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Dual-Domain Defenses for Byzantine-Resilient
Decentralized Resource Allocation
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Abstract—This paper investigates the problem of decentralized
resource allocation in the presence of Byzantine attacks. Such
attacks occur when an unknown number of malicious agents send
random or carefully crafted messages to their neighbors, aiming
to prevent the honest agents from reaching the optimal resource
allocation strategy. We characterize these malicious behaviors with
the classical Byzantine attacks model, and propose a class of
Byzantine-resilient decentralized resource allocation algorithms
augmented with dual-domain defenses. The honest agents receive
messages containing the (possibly malicious) dual variables from
their neighbors at each iteration, and filter these messages with
robust aggregation rules. Theoretically, we prove that the pro-
posed algorithms can converge to neighborhoods of the optimal
resource allocation strategy, given that the robust aggregation rules
are properly designed. Numerical experiments are conducted to
corroborate the theoretical results.

Index Terms—Resource allocation, decentralized multi-agent
network, Byzantine-resilience.

I. INTRODUCTION

ESOURCE allocation, which aims at assigning limited
Rresources to a group of agents to minimize their costs, is
a fundamental problem in network optimization. Existing re-
source allocation algorithms can be categorized into distributed
and decentralized approaches. Distributed resource allocation
algorithms rely on a central agent to coordinate all the agents,
which often leads to the communication bottleneck at the central
agent, and thus results in limited scalability [2], [3]. Conse-
quently, decentralized resource allocation algorithms, which
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rely on coordination among neighboring agents, have become
attractive alternatives. They have been widely applied in various
fields, such as smart grids, transportation systems, wireless sen-
sor networks, etc [4], [5], [6]. Solving the decentralized resource
allocation problem requires collaboration between neighboring
agents. However, such collaboration is not always reliable since
some of the agents could be malicious. The aim of this paper is
to develop effective decentralized resource allocation algorithms
that are resilient to the attacks from the malicious agents.

Decentralized Resource Allocation Algorithms: Existing de-
centralized resource allocation algorithms can be categorized as
continuous-time [7], [8], [9], [10] and discrete-time [11], [12],
[13], [14], [15], [16], [17], [18]. In this paper, we focus on
discrete-time algorithms. The primary challenge in algorithm
design is to satisfy the global resource constraint. Weighted gra-
dient methods have been proposed to guarantee global constraint
satisfaction with the aid of feasible initialization [11], [12], [13],
but they turn out to be sensitive to perturbations. The work
of [11] is based on time-varying networks, while [12] considers
fixed networks. The work of [13] utilizes historical information
to accelerate the algorithm. On the other hand, primal-dual
algorithms handle the global resource constraint via introducing
adual variable [14], [15], [16], [17]. [18]. The works of [14], [15]
develop decentralized Lagrangian methods, which precisely
solve the primal sub-problems while perform a dual gradient
step at each iteration. The work of [16] employs the push-pull
gradient method to solve the dual problem and proposes a dual
gradient tracking algorithm for unbalanced networks. For non-
smooth resource allocation problems, decentralized proximal
primal-dual algorithms are developed in [17], [18].

The decentralized resource allocation algorithms discussed
above perform well when all the agents are honest. However,
malicious agents, either spontaneously or by manipulation, are
always threats to decentralized networks. These agents do not
follow the given algorithmic protocol, but send random or crafted
messages to their honest neighbors for the sake of misleading the
optimization process. To characterize such behaviors, we use the
classical Byzantine attacks model and term the malicious agents
as Byzantine agents [19], [20]. We briefly review some general
Byzantine-resilient opfimization algorithms and few Byzantine-
resilient resource allocation algorithms, as follows.

Byzantine-resilient Algorithms: In the context of distributed
optimization, Byzantine-resilient algorithms have been exten-
sively studied. The main idea behind the algorithm design is to
use various robust aggregation rules, such as coordinate-wise
median [21], Krum [22], [23] and geometric median [24], to
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filter out malicious messages. However, directly extending this
idea into decentralized optimization often cannot guarantee
consensus, and thus yields large optimization errors [25].

Given a general Byzantine-resilient decentralized optimiza-
tion problem, honest agents cooperate to reach a consensual
optimal solution that minimizes their average cost function.
This is different to the resource allocation problem, where the
honest agents are expected to obtain different optimal solutions
(namely, allocated resources). Some works focus on determin-
istic problems [26], [27], [28], [29], [30], [31], [32] and some
others consider stochastic problems [25], [33]. Their common
feature is to let each honest agent aggregate possibly malicious
messages (namely, optimization variables) received from its
neighbors in a robust manner.

For Byzantine-resilient decentralized optimization problems
with deterministic cost functions, when the optimization vari-
able is a scalar, [26], [27] proposes the trimmed mean (TM)
robust aggregation rule, with which each honest agent discards
the smallest b and the largest b messages received from its
neighbors, followed by averaging the remaining messages and
its own. Here b is an estimated upper bound of the number
of Byzantine neighbors. A similar approach in [28] lets each
honest agent filter b received messages larger and b received
messages smaller than its own message, also followed by aver-
aging. For high-dimensional problems, [29], [30] extends TM
to coordinate-wise TM (CTM), such that each honest agent
performs the TM operation at each dimension. The work of [31]
introduces the notion of centerpoint, which is an extension of
the robust median aggregation rule to the high-dimensional
scenario. In [32], each iteration involves two filtering steps:
distance-based and dimension-wise removals. Distance-based
removal calculates the Euclidean distances between the received
messages and the agent’s own message, sorts the distances, and
removes b messages with the largest distances. Additionally,
messages with extreme values in any dimension are removed.

When the cost functions are stochastic, TM and CTM are
also applicable. Besides, the work of [25] proposes iterative
outlier scissor (IOS), in which each honest agent iteratively
discards b messages that are the farthest from the average of
the remaining received messages. The work of [33] proposes
self-centered clipping (SCC), in which each honest agent uses
its own optimization variable as the center, clips the received
messages, and then runs weighted average.

