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Abstract—Grant-free (GF) or random access is a key enabler
for low-latency massive machine-type communications (mMTC),
where devices are sporadically active and transmit small amounts
of data. Massive multiple-input multiple-output (mMIMO) tech-
nology can enable users’ activity detection for such random
access, due to its inherent spatial diversity. One approach employs
the sample covariance matrices of received signals to estimate
the activity detection. Such covariance-based schemes utilize
sub-optimal search algorithms (e.g., coordinate-wise gradient
descent) to find solutions for the non-convex maximum likelihood
(ML) estimation problem of user activity detection. Covariance
matrices are symmetric positive definite (SPD) ones and hence
they can be represented over Riemannian manifolds (i.e., curved
surfaces). Consequently, users can be represented over such non-
Euclidean manifold using a combination of the sufficient-statistic
sample covariance matrices and user-dependent pilot sequences.
Such unique user’s modeling over Riemannian manifolds paves
the road to use geometric-based solutions for activity detection.
Specifically in this paper, we propose to utilize geometric k-
means clustering to divide users of multi-cell massive MIMO
system into two distinct groups, namely, active and inactive
ones. Geodesic distances among users’ representations over Rie-
mannian manifold are measured using log-determinant Bregman
divergence. Simulation results show that the proposed method
reduces probability of miss detection compared to Euclidean-
based state-of-the-arts. Finally, the proposed method requires
less complexity than Euclidean ones.

Index Terms—Activity detection, grant-free access, log-
determinant Bregman Divergence, Riemannian manifolds, sym-
metric positive definite matrices.

I. INTRODUCTION

Next-generation wireless systems aim to offer widespread
connectivity to numerous Internet-of-Things (IoT) devices and
massive machine-type communication (mMTC) [1]. Unlike
human-to-human communication, mMTC is characterized by
three primary attributes, which are massive connectivity, spo-
radic traffic pattern, and short data packets. Conventional
grant-based access scheme requires excessive signaling over-
head to allocate time-frequency resources for devices with
pending uplink transmissions. As a result, grant-based access
scheme causes high latency on the control plane (CP), which
is not suitable for some IoT services with ultra-reliable low-
latency communications (URLLC) requirements such as in-
dustrial IoT (e.g., factory automation). To achieve low-latency
communication, a grant-free (GF), or random, access scheme
has been proposed as an alternative solution [1], [2].
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One of the main challenges facing GF access in massive
MIMO (mMIMO) systems is users’ activity detection, which
aims to identify the group of active users or devices with
uplink transmission in any given time slot. Recently, two
major approaches have been proposed for user’s activity
detection. On one hand, the activity detection problem was
formulated as a compressed sensing (CS) one, which takes
advantage of the sporadic traffic nature in many mMTC use
cases, and was solved using various CS approaches such
as approximate message passing (AMP) [2]. On the other
hand, covariance-based approaches were proposed for user
activity detection, which utilized sample covariance matrices
of the received signals over Euclidean domain [1], [3], [4].
A generalization for covariance-based approaches to multi-
cell MIMO systems was considered in [5], [6]. However,
such covariance-based schemes utilize sub-optimal search al-
gorithms (e.g., coordinate-wise gradient descent) to solve the
non-convex maximum likelihood (ML) estimation problem of
activity detection [7]. In searching for a better and lower-
complexity solution, we consider the mathematical framework
of Riemannian geometry in this paper as follows.

Sample covariance matrices of received signals at a given
base station can be modeled over Riemannian manifolds
(i.e., curved surfaces), thanks to being symmetric positive
definite (SPD) [8]-[11]. Such modeling paves the road for
non-Euclidean geometric-based solution of activity detection
problem. To this end, we focus on multi-cell mMIMO system,
which includes multiple base stations that are connected to a
central unit (e.g., in C-RAN). Users are assigned distinctive,
but non-orthogonal, pilot sequences. As the sample covariance
matrix at each base station is a sufficient statistic for activity
detection, each user is represented using an SPD signature
which is a combination of the received sample covariance
matrix and its pilot sequence. A geodesic distance, such as
log-determinant Bregman divergence, is used to measure the
geodesic distance among users’ signatures over the manifold.

