal solution zε satisfying ∥zε

− z∗∥ ≤ ε requires that
Tz ≥ (ln(Dz/ε)/ ln(1/p)), where Tz is the number of gradient
ascent iterations and Dz = ∥z0 − z∗∥. Here, we show that ε is
easily adjustable by tuning Tz , and a smaller ε only entails a
moderate increase in Tz .

2) Strategy of Adjusting ε: According to our analysis, small
ε corresponds to low model error. On the other hand, enforcing
small ε puts a relatively heavy computational workload on
local workers. To achieve a good tradeoff between computa-
tional cost and model accuracy, we recommend a two-stage
strategy where a big ε is adopted in the beginning stage of
training and a small ε is enforced in the ending stage. This is
because, in the beginning stage, the Byzantine gradients would
contaminate the aggregated gradient to a large degree, and
there is no need for honest workers to calculate their perturbed
data/local gradients with very high precision. To make it
clearer, we refer to (6), where (2α/(1 − β))∥∇F(θt )∥ is the
dominant term at the beginning, and therefore, a relatively big
ε would have little impact on the converging process. In the
ending stage where ∇F(θt ) approaches zero, Lθ zε+σ becomes
the dominant term, and we switch into a small ε regime
to achieve high model accuracy, at the cost of concentrated
computation in the end.

3) Effects of Non-Independent and Identically Distributed
Data: Recall that in Section IV where the targeted problem
is formulated, we did not assume that the data are inde-
pendent and identically distributed (i.i.d.) across all workers,
suggesting that our convergence results should hold in non-
i.i.d. cases as well. This is due to the analytical approach
we take in the proof of Lemma 2, where we bound the
maximal distance between honest local gradients and the
targeted gradient as maxi∈M ∥gi (θt ) − ∇F(θt )∥ ≤ Lθ zε + σ ,
regardless of local data distribution. In practice, this distance
should increase if the distribution of local data goes from
i.i.d. to highly pathological/non-i.i.d. However, for the conve-
nience of analysis, this subtle difference is erased through the
adoption of a universal upper bound Lθ zε + σ . There are two
major takeaways from this observation. On the one hand, one
should be aware that our theoretical results may not reflect the
empirical effects of non-i.i.d. data on the convergence since
our emphasis is on the effects of α and ε. On the other hand,
this analytical approach we adopted, i.e., making assumptions
in the spirit of Assumption 4 and imposing a universal upper
bound to eliminate local updates’ differences, might serve
as a pathway for future works to bypass the non-i.i.d. issue
theoretically in the convergence analysis.

VII. SIMULATIONS

A. Experimental Setup
1) Dataset and Allocation: In this section, we empirically

evaluate the performance of our algorithm for a classification
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task using a logistic regression model on the Spambase
dataset [56]. We assign (2/3) of the 4601 total samples
for training and the other (1/3) for testing. We consider a
distributed learning setup with m = 20 workers, among which
αm = 6 are Byzantine. For training data allocation, we con-
sider both the i.i.d. setting, which is most commonly seen
in the literature, and the non-i.i.d. setting, which may better
resemble real-world situations such as federated learning. For
the i.i.d. setting, the training set is randomly permutated before
being evenly split among the 20 workers. To simulate the
non-i.i.d. setting, we first divide the training set into spam
emails (labeled as 1) and nonspams (labeled as 0), which are
then evenly split among two groups of workers numbering
8 and 12, respectively. Although in theory, there are numerous
ways to create a non-i.i.d. setting, splitting data according to
their labels seems to be the common practice. In our non-i.i.d.
setting, we assume that half of the Byzantine workers are from
each worker group. Upon the completion of training, we use
the percentage of correct classifications on the test set as the
performance metric of model accuracy.

2) Byzantine Model: To simulate Byzantine gradients,
we experiment with four different strategies, i.e., sign-flipping
attack [52], label-flipping attack [42], inner product manip-
ulation (IPM) attack [53], and “A Little Is Enough” (ALIE)
attack [54]. These four types of Byzantine model are com-
monly considered in the literature [29], [30].

In sign-flipping attack, each Byzantine worker flips the
direction of the authentic local gradient and increases its
magnitude by a constant factor, which is set as 2 in our
experiments. The label-flipping attack generates Byzantine
gradients using local data on each node with flipped labels,
i.e., spams switching to nonspams and vice versa. It is reported
in [42] that gradients computed with flipped labels have
moderate values, which may make them less conspicuous to
outlier filters. The IPM attack aims for the negative inner
product between the mean of honest gradients and the output
of certain aggregation schemes so that the iterated model
is not moving toward a descending direction. To achieve
this, Xie et al. [53] propose to craft Byzantine gradients as
−(ϵ/|M|)

∑
i∈M gi , where ϵ > 0 controls the strength of

the attack and has different effects when taking small and
large values. In our experiments, we consider two regimes of
ϵ = 0.5 and ϵ = 50. The ALIE attack seeks to engineer
Byzantine gradients with similar statistical features to honest
gradients by exploiting the empirical variance among them.
To do so, Baruch et al. [54] assume that the honest gradients
follow a normal distribution for each coordinate i ∈ [d],
and the mean ui and standard deviation σi are calculated
empirically based on honest gradients to craft the Byzantine
value as ui−z·σi where z = φ−1(((1 − α)m − s)/((1 − α)m))
with s = ⌊(m/2)+1⌋−αm and φ−1(·) being the normal inverse
cumulative distribution function. Note that both sign-flipping
attack and label-flipping attack only use the information avail-
able to the local nodes controlled by the adversary. In contrast,
the IPM attack and ALIE attack require access to all the
honest gradients, which obviously faces greater challenges in
practice.