Although the aforementioned Byzantine-resilient decentral-
ized optimization algorithms are proved to be effective, they
cannot be directly applied to solve the resource allocation prob-
lem. The local optimization variables of the honest agents are
coupled with a consensus constraint in the former but with a
global resource constraint in the latter. Therefore, in a decentral-
ized resource allocation algorithm, filtering “outliers™ from the
neighboring optimization variables becomes meaningless. To fill
this gap, [3] proposes a primal-dual Byzantine-resilient resource
allocation algorithm from a robust optimization perspective, but
the proposed algorithm is only applicable in a distributed net-
work with a central server. A Byzantine-resilient decentralized
resource allocation (BREDA) algorithm is developed in [34]. In
addition to the updates of primal and dual variables, each honest

agent maintains an auxiliary variable that dynamically tracks
the average of all honest agents’ primal variables. Then, CTM
is applied to aggregate the neighboring auxiliary variables.

Our Contributions: This paper focuses on the challenging
and less-studied Byzantine-resilient decentralized resource al-
location problem, and makes the following contributions:

C1) We propose a class of primal-dual Byzantine-resilient
decentralized resource allocation algorithms with dual-domain
defenses. The key intuition is that the honest agents should reach
a consensual dual variable. Therefore, we can let each honest
agent filter the received neighboring dual variables with properly
designed robust aggregation rules, including but not limited to
CTM, IOS and SCC.

C2) Compared with BREDA that defends against Byzantine
attacks in the primal domain [34], the proposed algorithms uti-
lize dual-domain defenses, and have the following advantages:
(i) maintaining less variables and simpler updates; (ii) allowing
more general robust aggregation rules than CTM; (iii) being able
to reach dual consensus.

C3) Theoretically, we prove that if the robust aggregation
rules are properly designed, the proposed algorithms converge
to neighborhoods of the optimal primal-dual pair, and the honest
agents are guaranteed to reach consensus in the dual domain even
at presence of Byzantine attacks. With numerical experiments,
we verify Byzantine-resilience of the proposed algorithms and
its advantages over BREDA.

Compared to the short, preliminary conference version [1],
this journal version has been significantly extended. We have
included comprehensive derivations for the algorithm design,
detailed theoretical analysis, as well as additional numerical
experiments that deepen the insights presented in [1]. These
extensions not only reinforce the theoretical foundation but also
enhance the practical relevance of our proposed algorithms.

Paper Organization: This paper is organized as follows. In
Section II, we formulate the decentralized resource allocation
problem under Byzantine attacks. Section III proposes an attack-
free decentralized resource allocation algorithm that operates in
the dual domain, and shows its failure under Byzantine attacks.
Section IV further proposes a class of Byzantine-resilient decen-
tralized resource allocation algorithms. Section V establishes
convergence of the proposed Byzantine-resilient decentralized
resource allocation algorithms. Numerical experiments are given
in Section VI. Section VII summarizes this paper and discusses
future research directions.

Notation: Throughout this paper, (-) " stands for the transposi-
tion of a vector ora matrix, || - || stands for the £>-norm of a vector
or a matrix, || - || denotes the Frobenius norm of a matrix, and
(-,-) represents the inner product of vectors. We define 1 € R
and 1 € R¥ as all-one column vectors while I € R¥*H ag an
identity matrix, where .J is the number of all agents and H is
the number of honest agents.

II. PROBLEM STATEMENT

We consider a decentralized resource allocation problem that
involves a network of autonomous agents. The network is mod-
eled as an undirected, connected graph G(.7, £) with the set of
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vertices J := {1,...,J} and the set of edges £. If (i, j) € £,
then the two agents ¢ and j are neighbors and can communicate
with each other. For agent 7, define the set of its neighbors as
Ni =17 (i,7) € £}. Each agent  possesses a strongly convex
local cost function f;(8;), where 8; € R stands for the amount
of local resources and belongs to a compact, convex set C;.
The average amount of local resources, denoted as + 5~ 704,
equals to a constant vector s € R”. When all the agents are hon-
est, the decentralized resource allocation problem is formulated
as

min f(©)=23"f(6)),

ed ieJ
1 :
s.t. 729,;:3, 02 Oy, Vi€ T, (1)
iceJ
where © = [65,...,8,] € R7P concatenates all the local vari-

ables and C is the Cartesian product of C; forallz € 7.

The decentralized resource allocation problem in the form of
(1) arises in, for example, economic dispatch in smart grids [35],
[36]. The goal is to obtain an optimal generation strategy
that minimizes the total generation cost, while satisfying a
global power demand constraint and local generator constraints,
through cooperation among a network of generators. We will
introduce the economic dispatch problem in detail in Section VI,
and focus on the case that some of the generators are malicious.

‘When some of the agents are Byzantine, as shown in Fig. 1,
solving (1) is an impossible task, because they will not collab-
orate with the honest agents during the optimization process.
Denote the set of Byzantine agents as B and the set of honest
agents as H := J \ B. The numbers of Byzantine agents and
honest agents are denoted as B and H, respectively. Note that
the number and identities of Byzantine agents are not known
in advance, but we can roughly estimate an upper bound of
the number. For notational convenience, we number the honest
agents from 1 to H, and the Byzantine agents from H + 1
to H + B. Consider a subgraph G(H,&) of G(J, &), where
& = {(i,j) € &;1,j € H} isthe set of edges between the honest
agents. We assume G(H,E) to be connected too so that the
honest agents can cooperate. The goal of the honest agents is

to solve
) 1
min f(©):= EZJ‘@(&:),
icH
1 -
s.t. EZBFS, 0; € C;, VieH, 2)
icH

where © = [64,...,0y] € RHD concatenates all the local

variables of the honest agents and C is the Cartesian product
of C; foralli € H.

In (2), we modify the optimization objective to the average
cost of the honest agents and consider the average resource
constraint of the honest agents. We do not modify the average
resource supply s, as the Byzantine agents may still occupy
some resources. Adjusting s will inevitably affect the resources
allocated to the honest agents.

However, solving (2) is still challenging since the honest
agents cannot distinguish their Byzantine neighbors, while the
latter can send arbitrarily malicious messages during the op-
timization process. Therefore, in this paper, we focus on de-
veloping Byzantine-resilient decentralized resource allocation
algorithms to approximately solve (2).

