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Abstract—Grant-free (GF) or random access is a key enabler
for low-latency massive machine-type communications (mMTC),
where devices are sporadically active and transmit small amounts
of data. Massive multiple-input multiple-output (mMIMO) tech-
nology can enable users’ activity detection for such random
access, due to its inherent spatial diversity. One approach employs
the sample covariance matrices of received signals to estimate
the activity detection. Such covariance-based schemes utilize
sub-optimal search algorithms (e.g., coordinate-wise gradient
descent) to find solutions for the non-convex maximum likelihood
(ML) estimation problem of user activity detection. Covariance
matrices are symmetric positive definite (SPD) ones and hence
they can be represented over Riemannian manifolds (i.e., curved
surfaces). Consequently, users can be represented over such non-
Euclidean manifold using a combination of the sufficient-statistic
sample covariance matrices and user-dependent pilot sequences.
Such unique user’s modeling over Riemannian manifolds paves
the road to use geometric-based solutions for activity detection.
Specifically in this paper, we propose to utilize geometric k-
means clustering to divide users of multi-cell massive MIMO
system into two distinct groups, namely, active and inactive
ones. Geodesic distances among users’ representations over Rie-
mannian manifold are measured using log-determinant Bregman
divergence. Simulation results show that the proposed method
reduces probability of miss detection compared to Euclidean-
based state-of-the-arts. Finally, the proposed method requires
less complexity than Euclidean ones.

Index Terms—Activity detection, grant-free access, log-
determinant Bregman Divergence, Riemannian manifolds, sym-
metric positive definite matrices.

I. INTRODUCTION

Next-generation wireless systems aim to offer widespread

connectivity to numerous Internet-of-Things (IoT) devices and

massive machine-type communication (mMTC) [1]. Unlike

human-to-human communication, mMTC is characterized by

three primary attributes, which are massive connectivity, spo-

radic traffic pattern, and short data packets. Conventional

grant-based access scheme requires excessive signaling over-

head to allocate time-frequency resources for devices with

pending uplink transmissions. As a result, grant-based access

scheme causes high latency on the control plane (CP), which

is not suitable for some IoT services with ultra-reliable low-

latency communications (URLLC) requirements such as in-

dustrial IoT (e.g., factory automation). To achieve low-latency

communication, a grant-free (GF), or random, access scheme

has been proposed as an alternative solution [1], [2].
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One of the main challenges facing GF access in massive

MIMO (mMIMO) systems is users’ activity detection, which

aims to identify the group of active users or devices with

uplink transmission in any given time slot. Recently, two

major approaches have been proposed for user’s activity

detection. On one hand, the activity detection problem was

formulated as a compressed sensing (CS) one, which takes

advantage of the sporadic traffic nature in many mMTC use

cases, and was solved using various CS approaches such

as approximate message passing (AMP) [2]. On the other

hand, covariance-based approaches were proposed for user

activity detection, which utilized sample covariance matrices

of the received signals over Euclidean domain [1], [3], [4].

A generalization for covariance-based approaches to multi-

cell MIMO systems was considered in [5], [6]. However,

such covariance-based schemes utilize sub-optimal search al-

gorithms (e.g., coordinate-wise gradient descent) to solve the

non-convex maximum likelihood (ML) estimation problem of

activity detection [7]. In searching for a better and lower-

complexity solution, we consider the mathematical framework

of Riemannian geometry in this paper as follows.

Sample covariance matrices of received signals at a given

base station can be modeled over Riemannian manifolds

(i.e., curved surfaces), thanks to being symmetric positive

definite (SPD) [8]–[11]. Such modeling paves the road for

non-Euclidean geometric-based solution of activity detection

problem. To this end, we focus on multi-cell mMIMO system,

which includes multiple base stations that are connected to a

central unit (e.g., in C-RAN). Users are assigned distinctive,

but non-orthogonal, pilot sequences. As the sample covariance

matrix at each base station is a sufficient statistic for activity

detection, each user is represented using an SPD signature

which is a combination of the received sample covariance

matrix and its pilot sequence. A geodesic distance, such as

log-determinant Bregman divergence, is used to measure the

geodesic distance among users’ signatures over the manifold.

