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Abstract—The imperative for autonomously detecting radar

signals is paramount in the context of emerging shared-spectrum

wireless networks, such as the Citizens Broadband Radio Service

(CBRS) band. The dynamic allocation of this spectrum hinges

upon a specialized sensor network tasked with identifying the

presence of federal incumbent radar signals. In this paper, we

propose a radar sensing strategy using received signals at base

stations. More specifically, the sample covariance matrices of

received signals lie over Riemannian manifolds (i.e., curved sur-

faces) thanks to their symmetric positive definite (SPD) properties.

Consequently, we propose to use support vector machine (SVM)

learning models over Riemannian manifolds for classification of

radar existence. Our findings reveal that the model attains more

than 90% radar detection accuracy considering Signal-to-noise

ratio (SNR) values up to 14 dB.

Index Terms—CBRS, machine learning, radar detection, Rie-

mannian manifold, spectrum sensing.

I. INTRODUCTION

In the ever-evolving landscape of wireless communication,

incumbent radar bands are finding themselves in new roles

as they are shared with commercial mobile broadband sys-

tems [1]. This strategic sharing is a move towards optimizing

the use of precious radio spectrum resources through dynamic

spectrum access. A notable example of this spectrum-sharing

paradigm in action is the Citizens Broadband Radio Service

(CBRS) band in the United States. CBRS allows for com-

mercial broadband access to the radio frequency spectrum

ranging from 3550 MHz to 3700 MHz, and this access is

shared with the incumbent users in that frequency band [2]. To

decide whether the shared band should be utilized alongside

radar, detecting radar signals with complete accuracy is of

tremendous importance.

Previously, both model-based and data-based incumbent

radar sensing approaches have been observed in literature. In

model-based radar sensing, traditional matched-filter detectors

showed effective detection results even amidst scenarios in-

volving co-channel interference from commercial users and
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out-of-band emissions emanating from radars in neighboring

frequency bands [3]. However, it is worth noting that matched

filtering-based detection methods typically rely on having

complete or partial information about radar waveforms [4],

rendering them unsuitable when the spectrum sensing sensor

lacks knowledge of the transmitted signal parameters [1]. For

data-based radar sensing, deep learning (DL) techniques have

been used such as in [5]–[7]. These works have employed

DL techniques for tasks like radar waveform recognition and

spectrum allocation in low-interference scenarios within the

CBRS. For instance, in [5], authors assessed the performance

of different methods related to DL for SPN-43 radar detection

using over 14,000 spectrograms collected in the 3.5 GHz band.

In [6], a deep convolutional neural network (CNN) based

framework was introduced to detect radar radar signals within

the radio spectrum, even when they are mixed with interfer-

ence. Lastly, [7] explored multiple deep learning models for

environmental sensing capability (ESC) radar detection.

In recent time, Riemannian geometry has been employed to

explore the geometric aspects of second order channel statistics

like channel covariance matrix [8], [9] and also wireless link

scheduling within device-to-device networks [10], [11]. Radar

detection is also done by modeling covariance matrices over

Riemannian manifolds, as demonstrated in works such as [12]–

[14]. In [12], authors used sample covariance matrices for

the radio spectrum sensing. Riemannian distance based de-

tector was proposed in [13] which utilizes wideband spectrum

information for sensing. Authors in [14] leveraged K-means

clustering technique to address the spectrum sensing problem.

Although these works employed Riemannian manifolds, they

did not specifically address the unique challenges presented

by the 3.5 GHz CBRS band. As the radar parameter varies

over a wide range, the radar detection problem becomes more

challenging in the CBRS band [4].

In this paper, we model radar sensing over Riemannian

manifold in the CBRS band. The concept of harnessing
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the inherent geometry of the Riemannian manifold aims to

devise computationally efficient on-demand spectrum access

strategies. We use sample covariance matrices of the received

signals which are represented over Riemannian manifolds due

to their symmetric positive definite (SPD) structure. Two signal

hypothesises are considered, namely, between radar plus noise

versus noise only. Each one of these signals has its own SPD

signature, thus we frame the detection challenge as a binary

classification task and employ support vector machine (SVM)

as a supervised machine learning technique over Riemannian

manifold. The proposed SVM has low complexity. To build our

model, we utilize the RF dataset comprised of radar waveforms

generated synthetically by National Institute of Standards and

Technology (NIST) [15]. With the utilization of this dataset,

our objective is to train and test the SVM model as a reference

point and assess the performance of SVM classifier based on

metrics like probability of detection and probability of false

alarm.