ITI. ATTACK-FREE DECENTRALIZED RESOURCE ALLOCATION

This section begins with reviewing an attack-free decentral-
ized resource allocation algorithm, which operates in the dual
domain, to solve (1).

A. Algorithm Development
The Lagrangian function of (1) is
5 = = 1 ~7.1
LO:3) =35> fi(0)+1 (3D 6:i—s), O
ieJ ied
where LeR? is the dual variable. Hence, the dual function
d() := ming_z £(O;1) is given by
@) = win{ Y £1(00)+1' (530~ )}
Lo éeé J : (] T J : 4
ieJ ieJ
1 : ~T ~T
= jz Plelg_{fi(ei) +X 6;} -1 s
ieg
1 =T T
=5 Z(—ef,'_ﬂgxc_{—fi(f’d —X 0;})—1 s
e R
1 =, = =T
=5 —F(-2) -1 s, )
e
where F*(1) := maxg,cc, {XTG.i — fi(6;)}. With it, we write

the dual problem of (1) as a minimization problem in the form
of

min g() = ~d(1) = % ai(x), )

where ;(X) := 3F(—1) + %ITS.
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Algorithm 1: Attack-Free Decentralized Resource Alloca-
tion Algorithm.
Initialization: All agents i € 7 initialize A) = A%.
fork=0,1,2,...do
for all agents i € 7 do
Compute 6% = argming ., {0 AX + £:(6:)}.
1
Compute AX 7% =1k — v (5s—16F).

k+g . . ;
Broadcast A ; T2 toits neighbors.

. k+% : ;
Receive A ;.-'+2 from its neighbors.

~ L k+3
Aggregate Ai ™! =37, ) ik
end for
end for

Because f;(-) is strongly convex, according to the conjugate
correspondence theorem in [37], its conjugate function F(-) is
smooth. By Danskin’s theorem [38], the gradient Vﬁ;(ll—) =
arg maxg, cc, {A; 0 — fi(0;)}. Hence, we have

Vai(k) = 35— arg uin (A0 + 0} ©

According to the above discussions, the optimization problem
(5) can be solved through decentralized gradient methods [14],
[39], [40]. To do so, we let each agent holds a local dual
variable X; € RP. The updates of primal and dual variables
for all agents 7 € J in the attack-free decentralized resource
allocation algorithm at iteration k + 1 are given by

0% = arg min {6] A + £.(6:)}, ()
8:cC;
G L ,, 1 1
AT =k VG E) =0k — 45 (Sa—26F),  (8)
J J
M= 3 gkttt ©

JeN;U{i}

Therein, v* > 0 is the step size and e;; > 0 is the weight
assigned by agent 7 fo agent j. Note that e;; > 0 if and only
if (i,7) € € or i = j. We collect these weights in E = [&;;] €
R7*7_ which is assumed to be doubly stochastic. Such an attack-
free decentralized resource allocation algorithm is summarized
in Algorithm 1.

B. Failure of Attack-Free Decentralized Resource Allocation
Algorithm Under Byzantine Attacks

When all the agents are honest, the decentralized resource
allocation algorithm outlined in (7)—(9) can effectively solve (1);
readers are referred to [14], [39]. [40]. However, it fails in the
presence of Byzantine attacks. At iteration k + 1, each honest

agent i € H updates A¥*! based on ler% from its own and
A?Jﬁ} from its neighbors j € A;. An honest neighbor j € N; N
‘H faithfully sends the message l?r%, but a Byzantine neighbor
j € N; N B may send an arbitrarily malicious message  instead
of the true message I?Jr%. We define the message sent by agent

jas

10
*, 3€B. 0

1

i;.”% B {lfri, jEH,

The malicious messages sent by the Byzantine agents prevent
the honest agents from obtaining the optimal dual variable and
corresponding resource allocation strategy. We provide a simple
example to illustrate their impact. Assume that the local cost
function of agent i is f;(6;) = 62, the local resource constraint
set is C; = [0,100], and the average resource is 8 = 50. The
optimal dual variable and resource allocation of agent i are
A} = —100 and 8} = 50, respectively. According to (7), the

k41
update of 85+1 is gF+1 = H[o,mu}(—%), the projection of
k+1
—52— onto [0,100]. A Byzantine agent j can manipulate A.f“

by (9) to be either 0 or —200 through sending a proper i;.H%.
In consequence, honest agent 7 will obtain resource allocation
of either 8**' = 0 or 8¥*! = 100, which are faraway from the
optimal solution.

IV. BYZANTINE-RESILIENT DECENTRALIZED RESOURCE
ALLOCATION

In light of the influence of Byzantine attacks to decentralized
resource allocation, we propose a class of Byzantine-resilient
decentralized resource allocation algorithms to approximately
solve (2) in this section.

A. Algorithm Development

As we have shown in Section III, the decentralized resource
allocation algorithm outlined in (7)—~(9) fails in the presence
of Byzantine attacks. This is due to the vulnerability of the
weighted average aggregation in (9) to Byzantine attacks. To ad-
dress this issue, we replace the weighted average with proper ro-
bust aggregation rules, and propose a class of Byzantine-resilient
decentralized resource allocation algorithms. The updates of
each honest agent : € H are given by

0% = arg min {6, AF + f:(6:)}, (a1
8,0,
ST TN 78 N P
AT ==t (58—50)), (12)
MH = AGGO (K ), (13)

where AGG;(+) denotes a certain robust aggregation rule of
honest agent i. The proposed Byzantine-resilient decentralized
resource allocation algorithm is summarized in Algorithm 2.

In this paper, we mainly consider the applications of three
well-appreciated robust aggregation rules: CTM, 10S and SCC.
Further, we will show that a wide class of robust aggregation
rules enable the updates of (11)—(13) to converge to neighbor-
hoods of the optimal resource allocation strategy of (2). The
remaining design is to delineate the conditions for “proper”
robust aggregation rules.

Robust Aggregation Rules: Intuitively, for an honest agent

' RS Las
i, we expect that the output of AGG; (X; "2, {X; *}jen,
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Algorithm 2: Byzantine-Resilient Decentralized Resource
Allocation Algorithm.