In this paper and based on such geometric modeling of
users, we propose a cooperative activity detection scheme,
where we utilize k-means clustering to divide the users’
signatures over Riemmanian manifold into two groups, active
and inactive users. The group of active users represent the
solution to the activity detection problem across multiple cells.
Simulation results demonstrate that the proposed geometric
approach reduces the probability of miss detection compared to
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Fig. 1: Grant-free access in uplink multi-cell mMIMO systems.

Euclidean-based state-of-the-arts and effectively works in both
singe-cell and multi-cells scenarios. Equally important and
despite the proposed method being non-Euclidean in nature,
it is less computationally complex than Euclidean-baed ones.
The rest of this paper is organized as follows. The system
model is presented in Section II. Section III discusses the prob-
lem formulation of activity detection over Riemannian man-
ifolds. Section IV presents the proposed learning-based user
activity detection solution. Simulation results are presented in
Section V. Finally, Section VI presents the conclusion.

II. SYSTEM MODEL

In this section, we provide an overview on Riemannian
geometry, then we present the multi-cell network model.

A. Riemannian Manifolds and Bregman divergence

A differentiable manifold M is a topological space [12]
where each point p has a neighborhood that is topologically
equivalent to a Euclidean space. The tangent space 71,M
at any point p € M is a set of tangent vectors which
are the derivatives of curves passing through the point p. A
Riemannian manifold (M, g,) is a smooth and real manifold
M equipped with a positive definite inner product g, at
each point p on the tangent space 7, M and is studied
via Riemannian geometry [12]. An n x n SPD matrix is
represented over the interior of cone-like manifold S, :=
{P € R™"|P = PT P = 0}, which is a special class
of Riemannian manifolds [13]. A function is of Bregman
type if it possesses the characteristics of strict convexity,
continuous differentiability, and bounded level sets [14]. The
Bregman divergence for any strictly positive definite matrices
P,Q € &%, is computed via the log-determinant Bregman
function [15], which is given by

D(P|Q) = ~logdet P +logdet Q + (Q', P — Q), (1)
where ((,)) denotes the trace inner product of SPD matrices.
B. Network and Channel Models

We consider an uplink multi-cell system, as shown in Fig. 1,
which consists of B neighboring cells with A antennas at
each base station and N single-antenna users at each cell.
Moreover, we consider cooperation among the B base stations,
as they are assumed to be connected to a central unit. Uplink
signals, transmitted by active users, are collected through their
designated stations and jointly processed at such central unit.

Given the sporadic traffic of many mMTC services, only
a small number K. < N of users in each cell are active

in each coherence block. Each user k£, £ = 1,2,---,N,
incell b b =1,2,---, B is given a pilot sequence, which
. T

is a vector spr = (Spk.1,-- -, Svk,) » Where T denotes vector

transpose. An active user’s pilot is transmitted over L signal
dimensions in the coherence block. Each user is assigned a
unique sequence and users’ sequences are non-orthogonal,
as assigning orthogonal pilot sequences is not feasible in
mMTC with limited channel coherence time [7]. Users’ pilot
sequences in each cell are generated from independent and
identically distributed (i.i.d) complex Gaussian distribution
with zero-mean and unit-variance [5], denoted by CN(0,1y).

We assume that channels follow block-fading model, i.e.,
a channel coefficient between a user and its designated base
station stays constant during each coherence block, which is
made up of L signal dimensions in time and/or frequency.
Channel coefficients vary among different blocks. Let hy ;. be
the M-dimensional channel vector (i.e., small-scale channel
fading coefficients) between user k in cell b and base station
j. Similarly, Let gy;i be the large-scale fading coefficient
(LSFC), which includes path-loss, between user k in cell b
and base station j. Let apr, € {0,1} be a binary variable,
with apr, = 1 indicating that the k-th user in cell b is active.
Accordingly, the received uplink signal at the b-th base station
can be modeled as