3) Shift Model and Training Perturbation: To simulate
distributional shifts, we follow [22] and perturb the test data
with a controlled budget q under the common L1, L2, and L∞

norms. Since in supervised learning, it is a common practice to
only perturb the feature vector x , not the label y, we perturb
each data point (x, y) into (z, y) satisfying ∥z − x∥p ≤ q

(p = 1, 2,∞) and the z’s are chosen to maximally increase
the cross-entropy loss on test data. In this way, the test stage
perturbation is tailored to the iterated model θt , the type of
shift L p, and shift budget q.

In the training phase, the perturbed samples are obtained by
approximately solving supz{ f (θ; z) − λc(z, x)}, in which we
set c(z, x) = (1/2)∥z−x∥2 as in [22] to satisfy Assumption 2.
In accordance with the adversarial perturbation on test data,
we only perturb the feature vector x into z without changing
the label y. For logistic regression, the augmented objective is
g(z) = −y ln a − (1 − y) ln(1 − a)− (λ/2)∥z − x∥2 with a =

1/(1 + e−θTz), which has no closed-form solution. Therefore,
we calculate the approximate maximizer via gradient ascent
zt+1 = zt + ηz∇g(zt ) using Tz iterations initialized at z0 = x .
Throughout, we set λ = 3, ηz = 0.05, and Tz = 10 if not
otherwise specified. These parameter selections are not rigid
and we show that a wide range of parameters allow similar
stable performance.

B. Performance of NBS
We first seek to understand the characteristics of NBS, the

situations in which NBS thrives or collapses, and its com-
parison to other state-of-the-art robust aggregation schemes.
To this end, we use the most noted and compared aggregation
measures Krum [39], CM, and coordinate-wise trimmed mean
(CTM) [42], as benchmarks, including the plain averaging
(AVG). For Krum, CTM, and NBS, the screening/trimming
parameter is chosen according to the number of Byzantine
nodes, which is assumed as known. Note that we do not
consider a distributional shift in this part since our first goal
is to explore the role of NBS. Accordingly, we omit step 5 in
Algorithm 2 and also for other schemes.

In Fig. 1, we plot the performance curves of the five
considered algorithms under various Byzantine attacks in the
i.i.d. setting. From Fig. 1(a), we can see that in the absence
of Byzantine workers, all robust schemes but Krum perform
as well as AVG, despite the partial gradient information that
they discard for the purpose of robustness. This indicates a
relatively high level of redundancy among the local gradients
in the i.i.d. setting. Due to this rich redundancy, all robust
schemes perform reasonably well under all kinds of attacks,
and there is no absolute distinction between NBS and other
robust measures. The slightly inferior performance of Krum
in Fig. 1(a) is also reported in existing literature such as [28],
which reveals its inability to fully take advantage of the redun-
dancy since it only selects a single gradient among multiple
available copies without any averaging. Fig. 1 shows that AVG
performs well under label-flipping attack, IPM attack with
small ϵ, and ALIE attack. This indicates that in those cases, the
engineered gradients may have moderate values, which makes
them easily balanced out by the honest gradients (14 versus 6).
On the other hand, AVG collapses under sign-flipping attack
and IPM attack with large ϵ, suggesting that the engineered
gradients are very aggressive and likely have large norms. As a
result, NBS thrives in these two cases by outperforming other
schemes since Byzantine gradients are directly eliminated by
NBS due to their large norms.

Interestingly, as shown in Fig. 1(f), the performance of
Krum is even enhanced under ALIE attack compared to the
case of no attack. The likely explanation is that the shifting
parameter z, which according to [54] equals 0.37, is too small
to cause any damage. Given that the ALIE attack crafts the
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Fig. 1. Performance comparisons of different robust aggregation schemes under various attacks in the i.i.d. setting. (a) No attack. (b) Sign-flipping attack.
(c) Label-flipping attack. (d) IPM attack (ϵ = 0.5). (e) IPM attack (ϵ = 50). (f) ALIE attack. (g) ALIE attack (z = 1.5). (h) ALIE attack (z = 3).