Initialization: All agents i initialize 1Y = A°.
fork=0,1,2,...do
for all honest agents i € Hdo
Compute 8% = arg ming,cc, {0, AX + £i(6:)}.
L
Compute AL 77 = 1k — v*(%s—16F).
Broadcast lf+% to its neighbors.
P
Receive l;+ ? from its neighbors.

I gl
Aggregate A = AGG,;()L?JFE, {l;.c+2 bien,)-

end for

for all Byzantine agents i € BB do

gl
Broadcast l;” ? = x to its neighbors.
end for
end for

is close to a proper weighted average of the messages from

its honest neighbors and its own local dual variable, denoted
—k+3 k+% . .

asd; =) icVirmuli) €igh;  with the weights {ei; }jen

satisfying . v.~x)upip €7 = 1- We use the maximal value

of {||l;f+% . I:'"L% |} jevirmyugey as the metric to quantify the
proximity. Therefore, we follow [25], [41] to characterize a set
of robust aggregation rules with a virtual weight matrix and a
contraction constant.

Definition 1: Consider a set of robust aggregation rules
{AGG,};z9. If there exist a constant p >0 and a ma-
trix £ € RE*H whose elements satisfy e;; € (0,1] when
jeWN;nH)U{i}, e;;5 =0 when j ¢ (N; NH)U{z}, and
Y jevirmyugiy €7 = 1 for any i € H, such that it holds

IAGG:(Xi, {X;}sen) — Ml

1A — Al (14)

<p max
JeWaNH)U{t}

forany i € ‘H, then pis the contraction constant and F is the vir-
tual weight matrix associated with the set of robust aggregation
rules {AGG,;}@E'H. Here J_Li = ZjE(N,ﬂ'H}U{TI} eijlj-

In the next section, we will prove that if a robust aggregation
rule satisfies Definition 1, it is “proper” if the associated p is
small and F is doubly stochastic.

Remark 1: The work of [41] has demonstrated that CTM,
I0S and SCC all satisfy Definition 1 under network conditions
stricter than connectedness of the honest agents, and specified
their corresponding p and E. For example, for each honest agent,
CTM requires the number of its honest neighbors to exceed 25b.
Note that the pair of (p, ') is not unique. Finding the best pair
is beyond the scope of this paper.

There also exist other robust aggregation rules, such as the
total-variation-based [42] and attack-detection-based [43] ones,
which do not satisfy Definition 1. We will investigate these
approaches in our future work.

B. Advantages Over BREDA

Our proposed algorithms have several advantages over
BREDA [34]: simplicity, generality and dual consensus. First,
at each iteration of BREDA, each honest agent needs to update
a primal variable, a dual variable, and an auxiliary variable that
tracks the average of the honest primal variables. By contrast,
at each iteration of our proposed algorithms, each honest agent
only updates two local variables, one is primal and the other is
dual. Second, the robust aggregation rule of BREDA is confined
to CTM; using other robust aggregation rules lacks convergence
guarantee. However, CTM does not fit for the scenario that an
honest agenthas a large number of Byzantine neighbors, because
the number of discarded messages has to be at least twice.
This is unfavorable especially when the underlying network
is sparse. Instead, our proposed algorithms allow a wide class
of robust aggregation rules that satisfy Definition 1. Third,
BREDA guarantees the local auxiliary variables to be nearly
consensual, but the local dual variables are not necessarily so.
We will validate this fact in the numerical experiments. Since
the optimal dual variable stands for the shadow price of the
resources [44], reaching consensus of the local dual variables
is important in various applications. Our proposed algorithms
have such a guarantee, as shown in the next section.

V. CONVERGENCE ANALYSIS

This section analyzes convergence of the attack-free and
Byzantine-resilient decentralized resource allocation algori-
thms, outlined in (7)—(9) and (11)—(13), respectively.

We begin with several assumptions.

Assumption 1: For any 7 € 7, the local cost function f;(-) is
u g-strongly convex and L ;-smooth, and the local constraint set
C; is compact and convex.

Assumption 2: There exist © and © in the relative interiors
of C' and C, such that the constraints %EEJ 6; = s and
% Y icy i = s satisfy, respectively.

Assumptions 1 and 2 are common in investigating resource
allocation problems, and are satisfied by many applications [3],
[35], [36]. With Assumptions 1 and 2, the duality gaps of (1)
and (2) are both 0. In addition, the negative dual functions to
minimize are also strongly convex and smooth.

Assumption 3: The graphs G(J,€) and G(H, &) are both
undirected and connected. The weight matrices E and E are
doubly stochastic and row stochastic, respectively, and satisfy

Ri=|E - %HTH? <1, (15)
k= |E— %11TE||2 <1 (16)

We have emphasized that the connectedness of G and G is
necessary. The requirement (15) is common in decentralized
optimization. It holds when €;; > 0 if and only if (7, j) € £ or
i = j. The requirement (16) on the associated virtual weight
matrix E is in the same form of (15) if E is doubly stochastic,
but we allow E to be only row stochastic.
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A. Convergence of Attack-Free Decentralized Resource
Allocation Algorithm

Denote (@)*,ii) as the optimal primal-dual pair of (1), in
which ® € R’P and.x & RP. The following theorem shows
the convergence of the attack-free decentralized allocation al-
gorithm (7)—(9).

Theorem 1: Consider ® ' and {2F1}.c7 generated by
the attack-free decentralized resource allocation algorithm (7)—
(9) and suppose that no Byzantine agents are present. If As-
sumptions 1-3 hold, then with a proper decreasing step size
7% = O(%), we have

) limgs o0 Dacg A~ X7 =0,

b) lime 100 [|©° T — O =0.

Theorem 1 shows that the local primal and dual variables
generated by (7)—(9) converge to their optima. This matches the
classical conclusion for the decentralized gradient method [14],
[39], [40]. Those works assume convex and possibly non-smooth
cost functions, while we assume strongly convex and smooth
cost functions, with which we have performance guarantee for
the ensuing Byzantine-resilient algorithms. The proof of Theo-
rem 1 and the conditions on the step size 7" are in Appendix B
of the extended version of this paper [45].