II. PRELIMINARIES

A. Riemannian Geometry

At any specific point q within a manifold M, there exists

a tangent space denoted as TqM, which comprises a set

of tangent vectors representing derivatives of curves pass-

ing through that particular point. The Riemannian manifold

(M,L) can be described as a real differentiable manifold

denoted asM, in which each tangent space is endowed with an

inner product denoted as L, a Riemannian metric. This metric

smoothly varies from one point to another and is the subject of

study within the area of Riemannian geometry. Additionally,

the n × n SPD matrices, denoted as Sym++
n , reside within

the interior of convex cones, constituting a distinct class of

Riemannian manifolds [16].

B. Support Vector Machine

As a supervised machine learning technique, support vector

machine (SVM) stands out with its robust method for tackling

both classification and regression tasks, aiming to identify the

optimal decision boundary in n-dimensional space.

In the context of a Riemannian manifold, the SVM algorithm

considers manifold’s curvature and finds the optimal separating

hyperplane that best divides the classes of data points accord-

ing to their intrinsic geometric properties. Fig. 1 shows that the

SVM classifier divides SPD data points into two classes over

Riemannian manifold, M. One class represents the existence

of radar, while the other indicates its absence.

SVM’s ability to handle high-dimensional feature spaces

makes it an ideal candidate for radar detection applications,

where the goal is to effectively differentiate between signal and

noise amidst varying environmental conditions. Furthermore,

SVM’s robustness to outliers and its capacity to incorporate

diverse kernel functions render it adaptable to different radar

signal characteristics and deployment scenarios.

Fig. 1: Classified data points by SVM over Riemannian man-

ifold.

III. SYSTEM MODEL

A. Scenario Description

Fig. 2 provides an overview of the coexistence scenario

investigated in this work. It includes established radar systems

and commercial broadband base stations sharing the same

spectrum, similar to the situation in the CBRS band. Within

this setup, active scanning radars, such as those found on ships

along coastlines and operated by the military, are employed for

target detection. Additionally, the surrounding base stations,

including mobile road-side units (RSUs), are equipped with

radar sensing capabilities to identify the presence and intensity

of radars within their respective coverage areas. In a distributed

network, depending on the radar types identified, each base sta-

tion utilizes the proposed on-demand radar detection strategy

to decide whether to access the spectrum or not.

It is assumed that a particular base station in Fig. 2 has M

antennas. It is also assumed that the incumbent users (e.g.,

radars) have N antennas.

Fig. 2: Scenario of radar sensing.



B. Problem Formulation

With H0 representing absence of radar (noise only) and

H1 representing presence of radar plus noise, the statistical

hypothesis testing used for radar signal detection can be

described as follows

{

H0 : y[n] = z[n],

H1 : y[n] = x[n] + z[n].
(1)

where, y[n] denotes the received signal, z[n] denotes the white

Gaussian noise (WGN), and x[n] represents radar signal.

In the context of signal classification, features refer to dis-

tinctive signal characteristics that highlight specific phenomena

within the signal. We consider that the signals coming from

radar are received by M antennas of the base station for a

given time slot, as shown in Fig. 3. Our primary focus lies in

identifying signal attributes that prove valuable in the detection

of radar signals. To formulate the process, first we take absolute

values of the time stamps, |yi[n]| (where, i = 1, 2, ...M )

of the same signal. Then we proceed with aggregating them

all together for each individual antenna to create a M × 1

dimensional vector, ¯̄y. Next, we generate M ×M covariance

matrix, ¯̄y ¯̄yH for our model which is SPD in nature and can

be represented over Riemannian manifold. This is the sample

covariance matrix for a given time slot. We repeat the process

for all available time slots which provide several points over

Riemannian manifold. These points are represented as features

to the SVM binary classifier. SVM classifier is trained first then

tested to classify H1 and H0.

There are two key probabilities that are essential for as-

sessing detection performance: the probability of false alarm,

denoted as PFA = p(Ĥ1|H0), and the probability of detection,

represented as PD = p(Ĥ1|H1). PFA indicates the probability

that the classifier incorrectly detects the presence of a radar

(Ĥ1) when, in reality, no radar exist (H0). PD indicates the

probability that the classifier correctly detects the presence of

a radar (Ĥ1) when radar actually exist (H1).

IV. RADAR DETECTION OVER RIEMANNIAN MANIFOLD

Intuitively, received signals at base stations in the presence

of incumbent radar should be statistically different from those

without radar, thanks to the additional radar-based term x[n] in

the received signal model of (1). In other words, second-order

statistics (i.e., covariance matrices) of the received signal vary

depending on the presence of incumbent radar. We explore

the adoption of machine learning approach to tackle radar

signal detection. This approach involves training a supervised

machine learning model using NIST dataset [15] of waveforms

that accurately represent the signals encountered within the

CBRS band.