TABLE I
IMPACT OF VARIOUS ATTACKS ON ALGORITHM 2 AND ITS COUNTERPARTS

gradient element as ui − z · σi , using an overly small z may
inadvertently serve as the averaging operation for Krum and
thus elevate its performance. To make ALIE more effective
as an attack, we increase z to 1.5 and 3. In the case of z =

1.5, NBS slightly underperforms AVG because the Byzantine
gradients likely bypass NBS and are aggregated with fewer
honest gradients than in AVG. However, if Byzantine gradients
become even more aggressive as in the case of z = 3, they are
not able to bypass NBS anymore, which exhibits a uniform
superior performance against all aggressive attacks. Note that
our modification on ALIE is not without precedent. In the
original paper, Baruch et al. [54] draw Table I in a setting
(m = 51 and α = 24%) where the value of z should have been
0.36 according to their formula. Instead, they use z = 1.5,
which degrades the test accuracy of AVG from 96.1% to
91.1%. In comparison, we use 30% of Byzantine workers
with z = 3 to degrade the test accuracy of AVG from 90.5%
to 84.2%.

Next, we consider the non-i.i.d. setting and plot the corre-
sponding performance curves in Fig. 2. In this setting, honest
gradients are more heterogeneous than in the i.i.d. case, which
leads to worse performance for robust schemes across the
board. Specifically, Fig. 2(a) shows that both Krum and CM
collapse even in the absence of attack. This phenomenon is
previously observed in [30], and the authors conclude that the
failure of Krum and CM is due to that they attempt to pick
a single representative gradient, which may not exist in the
non-i.i.d. setting. In comparison, CTM and NBS exhibit better
overall performance because they both employ a combination
of screening and averaging, making them better at exploiting
the available redundancy. To compare these two, although

CTM slightly outperforms NBS in a few cases (no attack,
label-flipping attack, and ALIE attack with small z’s), NBS
enjoys more stable overall performance and it does not col-
lapse under aggressive attacks such as sign-flipping attack and
IPM attack with large ϵ. We want to point out that there is no
such scheme that can outperform all other schemes under all
attacks. The reliability of any aggregation scheme should hinge
on its ability to prevent disastrous outcome from happening.
This argument is also echoed in [54], which indicates that
AVG (no defense), despite being least affected by the ALIE
attack, cannot serve as the aggregation rule because of its
serious vulnerabilities against aggressive attacks. In this sense,
NBS appears to be the best/safest choice by a clear margin
since it achieves a minimal test accuracy of 76% under all
circumstances (except for IPM attack with small ϵ), compared
to CTM with 56%, Krum with 46%, and CM with 39%.
We exclude the case of IPM attack with small ϵ because no
robust schemes can achieve a better accuracy than 65% despite
AVG being unaffected, which suggests an infeasible task due
to insufficient redundancy and high Byzantine percentage. For
the task to be feasible in the first place, one needs to control
the level of data heterogeneity and also restrict the percentage
of Byzantine nodes.

Our previous experiments demonstrate the advantages of
NBS over its counterparts at a fixed Byzantine percentage of
30%. To explore whether these results carry over to other cases
with different Byzantine percentages, we plot the performance
curves with varying numbers of Byzantine nodes (up to night
out of 20) in both i.i.d. and non-i.i.d. settings in Fig. 3. Since
some attacks share very similar results, such as sign-flipping
attack and IPM attack with large ϵ, we only display the most
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Fig. 2. Performance comparisons of different robust aggregation schemes under various attacks in the non-i.i.d. setting. (a) No attack. (b) Sign-flipping
attack. (c) Label-flipping attack. (d) IPM attack (ϵ = 0.5). (e) IPM attack (ϵ = 50). (f) ALIE attack. (g) ALIE attack (z = 1.5). (h) ALIE attack (z = 3).

Fig. 3. Performance comparisons with varying numbers of Byzantine nodes in both i.i.d. and non-i.i.d. settings. (a) Label-flipping attack (i.i.d.). (b) IPM
attack with ϵ = 0.5 (i.i.d.). (c) IPM attack with ϵ = 50 (i.i.d.). (d) Label-flipping attack (non-i.i.d.). (e) IPM attack with ϵ = 0.5 (non-i.i.d.). (f) IPM attack
with ϵ = 50 (non-i.i.d.).

representative three attack regimes (label-flipping attack and
IPM attacks with ϵ = 0.5 and ϵ = 50) to avoid redundant
figures. We first consider the i.i.d. setting [Fig. 3(a)–(c)],
where all robust schemes have very stable performance when
αm ≤ 6. However, NBS starts to show drastically degraded
performance when αm = 7 under label-flipping attack, which
corroborates our theoretical conclusion that α cannot exceed
(1/3) for NBS. In comparison, such a turning point for Krum
is αm = 8 under IPM attack with ϵ = 0.5. For CM and CTM,
no such turning point exists when less than half of workers
are Byzantine. This result suggests that CM and CTM are
the best robust measures when the Byzantine percentage is
between (1/3) and (1/2), whereas NBS has the similar overall
performance to other robust schemes in the case of α < (1/3)
and enjoys marginal advantages under aggressive attacks [see
Fig. 3(c)]. However, these guiding rules become invalid in
the challenging non-i.i.d. setting, as shown in Fig. 3(d)–(f).
Aside from the incompetence of Krum and CM, the theoretical
breakpoints of CTM at (1/2) and NBS at (1/3) are no
longer applicable due to reduced redundancy. Instead, the
performance of either scheme quickly deteriorates when α

exceeds 20% or so. Overall, NBS seems to be the preferred
choice since it can tolerate up to four Byzantine nodes while
guaranteeing 80% test accuracy in all cases. In comparison,
CTM can only tolerate three Byzantine nodes to achieve the
same goal.

