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Abstract

Wireless link scheduling in device-to-device (D2D) networks is an NP-hard problem. As a solution, multiple supervised

deep learning (DL) models have been recently proposed, which depend on the geographical information of D2D pairs.

However, such DL models require labeled training data. In this paper, we focus on unsupervised learning of scheduling.

More specifically, this paper proposes using a Density-Based anti-Clustering for Scheduling D2D Communications

(DBSCHedule). The proposed algorithm is a two-step approach that consists of clustering and anti-clustering. First,

clustering aims at identifying the non-interfering groups of D2D pairs. Then, anti-clustering aims at identifying the

maximally separated sub-groups to minimize the interference. The clustering step uses a fully-automated unsupervised

density-based spectral-clustering of applications with noise (DBSCAN) and the anti-clustering uses the inverse of the

objective function of the k-means clustering. Results show comparable performance with the optimal FPLinQ scheduler yet

without requiring any channel information nor is there a requirement to solve a complex optimization problem. Moreover,

a comparable performance to the previous attempts using DL and modified clustering is achieved while being completely

adaptive and easily accommodating to changes in the network layout.
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1 Introduction

Device-to-device (D2D) communication is an essential

component in modern cellular systems mainly because of

its support in offloading traffic from the base stations [1].

D2D communication avoid the centralized computational

and communication bottleneck to serve better quality of

service as well as save energy, which makes it an important

step towards green communication as well [2]. However,

the problem of link scheduling in D2D communication is

NP hard and requires solving complex optimization prob-

lems, which could be solved using strategies like FPLinQ

and FLashLinQ [3]. Some attempts sought sub-optimal

solutions to reduce the complexity such as fractional pro-

gramming algorithms that optimize ratios of functions and

then undergo a certain approximate transformation [4],

heuristics, which can use any form of minimization or

maximization of utility under certain assumptions [5], and

adaptive learning optimization, which uses deep learning

for the pruning step instead of calculating all possibilities

for a certain branching operation [6, 7].

All of the aforementioned algorithms, however, rely on

the existence of channel estimates to do the predictions.

This can impede the development of fast algorithms that

can cope with fast network dynamics and communication

service requirements. Several attempts were made in the

literature to try and alleviate the need for channel estima-

tion and use only distance information to solve the D2D

scheduling problem. Using distance information only to

solve D2D scheduling problems is very challenging. This is

why several attempts in the literature used other algo-

rithms’ outputs to train Deep Learning (DL) models. In this

paper, we propose a novel solution for D2D scheduling that

can inherently do scheduling without the need of another

algorithm to work with. We first summarize the previous

related works on solving D2D scheduling problems and
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build up the base for the contributions of this work in the

next section.

2 Related work

DL has found its way in numerous applications nowadays

including wireless communications [8]. Resource alloca-

tion is one of the most challenging tasks in communication

networks where previous research explored DL in power

allocation in the framework of reinforcement learning and

fusion [9–11], to learn optimization solutions for spectrum

sharing [12], and to solve linear sum assignment problems

[13]. The use of DL specifically in D2D link scheduling

was explored by [14] and [15]. The work in [14] extracts

interference and distance information based on kernel fil-

ters that are learned from synthetically generated data.

However, in order to learn a sufficient number of filters to

solve the scheduling problem, a significant amount of

training data is required. Federated learning was also

explored to distribute the computational burden to multiple

devices and a central node [16]. On the other hand, the

graph embedding approach in [15, 17] eases the burden of

learning the mappings through kernel filters by preparing

neighborhood graphs describing the network through

pairwise distances. Recurrent neural networks (RNNs)

were also studied using sequence-to-sequence learning [18]

and geometrical manifolds [19].

As much as these works are successful, a significant part

of learning is labelled data. In contrast, unsupervised

learning techniques have the advantage of requiring only

data without being labelled, which makes them more ver-

satile especially with dynamic deployment in roadside

units (RSUs) in vehicular networks, relays, and base sta-

tions. There has been an attempt to use clustering algo-

rithms, which fall under unsupervised learning, to achieve

the required task in [20]. The authors modified several

well-known clustering algorithms in order to achieve link

scheduling with equal-size clusters. The number of clusters

was determined using the final number of network active

links as a percentage of the result obtained from the opti-

mal FPLinQ scheduler.