In this paper and based on such geometric modeling of

users, we propose a cooperative activity detection scheme,

where we utilize k-means clustering to divide the users’

signatures over Riemmanian manifold into two groups, active

and inactive users. The group of active users represent the

solution to the activity detection problem across multiple cells.

Simulation results demonstrate that the proposed geometric

approach reduces the probability of miss detection compared to



Fig. 1: Grant-free access in uplink multi-cell mMIMO systems.

Euclidean-based state-of-the-arts and effectively works in both

singe-cell and multi-cells scenarios. Equally important and

despite the proposed method being non-Euclidean in nature,

it is less computationally complex than Euclidean-baed ones.

The rest of this paper is organized as follows. The system

model is presented in Section II. Section III discusses the prob-

lem formulation of activity detection over Riemannian man-

ifolds. Section IV presents the proposed learning-based user

activity detection solution. Simulation results are presented in

Section V. Finally, Section VI presents the conclusion.

II. SYSTEM MODEL

In this section, we provide an overview on Riemannian

geometry, then we present the multi-cell network model.

A. Riemannian Manifolds and Bregman divergence

A differentiable manifold M is a topological space [12]

where each point p has a neighborhood that is topologically

equivalent to a Euclidean space. The tangent space TpM
at any point p ∈ M is a set of tangent vectors which

are the derivatives of curves passing through the point p. A

Riemannian manifold (M, gp) is a smooth and real manifold

M equipped with a positive definite inner product gp at

each point p on the tangent space TpM and is studied

via Riemannian geometry [12]. An n × n SPD matrix is

represented over the interior of cone-like manifold Sn
++ :=

{P ∈ R
n×n|P = PT ,P � 0}, which is a special class

of Riemannian manifolds [13]. A function is of Bregman

type if it possesses the characteristics of strict convexity,

continuous differentiability, and bounded level sets [14]. The

Bregman divergence for any strictly positive definite matrices

P,Q ∈ Sn
++ is computed via the log-determinant Bregman

function [15], which is given by

D(P‖Q) = − log detP+ log detQ+ 〈〈Q−1,P−Q〉〉, (1)

where 〈〈, 〉〉 denotes the trace inner product of SPD matrices.

B. Network and Channel Models

We consider an uplink multi-cell system, as shown in Fig. 1,

which consists of B neighboring cells with M antennas at

each base station and N single-antenna users at each cell.

Moreover, we consider cooperation among the B base stations,

as they are assumed to be connected to a central unit. Uplink

signals, transmitted by active users, are collected through their

designated stations and jointly processed at such central unit.

Given the sporadic traffic of many mMTC services, only

a small number Kc � N of users in each cell are active

in each coherence block. Each user k, k = 1, 2, · · · , N ,

in cell b, b = 1, 2, · · · , B is given a pilot sequence, which

is a vector sbk = (sbk,1, . . . , sbk,L)
T
, where T denotes vector

transpose. An active user’s pilot is transmitted over L signal

dimensions in the coherence block. Each user is assigned a

unique sequence and users’ sequences are non-orthogonal,

as assigning orthogonal pilot sequences is not feasible in

mMTC with limited channel coherence time [7]. Users’ pilot

sequences in each cell are generated from independent and

identically distributed (i.i.d) complex Gaussian distribution

with zero-mean and unit-variance [5], denoted by CN (0, IL).

We assume that channels follow block-fading model, i.e.,

a channel coefficient between a user and its designated base

station stays constant during each coherence block, which is

made up of L signal dimensions in time and/or frequency.

Channel coefficients vary among different blocks. Let hbjk be

the M -dimensional channel vector (i.e., small-scale channel

fading coefficients) between user k in cell b and base station

j. Similarly, Let gbjk be the large-scale fading coefficient

(LSFC), which includes path-loss, between user k in cell b

and base station j. Let abk ∈ {0, 1} be a binary variable,

with abk = 1 indicating that the k-th user in cell b is active.