In summary, in the i.i.d. setting with a high level of redun-
dancy, NBS is a safe choice with comparable performance to
other state-of-the-art schemes if α < (1/3), while median-
based methods, such as CM and CTM, are preferred in the
regime of (1/3) < α < (1/2). In the challenging non-i.i.d.
setting, the theoretical breakpoints are not applicable and NBS
is the safest choice over other robust aggregation schemes due
to its ability to capitalize on available redundancy.

C. Combined Robustness
We now consider Algorithm 2, which is a combination

of DRO and NBS, and seek to examine its robustness
toward Byzantine attacks and distributional shifts, respec-
tively. We first compare Algorithm 2 with its counterparts
(by integrating DRO with other robust benchmarks) under
various attacks in the non-i.i.d. setting, documenting their
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Fig. 4. Performance curves under different levels of shifts and sign-flipping attack in the i.i.d. setting. (a) Shift defined by L1 norm. (b) Shift defined by
L2 norm. (c) Shift defined by L∞ norm.

performance in Table I. Comparing Table I and Fig. 2, we can
see that Algorithm 2 largely inherits the Byzantine robustness
of NBS. Specifically, excluding the intractable case of IPM
with ϵ = 0.5, the worse case accuracies for Algorithm 2 and
the DRO-integrated versions of CTM/CM/Krum are 77.8%
and 61.1%/42.5%/61.1%, respectively. Next, we focus on
exploring the effectiveness of Algorithm 2 against various dis-
tributional shifts, which take place during the test stage. In the
training stage, we choose the i.i.d. setting with six Byzantine
workers conducting label-flipping attack. After training is
completed, we measure the model performance on test data
in the presence of distributional shifts with varying levels of
budget q under L1, L2, and L∞ norms. We experiment with
q up to 0.5 for L1 and L2 shifts, and a smaller budget 0.1 for
L∞ shift since the latter is more potent and noticeable, e.g.,
when perturbing the pixels of test images. The performance
curves of Algorithm 2 along with the benchmark NBS are
plotted in Fig. 4 (note that there is no other benchmark that
jointly deals with distributional shift and Byzantine failure
as explained in Introduction). From Fig. 4, we observe that
when there is no distributional shift (q = 0), Algorithm 2
and NBS have almost identical performance, which verifies
that the robust features of NBS against label-flipping attack
successfully transfer to Algorithm 2. As the shift budget q
increases, the performance gap between Algorithm 2 and NBS
gradually widens until it levels off at a certain point. This
indicates that Algorithm 2 indeed inherits the distributional
robustness of DRO and it is effective against different types
of distributional shifts. Also, Fig. 4 shows that NBS, although
being Byzantine-robust, is not immune from distributional
shifts, which corroborates our previous claim that Byzantine
robustness does not imply distributional robustness. However,
with the proper incorporation of DRO, Algorithm 2 is able
to achieve combined robustness at a negligible cost compared
to NBS.

In [22], it is observed that models trained with the Euclidean
cost c(z, x) = (1/2)∥z − x∥2 can still provide robustness to
L∞ shift. We expand this result by showing their effectiveness
against L1 shift, which is not considered in [22].

D. Parameter Selection
Finally, we explore the influence of parameter selection on

Algorithm 2. To see the impact of λ, which is the dual variable
that has to be selected empirically according to [22], we run
Algorithm 2 under all three shift regimes (L1 shift with q =

0.3, L2 shift with q = 0.3, and L∞ shift with q = 0.06)
with different values of λ and plot Fig. 5. Here, we set Tz =

100 to make the curves smooth. Fig. 5 demonstrates that the
performance of Algorithm 2 is quite stable in a wide range of
values for λ. However, Algorithm 2 fails when λ is too small.
This is consistent with the claim in [22] that λ has to be large

Fig. 5. Performance of Algorithm 2 with different λ’s under three distribu-
tional shift regimes.

Fig. 6. Performance of Algorithm 2 with different Tz’s under L2 shift.

enough for f (θ; z) − λc(z, x j ) to be strongly concave (also
reflected in Assumption 3).

Moreover, we plot Fig. 6 to document the performance of
Algorithm 2 under L2 shift with q = 0.3 using different
Tz’s, the number of gradient ascent iterations to obtain the
ε-optimal maximizer. From Fig. 6, we observe that achiev-
ing good performance does not require too many iterations
(Tz = 10 suffices in this case). This result corroborates
the first remark in Section VI-D that computing perturbed
samples with high precision only requires a moderate increase
in the computational cost. Figs. 5 and 6 suggest that our
algorithm’s effectiveness is not sensitive to the selection of
hyperparameters, which is a desirable attribute in practice.

VIII. CONCLUSION

In this article, we address the uncharted problem of robust
distributed learning in the presence of both distributional shifts
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and Byzantine attacks. We propose a new algorithm that
incorporates effective robust features to defend against both
safety threats. The convergence of the proposed algorithm is
theoretically guaranteed for different types of learning models.
We also empirically demonstrate that our algorithm enjoys
satisfying performance, matching the theoretical results.