Motivated by the above, this paper proposes using a

Density-Based anti-Clustering for Scheduling D2D Com-

munications (DBSCHedule). The proposed algorithm is a

two-step approach where the first step is to cluster D2D

pairs that are in spatial proximity defined by a certain

radius within which interference is significant. The second

step is to identify, within each cluster, a set of pairs that are

as far away from each other as possible. These objectives

can be achieved using density-based spectral-clustering of

applications with noise (DBSCAN) [21] and anti-clustering

[22], respectively, for D2D link scheduling. DBSCAN

clusters D2D pairs based on their spatial location and

density where more dense regions are considered clusters

with high risk of interference. It is a highly adaptive model

and is computationally far less expensive than other

supervised models such as neural networks. This makes it a

prominent model for dynamic networks because first, the

model is based on the density of D2D pairs, which is a

relative measure to the network layout and not an absolute

one. Second, the reduction in computational requirements,

which is due to the straightforward decision making pro-

cess requiring very few iterations and hence, faster deci-

sions. Third, it only requires distance information, which

does not cause a lot of overhead to acquire or estimate.

Anti-clustering then identifies D2D pairs that are furthest

apart within each cluster to minimize the interference

within that cluster. The number of anti-clusters sought is

simply 2, one will be scheduled and the other will not.

Anti-clustering will be based on the resulting maximum

sum of separating distances. The algorithm will require as

input only the locations of the D2D pairs that can be

acquired using global positioning systems, and a preset

radius of interference. No knowledge about channel state

information (CSI) is needed.

The main contributions of this paper can thus be sum-

marized as follows:

• Adopting a completely unsupervised technique for D2D

link scheduling with automated hyperparameter

selection.

• Using density-based clustering and anti-clustering to

tackle the D2D link scheduling problem.

• Achieving comparable performance to optimal as well

as solutions obtained using supervised learning with no

need for running a trainer optimizer to acquire

guidance, and minimal computational requirements.

The paper is laid out as follows: Sect. 3 describes the

system model, then the proposed link scheduling algorithm

is described in Sect. 4. The simulation setup and results are

described in Sect. 5. Finally, Sect. 6 concludes the paper

findings.

3 System model

We consider a network with Nd D2D pairs that are assumed

to be located randomly in a two-dimensional square area

with length L and the separation distances between the

D2D pairs are uniformly distributed between lmin and lmax.

The D2D pairs are allowed to move at a typical pedestrian

speed in random directions while keeping the separation

distance constant. Furthermore, we assume the transmis-

sion power is constant. A graphical representation of the

network layout is shown in Fig. 1 with several D2D pairs
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and the pair under study is in the middle with the neigh-

boring D2D pairs surrounding it. The channel gain for the

communication link between the transmitter (Tx) device ‘

and the receiver (Rx) device k is denoted by h‘k. The goal is

to identify which of the links need be active to maximize a

certain performance metric. A typical metric for perfor-

mance would be the sum-rate, where the rate for the link

between the Tx device ‘ and the Rx device k where ‘; k 2

f1; 2; . . .;Ndg is defined using information theoretic

capacity as follows:

R‘ ¼ BW � log2 1þ
jh‘‘j

2
P‘d‘

P

k 6¼‘ jh‘kj
2
Pkdk þ r2N

 !

; ð1Þ

where BW is the bandwidth, P‘ is the power of the Tx of

the ‘th link, r2N denotes the additive white Gaussian noise

power and dk 2 0; 1f g indicates whether the kth link is

active or not. It is worth mentioning here that other forms

of communications like base station to user can be con-

sidered as part of the interfering term in the denominator of

(1). This is done here as a simplification since the main

focus of this work is the scheduling problem itself. In

addition, this is assumed for the sake of comparison with

other works that consider only D2D communication with-

out considering overlaying devices as in [15] and [20].

D2D link scheduling is a typical NP-hard optimization

problem whose formulation requires CSI collection at a

central node from each of the links and demands a lot of

computations to reach an optimal solution. Clearly, the

maximization of the sum-rate would entail identifying dk 2
f0; 1g such that the sum-rate for the Nd devices in the

network is maximized as follows:

max
dk

X

Nd

k¼1

dkRk : ð2Þ

4 DBSCHedule for D2D link scheduling

Clearly, the channel gains between the D2D pair members

as well as the interference channels are distance-dependent

as shown in (1). Hence, to decrease the interference, the

clustering step in DBSCHedule thus identifies the pairs that

Fig. 1 Channel links between

transmitters and receivers in a

given D2D network. Each

ellipse shows a pair of devices

involved in a D2D

communication session
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are in close proximity to each other. These clusters have

inter-separating distances more than the expected harmful

interference distance. Hence, these clusters are considered

non-interfering clusters. Moreover, the pairs within each of

these clusters are at a high risk of interfering on each other

if activated all at once. By doing so, the set of active pairs

in (1) will no longer be assumed interfering and the

denominator can now be considered as follows:

IC ¼
X

k;l2C;k 6¼‘

jh‘kj
2
Pkdk þ r

2
N ; ð3Þ

where C is the non-interfering cluster set which the pair ‘

belongs to after clustering.