B. Convergence of Byzantine-Resilient Decentralized
Resource Allocation Algorithm

Similarly, denote (®*, L") as the optimal primal-dual pair of
(2), in which ©* € R”P and A* € RP. The following theorem
shows the convergence of the Byzantine-resilient decentralized
allocation algorithm (11)—(13).

Theorem 2: Consider ®* ! and {1"1},.5 generated by the
Byzantine-resilient decentralized resource allocation algorithm
(11)—(13). Suppose that Byzantine agents are present but the
used robust aggregation rule satisfies (14) in Definition 1. If
Assumptions 1-3 hold and the contraction constant p satisfies

<1—.~;
P 8\/?1

then with a proper decreasing step size v¥ = O(%), we have

a) limsupg , o> ey Ak —ar) < \/192;721{2_
Y1+ V4P H + X2,

b) limg_;ie0 Zw‘e?{ ||JL:.‘+1 . J—Lk-H” -0,

¢) limsup,_, . [|©F! —©*| < % /’19;52 :

1+ & VITH + X2,
where 1" := %Za‘e’H )L;H_l’ B=x Uj'l-‘rL.f S
8pVH, and X := +||E"1 —1||? quantifies the non-
doubly stochasticity of E.

The proof of Theorem 2 and the conditions on the step size
~* are presented in Appendix A. Theorem 2 demonstrates that
if the robust aggregation rule is properly designed such that the
associated contraction constant p is sufficiently small, then the
local primal and dual variables generated by (11)—(13) converge
to neighborhoods of their optima. Sizes of the neighborhoods

are determined by the associated contraction constant p and
virtual weight matrix E' (more precisely, x2). Notably, the local
dual variables are guaranteed to reach consensus even under
Byzantine attacks.

Compared to the proof of Theorem 1, that of Theorem 2
is more challenging. First, under the Byzantine attacks and
with the robust aggregation rule, dual-domain consensus is no
longer merited. We discover that p must be sufficiently small for
reaching consensus. Second, due to the imperfectness during the
aggregation, each iteration incurs an error determined by p and
x2. We have to handle such an error within the analysis. Note
that when p = 0 and F is doubly stochastic, Theorem 2 reduces
to Theorem 1.

Our analysis is related to but significantly different from that
in [25]. The work of [25] considers a general Byzantine-resilient
decentralized stochastic non-convex optimization problem, and
analyzes robust aggregation rules that satisfy Definition 1 in
the primal domain. By contrast, we consider a strongly convex
resource allocation problem, and analyze in the dual domain.
The different assumptions lead to different convergence metrics,
and the corresponding technical tools are different, too.

Remark 2: Although Algorithm 2 and its convergence anal-
ysis in Theorem 2 are only applicable to (1) with an equality
constraint, they can be extended to handle the problem with an
inequality constraint as well. The extensions can be achieved by
incorporating a non-negative projection operation in updating
the dual variables of Algorithm 2 and utilizing the non-expansive
property of projection in the convergence analysis of Theorem
2.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to show the
performance of the proposed Byzantine-resilient decen- tralized
resource allocation algorithms.

A. Case 1: Synthetic Problem

We first test on a synthetic and scalar case with D = 1.
Consider a randomly generated network consisting of J = 100
agents, where each agent has 15 neighbors. The weight ¢;; is
set to % if and only if (z,7) € & or i = j. The total amount
of resources is 5000 such that s = 50. The local constraint of
each agent 7 is 8; € C; = [0,100]. Each agent ¢ has a local
cost function f;(6;) = a;(8; — b;)?, in which a; ~ U(1,2) and
b; ~ N(2,0.6%) with U(-,-) standing for uniform distribution
and NV (-, -) for Gaussian distribution. Such quadratic cost func-
tions is also used in [12], [15], [16].

We randomly select B = 6 Byzantine agents by default, but
allow each agent to have at most 4 Byzantine neighbors. For the
proposed algorithms, we test four types of Byzantine attacks:
large-value, small-value, large-value Gaussian, and small-value
Gaussian. With large-value attacks, a Byzantine agent sets its
message as —0.01. With small-value attacks, a Byzantine agent
sets its message as —600. With large-value Gaussian attacks,
a Byzantine agent sets its message following a Gaussian dis-
tribution with mean —30 and variance 52. With small-value
Gaussian attacks, a Byzantine agent sets its message following
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Fig. 2.

a Gaussian distribution with mean —300 and variance 40%. We
consider three popular robust aggregation rules: CTM, 10S and
SCC. The step size is v* = (k + 1)1, which is faster than the
conservative theoretical step size in the order of O(3).

We use the attack-free decentralized resource allocation algo-
rithm (7)—(9) as a baseline. Another baseline is BREDA. Note
that BREDA defends against Byzantine attacks in the primal
domain, whereas our proposed algorithms defend in the dual
domain. To enable fair comparisons, for the dual-domain large-
value attacks, we generate the corresponding primal-domain
attacks such that their effects on the primal variables are almost
the same, for our proposed algorithms and BREDA, respectively.
Similarly, we also generate the corresponding primal-domain
small-value attacks. Thus, with large-value and small-value at-
tacksin BREDA, a Byzantine agent sets its message as 100 and 0,
respectively. Note that it is difficult to generate the corresponding
primal-domain large-value and small-value Gaussian attacks,
and we do not compare with BREDA under these attacks.

Each honest agent sets the parameters b of CTM and 1OS to
be optimal, as the number of its Byzantine neighbors. In SCC,
the clipping threshold 7 is determines according to Theorem
3 in [33]. Performance metrics are primal optimality ||@* —
©°||, dual optimality Y, ,, [[A¥ — A*|| and dual consensus error

" ies IME — X¥||2. In the extended version of this paper [45], we
also consider the setting of non-optimal parameters, as well as
evaluate on more performance metrics, including cost optimality
|| f(©%) — f(©*)|| and constraint violation || £ 3, _;, 6% — s].
Besides, we test the sensitivity to different number of Byzantine
agents, t0o.