APPENDIX A
PROOF OF THEOREM 1

For G = (1/|U |)
∑

i∈U gi with U = {(1), . . . , ((1 − β)m)}
and any specific vector S, we have

∥G − S∥ =

∥∥∥∥∥ 1
|U |

∑
i∈U

gi − S

∥∥∥∥∥
=

∥∥∥∥∥ 1
|U |

∑
i∈U

(gi − S)

∥∥∥∥∥
=

1
|U |

∥∥∥∥∥ ∑
i∈U∩M

(gi − S) +
∑

i∈U∩B

(gi − S)

∥∥∥∥∥
≤

1
|U |

( ∑
i∈U∩M

∥gi − S∥ +
∑

i∈U∩B

∥gi − S∥

)
.

For i ∈ U ∩M, ∥gi − S∥ ≤ 1 (we define 1 = maxi∈M ∥gi −

S∥). For i ∈ U ∩ B, we bound ∥gi − S∥ as

∥gi − S∥ ≤ ∥gi∥ + ∥S∥
≤ ∥g((1−β)m)∥ + ∥S∥
≤ ∥g((1−α)m)∥ + ∥S∥
≤ max

i∈M
∥gi∥ + ∥S∥

= max
i∈M

∥gi − S + S∥ + ∥S∥

≤ max
i∈M

∥gi − S∥ + 2∥S∥

= 1 + 2∥S∥.

Combining the above results, we have

∥G − S∥ ≤
1
|U |

(|U ∩M| · 1 + |U ∩ B| · (1 + 2∥S∥))

=
1
|U |

(|U | · 1 + 2|U ∩ B| · ∥S∥)

= 1 +
2|U ∩ B|

|U |
∥S∥

≤ 1 +
2α

1 − β
∥S∥

which is exactly the conclusion in Theorem 1. Note that the
last inequality only holds on condition that |B| ≤ |U |, i.e.,
α ≤ 1 − β, which, combined with β ≥ α, suggests that
α ≤ (1/2).

APPENDIX B
PROOF OF LEMMA 1

Define g(θ; z) = f (θ; z) − λc(z, x) (we fix λ and x and
view them as constants). Since f (θ; z) is L zz-smooth with
respect to z (Assumption 1) and c(z, x) is 1-strongly convex
(Assumption 2), we have

∇
2
z g(θ; z) = ∇

2
z f (θ; z) − λ · ∇

2
z c(z, x) ⪯ −(λ − L zz) · I

which shows that g(θ; z) is (λ − L zz)-strongly concave with
respect to z.

For any θ1 and θ2, define z∗1 = arg supz g(θ1; z) and
z∗2 = arg supz g(θ2; z). Apparently, we have ∇zg(θ1; z∗1) =

∇zg(θ2; z∗2) = 0. According to the strong concavity of g(θ; z),
we can obtain the following two inequalities:

g
(
θ1; z∗1

)
≤ g

(
θ1; z∗2

)
+
〈
∇zg

(
θ1; z∗2

)
, z∗1 − z∗2

〉
−

λ − L zz

2

∥∥z∗1 − z∗2
∥∥2 (10)

g
(
θ1; z∗2

)
≤ g

(
θ1; z∗1

)
+
〈
∇zg

(
θ1; z∗1

)
, z∗2 − z∗1

〉
−

λ − L zz

2

∥∥z∗2 − z∗1
∥∥2

. (11)

Adding (10) and (11) together, we have

(λ − L zz)∥z∗1 − z∗2∥
2

≤
〈
∇zg

(
θ1; z∗2

)
, z∗1 − z∗2

〉
=
〈
∇zg

(
θ1; z∗2

)
−∇zg

(
θ2; z∗2

)
, z∗1 − z∗2

〉
=
〈
∇z f

(
θ1; z∗2

)
−∇z f

(
θ2; z∗2

)
, z∗1 − z∗2

〉
≤ ∥∇z f

(
θ1; z∗2

)
−∇z f

(
θ2; z∗2

)
∥ · ∥z∗1 − z∗2∥

≤ L zθ∥θ1 − θ2∥ ·
∥∥z∗1 − z∗2

∥∥
which leads to∥∥z∗1 − z∗2

∥∥ ≤
L zθ

λ − L zz
∥θ1 − θ2∥.

Recall that ∇θφλ(θ; x) = ∇θ f (θ; z∗(θ)) [see (4)], we have

∥∇θφλ(θ1; x) −∇θφλ(θ2; x)∥

=
∥∥∇θ f

(
θ1; z∗1

)
−∇θ f

(
θ2; z∗2

)∥∥
=
∥∥∇θ f

(
θ1; z∗1

)
−∇θ f

(
θ1; z∗2

)
+∇θ f

(
θ1; z∗2

)
− ∇θ f

(
θ2; z∗2

)∥∥
≤
∥∥∇θ f

(
θ1; z∗1

)
−∇θ f

(
θ1; z∗2

)∥∥
+
∥∥∇θ f

(
θ1; z∗2

)
−∇θ f

(
θ2; z∗2

)∥∥
≤ Lθ z∥z∗1 − z∗2∥ + Lθθ∥θ1 − θ2∥

≤

(
Lθθ +

Lθ z L zθ

λ − L zz

)
∥θ1 − θ2∥.

