Wireless Networks
https://doi.org/10.1007/s11276-023-03635-8

ORIGINAL PAPER q

Check for
updates

Density-based anti-clustering for scheduling D2D communications
Ahmed Elsheikh' - Ahmed S. Ibrahim? - Mahmoud H. Ismail®

Accepted: 19 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Wireless link scheduling in device-to-device (D2D) networks is an NP-hard problem. As a solution, multiple supervised
deep learning (DL) models have been recently proposed, which depend on the geographical information of D2D pairs.
However, such DL models require labeled training data. In this paper, we focus on unsupervised learning of scheduling.
More specifically, this paper proposes using a Density-Based anti-Clustering for Scheduling D2D Communications
(DBSCHedule). The proposed algorithm is a two-step approach that consists of clustering and anti-clustering. First,
clustering aims at identifying the non-interfering groups of D2D pairs. Then, anti-clustering aims at identifying the
maximally separated sub-groups to minimize the interference. The clustering step uses a fully-automated unsupervised
density-based spectral-clustering of applications with noise (DBSCAN) and the anti-clustering uses the inverse of the
objective function of the k-means clustering. Results show comparable performance with the optimal FPLinQ scheduler yet
without requiring any channel information nor is there a requirement to solve a complex optimization problem. Moreover,
a comparable performance to the previous attempts using DL and modified clustering is achieved while being completely

adaptive and easily accommodating to changes in the network layout.
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1 Introduction

Device-to-device (D2D) communication is an essential
component in modern cellular systems mainly because of
its support in offloading traffic from the base stations [1].
D2D communication avoid the centralized computational
and communication bottleneck to serve better quality of
service as well as save energy, which makes it an important
step towards green communication as well [2]. However,
the problem of link scheduling in D2D communication is
NP hard and requires solving complex optimization prob-
lems, which could be solved using strategies like FPLinQ
and FLashLinQ [3]. Some attempts sought sub-optimal
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solutions to reduce the complexity such as fractional pro-
gramming algorithms that optimize ratios of functions and
then undergo a certain approximate transformation [4],
heuristics, which can use any form of minimization or
maximization of utility under certain assumptions [5], and
adaptive learning optimization, which uses deep learning
for the pruning step instead of calculating all possibilities
for a certain branching operation [6, 7].

All of the aforementioned algorithms, however, rely on
the existence of channel estimates to do the predictions.
This can impede the development of fast algorithms that
can cope with fast network dynamics and communication
service requirements. Several attempts were made in the
literature to try and alleviate the need for channel estima-
tion and use only distance information to solve the D2D
scheduling problem. Using distance information only to
solve D2D scheduling problems is very challenging. This is
why several attempts in the literature used other algo-
rithms’ outputs to train Deep Learning (DL) models. In this
paper, we propose a novel solution for D2D scheduling that
can inherently do scheduling without the need of another
algorithm to work with. We first summarize the previous
related works on solving D2D scheduling problems and
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build up the base for the contributions of this work in the
next section.

2 Related work

DL has found its way in numerous applications nowadays
including wireless communications [8]. Resource alloca-
tion is one of the most challenging tasks in communication
networks where previous research explored DL in power
allocation in the framework of reinforcement learning and
fusion [9-11], to learn optimization solutions for spectrum
sharing [12], and to solve linear sum assignment problems
[13]. The use of DL specifically in D2D link scheduling
was explored by [14] and [15]. The work in [14] extracts
interference and distance information based on kernel fil-
ters that are learned from synthetically generated data.
However, in order to learn a sufficient number of filters to
solve the scheduling problem, a significant amount of
training data is required. Federated learning was also
explored to distribute the computational burden to multiple
devices and a central node [16]. On the other hand, the
graph embedding approach in [15, 17] eases the burden of
learning the mappings through kernel filters by preparing
neighborhood graphs describing the network through
pairwise distances. Recurrent neural networks (RNNs)
were also studied using sequence-to-sequence learning [18]
and geometrical manifolds [19].