N N
Y, = Z apk vk Govk Ny + Z Z ajrskgsiry;n + Zo,

k=1 j#b k=1
A, G, Hy,
=[S;...S5] . - +Zy, (2)
Ap GEB H;p
where S; = [s;i,...,s;n] is the L x N matrix of pilot

sequences of the users in cell j, A; =diag{a;1,...,a;n} isa
N x N diagonal matrix consisting of the binary user activity
pattern in cell j, G; =diag{gy;1,...,gp;n} denotes N x N
diagonal matrix consisting of the LSFCs between the users
in cell j and base station b, Hy; = [hy;1,. .. ,hij}T is the
Rayleigh fading channel between the users in cell j and base
station b, and Z, is additive white Gaussian noise (AWGN)
that follows Zj, ~ CN(0,021I,) with variance 2.

The transmitted signals of all active users are collectively
received at the central unit, through all B base stations, to
jointly detect the user activity across all B cells. Then, the
L x BM received signal Y at the central unit is expressed as

Y =[Y;...Yg]
1 1
A, GiHyp ... Gy Hp
AsllGg: H,p...G: H
1B**1B---“>ppiiBB
+(2:...25]. (3)

We assume that the channel vectors {hy;, : k£ € K.}
are spatially white and independent of each other (i.e., un-
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Fig. 2: Geodesic distance between the sample 32 and estimated 3
covariance matrices on Riemannian manifold.

correlated along antennas) and are characterized by complex
Gaussian distribution with zero-mean and identity—covgriance,
that is hy;; ~ CN(0,Ipar). Hence, the columns of Y in (3)
are i.i.d Gaussian vectors with Y. ; ~ CA(0, ), where

B N
2= veksurshy + 07, 4)
b=1 k=1

represents the L x L covariance matrix, and is common among
all the columns Y. ;.4 = {1,..., BM}. In (4), Yok = apk+/Gok
and it equals to vy = /gur for active users (i.e, apr, = 1).

III. PROBLEM FORMULATION OVER RIEMANNIAN
MANIFOLDS

In this section, we formulate the problem of detecting
the binary variables {ay;}2_,,b = 1,...,B € {0,1}, which
represent the user activity pattern across all B cells. Such
problem formulation can be done by considering both the
sample and estimated covariance matrices of the received
signals as follows. On one hand, the L x L sargple covariance
matrix of the columns of the received signal Y in (3) is

BM

which is a sufficient statistics to identify user activity [3], [5].
On the other hand and assuming {&bk}{cv:pb =1,.,B €
{0,1} to be the estimated user activity pattern across B cells,
then the L x L estimated covariance matrix is expressed as
B N
Y= ZZ&kaka?k+02IL. (6)
b=1 k=1
The sample 3 and the estimated 3 covariance matrices are
SPD ones, which can be represented over Riemannian mani-
folds as shown in Fig. 2. Consequently, the Log-determinant
Bregman divergence, given in (1), can be used to measure
the geodesic distance between such two covariance matrices.
Hence, the activity detection problem can reformulated as
finding the estimated users’ activity vector G, and hence the
estimated covariance matrix X in (6), by minimizing the Log-
determinant Bregman divergence objective function as

minD, (3[|3) = — log det X+log det S+ (=71, 3-3). (7)
g

1 1 BM
S — _ Y YH = — ~, ; Y H.
Y= YY B ;:1 Y..Y. (5)

The lower the estimation error, or difference in (7), the lower
the probability of miss detection in the users’ activity.

Fig. 3: Proposed geometric k-means clustering approach for users’
activity detection over Riemannian manifolds.

IV. LEARNING USERS’ ACTIVITY PATTERN IN MMIMO
MULTI-CELL SYSTEM VIA GEOMETRIC k-MEANS
CLUSTERING OVER RIEMANNIAN MANIFOLDS

The objective of this section is to estimate the binary
users’ activity pattern {dx }n—,,b=1,..., B, which minimizes
the objective function in (7). To this end, we propose a
geometric k-means approach that divides the users into two
clusters, i.e., active and inactive users. In doing so, users are
geometrically represented over Riemannian manifold and the
inter-user geometric distance is measured via the geodesic one
(i.e., log-determinant Bregman divergence). Intuitively, the k-
means clustering creates two clusters with far-apart centroids
as follows. The first cluster combines the set of active users,
and its centroid represents the estimated covariance matrix
> in (6). It approaches the sample covariance matrix >
in (5), which satisfies the minimization problem in (7). On the
contrary, the centroid of the inactive users’ clusters is relatively
far apart from sample covariance matrix 3 in (5).