According to the definition of smoothness, φλ(θ; x) is
L F -smooth with respect to θ with L F =

Lθθ + (Lθ z L zθ/(λ − L zz)). As a result, F(θ) =

(1/N )
∑N

j=1 φλ(θ; x j ) is also L F -smooth.

APPENDIX C
PROOF OF LEMMA 2

According to Theorem 1, we have the following result by
setting S = ∇F(θt ):

∥G(θt ) −∇F(θt )∥

≤
2α

1 − β
∥∇F(θt )∥ + max

i∈M
∥gi (θt ) −∇F(θt )∥. (12)

According to Algorithm 2, for i ∈ M, gi (θt ) =

(1/n)
∑(i−1)n+n

j=(i−1)n+1 ∇θ f (θt ; zε
j (θt )). Defining an auxiliary term

g∗

i (θt ) = (1/n)
∑(i−1)n+n

j=(i−1)n+1 ∇θ f (θt ; z∗j (θt )) (where z∗j (θt ) is
the exact maximizer), we can bound the distance between
gi (θt ) and g∗

i (θt ) for ∀i ∈ M as∥∥gi (θt ) − g∗

i (θt )
∥∥

≤ max
1≤ j≤N

∥∥∇θ f
(
θt ; zε

j (θt )
)
−∇θ f

(
θt ; z∗j (θt )

)∥∥
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≤ Lθ z max
1≤ j≤N

∥∥zε
j (θt ) − z∗j (θt )

∥∥
≤ Lθ zε (13)

in which the second inequality follows from Assumption 1
and the third inequality follows from the definition of zε

j (θt ).
Next, we have

max
i∈M

∥gi (θt ) −∇F(θt )∥

= max
i∈M

∥∥gi (θt ) − g∗

i (θt ) + g∗

i (θt ) −∇F(θt )
∥∥

≤ max
i∈M

(∥∥gi (θt ) − g∗

i (θt )
∥∥+ ∥∥g∗

i (θt ) −∇F(θt )
∥∥)

≤ Lθ zε + max
i∈M

∥∥g∗

i (θt ) −∇F(θt )
∥∥

≤ Lθ zε

+ max
1≤k≤N

∥∥∥∥∥∥∇θ f
(
θt ; z∗k(θt )

)
−

1
N

N∑
j=1

∇θ f
(
θt ; z∗j (θt )

)∥∥∥∥∥∥
≤ Lθ zε + σ (14)

where the second inequality follows from (13) and the last
inequality follows from Assumption 4.

Finally, combining (12) and (14) leads to the conclusion in
Lemma 2.

APPENDIX D
PROOF OF THEOREM 2

According to Lemma 1, F(θ) is L F -smooth. According to
the property of smoothness, we have

F(θt+1)

≤ F(θt ) + ⟨∇F(θt ), θt+1 − θt ⟩ +
L F

2
∥θt+1 − θt∥

2

= F(θt ) − η⟨∇F(θt ), G(θt )⟩ +
L F

2
η2
∥G(θt )∥

2

= F(θt ) −
1

L F
⟨∇F(θt ), G(θt ) −∇F(θt ) +∇F(θt )⟩

+
1

2L F
∥G(θt ) −∇F(θt ) +∇F(θt )∥

2

= F(θt ) −
1

2L F
∥∇F(θt )∥

2
+

1
2L F

∥G(θt ) −∇F(θt )∥
2 (15)

where the first equality follows from θt+1 = θt − η · G(θt )
and the second equality follows from η = (1/L F ). Note that
the derivation of (15) is a common trick in analyzing the
convergence of smooth functions, which shifts the burden of
proving convergence into the relatively easy task of quantify-
ing ∥G(θt ) −∇F(θt )∥.

According to Lemma 2, we have ∥G(θt ) − ∇F(θt )∥ ≤

Cα∥∇F(θt )∥+1 with Cα = (2α/(1 − β)) and 1 = Lθ zε+σ ,
which leads to

∥G(θt ) −∇F(θt )∥
2

≤ C2
α∥∇F(θt )∥

2
+ 2Cα∥∇F(θt )∥1 + 12

≤ (1 + r)C2
α∥∇F(θt )∥

2
+ (1 + 1/r)12 (16)

for any r > 0.
Combining (15) and (18), we have

F(θt+1) ≤ F(θt ) −
1 − (1 + r)C2

α

2L F
∥∇F(θt )∥

2
+

1 + 1/r
2L F

12

(17)

which is equivalent to

∥∇F(θt )∥
2
≤

2L F

1 − (1 + r)C2
α

[F(θt ) − F(θt+1)]

+
1 + 1/r

1 − (1 + r)C2
α

12. (18)

Summing up (18) for t = 0, 1, . . . , T −1 before being divided
by T gives

1
T

T−1∑
t=0

∥∇F(θt )∥
2

≤
2L F

(1 − (1 + r)C2
α)T

[F(θ0) − F(θT )] +
1 + 1/r

1 − (1 + r)C2
α

12

≤
2L F

(1 − (1 + r)C2
α)T

[F(θ0) − F(θ∗)] +
1 + 1/r

1 − (1 + r)C2
α

12

(19)

which is exactly the conclusion in Theorem 2.
Note that the transition from (17) to (18) only stands under

the condition that 1−(1+r)C2
α > 0, which constrains r to the

less than (1/C2
α)−1. On the other hand, r > 0, which requires

Cα = (2α/(1 − β)) < 1, i.e., 2α + β < 1. Since β ≥ α,
we can conclude that (19) holds if and only if α < (1/3) and
0 < r < ((1 − β)/2α)2

− 1.