As much as these works are successful, a significant part
of learning is labelled data. In contrast, unsupervised
learning techniques have the advantage of requiring only
data without being labelled, which makes them more ver-
satile especially with dynamic deployment in roadside
units (RSUs) in vehicular networks, relays, and base sta-
tions. There has been an attempt to use clustering algo-
rithms, which fall under unsupervised learning, to achieve
the required task in [20]. The authors modified several
well-known clustering algorithms in order to achieve link
scheduling with equal-size clusters. The number of clusters
was determined using the final number of network active
links as a percentage of the result obtained from the opti-
mal FPLinQ scheduler.

Motivated by the above, this paper proposes using a
Density-Based anti-Clustering for Scheduling D2D Com-
munications (DBSCHedule). The proposed algorithm is a
two-step approach where the first step is to cluster D2D
pairs that are in spatial proximity defined by a certain
radius within which interference is significant. The second
step is to identify, within each cluster, a set of pairs that are
as far away from each other as possible. These objectives
can be achieved using density-based spectral-clustering of
applications with noise (DBSCAN) [21] and anti-clustering
[22], respectively, for D2D link scheduling. DBSCAN
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clusters D2D pairs based on their spatial location and
density where more dense regions are considered clusters
with high risk of interference. It is a highly adaptive model
and is computationally far less expensive than other
supervised models such as neural networks. This makes it a
prominent model for dynamic networks because first, the
model is based on the density of D2D pairs, which is a
relative measure to the network layout and not an absolute
one. Second, the reduction in computational requirements,
which is due to the straightforward decision making pro-
cess requiring very few iterations and hence, faster deci-
sions. Third, it only requires distance information, which
does not cause a lot of overhead to acquire or estimate.
Anti-clustering then identifies D2D pairs that are furthest
apart within each cluster to minimize the interference
within that cluster. The number of anti-clusters sought is
simply 2, one will be scheduled and the other will not.
Anti-clustering will be based on the resulting maximum
sum of separating distances. The algorithm will require as
input only the locations of the D2D pairs that can be
acquired using global positioning systems, and a preset
radius of interference. No knowledge about channel state
information (CSI) is needed.

The main contributions of this paper can thus be sum-
marized as follows:

e Adopting a completely unsupervised technique for D2D
link scheduling with automated hyperparameter
selection.

e Using density-based clustering and anti-clustering to
tackle the D2D link scheduling problem.

e Achieving comparable performance to optimal as well
as solutions obtained using supervised learning with no
need for running a trainer optimizer to acquire
guidance, and minimal computational requirements.

The paper is laid out as follows: Sect. 3 describes the
system model, then the proposed link scheduling algorithm
is described in Sect. 4. The simulation setup and results are
described in Sect. 5. Finally, Sect. 6 concludes the paper
findings.

3 System model

We consider a network with N; D2D pairs that are assumed
to be located randomly in a two-dimensional square area
with length L and the separation distances between the
D2D pairs are uniformly distributed between i, and /yax.
The D2D pairs are allowed to move at a typical pedestrian
speed in random directions while keeping the separation
distance constant. Furthermore, we assume the transmis-
sion power is constant. A graphical representation of the
network layout is shown in Fig. 1 with several D2D pairs
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and the pair under study is in the middle with the neigh-
boring D2D pairs surrounding it. The channel gain for the
communication link between the transmitter (Tx) device ¢
and the receiver (Rx) device k is denoted by hy. The goal is
to identify which of the links need be active to maximize a
certain performance metric. A typical metric for perfor-
mance would be the sum-rate, where the rate for the link
between the Tx device ¢ and the Rx device k where ¢,k €
{1,2,...,N;} is defined using information theoretic
capacity as follows:

e *Pidy
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where BW is the bandwidth, P, is the power of the Tx of
the /th link, o3, denotes the additive white Gaussian noise
power and J; € {0,1} indicates whether the kth link is
active or not. It is worth mentioning here that other forms
of communications like base station to user can be con-
sidered as part of the interfering term in the denominator of
(1). This is done here as a simplification since the main
focus of this work is the scheduling problem itself. In

Rg:Bleog2<1+ (1)

o

Tx
Neighbor
airl

Rx
Neighbor
Pair 3

Tx6 ./
/

+Rx

- Neighbor
Pair 1

addition, this is assumed for the sake of comparison with
other works that consider only D2D communication with-
out considering overlaying devices as in [15] and [20].