Fig. 3 illustrates the learning mechanism of the proposed ac-
tivity detection solution. We define the inputs of the proposed
clustering model to be a set of BN users’ signatures. The
users’ signatures are represented over Riemannian manifolds
(black dots in Fig. 3), through the received sample covariance
matrix 3 and the user’s pilot sequences {sppshy } ,,b =
1,...,B, and they are given by

{(—)bk}jzl - {(2 _ sbks];k) i aIL}szl, b=1,..B, (8)

where ©®°% is an L x L positive definite matrix by adding an
identity matrix Iy and o« > 0 is a regularization parameter.
As shown in (8), the pilot sequence of any active user is
subtracted from the sample covariance matrix 3, which in
fact contains that user’s pilot sequence. In contrast, inactive
users’ pilots are not included in the sample covariance matrix
3. Intuitively, such contract enables the K-means clustering
to distinguish between the two groups of users. In summary
and as illustrated in Fig. 3, the clustering mechanism uses the

N
set of users’ signatures {G)b’“} Vb, and matches one of the

cluster centroids (green dots in ﬁ:gl 3) to the sample covariance
matrix 3 (orange dots in Fig. 3) to find the representations of
the active users (black dots inside blue circle in Fig. 3) over
Riemannian manifolds.



Algorithm 1 Psuedo-Code of proposed learning-based model
for user activity detection in multi-cell systems.

: Inputs: {®% ¢ 8i+},1:7:1,b:1,. .., B,%;

: Outputs: User actiV1ty pattern;

: Initialization: {955 }2 (¢ and number of cluster set as 2;

- Initialization: Randomly choose two SPDs from {®°*} as the

cluster means u(ltzo) and M(t 0,

repeat

forb=1,.

for k = 1

A

, B do

, N do
—{©UF|D(O%, 1) < DO, u)},
Yo, u;v #Fu, 1 <u <2

e A A i e

b

10: end for

11: for v=1,2 do

12: pS = argmin
’ pEST

> P

uecfl(,t)

bk
m (p,©7),1<u<2
13: end for

14: end for

15: until convergence

16: if D1 (3, ui"=") < D2 (8, uy=") then

17: ‘gl(t =) s selected as a group of active users;
18: else

19: (ﬁét:T) is selected as a group of active users;
20: end if

21: return {dpx}h 1,b=1,...,B€{0,1};

The complete solution is described in Algorithm 1 as
follows. The inputs to Algorithm 1 are the SPD matrices from
set {@Y ¢ th}k ,»b=1,....B (line 1) and the outputs are
the estimated user activation pattern {ap 32 ,,b=1,...,B.
During the initialization phase, both sets of cluster class
assignments are set to an empty set {%}(t:o)}% = () and the
number of desired clusters is set to two as part of the clustering
process (line 3). The next step is to initialize the cluster
centroids, denoted by ug) and uét), by randomly selecting
two SPDs from {@" € 87} b=1,...,B (lines 4-5).

The proposed algorithm assigns each observation ®% to
one of the two clusters based on the smallest geodesic distance
(i.e., log-determinant Bregman divergence) to their centers
(lines 8-10). Then it updates the cluster centroids by Fréchet
mean [16] of each cluster (lines 11-13), until the cluster
assignment converges. When the algorithm converges, in other
words, centroids are no longer updated, the algorithm stops
running and produces two sets of clusters.