APPENDIX E
PROOF OF THEOREM 3

First, we seek to establish the convexity of F(θ). Recall
that φλ(θ; x) = supz{ f (θ; z) − λc(z, x)}. For any θ1, θ2 and
0 ≤ t ≤ 1, we have

φλ(tθ1 + (1 − t)θ2; x)

= sup
z
{ f (tθ1 + (1 − t)θ2; z) − λc(z, x)}

≤ sup
z
{t f (θ1; z) + (1 − t) f (θ2; z) − λc(z, x)}

= sup
z
{t[ f (θ1; z) − λc(z, x)] + (1 − t)[ f (θ2; z) − λc(z, x)]}

≤ t sup
z
{ f (θ1; z) − λc(z, x)}

+ (1 − t) sup
z
{ f (θ2; z) − λc(z, x)}

= tφλ(θ1; x) + (1 − t)φλ(θ2; x) (20)

in which the first inequality follows from Assumption 5.
According to (20), φλ(θ; x) is convex with respect to θ . As a
result, F(θ) = (1/N )

∑N
j=1 φλ(θ; x j ) is also convex.

The convexity of F(θ) suggests that F(θ∗) ≥ F(θt ) +

⟨∇F(θt ), θ
∗
− θt ⟩, which leads to

F(θt ) − F(θ∗) ≤ ⟨∇F(θt ), θt − θ∗
⟩

≤ ∥∇F(θt )∥ · ∥θt − θ∗
∥

≤ D∥∇F(θt )∥ (21)

in which D = k∥θ0−θ∗
∥. The third inequality of (21) follows

from Assumption 6. As a result, we obtain (22) as a key
property in the subsequent analysis

∥∇F(θt )∥ ≥
1
D
[F(θt ) − F(θ∗)]. (22)

Since Theorem 3 keeps all the assumptions made in
Theorem 2, all the intermediate steps in the proof of
Theorem 2 also apply here. In this regard, we borrow (17), i.e.,

F(θt+1) − F(θt ) ≤ −A∥∇F(θt )∥
2
+ B (23)
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in which we define A = ((1 − (1 + r)C2
α)/2L F ) and

B = (((1 + 1/r)(Lθ zε + σ)2)/2L F ) for convenience.
Next, we consider two cases in regard to the relationship

between A∥∇F(θt )∥
2 and B.

Case 1: Suppose that for all 0 ≤ t ≤ T − 1, it holds that
B ≤ (A/2)∥∇F(θt )∥

2. In this case, we have

F(θt+1) − F(θt ) ≤ −
A
2
∥∇F(θt )∥

2. (24)

Combining (22) and (24) gives

[F(θt ) − F(θ∗)]2

≤
2D2

A
([F(θt ) − F(θ∗)] − [F(θt+1) − F(θ∗)]) (25)

which, after divided by [F(θt )− F(θ∗)][F(θt+1)− F(θ∗)] on
both sides, leads to

F(θt ) − F(θ∗)

F(θt+1) − F(θ∗)

≤
2D2

A

(
1

F(θt+1) − F(θ∗)
−

1
F(θt ) − F(θ∗)

)
. (26)

According to (24), we have F(θt+1) ≤ F(θt ). Therefore,
(F(θt ) − F(θ∗))/(F(θt+1) − F(θ∗)) ≥ 1, and (26) can be
simplified as

1
F(θt+1) − F(θ∗)

−
1

F(θt ) − F(θ∗)
≥

A
2D2 . (27)

Summing up (27) for t = 0, 1, . . . , T − 1 gives

1
F(θT ) − F(θ∗)

≥
AT
2D2 +

1
F(θ0) − F(θ∗)

≥
AT
2D2 (28)

which leads to

F(θT ) − F(θ∗) ≤
2D2

AT
. (29)

Case 2: Suppose that there exists t0 ∈ {0, 1, . . . , T −1} such
that B > (A/2)∥∇F(θt0)∥

2. In this case, we have

∥∇F(θt0)∥ <

√
2B
A

. (30)

Combining (22) and (30) gives

F(θt0) − F(θ∗) < D

√
2B
A

. (31)

Next, we show by contradiction that for all t ≥ t0, it holds
that

F(θt ) − F(θ∗) ≤ D

√
2B
A

+ B. (32)

Suppose that there exists t1 ≥ t0 such that

F(θt1) − F(θ∗) > D

√
2B
A

+ B. (33)

According to (23), we have

F(θt1) − F(θt1−1) ≤ −A∥∇F(θt1−1)∥
2
+ B

≤ B. (34)

Combining (33) and (34) gives

F(θt1−1) − F(θ∗) > D

√
2B
A

. (35)

Combining (35) and (22) gives

∥∇F(θt1−1)∥ >

√
2B
A

. (36)

Plugging (36) into (23), we obtain F(θt1−1) ≥ F(θt1) + B,
which suggests that (33) also holds with t1 replaced by t1 −1.
By the same token, we can conclude that (33) should hold
with t1 replaced by all t ≤ t1. This is in clear contradiction
with the incident of t = t0 as shown in (31). Therefore, (32)
is valid for all t ≥ t0 as stated.