D2D link scheduling is a typical NP-hard optimization
problem whose formulation requires CSI collection at a
central node from each of the links and demands a lot of
computations to reach an optimal solution. Clearly, the
maximization of the sum-rate would entail identifying J; €
{0,1} such that the sum-rate for the N, devices in the
network is maximized as follows:

Na
max Z OrRy . (2)
%

4 DBSCHedule for D2D link scheduling

Clearly, the channel gains between the D2D pair members
as well as the interference channels are distance-dependent
as shown in (1). Hence, to decrease the interference, the
clustering step in DBSCHedule thus identifies the pairs that
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are in close proximity to each other. These clusters have
inter-separating distances more than the expected harmful
interference distance. Hence, these clusters are considered
non-interfering clusters. Moreover, the pairs within each of
these clusters are at a high risk of interfering on each other
if activated all at once. By doing so, the set of active pairs
in (1) will no longer be assumed interfering and the
denominator can now be considered as follows:

Ie= Y |hal*Pidc + oy, (3)
kIEC kAL

where C is the non-interfering cluster set which the pair ¢
belongs to after clustering.

The clustering step in DBSCHedule uses DBSCAN to
cluster the D2D pairs based on their coordinates into N¢
clusters where the coordinate of each pair is calculated as
the midpoint between the Tx and Rx members of the pair
and the clusters are constructed based on a certain preset
interference radius r. Assuming that the set of midpoint
coordinates between the different D2D pairs can be given
by D, then for any two pairs with midpoint coordinates d,,
and d, in R* where m,n € {1,2,...,N;} to belong to the
same cluster, the following condition must be met:

”dm_dnHSr' (4)

From the D2D scheduling perspective, this radius defines
the region where an active link can cause significant
interference on other neighboring active links. The result-
ing clusters are either singleton, which means they contain
only one pair, or contain multiple pairs. In case of a sin-
gleton cluster |C| = 1, the decision is then to schedule this
pair for communication. Otherwise, if there is more than
one pair in a given cluster then a fraction of the clustered
links is chosen to be active. The factor o is the within-
cluster active percentage and it is preset for the scheduler.
The scheduler then identifies the pairs within each cluster
that are maximally separated as potential pairs for
scheduling. This can be achieved by utilizing the anti-
clustering technique [23], which is essentially the opposite
notion of clustering where members of the same anti-
cluster are very well separated from each other, while
members of different anti-clusters are very similar to each
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other. For scheduling purposes, we need only two anti-
clusters within each cluster: scheduled and unscheduled.
By doing so, R; will be further maximized by reducing the
interference set given in (3) to C, C C such that |C,| =
|o|C|| where C, includes the pairs m and n such that the
following is maximized:

meC, neC, meC\Cy, neC\C,

So, scheduled anti-clusters will be at the furthest distance
from each other, while the unscheduled pairs will be as
close as possible to scheduled ones. The proposed approach
is summarized in Algorithm 1. Figure 2 shows a typical
scenario while scheduling using DBSCHedule. The solid
ellipses identify the clusters of D2D pairs that are at risk of
interfering on each other because they are in close prox-
imity to each other. The singleton pair (at the bottom right)
will be scheduled as well as those potential pairs that are
encompassed by the dashed ellipses, which are identified
by the anti-clustering step because they are at a maximum
distance from each other within the cluster. The within-
cluster active percentage « is what decides how many pairs
will be active from the potential maximally separated pairs.
The final set of pairs that will be active are those with the
smallest Tx-Rx distances.