Accordingly, the received uplink signal at the b-th base station

can be modeled as

Yb =

N
∑

k=1

abksbkgbbkh
T
bbk +

∑

j 6=b

N
∑

k=1

ajksjkgbjkh
T
bjk + Zb,
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where Sj = [sj1, . . . , sjN ] is the L × N matrix of pilot

sequences of the users in cell j, Aj=diag{aj1, . . . , ajN} is a

N ×N diagonal matrix consisting of the binary user activity

pattern in cell j, Gj = diag{gbj1, . . . , gbjN} denotes N × N

diagonal matrix consisting of the LSFCs between the users

in cell j and base station b, Hbj = [hbj1, . . . ,hbjN ]
T

is the

Rayleigh fading channel between the users in cell j and base

station b, and Zb is additive white Gaussian noise (AWGN)

that follows Zb ∼ CN (0, σ2IM ) with variance σ2.

The transmitted signals of all active users are collectively

received at the central unit, through all B base stations, to

jointly detect the user activity across all B cells. Then, the

L×BM received signal Ỹ at the central unit is expressed as

Ỹ =
[

Y1 . . .YB

]

=
[
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]
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. (3)

We assume that the channel vectors {hbjk : k ∈ Kc}
are spatially white and independent of each other (i.e., un-



Fig. 2: Geodesic distance between the sample Σ̂ and estimated Σ̃

covariance matrices on Riemannian manifold.

correlated along antennas) and are characterized by complex

Gaussian distribution with zero-mean and identity-covariance,

that is hbjk ∼ CN (0, IBM ). Hence, the columns of Ỹ in (3)

are i.i.d Gaussian vectors with Ỹ:,i ∼ CN (0,Σ), where

Σ =

B
∑

b=1

N
∑

k=1

γbksbks
H
bk + σ2IL, (4)

represents the L×L covariance matrix, and is common among

all the columns Ỹ:,i, i = {1, . . . , BM}. In (4), γbk = abk
√
gbk

and it equals to γbk =
√
gbk for active users (i.e, abk = 1).

III. PROBLEM FORMULATION OVER RIEMANNIAN

MANIFOLDS

In this section, we formulate the problem of detecting

the binary variables {abk}Nk=1, b = 1,. . ., B ∈ {0, 1}, which

represent the user activity pattern across all B cells. Such

problem formulation can be done by considering both the

sample and estimated covariance matrices of the received

signals as follows. On one hand, the L×L sample covariance

matrix of the columns of the received signal Ỹ in (3) is

Σ̂ =
1

BM
ỸỸH =

1

BM

BM
∑

i=1

Ỹ:,iỸ
H
:,i, (5)

which is a sufficient statistics to identify user activity [3], [5].

On the other hand and assuming {âbk}Nk=1, b = 1,. . ., B ∈
{0, 1} to be the estimated user activity pattern across B cells,

then the L× L estimated covariance matrix is expressed as

Σ̃ =

B
∑

b=1

N
∑

k=1

âbksbks
H
bk + σ2IL. (6)

The sample Σ̂ and the estimated Σ̃ covariance matrices are

SPD ones, which can be represented over Riemannian mani-

folds as shown in Fig. 2. Consequently, the Log-determinant

Bregman divergence, given in (1), can be used to measure

the geodesic distance between such two covariance matrices.

Hence, the activity detection problem can reformulated as

finding the estimated users’ activity vector âbk, and hence the

estimated covariance matrix Σ̃ in (6), by minimizing the Log-

determinant Bregman divergence objective function as

min
âk

Dg(Σ̂‖Σ̃)=− log det Σ̂+log det Σ̃+〈〈Σ̃−1, Σ̂−Σ̃〉〉. (7)

The lower the estimation error, or difference in (7), the lower

the probability of miss detection in the users’ activity.

Fig. 3: Proposed geometric k-means clustering approach for users’
activity detection over Riemannian manifolds.

IV. LEARNING USERS’ ACTIVITY PATTERN IN MMIMO

MULTI-CELL SYSTEM VIA GEOMETRIC k-MEANS

CLUSTERING OVER RIEMANNIAN MANIFOLDS

The objective of this section is to estimate the binary

users’ activity pattern {âbk}Nk=1, b=1,. . ., B, which minimizes

the objective function in (7). To this end, we propose a

geometric k-means approach that divides the users into two

clusters, i.e., active and inactive users. In doing so, users are

geometrically represented over Riemannian manifold and the

inter-user geometric distance is measured via the geodesic one

(i.e., log-determinant Bregman divergence). Intuitively, the k-

means clustering creates two clusters with far-apart centroids

as follows. The first cluster combines the set of active users,

and its centroid represents the estimated covariance matrix

Σ̃ in (6). It approaches the sample covariance matrix Σ̂

in (5), which satisfies the minimization problem in (7). On the

contrary, the centroid of the inactive users’ clusters is relatively

far apart from sample covariance matrix Σ̂ in (5).