The clustering step in DBSCHedule uses DBSCAN to

cluster the D2D pairs based on their coordinates into NC

clusters where the coordinate of each pair is calculated as

the midpoint between the Tx and Rx members of the pair

and the clusters are constructed based on a certain preset

interference radius r. Assuming that the set of midpoint

coordinates between the different D2D pairs can be given

by D, then for any two pairs with midpoint coordinates dm

and dn in R2 where m; n 2 f1; 2; :::;Ndg to belong to the

same cluster, the following condition must be met:

kdm � dnk� r: ð4Þ

From the D2D scheduling perspective, this radius defines

the region where an active link can cause significant

interference on other neighboring active links. The result-

ing clusters are either singleton, which means they contain

only one pair, or contain multiple pairs. In case of a sin-

gleton cluster jCj ¼ 1, the decision is then to schedule this

pair for communication. Otherwise, if there is more than

one pair in a given cluster then a fraction of the clustered

links is chosen to be active. The factor a is the within-

cluster active percentage and it is preset for the scheduler.

The scheduler then identifies the pairs within each cluster

that are maximally separated as potential pairs for

scheduling. This can be achieved by utilizing the anti-

clustering technique [23], which is essentially the opposite

notion of clustering where members of the same anti-

cluster are very well separated from each other, while

members of different anti-clusters are very similar to each

other. For scheduling purposes, we need only two anti-

clusters within each cluster: scheduled and unscheduled.

By doing so, R‘ will be further maximized by reducing the

interference set given in (3) to Ca � C such that jCaj ¼

bajCjc where Ca includes the pairs m and n such that the

following is maximized:
X

m2Ca

X

n2Ca

kdm � dnk þ
X

m2CnCa

X

n2CnCa

kdm � dnk; ð5Þ

So, scheduled anti-clusters will be at the furthest distance

from each other, while the unscheduled pairs will be as

close as possible to scheduled ones. The proposed approach

is summarized in Algorithm 1. Figure 2 shows a typical

scenario while scheduling using DBSCHedule. The solid

ellipses identify the clusters of D2D pairs that are at risk of

interfering on each other because they are in close prox-

imity to each other. The singleton pair (at the bottom right)

will be scheduled as well as those potential pairs that are

encompassed by the dashed ellipses, which are identified

by the anti-clustering step because they are at a maximum

distance from each other within the cluster. The within-

cluster active percentage a is what decides how many pairs

will be active from the potential maximally separated pairs.

The final set of pairs that will be active are those with the

smallest Tx-Rx distances.

DBSCHedule solution is hence a multi-step heuristic

approach for speeding up and simplifying the maximiza-

tion of the sum rate for D2D communication requiring only

location-based information. The first step aims at identi-

fying the D2D pairs that do not contribute to interference

and hence, can be scheduled and at the same time reducing

the search space for the proper D2D pairs to be scheduled.

Figure 3 shows each cluster in the network of Nd ¼ 30

D2D pairs, where each cluster has a different color and

symbol. Next, two subsets of the D2D clusters that are at

risk of interfering with each other will be identified such

that these subsets are maximally separated by anti-clus-

tering. Finally, a fraction of those subsets will be chosen

based on their separating distance, which in turn maximizes

the sum rate. Figure 4 shows the scheduled D2D pairs

encompassed by green circles, and the unscheduled D2D

pairs marked by a red cross.
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Algorithm 1 DBSCHedule

1: Initialization: Interference radius = r, Within-cluster active ratio = α,

A number of scheduling layouts M .

2: For each D2D pair, calculate the location midpoint between the Tx and

Rx.

3: for m = 1 to M do

4: for i = 1 to Nd do

5: Identify the pairs linking to each other within a radius r.

6: Give each cluster of linked pairs a certain label.

7: The total number of resulting clusters will be denoted N .

8: Each cluster will have a number of pairs Nc.

9: for c = 1 to N do

10: if Nc = 1 then

11: Schedule as active.

12: else

13: Sort pairs in cluster c based on Tx-Rx distance of each pair.

14: Anti-cluster cluster c into two anti-clusters.

15: Decide which anti-cluster to schedule based on the sum of

separating distances.

16: Choose the most separated α pairs from the chosen anti-

cluster.