DBSCHedule solution is hence a multi-step heuristic
approach for speeding up and simplifying the maximiza-
tion of the sum rate for D2D communication requiring only
location-based information. The first step aims at identi-
fying the D2D pairs that do not contribute to interference
and hence, can be scheduled and at the same time reducing
the search space for the proper D2D pairs to be scheduled.
Figure 3 shows each cluster in the network of N; = 30
D2D pairs, where each cluster has a different color and
symbol. Next, two subsets of the D2D clusters that are at
risk of interfering with each other will be identified such
that these subsets are maximally separated by anti-clus-
tering. Finally, a fraction of those subsets will be chosen
based on their separating distance, which in turn maximizes
the sum rate. Figure 4 shows the scheduled D2D pairs
encompassed by green circles, and the unscheduled D2D
pairs marked by a red cross.
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Algorithm 1 DBSCHedule

1: Initialization: Interference radius = r, Within-cluster active ratio = a,

A number of scheduling layouts M.

2: For each D2D pair, calculate the location midpoint between the Tx and

Rx.
3: for m =1 to M do
4: for i =1 to Ny do

Identify the pairs linking to each other within a radius r.

6 Give each cluster of linked pairs a certain label.
7 The total number of resulting clusters will be denoted N.
8 Each cluster will have a number of pairs N,.

9: for c=1to N do

10: if N. =1 then

11: Schedule as active.

12: else

13: Sort pairs in cluster ¢ based on Tx-Rx distance of each pair.

14: Anti-cluster cluster ¢ into two anti-clusters.

15: Decide which anti-cluster to schedule based on the sum of
separating distances.

16: Choose the most separated « pairs from the chosen anti-
cluster.

17: end if

18: end for

19: end for

20: end for

5 Simulation results
5.1 Simulation setup

The simulated network layouts are generated using the
code from [14] and the parameters described in [15] for
proper comparison. The default number of D2D pairs is
chosen to be 50 in the square coverage area described in
Section refsec:D2D link Scheduling. The number of gen-
erated testing samples is 1000. DBSCHedule is fully
unsupervised and hence, requires no training data. All the
other parameters are summarized in Table 1. The perfor-
mance is quantified as a percentage of the sum-rate
obtained from the optimal scheduler FPLinQ [24]. The
results will be compared to those reported in [20] as well as
the unsupervised graph embedding model results reported
in [15].

5.2 Modelling hyperparameters and their
estimation

The performance of DBSCHedule, like any other machine
learning technique, depends on a set of hyperparameters
that are not learnt from the data and need to be properly
chosen. Setting hyperparameters for unsupervised learning
techniques is even more difficult due to the lack of any sort
of general guidelines [25]. Nevertheless, specific applica-
tions can have some guidelines to find adequate estimates
of such hyperparameters. To study the impact of changing

the two main hyperparameters used in DBSCHedule,
which are the radius of interference and the within-cluster
activity factor, the following subsections illustrate different
experiments to identify the sensitivity of the performance
to each hyperparameter, and the best practices for the
proposed DBSCHedule algorithm. Some suggested
approaches are then provided for estimating these param-
eters for a given network.

5.2.1 Within-cluster activity hyperparameter tuning

Figure 5 shows how the performance is impacted with the
change of the within-cluster activity factor for different
number of D2D pairs. It is clear from the figure that the
best performance is always obtained at the same value of o
irrespective of the D2D pairs density (since the different
number of D2D pairs are assumed within the same area).
This means that the selection of o can be done once for a
given network area and can still be used whenever there is
a change in the users’ density.

Also, the network size has low impact on the selection
of the optimal o as shown in Fig. 6. This again asserts the
fact that the tuning of the within-cluster activity percentage
o can only be done once upon deployment.