Fig. 3 illustrates the learning mechanism of the proposed ac-

tivity detection solution. We define the inputs of the proposed

clustering model to be a set of BN users’ signatures. The

users’ signatures are represented over Riemannian manifolds

(black dots in Fig. 3), through the received sample covariance

matrix Σ̂ and the user’s pilot sequences {sbksH
bk}Nk=1,b =

1,. . .,B, and they are given by
{

Θbk
}N

k=1
=
{(

Σ̂− sbks
H
bk

)

+ αIL

}N

k=1
, b=1,. . .,B, (8)

where Θbk is an L× L positive definite matrix by adding an

identity matrix IL and α > 0 is a regularization parameter.

As shown in (8), the pilot sequence of any active user is

subtracted from the sample covariance matrix Σ̂, which in

fact contains that user’s pilot sequence. In contrast, inactive

users’ pilots are not included in the sample covariance matrix

Σ̂. Intuitively, such contract enables the K-means clustering

to distinguish between the two groups of users. In summary

and as illustrated in Fig. 3, the clustering mechanism uses the

set of users’ signatures
{

Θbk
}N

k=1
∀b, and matches one of the

cluster centroids (green dots in Fig. 3) to the sample covariance

matrix Σ̂ (orange dots in Fig. 3) to find the representations of

the active users (black dots inside blue circle in Fig. 3) over

Riemannian manifolds.



Algorithm 1 Psuedo-Code of proposed learning-based model

for user activity detection in multi-cell systems.

1: Inputs: {Θbk ∈ Sn
++}

N

k=1, b=1,. . ., B, Σ̂;
2: Outputs: User activity pattern;

3: Initialization: {C
(t=0)
v }21 = ∅ and number of cluster set as 2;

4: Initialization: Randomly choose two SPDs from {Θbk} as the

5: cluster means µ
(t=0)
1 and µ

(t=0)
2 ;

6: repeat
7: for b = 1, . . . , B do
8: for k = 1, . . . , N do

9:
C

(t)
v =

{

Θ
bk
v |D

(

Θ
bk
v , µ

(t)
v

)

≤ D(Θbk
v , µ

(t)
u )},

∀v, u; v 6= u, 1 ≤ u ≤ 2
10: end for
11: for v = 1, 2 do

12:
µ
(t+1)
v =argmin

p∈Sn

++

1

|C
(t)
v |

∑

u∈C
(t)
v

D2(
p,Θ

bk
u

)

, 1≤u≤2

13: end for
14: end for
15: until convergence

16: if D1

(

Σ̂, µ
(t=T )
1

)

< D2

(

Σ̂, µ
(t=T )
2

)

then

17: C
(t=T )
1 is selected as a group of active users;

18: else
19: C

(t=T )
2 is selected as a group of active users;

20: end if
21: return {âbk}

N
k=1, b=1,. . ., B∈{0, 1} ;

The complete solution is described in Algorithm 1 as

follows. The inputs to Algorithm 1 are the SPD matrices from

set {Θbk ∈ Sn
++}

N

k=1
, b=1,. . .,B (line 1) and the outputs are

the estimated user activation pattern {âbk}Nk=1, b = 1,. . ., B.

During the initialization phase, both sets of cluster class

assignments are set to an empty set {C (t=0)
v }21 = ∅ and the

number of desired clusters is set to two as part of the clustering

process (line 3). The next step is to initialize the cluster

centroids, denoted by µ
(t)
1 and µ

(t)
2 , by randomly selecting

two SPDs from {Θbk ∈ Sn
++}

N

k=1
, b=1,. . .,B (lines 4-5).

The proposed algorithm assigns each observation Θbk to

one of the two clusters based on the smallest geodesic distance

(i.e., log-determinant Bregman divergence) to their centers

(lines 8-10). Then it updates the cluster centroids by Fréchet

mean [16] of each cluster (lines 11-13), until the cluster

assignment converges. When the algorithm converges, in other

words, centroids are no longer updated, the algorithm stops

running and produces two sets of clusters.