Fig. 2 illustrates that the attack-free decentralized resource
allocation algorithm (7)—(9) fails under all Byzantine attacks.
By contrast, the proposed algorithms and BREDA demonstrate
satisfactory Byzantine-resilience. Among the robust aggregation
rules used in our proposed algorithms, IOS performs the best

—+— proposed+I0S

10000 20000 30000
number of iterations

0 10000 20000 30000 0O
number of iterations

proposed+SCC  —— BREDA

Primal optimality and dual optimality of the compared algorithms with optimal parameters in Case 1. The number of Byzantine agents is set as 6.

TABLE1
BOUNDS OF p2 AND X2 FOR CASE 1

p? x? 2+ x?
CTM | 0.44 | 0.0031 | 0.44
108 | 0.11 0 0.11
scc | 2.75 0 2.75

and CTM is better than SCC in terms of primal optimality
and dual optimality. To see the reason, recall that Theorem
2 shows the primal optimality and dual optimality are both
in the order of O(p? + x2). We calculate the corresponding
bounds of p? + x? in Table I according to Lemmas 3-5 in [41].
From the smallest to the largest are respectively I0S, CTM and
SCC, which validates our theoretical findings. In the numerical
experiments, we observe that even though the contraction factor
p of SCC is greater than 1, the primal-dual optimality error of
SCC converges to a fixed value other than explodes. However,
in the theoretical analysis, we require p < ;\7}1{ < 1 to ensure
convergence. This stricter requirement arises because we must
guarantee consensus of the dual variables under Byzantine at-
tacks. The discrepancy between our experimental and theoretical
results is understandable, since the theoretical analysis must
account for the worst-case scenarios and thus require more
conservative conditions.

Fig. 2 also reveals that BREDA is worse than the proposed
algorithms with proper robust aggregation rules. To further
highlight the advantages of our proposed algorithms, we list
the dual consensus errors in Table II. No matter the types of
Byzantine attacks and robust aggregation rules, the proposed
algorithms achieve nearly perfect dual consensus. By contrast,
BREDA cannot guarantee dual consensus. This phenomenon
shows the benefits of the dual-domain defenses.
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TABLE II
DuAL CONSENSUS ERRORS WITH OPTIMAL PARAMETERS FOR CASE 1
large-value | small-value | large-value Gaussian | small-value Gaussian
BREDA 105.70 121.09 / /
proposed+CTM 1.20e-02 1.07e-02 1.20e-02 1.07e-02
proposed+10S 1.09e-02 1.09e-02 1.09e-02 1.09e-02
proposed+SCC 3.36e-02 3.16e-02 3.36e-02 3.16e-02
large-value small-value large-value Gaussian small-value Gaussian
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Fig. 3.
and 8.

In Fig. 3, we check the sensitivity of the compared algorithms
to the number of Byzantine agents B by setting B as 4, 5, 6,7 and
8. The attack-free decentralized resource allocation algorithm
(7)—(9) fails for any value of B. By contrast, both BREDA and
our proposed algorithms demonstrate satisfactory resilience, and
their performance is steady when B varies.

B. Case 2: Economic Dispatch for IEEE 118-Bus Test System

We next consider a power dispatch problem for the IEEE 118-
bus test system, which contains 54 generators [46]. Each gen-
erator 7 has a local power #; and a corresponding cost function
f‘j (6{) = mﬂ? + C@&i + Ei, where ni € [00024, 00697], C‘i <
[8.3391, 37.6968], and &; € [6.78,74.33]. The local constraint
of each agent i is 8; € [0, 2], where 87" ¢ [5,150] and
max ¢ [30,420]. The total amount of resources is set as 6000,
such that s = % [14]. To test the performance of the proposed
algorithms, we randomly select one Byzantine agent out of the
54 generators and apply different types of Byzantine attacks,
including large-value, small-value, large-value Gaussian, and
small-value Gaussian. For large-value attacks, the Byzantine
generator sets its message as —0.01, whereas for small-value
attacks, the Byzantine generator sets its message as —100. For
large-value Gaussian attacks, the Byzantine generator sets its
message following a Gaussian distribution with mean —10 and
variance 52. For small-value Gaussian attacks, the Byzantine

—+— proposed+10S

proposed+SCC —— BREDA

Primal optimality and dual optimality of the compared algorithms with optimal parameters in Case 1. The number of Byzantine agents is setas 4, 5, 6, 7,

TABLE II1
BOUNDS OF p2 AND X2 FOR CASE 2

pZ x2 p2 e XZ
CIM | 0.024 | 0.11 0.134
108 0.006 0 0.006
SCC | 0.965 0 0.965

generator sets its message following a Gaussian distribution with
mean —50 and variance 10%. We also design the corresponding
larger-value and smaller-value attacks for BREDA, where the
Byzantine generator sets its message as 420 and 5, respectively.
The weight matrix E is constructed according to the Metropolis
constant weight rule [47]. The parameters b and 7 are optimal.
The step size for the proposed algorithms is determined as
,_Yk = (k + 1)—0.7.

Fig. 4 demonstrates the failure of the attack-free decentralized
resource allocation algorithm, as well as the resilience of the
proposed algorithms and BREDA against various Byzantine
attacks. We also calculate the corresponding bounds of p? + x?2
of the robust aggregation rules IOS, CTM, and SCC, as presented
in Table III. Observe that a smaller bound of p? + x? leads to
better performance, which has been predicted by our theoretical
findings.
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Fig. 4. Primal optimality and dual optimality of the compared algorithms with optimal parameters in Case 2. The number of Byzantine agents is set as 6.

TABLE IV
DuAL CONSENSUS ERRORS WITH OPTIMAL PARAMETERS FOR CASE 2

large-value | small-value | large-value Gaussian | small-value Gaussian
BREDA 0.51 0.49 / /
proposed+CTM 2.16e-04 3.28e-03 3.48e-03 3.28e-03
proposed+I0S 3.37e-03 3.37e-03 3.37e-03 3.37e-03
proposed+SCC 3.55e-03 3.23e-03 3.54e-03 3.23e-03
According to Fig. 4, BREDA performs worse than the pro- APPENDIX A

posed algorithms with proper robust aggregation rules. We cal-
culate the dual consensus errors of the proposed algorithms with
different robust aggregation rules and BREDA, as presented in
Table IV. The proposed algorithms achieve nearly consensual
dual variables and BREDA does not.