5.2.2 Radius of interference hyperparameter tuning
Figure 7 shows how the radius of interference impacts the

performance of the network for different number of D2D
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Fig. 2 DBSCHedule typical
scheduling scene
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Fig. 3 A network of N; = 30 D2D pairs clustered by DBSCAN

pairs. It can be readily seen that the choice of the radius is
almost the same when the area is kept constant irrespective
of the number of D2D pairs.

As for Fig. 8, it shows the impact of changing the net-
work size on the choice of the optimal radius of interfer-
ence while maintaining the same number of D2D pairs. It is
evident that the network size has a greater impact on the
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Fig. 4 A network of N; = 30 D2D pairs clustered by DBSCAN and
scheduled by Anti-clustering. The green circles mark scheduled D2D
pairs and the red crosses mark the unscheduled pairs

selection of this hyperparameter. This means that the radius
of interference needs to be tuned for every coverage area.
Accordingly, the initial estimation of « is sufficient for any
given network setting. For our simulations, o = 0.14
achieves approximately the best performance for different
network sizes and densities.
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Table 1 Summary of simulation and model parameters

Parameter Value

Square area side length 500 m

D2D distance 2—-65m
Noise spectral density —169 dBm/Hz
Bandwidth 5 MHz
Carrier frequency 2.4 GHz
Antenna height 1.5 m

Active link transmit power 40 dBm

D2D pair speed 5 km/h

5.2.3 Circle packing for estimating the DBSCHedule’s
hyperparameters

The experiments in this section suggest that both hyper-
parameters are not sensitive to the density of the D2D pairs
in the network. On the other hand, for different network
sizes, the radius of interference r showed to be more sen-
sitive than the within-cluster activity factor o.

Circle packing is a geometrical problem for analyzing
how many circles can fit within or around a certain area
with the highest efficiency. The proposed DBSCHedule
algorithm in the simulation under study can be ultimately
considered as two circle-packing problems of the interfer-
ence circles. The packed circles in this case would be of
radius equal to the radius of interference r.

When estimating the within-cluster activity factor, we
consider a central circle with radius r surrounded by circles
also of radius r. The maximum number of circles of radius
r that can be packed around the circumference of the
central circle is 6. This scenario represents a dense network
and the worst-case scenario. In this case, the central circle
under consideration would be active only if all surrounding
circles are inactive. Accordingly, only 1 out of 7 circles
will be active, i.e., « ~ 0.14, which is in accordance with
our findings.

For estimating the radius of interference r, then given an
expected number of D2D pairs Ny, the maximum r would
be such that N, circles can be packed in a square of side
length equal to that of the network coverage area.
Approximations of the radii that satisfy such conditions
were studied in the literature in [26]. Using the highest
packing factor in [26], r = 0.1288 assuming a unit square,
which translates to r ~ 64.4 m when scaled up by 500, the
square network side length, which is also in accordance
with our findings from Fig. 7.
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Fig. 5 Scheduling performance versus the within-cluster activity
factor o for different number of D2D pairs
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Fig. 6 The impact of the network size on the selection of the optimal
o

5.3 Performance comparisons

Table 2 shows the performance of DBSCHedule compared to
that of the unsupervised graph embedding as reported in [27]
assuming different number of D2D pairs for a square area of
500 m side length. As before, the performance is expressed
as a percentage of the sum-rate obtained from the optimal
scheduler FPLinQ. Clearly, the graph embedding perfor-
mance is, on average, slightly better than that of
DBSCHedule, but the computational requirements for
training and testing using a graph embedding and a neural
network is extremely expensive compared to DBSCHedule.
Moreover, DBSCHedule achieves this performance without
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Fig. 7 Scheduling performance versus the radius of interference for
different number of D2D pairs
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Fig. 8 The impact of the network size on the selection of the optimal
radius of interference

any reference data unlike the graph-embedding model which
requires an optimizer to train from. This highly limits its
portability from one scene to another.