Next, the algorithm classifies the two clusters into active

users and inactive ones as follows. The cluster with the

minimum log-determinant Bregman divergence between its

centroid µt=T
v∈{1,2} and sample covariance matrix Σ̂ is selected

as one with the active users (lines 16-17). Whereas, the

other one is assigned to include inactive users (lines 18-19).

In other words, the k-means clustering model sttempts to

match one of the cluster centroids to the sample covariance

matrix Σ̂ to find the signatures of the active users over

Riemannian manifolds. Then, it produces the user activation

pattern {âbk}Nk=1, b=1,. . ., B across all B cells by finding the

indices of the corresponding users’ signatures in the cluster

with active users (line 21).

V. PERFORMANCE EVALUATION

In this section, we present the simulation results of the

proposed geometric clustering solution and compare it against

other Euclidean-based state-of-the-art solutions.

A. Simulation Setup

In this paper, we consider a multi-cell system consisting

B = 3 circular cells (as considered in [5]) where the radius

of each cell is 1000m and potential users are uniformly

distributed throughout the cells. Among these, the ratio of

active users to the total users is set as 0.1 per cell. The number

of antennas of each base station is set as M = 45 and the pilot

sequence sbk of each user with length L have i.i.d. entries and

is generated from a complex Gaussian distribution with zero-

mean and unit-variance, as explained in Section II-B.

The LSFC is modeled as 128.1 + 37.6 log10(d), where

d is the distance between the base station and the user in

kilometers. The background noise power spectrum density is

−169 dBm/Hz over 10 MHz, and each device transmitted

power is set to 25 dBm. For fair comparsion, the simulation

parameters are kept the same as in [3], [4].

We consider probability of miss detection Pmd as the

performance metric in this paper. The probability of miss

detection correspond to the event that a user is active but

declared inactive. We define K̂c as the estimate of the set

of active users, derived from the output of the learned user

activity pattern {âbk}Nk=1, b= 1,. . ., B by Algorithm 1. Then

the probability of miss detection Pmd can be expressed as

Pmd =
E[| Kc ∩ K̂c |]

Kc

, (9)

where Kc and Kc denote the set of true active users and the

total number of true active users across B cells, respectively.

Also, E represents the averaging over all sources of randomiza-

tion including users’ locations and Rayleigh-fading channels.

B. Simulation Results

To show the effectiveness of the proposed Riemannian clus-

tering method, we first consider a special case of single-cell

scenario (i.e., B = 1) and compare it with other covariance-

based state-of-the-art solutions, such as multiple measurement

vector (MMV) in [3] and coordinate-wise descent algorithm

(CDA) in [4], which do not consider multiple cells. Then, we

introduce the inter-cell interference in multi-cell scenario and

demonstrate the benefit of exploiting multi-cell cooperation in

the proposed Riemannian clustering method.

1) Single-Cell Scenario: In the single-cell scenario, we

first validate that the proposed method minimizes objective

function (7) by presenting Fig. 4 with M = 45, Kc = 40.

In particular, we substitute the estimated user activity patterns

{âbk}Nk=1, b = 1,. . ., B of MMV [3], CDA [4], and the pro-

posed method in (6) to find the estimated covariance matrix Σ̃.

Then, we calculate the log-determinant Bregman divergence

between the sample Σ̂ and estimated Σ̃ covariance matrices

for different pilot sequence lengths L. As shown in Fig. 4,

the proposed clustering method has the lowest log-determinant

Bregman divergence compared to MMV [3] and CDA [4].



Fig. 4: Log-Determinant Bregman Divergence in (7) for different
pilot sequence length L in single-cell scenario.

Fig. 5: Probability of miss detection with different pilot sequence
length L in single-cell scenario.

The probability of miss detection is shown in Fig. 5 for

the proposed other covariance-based solutions, as the pilot

sequence length L increases. As can be observed, increasing

the pilot sequence length L leads to a substantial reduction

in probability of miss detection, and the proposed clustering

model outperforms both MMV [3] and CDA [4]. Such results

are in agreement with the ones in Fig. 4, as lower log-

determinant Bregman divergence between the sample covari-

ance matrix Σ̂ and the estimated one Σ̃ leads to lower

probability of miss detection.