Finally, combining the results of Case 1 (29) and Case 2
(31), we achieve that

F(θT ) − F(θ∗) ≤ max

{
2D2

AT
, D

√
2B
A

+ B

}
(37)

which completes the proof of Theorem 3.

APPENDIX F
PROOF OF THEOREM 4

According to Lemma 1, F(θ) is L F -smooth, and according
to Assumption 7, F(θ) is λF -strongly convex. In the convex
optimization theory, it is well known that smooth and strongly
convex functions enjoy a linear convergence rate with gradient
descent. Here, we will first establish and then use such a
property with a specific convergence factor. We start with the
following equality:

∥θt − η∇F(θt ) − θ∗
∥

2

= ∥θt − θ∗
∥

2
− 2η⟨∇F(θt ), θt − θ∗

⟩ + η2
∥∇F(θt )∥

2. (38)

According to the co-coercivity of smooth and strongly convex
function, we have

⟨∇F(θt ) −∇F(θ∗), θt − θ∗
⟩

≥
1

L F + λF
∥∇F(θt ) −∇F(θ∗)∥2

+
L FλF

L F + λF
∥θt − θ∗

∥
2.

(39)

Since θ∗ is the global minimizer of F(θ), therefore ∇F(θ∗) =
0, (39) reduces to

⟨∇F(θt ), θt − θ∗
⟩ ≥

1
L F + λF

∥∇F(θt )∥
2

+
L FλF

L F + λF
∥θt − θ∗

∥
2. (40)

Plugging (40) into (38), we have

∥θt − η∇F(θt ) − θ∗
∥

2
≤

(
1 − 2η

L FλF

L F + λF

)
∥θt − θ∗

∥
2

+

(
η2

−
2η

L F + λF

)
∥∇F(θt )∥

2.

(41)

In order to eliminate the last term in (41), we take η =

(2/(L F + λF )) and simplify (41) as

∥θt − η∇F(θt ) − θ∗
∥

2
≤

(
1 −

4L FλF

(L F + λF )2

)
∥θt − θ∗

∥
2

(42)

which is the same as

∥θt − η∇F(θt ) − θ∗
∥ ≤

L F − λF

L F + λF
∥θt − θ∗

∥ (43)
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which verifies linear convergence with a factor of
(L F − λF )/(L F + λF ). Note that (43) holds on condition
that η = (2/(L F + λF )).

Next, we try to evaluate the single-step progress made by
our algorithm as follows:

∥θt+1 − θ∗
∥

= ∥θt − ηG(θt ) − θ∗
∥

= ∥θt − η∇F(θt ) − θ∗
+ η[∇F(θt ) − G(θt )]∥

≤ ∥θt − η∇F(θt ) − θ∗
∥ + η∥∇F(θt ) − G(θt )∥

≤
L F − λF

L F + λF
∥θt − θ∗

∥ +
2

L F + λF
∥G(θt ) −∇F(θt )∥

≤
L F − λF

L F + λF
∥θt − θ∗

∥ +
2Cα

L F + λF
∥∇F(θt )∥ +

21

L F + λF
(44)

in which the second inequality follows from (43) by taking
η = (2/(L F + λF )) and the third inequality follows from
Lemma 2 with Cα = (2α/(1 − β)) and 1 = Lθ zε + σ .

According to the properties of F(θ) being L F -smooth,
we have

1
2L F

∥∇F(θt )∥
2
≤ F(θt ) − F(θ∗) ≤

L F

2
∥θt − θ∗

∥
2

which leads to

∥∇F(θt )∥ ≤ L F∥θt − θ∗
∥. (45)

Plugging (45) into (44), we have

∥θt+1 − θ∗
∥ ≤

2L F Cα + L F − λF

L F + λF
∥θt − θ∗

∥ +
21

L F + λF
.

(46)

By iterating (46), we obtain

∥θT − θ∗
∥ ≤

(
2L F Cα + L F − λF

L F + λF

)T

∥θ0 − θ∗
∥

+
1

λF − L F Cα

(47)

which is exactly the conclusion in Theorem 4.
Note that the transition from (46) to (47) only stands

under the condition that (2L F Cα + L F − λF )/(L F + λF ) <
1, which requires that Cα = (2α/(1 − β)) < (λF/L F ), i.e.,
2α(L F/λF )+β < 1. Since β ≥ α, we can conclude that (47)
holds if and only if α < (1/(1 + 2L F/λF )).
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