Consistency of DBSCHedule with the optimal scheduler
FPLinQ in terms of the resulting average percentage of
active links for the tested networks is shown in Table 3. As
seen in the table, as the number of pairs in the network
increases, the active percentage decreases for both models.
Generally, DBSCHedule tends to result in more active
links in less dense networks than FPLinQ and vice versa in
more dense ones. DBSCHedule does not acquire any prior
information about this percentage from FPLinQ as done in
[20] to estimate the required number of clusters. The
average difference between FPLinQ activity and
DBSCHedule is 7.6%.
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Table 2 Performance of DBSCHedule vs. the unsupervised graph
embedding

Number of D2D pairs 10 50 80 100 500
Graph embedding 97.4 95.3 93.7 92.8 86.5
DBSCHedule 94 90.3 89.5 88.5 91.3

The importance of using the anti-clustering step in
DBSCHedule can be deduced from Table 4. This
table shows a performance comparison when using a
simple random scheduling scheme versus using anti-clus-
tering. Although the within-cluster active percentage is low
(7-10%), yet for dense networks, the impact of random
selection on performance is dramatic.

Finally, Table 5 shows a comparison between the per-
formance of different clustering techniques when used in
different scenarios as reported in [20] and that of
DBSCHedule. Although these scenarios are not realistic in
terms of having a fixed distance between the Tx and RX of
the D2D pairs as well as imposing a large minimum sep-
arating distance of 5 m between the pairs, nevertheless,
they are used here for comparison purposes. As seen from
the results, the performance of DBSCHedule is always
comparable to the other techniques except in the low
density case. As mentioned previously, DBSCHedule does
not require any information from the FPLinQ scheduler to
perform the required scheduling while all the modified
clustering techniques proposed in [20] require the resulting
network activity from FPLinQ, which is not practical for a
fully unsupervised approach. Also, it can be seen that the
performance of DBSCHedule in the variable distance case
does not vary much from the fixed case as shown in
Table 2. This is unclear for the other techniques as it was
not reported in [20].

Finally, Table 6 compares the time complexity of the
modified clustering algorithms shown in Table 5 with that
of the proposed DBSCHedule. The pre-clustering and
clustering steps both have a complexity of O(N3) in [20]
while DBSCHedule does not require a pre-clustering step
and has a clustering time complexity of O(N,log N;) [25]
for DBSCAN. On the other hand, [20] uses round robin
scheduling between the clusters, which has a complexity of
O(Ny). The proposed scheduler, in contrast, uses Anti-
clustering, which has the same time complexity as clus-
tering, so its complexity is O(N?), where N, is the number
of pairs in cluster ¢, and N, <N,. By comparing the total
time complexity required by each algorithm, we find that
the complexity of DBSCHedule is less than that of the
clustering proposed in [20].
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6 Conclusion

This paper tackled the resource allocation problem in D2D
networks by proposing the DBSCHedule algorithm, which
is an unsupervised approach to tackle the problem using
only raw location information. DBSCHedule is based on
both clustering and anti-clustering concepts. Based on the
conducted experiments, DBSCHedule is shown to be
resilient against changes in the network density and does
not require any additional information from an external
optimizer to perform the link scheduling problem. It
achieves a performance that is comparable to other tech-
niques in the literature. Moreover, it has the least time
complexity. Further research can be done in future work to
enable the clusters and anti-clusters to evolve in time as the
network users move within the network.

Table 3 Percentage of active links in the network for FPLinQ and
DBSCHedule

Number of D2D pairs 10 50 80 100 500
FPLinQ 68.8 38.1 325 28.2 18.8
DBSCHedule 85 473 29.1 235 14.4

Table 4 Performance of DBSCHedule with anti-clustering vs. ran-
dom sub-cluster scheduling

Number of D2D pairs 10 50 80 100 500

DBSCHedule anti-clustering 94 903 895 885 913
DBSCHedule random scheduling 86 64.6 485 44.6 23
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