The probability of miss detection changes with the number

of users N , as presented in Fig. 6, with M = 45 and L = 35,

while keeping the ratio of active users to the total users

fixed at 0.1. As shown in Fig. 6, the probability of miss

detection increases as N increases for all of the covariance-

based detection approaches. However, the proposed k-Means

clustering method exhibits the lowest probability of miss

detection values compared to the MMV [3] and CDA [4].

2) Multi-Cell Scenario: We evaluate the performance of

two different approaches for multi-cell scenario, which are a)

Fig. 6: Probability of miss detection with different number of users
N in single-cell scenario.

Fig. 7: Probability of miss detection with different pilot sequence
length L in the multi-cell scenario.

cooperative approach and b) non-cooperative approach. The

cooperative approach was previously presented in Section IV,

where cooperation among the multiple cells is incorporated in

the clustering mechansim. In the non-cooperative approach,

no cooperation among the cells is considered. Particularly,

each base station operates independently to detect the user

activation in its own cell, while treating inter-cell interference

as noise. The sample and estimated covariance matrices are

formed independently for activity detection in each cell.

Fig. 7 illustrates the probability of miss detection of the

proposed clustering approach with M = 45, N = 300,

Kc = 30, and different pilot lengths L. As shown, when no

cooperation is considered, the probability of miss detection of

the proposed approach decreases under inter-cell interference,

as compared to the performance in a single-cell scenario.

However with cooperation, the proposed method achieves very

close probability of miss detection to the single-cell scenario.

Besides, the proposed clustering approach significantly out-

performs generalized multi-cell versions of MMV [3] and

CDA [4], in which inter-cell interference is treated as noise.



Fig. 8: Log-Determinant Bregman Divergence in (7) for different
pilot sequence length L in in multi-cell scenario.

For instance at L = 26, the proposed approach achieves

96% and 88% reduction of probability of miss detection as

compared to the MMV [3] and CDA [4], respectively.

Finally, Fig. 8 shows the log-determinant Bregman Di-

vergence between the sample covariance Σ̂ and estimated

covariance Σ̃ by various activity detection strategies in the

multi-cell scenario. As shown in Fig. 8, the proposed co-

operative Riemannian clustering method has the lowest log-

determinant Bregman divergence than MMV [3], CDA [4],

and the non-cooperative one in multi-cell settings. Similar to

the single-cell scenario, this result illustrates that the lower log-

determinant Bregman divergence leads to lower probability of

miss detection, as was shown in Fig. 7.

C. Computational Complexity

The computational complexity of the proposed geometric k-

means clustering model (as in Algorithm 1) is O(TBNkL),
where T is the total number of iterations to converge, B

is the total number of cells, N denotes the total number of

users, and k is the desired number of clusters. As shown, the

complexity of the proposed approach is linear in the pilot

length L, due to simple distance measurements and averaging

over distances as done in lines 9 and 12 of Algorithm 1),

respectively. As the number of cells and clusters are set at 3

and 2, respectively, the computational complexity of proposed

method is O(2T3NL) ≈ O(TNL). On the other hand, the

computational complexity of both MMV [3] and CDA [4]

is O(T̃NL2), where T̃ is the total number of iterations to

converge. Hence, the complexity of Euclidean-based solutions

is quadratic in L due to matrix-vector multiplications used

in coordinate-wise descent algorithm. Hence, the proposed

clustering approach over Riemannian (i.e., non-Euclidean)

manifolds requires less computational complexity compared

to Euclidean-based ones (e.g., MMV [3] and CDA [4].)

VI. CONCLUSION

In this paper, we have proposed a cooperative users’ activity

detection approach over Riemannian manifolds for multi-cell

massive MIMO systems. In doing so, users’ unique signatures

were represented over Riemannian manifolds using a com-

bination of the sufficient-statistic sample covariance matrix

and user-dependent pilot sequences. Consequently, geometric

k-means clustering was applied over Riemannian manifolds

to partition the users’ signatures into two groups, active and

inactive users. Simulation results have demonstrated that the

proposed clustering approach over Riemannian manifolds has

achieved above 88% reduction in the probability of miss

detection compared to Euclidean-based state-of-the-art ones,

and was effective in both single-cell and multi-cell scenar-

ios. Finally and along with achieving lower miss detection

probability, the proposed non-Euclidean approach requires less

complexity compared to its Euclidean counterparts.
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