Next, the algorithm classifies the two clusters into active
users and inactive ones as follows. The cluster with the
minimum log -determinant Bregman divergence between its
centroid uv c {1 2} and sample covariance matrix 3 is selected
as one with the active users (lines 16-17). Whereas, the
other one is assigned to include inactive users (lines 18-19).
In other words, the k-means clustering model sttempts to
match one of the cluster centroids to the sample covariance
matrix 3 to find the signatures of the active users over
Riemannian manifolds. Then, it produces the user activation
pattern {Gpr, }o_,,b=1,..., B across all B cells by finding the
indices of the corresponding users’ signatures in the cluster
with active users (line 21).

V. PERFORMANCE EVALUATION

In this section, we present the simulation results of the
proposed geometric clustering solution and compare it against
other Euclidean-based state-of-the-art solutions.

A. Simulation Setup

In this paper, we consider a multi-cell system consisting
B = 3 circular cells (as considered in [5]) where the radius
of each cell is 1000m and potential users are uniformly
distributed throughout the cells. Among these, the ratio of
active users to the total users is set as 0.1 per cell. The number
of antennas of each base station is set as M = 45 and the pilot
sequence sy, of each user with length L have i.i.d. entries and
is generated from a complex Gaussian distribution with zero-
mean and unit-variance, as explained in Section II-B.

The LSFC is modeled as 128.1 + 37.6log,,(d), where
d is the distance between the base station and the user in
kilometers. The background noise power spectrum density is
—169 dBm/Hz over 10 MHz, and each device transmitted
power is set to 25 dBm. For fair comparsion, the simulation
parameters are kept the same as in [3], [4].

We consider probability of miss detection P, as the
performance metric in this paper. The probability of miss
detection correspond to the event that a user is active but
declared inactive. We define lﬁc as the estimate of the set
of active users, derived from the output of the learned user
activity pattern {ap}o_,,b=1,..., B by Algorithm 1. Then
the probability of miss detection P,,; can be expressed as
E[| K. N K | o

K. ’
where K. and K. denote the set of true active users and the
total number of true active users across B cells, respectively.
Also, E represents the averaging over all sources of randomiza-
tion including users’ locations and Rayleigh-fading channels.

P’md:

B. Simulation Results

To show the effectiveness of the proposed Riemannian clus-
tering method, we first consider a special case of single-cell
scenario (i.e., B = 1) and compare it with other covariance-
based state-of-the-art solutions, such as multiple measurement
vector (MMV) in [3] and coordinate-wise descent algorithm
(CDA) in [4], which do not consider multiple cells. Then, we
introduce the inter-cell interference in multi-cell scenario and
demonstrate the benefit of exploiting multi-cell cooperation in
the proposed Riemannian clustering method.

1) Single-Cell Scenario: In the single-cell scenario, we
first validate that the proposed method minimizes objective
function (7) by presenting Fig. 4 with M = 45, K. = 40.
In particular, we substitute the estimated user activity patterns
{ap}Y_,b=1,...,B of MMV [3], CDA [4], and the pro-
posed method in (6) to find the estimated covariance matrix )3
Then, we calculate the log-determinant Bregman divergence
between the sample 3 and estimated 3 covariance matrices
for different pilot sequence lengths L. As shown in Fig. 4,
the proposed clustering method has the lowest log-determinant
Bregman divergence compared to MMV [3] and CDA [4].
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Fig. 4: Log-Determinant Bregman Divergence in (7) for different
pilot sequence length L in single-cell scenario.
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Fig. 5: Probability of miss detection with different pilot sequence
length L in single-cell scenario.

The probability of miss detection is shown in Fig. 5 for
the proposed other covariance-based solutions, as the pilot
sequence length L increases. As can be observed, increasing
the pilot sequence length L leads to a substantial reduction
in probability of miss detection, and the proposed clustering
model outperforms both MMV [3] and CDA [4]. Such results
are in agreement with the ones in Fig. 4, as lower log-
determinant Bregman divergence between the sample covari-
ance matrix 3 and the estimated one ¥ leads to lower
probability of miss detection.

The probability of miss detection changes with the number
of users IV, as presented in Fig. 6, with M = 45 and L = 35,
while keeping the ratio of active users to the total users
fixed at 0.1. As shown in Fig. 6, the probability of miss
detection increases as /N increases for all of the covariance-
based detection approaches. However, the proposed k-Means
clustering method exhibits the lowest probability of miss
detection values compared to the MMV [3] and CDA [4].