17: end if

18: end for

19: end for

20: end for

5 Simulation results

5.1 Simulation setup

The simulated network layouts are generated using the

code from [14] and the parameters described in [15] for

proper comparison. The default number of D2D pairs is

chosen to be 50 in the square coverage area described in

Section refsec:D2D link Scheduling. The number of gen-

erated testing samples is 1000. DBSCHedule is fully

unsupervised and hence, requires no training data. All the

other parameters are summarized in Table 1. The perfor-

mance is quantified as a percentage of the sum-rate

obtained from the optimal scheduler FPLinQ [24]. The

results will be compared to those reported in [20] as well as

the unsupervised graph embedding model results reported

in [15].

5.2 Modelling hyperparameters and their
estimation

The performance of DBSCHedule, like any other machine

learning technique, depends on a set of hyperparameters

that are not learnt from the data and need to be properly

chosen. Setting hyperparameters for unsupervised learning

techniques is even more difficult due to the lack of any sort

of general guidelines [25]. Nevertheless, specific applica-

tions can have some guidelines to find adequate estimates

of such hyperparameters. To study the impact of changing

the two main hyperparameters used in DBSCHedule,

which are the radius of interference and the within-cluster

activity factor, the following subsections illustrate different

experiments to identify the sensitivity of the performance

to each hyperparameter, and the best practices for the

proposed DBSCHedule algorithm. Some suggested

approaches are then provided for estimating these param-

eters for a given network.

5.2.1 Within-cluster activity hyperparameter tuning

Figure 5 shows how the performance is impacted with the

change of the within-cluster activity factor for different

number of D2D pairs. It is clear from the figure that the

best performance is always obtained at the same value of a

irrespective of the D2D pairs density (since the different

number of D2D pairs are assumed within the same area).

This means that the selection of a can be done once for a

given network area and can still be used whenever there is

a change in the users’ density.

Also, the network size has low impact on the selection

of the optimal a as shown in Fig. 6. This again asserts the

fact that the tuning of the within-cluster activity percentage

a can only be done once upon deployment.

5.2.2 Radius of interference hyperparameter tuning

Figure 7 shows how the radius of interference impacts the

performance of the network for different number of D2D

Wireless Networks

123



pairs. It can be readily seen that the choice of the radius is

almost the same when the area is kept constant irrespective

of the number of D2D pairs.

As for Fig. 8, it shows the impact of changing the net-

work size on the choice of the optimal radius of interfer-

ence while maintaining the same number of D2D pairs. It is

evident that the network size has a greater impact on the

selection of this hyperparameter. This means that the radius

of interference needs to be tuned for every coverage area.

Accordingly, the initial estimation of a is sufficient for any

given network setting. For our simulations, a ¼ 0:14

achieves approximately the best performance for different

network sizes and densities.

Fig. 2 DBSCHedule typical

scheduling scene
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Fig. 3 A network of Nd ¼ 30 D2D pairs clustered by DBSCAN
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Fig. 4 A network of Nd ¼ 30 D2D pairs clustered by DBSCAN and

scheduled by Anti-clustering. The green circles mark scheduled D2D

pairs and the red crosses mark the unscheduled pairs
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5.2.3 Circle packing for estimating the DBSCHedule’s

hyperparameters

The experiments in this section suggest that both hyper-

parameters are not sensitive to the density of the D2D pairs

in the network. On the other hand, for different network

sizes, the radius of interference r showed to be more sen-

sitive than the within-cluster activity factor a.

Circle packing is a geometrical problem for analyzing

how many circles can fit within or around a certain area

with the highest efficiency. The proposed DBSCHedule

algorithm in the simulation under study can be ultimately

considered as two circle-packing problems of the interfer-

ence circles. The packed circles in this case would be of

radius equal to the radius of interference r.

When estimating the within-cluster activity factor, we

consider a central circle with radius r surrounded by circles

also of radius r. The maximum number of circles of radius

r that can be packed around the circumference of the

central circle is 6. This scenario represents a dense network

and the worst-case scenario. In this case, the central circle

under consideration would be active only if all surrounding

circles are inactive. Accordingly, only 1 out of 7 circles

will be active, i.e., a � 0:14, which is in accordance with

our findings.

For estimating the radius of interference r, then given an

expected number of D2D pairs Nd, the maximum r would

be such that Nd circles can be packed in a square of side

length equal to that of the network coverage area.

Approximations of the radii that satisfy such conditions

were studied in the literature in [26]. Using the highest

packing factor in [26], r � 0:1288 assuming a unit square,

which translates to r � 64:4 m when scaled up by 500, the

square network side length, which is also in accordance

with our findings from Fig. 7.