Fig. 3: Block diagram of radar sensing over Riemannian

manifold.

Considering (1), we can see that the problem is linked to

a two-class classification model where we try to detect the

presence of radar utilizing the sample covariance matrices of

the received signals. Therefore, we tackle the challenge of

identifying incumbent radar signals by framing it as a binary

classification problem. In supervised learning, the classifier

relies on having accurate labels indicating the presence or

absence of radar signals.

The SVM classifier is designed to create an optimal hyper-

plane for separating two classes. Since in our model, the classes

are not linearly separable, we employ the kernel method, which

transforms the feature space into a higher-dimensional context.

Commonly utilized kernels include linear, polynomial, radial

basis function (RBF), and sigmoid [17]. In this work, we

assess the detection performance by applying various kernel

functions. We analyze the classification accuracy first to select

the best kernel function. Then we use the best kernel function

for the probability output across a range of SNR values.

Algorithm 1 formalizes the training and testing process of

SVM classifier.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the dataset first, followed by an

explanation of the steps and procedures used for training the

models and eventually evaluating the performance. These radar

waveforms serve as representatives of the signals within the

CBRS band. The dataset includes radar signals randomly dis-

tributed within a fixed time frame and also the parameters are

randomly chosen for each pulse modulation type, intensifying

the complexity of the detection task and closely simulating

real-world conditions.



Algorithm 1: Training and testing SVM classifier for

coexistence scenario over Riemannian manifold
Input: M , total number of base station antennas; T ,

total number of time slots per antenna; W , total

number of waveforms; Wtrain, training set size; Cw,

SPD covariance matrix storage

Output: Mconf,k, confusion matrix.

for w ∈ {1, . . . ,W} do
1: Take absolute values and aggregate time stamps

per antenna having dimension M × 1

2: Calculate covariance matrix Cw of dimension

M ×M
end

3: Prepare features from covariance matrices

4: Extract labels corresponding to waveforms

5: Standardize features by z-scoring

6: Split dataset into training and testing subsets

7: Define kernel options

K ← {‘linear’, ‘polynomial’, ‘rbf’, ‘sigmoid’}

for k ∈ K do
8: Train SVM model SVMk with kernel k

9: Predict test labels with SVMk

10: Compute confusion matrix Mconf,k

end

11: Compute PFA and PD.

A. NIST Dataset

To build our model, we rely on synthetically generated

NIST dataset [15]. The dataset offers numerous waveforms,

each lasting 80 milliseconds, presented as pairs of I and

Q values. We use 800,000 time stamps for each of these

waveforms. Also, these waveforms are associated with a 10

MHz band. Approximately half of these waveforms solely

represent receiver noise without any radar signal, while the

remaining waveforms include radar signals. Based on their

characteristics, five distinct radar types are categorized in the

dataset determined by their pulse modulation and parameter

ranges. These categories are referred to as waveform bins.

Each bin encompasses a specific range of parameters that

represent various radar designs within the 3.5 GHz CBRS

band, both existing and anticipated in the future. Among the

waveforms that contain radar signals, each may have at most

one radar signal, randomly selected from the five radar types.

In addition, the radar signals are placed at randomly chosen

times within the fixed duration which makes the detection

problem more challenging and closer to real-world scenarios.

Furthermore, the Signal-to-Noise Ratio (SNR) of these radar

signals is randomly chosen from the range of [10, 12, 14, 16,

18, 20] dB. In both the training and testing phases, we apply Z-

score normalization, a method that standardizes feature values

to possess an average of 0 and a standard deviation of 1. This

process involves subtracting the feature’s mean from each value

and subsequently dividing by the standard deviation.

B. Classifier Training

A total of 4000 waveforms are employed for training,

evenly divided into two categories: one half comprises radar

signals, while the other consists solely of noise. For the

purpose of training our model with each considered SNR value,

we select 200 waveforms, ensuring an equal distribution of

radar and noise-only signals. To prevent any potential bias

stemming from data order, we randomize the sequence of these

waveforms. Subsequently, we utilize 50% of these randomized

waveform samples for the training process.

C. Evaluating Detection Performance

We use the trained SVM model to test rest of the 50%

waveform samples for different kernel types. We first check the

overall classification accuracy of the model combined across

all SNR values and all radar types. Then we verify the radar

detection accuracy and false alarm rate individually against the

SVM kernel which has the best classification accuracy.

1) Classification Accuracy: This accuracy metric reflects

the overall ability of the model to correctly classify instances

as either radar or non-radar. Classification accuracy is the pro-

portion of true results (both true positives and true negatives)

among the total number of cases examined. Following is the

list of different performance measuring terms:

• True positive (TP): Radar signals correctly identified as

radar.