VII. CoONCLUSIONS AND FUTURE WORK

In this paper, we address the challenging Byzantine-resili-
ence issue in decentralized resource allocation. We propose a
class of Byzantine-resilient algorithms that leverage robust ag-
gregation rules within a dual-domain defense framework. Given
that the robust aggregation rules are properly designed, we prove
that the primal and dual variables of the honest agents converge
to the neighborhoods of their optima, while the dual variables
are able to reach consensus. This dual-domain defense approach
not only simplifies the algorithmic updates but also enhances the
overall Byzantine-resilience. Our numerical experiments further
demonstrate the resilience of the proposed algorithms against
various Byzantine attacks, confirming their practical utility.

In the future, we plan to extend our algorithm development
and theoretical analysis to stochastic and online decentralized
resource allocation problems under Byzantine attacks, which
are of particular importance for time-sensitive applications.

PROOF OF THEOREM 2
Al Part a of Theorem 2

According to the update of lf Lin Algorithm 2, we have
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where v; is any positive constant in (0,1). To derive the first
inequality, we use ||la + b||? < 1|a||? + 1= ||b]|? for any pos-
itive constant v € (0,1). The last inequality holds because
(a1 +---+au)? < H(a? +---+ a%). Next, we analyze T},
T5 and T3 in turn.

Bounding T7: According to (14) in Definition 1, T} can be
bounded by
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Define A =[---,X,---] € R¥*D that collects ; of all
honest agents ¢ € H. Combining the fact max;.4 ||).'Ichz
15312 < ||AR+# — L11TAR+#|2, and (18), we obatin
8p2 1
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(54 H
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To drive the last equality, we use Definition 1 that the virtual
weight matrix E' is row stochastic.

Define x* = #|[E"1 —1||? to quantify how non-column
stochastic the virtual weight matrix E is. Applying the fact
|- 1|2 < || - ||% to the right-hand side of (20), we have
2D

2 ks 1 L
Ty < ——_J|IAFFs ——11TAR 2|2,
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Bounding 75: Averaging both sides of (12) overz € H, we have
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The dual problem of (2) can be written as a minimization
problem in the form of

i g(d) = Z gi(X), (23)
icH
where  gi(A) == LF/(-A)+%ATs and F{(X):=

maxg,cc, {1 '0; — fi(0;)}. Based on the definition of
gi(X) :== %F;(—l)—l—%l‘s and Danskin’s theorem [38],
we have

_ 1 1 . i
Vagi(ki) = ES 77 T8 81:3;.&{1%- 6;+ fi(6;)}. (24)
Combining (11), (22) and (24), we can obtain
k
Tk+: sk 7Y k
=3 - =3 Va(). (25)

teH
Substituting (25) into T3, we have

k
- oy 7k
Tg—l_v A JZVQ'«\(JL)
ieEH
’}’k =k 'Yk k2
+ TZV%U = TZVSH(M)"
ieH teH
k
% A Tky 2
— A —TZVQ':'UL)
icH
k\2 1 E
#0125 (Va5 - VeI +
i€

k
: N o | -
<1’“ - . —TI Y Va(r"), = > (Vai(x®)
icH icH

= Vga:(lf))> < - LS vaahe

icH

wlt ||—Z(vglu ) — Vo, (F))|?

icH

Authorized licensed use limited to: George Mason University. Downloaded on January 18,2025 at 18:13:21 UTC from IEEE Xplore. Restrictions apply.



814 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

'”2 i n—Z(w — Va: (5|12
+ f” 15— 2 - 23" Ve e
iceH
15 i8
< 1_—1?““ o A
1 iceH
R 7 L2 SV L
(1 —u )J2 95 g!

icH

where vy > 0 is any positive constant. To drive the first in-
equality, we use 2a'b < v71||a||? + v||b||?> for any v > 0.
The last inequality holds because (a; + --- +ag)? < H(a? +
-« + a%). Next, we analyze the first and second terms at the
right-hand side of (26) in turn.
According to the fact that )", _,, Vgi(1*) = 0, we have
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term at the right-hand side of (27), we have the following
bound. According to Lemma 2, g;(-) is —-strongly convex
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Combining (42) and (44) yields

DI =)

ieH
. g L R - )
ieH
. 1 4608462
< H. R b .
“H VErEl ”+\/(ko+k)(ko—1) )

19242

k+1 9
a2 o = g e 0 iy 2
\/ku+k B2 (+63) i

28852 H
+VH - \/(ko TR ISE (45)
Taking k£ — +o0, we obtain
limsup ) ~ [[AFTT — A%
k—+oo icH
19262H?2 9 5
< —m 1+E—3 - (4p?H + x?). (46)

A2 Part b of Theorem 2

Based on ”ﬁk—‘,—l 1 llTAk+1”2 &= 18!Tk+1)25gﬂ'3
in Lemma 4 and the fact |AF+ — 2 11TA5=+1||2 _

Y ien ML — 252, with a proper decreasing step size

= O(5). taking k — +00, we obtain
o, Dl
k—+oa

We conclude by summarizing the conditions on the step
size v* in Theorem 2. It must satisfy (fy““)2 & _2yka <0,

18(7%)2 - (2-¢)¢? P
eu?.‘ﬂ S 3(3 E)’ ]-S ( k+1)2 E 1+(’1 ez)s

I =o. (47)

as well as % <

uyd ]

33" The specific step size 7* = _‘"(k—H) with kg >
2 216(3—€) 1

max{3g, |/ TowInzE T urHﬁ} satisfies these

conditions.

A3 Part c of Theorem 2
The Lagrangian function of (2) is

Zfz(9]+<

icH

L(O;1) = =)0, —s> (48)

':E'H

Since ®F is the optimal solution of the primal problem (2),
we have % 3", , 07 = s and 6" € C. According to (48), for
any dual variable A we have

%Zfiwm(x,%ze:—s)

icH ieH

L(0%1) =

= f(©). (49)
By Assumption 2, the duality gap is zero. According to (23), for
any A we obtain g(A*) = — f(©®*) = —L(O*;1). Now we in-
troduce a vector {@F+1 .= [f@¥F1; ... .1 9k 1] where T@F ™ =

argming,cc, {07 X" + £i(6:)} and A*FT = & 3o AFH.
Therefore, we have
~k+1 %
g(A* ") —g(1*)
== 5uf [ (@;I"“) i (e‘;x"“)
ecC

= c(fekﬂ "*1)+£(@* ’““).