5.3 Performance comparisons

Table 2 shows the performance ofDBSCHedule compared to

that of the unsupervised graph embedding as reported in [27]

assuming different number of D2D pairs for a square area of

500 m side length. As before, the performance is expressed

as a percentage of the sum-rate obtained from the optimal

scheduler FPLinQ. Clearly, the graph embedding perfor-

mance is, on average, slightly better than that of

DBSCHedule, but the computational requirements for

training and testing using a graph embedding and a neural

network is extremely expensive compared to DBSCHedule.

Moreover, DBSCHedule achieves this performance without

Table 1 Summary of simulation and model parameters

Parameter Value

Square area side length 500 m

D2D distance 2� 65 m

Noise spectral density �169 dBm/Hz

Bandwidth 5 MHz

Carrier frequency 2.4 GHz

Antenna height 1.5 m

Active link transmit power 40 dBm

D2D pair speed 5 km/h

Fig. 5 Scheduling performance versus the within-cluster activity

factor a for different number of D2D pairs

Fig. 6 The impact of the network size on the selection of the optimal

a
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any reference data unlike the graph-embeddingmodel which

requires an optimizer to train from. This highly limits its

portability from one scene to another.

Consistency of DBSCHedule with the optimal scheduler

FPLinQ in terms of the resulting average percentage of

active links for the tested networks is shown in Table 3. As

seen in the table, as the number of pairs in the network

increases, the active percentage decreases for both models.

Generally, DBSCHedule tends to result in more active

links in less dense networks than FPLinQ and vice versa in

more dense ones. DBSCHedule does not acquire any prior

information about this percentage from FPLinQ as done in

[20] to estimate the required number of clusters. The

average difference between FPLinQ activity and

DBSCHedule is 7.6%.

The importance of using the anti-clustering step in

DBSCHedule can be deduced from Table 4. This

table shows a performance comparison when using a

simple random scheduling scheme versus using anti-clus-

tering. Although the within-cluster active percentage is low

(7–10%), yet for dense networks, the impact of random

selection on performance is dramatic.

Finally, Table 5 shows a comparison between the per-

formance of different clustering techniques when used in

different scenarios as reported in [20] and that of

DBSCHedule. Although these scenarios are not realistic in

terms of having a fixed distance between the Tx and RX of

the D2D pairs as well as imposing a large minimum sep-

arating distance of 5 m between the pairs, nevertheless,

they are used here for comparison purposes. As seen from

the results, the performance of DBSCHedule is always

comparable to the other techniques except in the low

density case. As mentioned previously, DBSCHedule does

not require any information from the FPLinQ scheduler to

perform the required scheduling while all the modified

clustering techniques proposed in [20] require the resulting

network activity from FPLinQ, which is not practical for a

fully unsupervised approach. Also, it can be seen that the

performance of DBSCHedule in the variable distance case

does not vary much from the fixed case as shown in

Table 2. This is unclear for the other techniques as it was

not reported in [20].

Finally, Table 6 compares the time complexity of the

modified clustering algorithms shown in Table 5 with that

of the proposed DBSCHedule. The pre-clustering and

clustering steps both have a complexity of OðN2
d Þ in [20]

while DBSCHedule does not require a pre-clustering step

and has a clustering time complexity of OðNd logNdÞ [25]

for DBSCAN. On the other hand, [20] uses round robin

scheduling between the clusters, which has a complexity of

OðNdÞ. The proposed scheduler, in contrast, uses Anti-

clustering, which has the same time complexity as clus-

tering, so its complexity is OðN2
c Þ, where Nc is the number

of pairs in cluster c, and Nc �Nd. By comparing the total

time complexity required by each algorithm, we find that

the complexity of DBSCHedule is less than that of the

clustering proposed in [20].

Fig. 7 Scheduling performance versus the radius of interference for

different number of D2D pairs

Fig. 8 The impact of the network size on the selection of the optimal

radius of interference

Table 2 Performance of DBSCHedule vs. the unsupervised graph

embedding

Number of D2D pairs 10 50 80 100 500

Graph embedding 97.4 95.3 93.7 92.8 86.5

DBSCHedule 94 90.3 89.5 88.5 91.3
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6 Conclusion

This paper tackled the resource allocation problem in D2D

networks by proposing the DBSCHedule algorithm, which

is an unsupervised approach to tackle the problem using

only raw location information. DBSCHedule is based on

both clustering and anti-clustering concepts. Based on the

conducted experiments, DBSCHedule is shown to be

resilient against changes in the network density and does

not require any additional information from an external

optimizer to perform the link scheduling problem. It

achieves a performance that is comparable to other tech-

niques in the literature. Moreover, it has the least time

complexity. Further research can be done in future work to

enable the clusters and anti-clusters to evolve in time as the

network users move within the network.
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