• True negative (TN): Non-radar signals correctly identified

as non-radar.

• False positive (FP): Non-radar signals incorrectly identi-

fied as radar.

• False negative (FN): Radar signals incorrectly identified

as non-radar.

We calculate the classification accuracy (CA) as

CA =
TP + TN

TP + TN + FP + FN
(2)

Table I represents the classification accuracy of different

SVM kernel functions. Although, sigmoid function give a good

classification accuracy of 86.54%, RBF kernel has the best

classification accuracy than rest of the functions with 87%

accuracy. This performance metric measures how often the

classifier is correct.
2) Detection under various SNR: In Figure 4, we present

the detection rate and false positive rate across various SNR

values. The true positive rate, or detection rate, is represented

on the left y-axis, while the false positive rate, or probability of

false alarm, is depicted on the right y-axis. Since, RBF kernel



TABLE I: Classification Accuracy of SVM Kernels

Kernel Type Classification Accuracy (%)

Linear 83.89

Polynomial 83.06

Sigmoid 86.54

RBF 87.00

Fig. 4: SNR versus detection rate and false positive rate for

SVM with Gaussian (RBF) kernel

TABLE II: Performance metrics of SVM with RBF kernel
SNR Recall Precision F1-score

10 0.79 0.62 0.69

12 0.84 0.73 0.78

14 0.85 0.91 0.88

16 0.85 0.95 0.90

18 0.91 0.95 0.93

20 0.93 1 0.96

showcase best classification accuracy, we evaluate our data

using RBF kernel. Notably, RBF kernel achieves a detection

accuracy of over 90% and the lowest false positive rate up to

an SNR of 14 dB. For the case of spectrum sharing, false

negative rate is also a vital parameter as it determines the

instances when the model incorrectly identifies radar signals

as non-radar signal. RBF kernel maintains less than 9% false

negative rate up to 14 dB SNR in our proposed model. Given

the complexity of the dataset, achieving such a high level of

accuracy is not assured by alternative methods of a similar

kind.

Performance metrics like recall, precision, and F1-score are

crucial for evaluating the performance of any classification

model. The recall, precision, and F1-score can be expressed

as follows

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

TABLE III: Confusion Matrices for SVM with RBF kernel

Predicted

Positive Negative

Actual Positive
44.00%

(TP)

12.33%

(FN)

Actual Negative
7.67%

(FP)

36.00%

(TN)

a) SNR range in [10, 14] dB

Predicted

Positive Negative

Actual Positive
52.94%

(TP)

1.38%

(FN)

Actual Negative
4.84%

(FP)

40.83%

(TN)

b) SNR range in [16, 20] dB

F1-Score =
2× Precision× Recall

Precision + Recall
(5)

High recall value indicates that the model is good at iden-

tifying all actual positive cases which also means it hardly

misses the positive cases (i.e., a low number of false negatives),

whereas high precision means a low false positive rate, and

a high F1 score indicates a balance between precision and

recall, signifying a model that performs well both in correctly

identifying positive instances and in minimizing false positives.

The results illustrated in Table II show the recall, precision, and

F1-score (weighted average of the precision and recall) for our

model of SVM classifier with RBF kernel. It is seen that the

SVM classifier with RBF kernel function maintains a precision

of above 0.90 up to 14 dB SNR and then it starts to decrease

with decreasing SNR.

Finally, Table III presents a comparison of accuracy results

between the testing dataset with higher SNR (SNR range in

[16, 20] dB) and the lower SNR (SNR range in [10, 14] dB)

when employing the RBF kernel. With a decrease in the SNR

range, we observe a decline in overall accuracy from 93.77%

to 80% and an increase in overall false prediction from 6.22%

to 20%.

VI. CONCLUSION

In this paper, we present a novel coexistence scenario

modeled over Riemannian manifold. Such modeling includes

reception of waveforms by each of the antennas and utilization

of their covariance matrices to ensure feature extraction in

simplified way from a dataset which is relatively challenging

and close to the real-world scenario. Our main objective is to

detect radar signals at the base station to employ on-demand

spectrum access strategies. In the decentralized mode, this



process will enable the base station to decide whether to use

a shared band like CBRS with radars or not. As a supervised

machine learning technique, we use support vector machine

(SVM) with different kernel functions to serve as the classifier

between two classes of consideration. Results verify that SVM

with RBF kernel maintains more than 90% radar detection

accuracy for SNR value up to 14 dB along with comparatively

lower false alarm rate. Furthermore, we evaluate other essential

performance metrics like recall, precision, and F1-score for the

RBF kernel. These metrics also verify the robustness of the

model.
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