Assumption 1 shows that the local cost function f;(-) is u -
strongly convex. Further using the definition of £(®; 1) in (48),
we know that £(©; 1) is u p-strongly convex with respect to ©.
Therefore, we have

c(e* "*1) L(Tek“-,i’““)

(50)

> T (t@k+1. 7k+1 «_toktly, U itektl_ o+ 2

> VL (e X )(e o)+ L|fe+—e)
(51)

Combining (50) and (51), we obtain

g(1")

>veT (T@k-i-l_ik-!-l) G 18k+1)+u_f”f8k+l_@*”2

— 1 2

g(X*+) -

u
> L(ter+! — e, 52)

To drive the last inequality, we use optimality condition
of 10*1 = arg ming,cc, {07 A" + £:(8:)} [38, Proposition
2:1.2].

According to Lemma 2, g;(X) is smooth with constant ﬁ

Therefore, function g(1)

= iy 9i(X) is smooth with constant
ﬁ. This fact leads to

g(A*h) — g(a%)

(o=

<Vg' e

—l* _EE _l* 2
)b n

%
— et (53)

AP

To drive the last equality, we use the fact that Vg(,*) = 0.
Combining (52) and (53), we have

[feF — |2 < nx’“*‘ VI (54

(uf)?
Combining (42) and (54), we obtain

ek — e < —

uf

ko — 3§ 288452
[ ko‘i'}t"l = ”_i—‘/(ko—i—-lu)(ko—l) ’ 'BQGBU?H‘Z
19242

kE+1 3
+\/m'T-(1+6—3)-(4p2H+Xz)|.

Taking k — +o0, we obtain

lim sup ||f@*+!
k— oo

(55)

-7

Authorized licensed use limited to: George Mason University. Downloaded on January 18,2025 at 18:13:21 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: DUAL-DOMAIN DEFENSES FOR BYZANTINE-RESILIENT DECENTRALIZED RESOURCE ALLOCATION 817

'b:f ,8

According to Assumption 1, f;(6;) is us-strongly convex.
By the conjugate correspondence theorem in [37], the conjugate
function F (1) = maxg,cc,{1"6; — fi(6:)} is u—‘f—smooth. In
consequence, the gradient VF(—A) = arg ming ¢, {A"0; +
fi(6;:)}is %-Lipschitz continuous. According to the definition
of Lipschitz continuity, we have

1 19242 3
5_.\/ .(1+€—3) (42 H +x2).  (56)

L3 1 : =
[VErftY) — vE (5| < u—fux;”“ e b N Cr)

Based on [6%t! = argming,cc {072 + fi(6;)} and
0%+t — argming,cc, {0, AF! + f;(6;)}, we  obtain
65+ = VFr(A**) and T6*+! = VFr(A*™). Substituting
them into (57), we have

1 —k+1
Ilﬂi-‘“—TGi‘“IIS;IIl?“—l I (58)

Combining (58), 1@%+1 .= [[g5*1;... ;T %F!] and @F+! =
(6515 ;8% 1], we obtain

1 N
[@F+ — T@k+1| < — 3 AFF —2FFY.  (59)
’U,f 3
ieH
Combining (44) and (59), we have
H 28862H
||@k+1 - T@k-i-l” < £ 2 TR (60)
Taking £ — +oco, we obtain
lim ||@* — T@* 1| =o0. (61)
k—+oco
Combining (56) and (61) yields
limsup ||@%F! — ©*|
k—+4oo
< limsup ||©%! — T@F || +limsup |@F ! — @
k—++o00 k—+o0
1 19242 3
< —- \/ : (1 + —3) - (4p?H + x?). (62)
ug B €

A4 Supporting Lemmas

Lemma 1: Under Assumption 1, for any A € RP, the
maximum distance between the honest agents’ local dual
gradients and their average, denoted by max;cy || Vg;(A) —
+ 3 ien Vgi(1)[|2, is bounded by some positive constant 62.

Proof: See Supplementary A.

Lemma 2: Under Assumption 1, for any honest agent i € H,
the local dual function g;(A) is strongly convex with constant
H+£; and smooth with constant HLW

Proof: See Supplementary B.

5 k+%
Lemma 3: Define a matrix A*F2 =[.. A;7Z ...]¢

L
R D that collects the dual variables A, * 2 of all honest agents

1 € H generated by Algorithm 2. Under Assumption 1, we have

1+
IAR+E — 11 TAR

] L
—\1—-w

where v is any positive constant in (0,1). If v = % and the step

size v < ;—j%, this further yields

5(’Tk)2 k L 3(’]”‘)252H3
v - ujJ? A Tt e v-Jz 7’

H
(63)

: 1. - 1
Ak — ZaaTAR R
s 6(y%)262H3
<gat— LA+ O e

Proof: See Supplementary C.

Lemma 4: Define a matrix A¥!=[... A8 .. ¢
RH*D that collects the dual variables A of all honest agents
1 € ‘H generated by Algorithm 2. Suppose that the robust aggre-
gation rules AGG; satisfy (14) in Definition 1. Under Assump-
tions 1 and 3, if the contraction constant p satisfies p < 81;‘/%,
we have

1

E+14y2 52773
"Ak+1 _ EllTAk-I—I”%‘ S 18(7 ) 0°H

= (69

where e ;=1 —.ﬂa—Sp\/I?.

Proof: See Supplementary D.

Lemma 5: Suppose that for any integer k£ > 0, a sequence
{+*} satisfies

ky\2
1< (") < 2 .
GO = T+
for some v; € (0, 1), and another sequence {y*} satisfies

Y < hiy* +a(7%)? and 3% < 9hu(7°)?

forsome ¢, € (0,1) and 15 > 0. Then, y* is upper-bounded by

(66)
(67)

k 211[}2 k2
€ ) (68)

Proof: See Supplementary E.
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