2) Multi-Cell Scenario: We evaluate the performance of
two different approaches for multi-cell scenario, which are a)

md

102 F .
4
—6— Single-cell, MMV [3]
=& Single-cell, CDA [4]
Single-cell, Riemannian Clustering
10-3 I T
550 600 650 700

Number of users, N
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Fig. 7: Probability of miss detection with different pilot sequence
length L in the multi-cell scenario.

cooperative approach and b) non-cooperative approach. The
cooperative approach was previously presented in Section IV,
where cooperation among the multiple cells is incorporated in
the clustering mechansim. In the non-cooperative approach,
no cooperation among the cells is considered. Particularly,
each base station operates independently to detect the user
activation in its own cell, while treating inter-cell interference
as noise. The sample and estimated covariance matrices are
formed independently for activity detection in each cell.

Fig. 7 illustrates the probability of miss detection of the
proposed clustering approach with M = 45, N = 300,
K. = 30, and different pilot lengths L. As shown, when no
cooperation is considered, the probability of miss detection of
the proposed approach decreases under inter-cell interference,
as compared to the performance in a single-cell scenario.
However with cooperation, the proposed method achieves very
close probability of miss detection to the single-cell scenario.

Besides, the proposed clustering approach significantly out-
performs generalized multi-cell versions of MMV [3] and
CDA [4], in which inter-cell interference is treated as noise.
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For instance at L = 26, the proposed approach achieves
96% and 88% reduction of probability of miss detection as
compared to the MMV [3] and CDA [4], respectively.

Finally, Fig. 8 shows the log-determinant Bregman Di-
vergence between the sample covariance 3 and estimated
covariance 3 by various activity detection strategies in the
multi-cell scenario. As shown in Fig. 8, the proposed co-
operative Riemannian clustering method has the lowest log-
determinant Bregman divergence than MMV [3], CDA [4],
and the non-cooperative one in multi-cell settings. Similar to
the single-cell scenario, this result illustrates that the lower log-
determinant Bregman divergence leads to lower probability of
miss detection, as was shown in Fig. 7.

C. Computational Complexity

The computational complexity of the proposed geometric k-
means clustering model (as in Algorithm 1) is O(TBNkL),
where T is the total number of iterations to converge, B
is the total number of cells, N denotes the total number of
users, and k is the desired number of clusters. As shown, the
complexity of the proposed approach is linear in the pilot
length L, due to simple distance measurements and averaging
over distances as done in lines 9 and 12 of Algorithm 1),
respectively. As the number of cells and clusters are set at 3
and 2, respectively, the computational complexity of proposed
method is O(2T3NL) ~ O(TNL). On the other hand, the
computational complexity of both MMV [3] and CDA [4]
is O(TNL?), where T is the total number of iterations to
converge. Hence, the complexity of Euclidean-based solutions
is quadratic in L due to matrix-vector multiplications used
in coordinate-wise descent algorithm. Hence, the proposed
clustering approach over Riemannian (i.e., non-Euclidean)
manifolds requires less computational complexity compared
to Euclidean-based ones (e.g., MMV [3] and CDA [4].)

VI. CONCLUSION

In this paper, we have proposed a cooperative users’ activity
detection approach over Riemannian manifolds for multi-cell

massive MIMO systems. In doing so, users’ unique signatures
were represented over Riemannian manifolds using a com-
bination of the sufficient-statistic sample covariance matrix
and user-dependent pilot sequences. Consequently, geometric
k-means clustering was applied over Riemannian manifolds
to partition the users’ signatures into two groups, active and
inactive users. Simulation results have demonstrated that the
proposed clustering approach over Riemannian manifolds has
achieved above 88% reduction in the probability of miss
detection compared to Euclidean-based state-of-the-art ones,
and was effective in both single-cell and multi-cell scenar-
ios. Finally and along with achieving lower miss detection
probability, the proposed non-Euclidean approach requires less
complexity compared to its Euclidean counterparts.
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