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Abstract—The imperative for autonomously detecting radar
signals is paramount in the context of emerging shared-spectrum
wireless networks, such as the Citizens Broadband Radio Service
(CBRS) band. The dynamic allocation of this spectrum hinges
upon a specialized sensor network tasked with identifying the
presence of federal incumbent radar signals. In this paper, we
propose a radar sensing strategy using received signals at base
stations. More specifically, the sample covariance matrices of
received signals lie over Riemannian manifolds (i.e., curved sur-
faces) thanks to their symmetric positive definite (SPD) properties.
Consequently, we propose to use support vector machine (SVM)
learning models over Riemannian manifolds for classification of
radar existence. Our findings reveal that the model attains more
than 90% radar detection accuracy considering Signal-to-noise
ratio (SNR) values up to 14 dB.

Index Terms—CBRS, machine learning, radar detection, Rie-
mannian manifold, spectrum sensing.

I. INTRODUCTION

In the ever-evolving landscape of wireless communication,
incumbent radar bands are finding themselves in new roles
as they are shared with commercial mobile broadband sys-
tems [1]. This strategic sharing is a move towards optimizing
the use of precious radio spectrum resources through dynamic
spectrum access. A notable example of this spectrum-sharing
paradigm in action is the Citizens Broadband Radio Service
(CBRS) band in the United States. CBRS allows for com-
mercial broadband access to the radio frequency spectrum
ranging from 3550 MHz to 3700 MHz, and this access is
shared with the incumbent users in that frequency band [2]. To
decide whether the shared band should be utilized alongside
radar, detecting radar signals with complete accuracy is of
tremendous importance.

Previously, both model-based and data-based incumbent
radar sensing approaches have been observed in literature. In
model-based radar sensing, traditional matched-filter detectors
showed effective detection results even amidst scenarios in-
volving co-channel interference from commercial users and
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out-of-band emissions emanating from radars in neighboring
frequency bands [3]. However, it is worth noting that matched
filtering-based detection methods typically rely on having
complete or partial information about radar waveforms [4],
rendering them unsuitable when the spectrum sensing sensor
lacks knowledge of the transmitted signal parameters [1]. For
data-based radar sensing, deep learning (DL) techniques have
been used such as in [5]-[7]. These works have employed
DL techniques for tasks like radar waveform recognition and
spectrum allocation in low-interference scenarios within the
CBRS. For instance, in [5], authors assessed the performance
of different methods related to DL for SPN-43 radar detection
using over 14,000 spectrograms collected in the 3.5 GHz band.
In [6], a deep convolutional neural network (CNN) based
framework was introduced to detect radar radar signals within
the radio spectrum, even when they are mixed with interfer-
ence. Lastly, [7] explored multiple deep learning models for
environmental sensing capability (ESC) radar detection.

In recent time, Riemannian geometry has been employed to
explore the geometric aspects of second order channel statistics
like channel covariance matrix [8], [9] and also wireless link
scheduling within device-to-device networks [10], [11]. Radar
detection is also done by modeling covariance matrices over
Riemannian manifolds, as demonstrated in works such as [12]—
[14]. In [12], authors used sample covariance matrices for
the radio spectrum sensing. Riemannian distance based de-
tector was proposed in [13] which utilizes wideband spectrum
information for sensing. Authors in [14] leveraged K-means
clustering technique to address the spectrum sensing problem.
Although these works employed Riemannian manifolds, they
did not specifically address the unique challenges presented
by the 3.5 GHz CBRS band. As the radar parameter varies
over a wide range, the radar detection problem becomes more
challenging in the CBRS band [4].

In this paper, we model radar sensing over Riemannian
manifold in the CBRS band. The concept of harnessing
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the inherent geometry of the Riemannian manifold aims to
devise computationally efficient on-demand spectrum access
strategies. We use sample covariance matrices of the received
signals which are represented over Riemannian manifolds due
to their symmetric positive definite (SPD) structure. Two signal
hypothesises are considered, namely, between radar plus noise
versus noise only. Each one of these signals has its own SPD
signature, thus we frame the detection challenge as a binary
classification task and employ support vector machine (SVM)
as a supervised machine learning technique over Riemannian
manifold. The proposed SVM has low complexity. To build our
model, we utilize the RF dataset comprised of radar waveforms
generated synthetically by National Institute of Standards and
Technology (NIST) [15]. With the utilization of this dataset,
our objective is to train and test the SVM model as a reference
point and assess the performance of SVM classifier based on
metrics like probability of detection and probability of false
alarm.

II. PRELIMINARIES
A. Riemannian Geometry

At any specific point ¢ within a manifold M, there exists
a tangent space denoted as 7qM, which comprises a set
of tangent vectors representing derivatives of curves pass-
ing through that particular point. The Riemannian manifold
(M, L) can be described as a real differentiable manifold
denoted as M, in which each tangent space is endowed with an
inner product denoted as £, a Riemannian metric. This metric
smoothly varies from one point to another and is the subject of
study within the area of Riemannian geometry. Additionally,
the n x n SPD matrices, denoted as Sym. T, reside within
the interior of convex cones, constituting a distinct class of
Riemannian manifolds [16].

B. Support Vector Machine

As a supervised machine learning technique, support vector
machine (SVM) stands out with its robust method for tackling
both classification and regression tasks, aiming to identify the
optimal decision boundary in n-dimensional space.

In the context of a Riemannian manifold, the SVM algorithm
considers manifold’s curvature and finds the optimal separating
hyperplane that best divides the classes of data points accord-
ing to their intrinsic geometric properties. Fig. 1 shows that the
SVM classifier divides SPD data points into two classes over
Riemannian manifold, M. One class represents the existence
of radar, while the other indicates its absence.

SVM’s ability to handle high-dimensional feature spaces
makes it an ideal candidate for radar detection applications,
where the goal is to effectively differentiate between signal and
noise amidst varying environmental conditions. Furthermore,
SVM’s robustness to outliers and its capacity to incorporate

diverse kernel functions render it adaptable to different radar
signal characteristics and deployment scenarios.

Radar exists

No radar exists

Riemannian Manifold, M

Fig. 1: Classified data points by SVM over Riemannian man-
ifold.

III. SYSTEM MODEL

A. Scenario Description

Fig. 2 provides an overview of the coexistence scenario
investigated in this work. It includes established radar systems
and commercial broadband base stations sharing the same
spectrum, similar to the situation in the CBRS band. Within
this setup, active scanning radars, such as those found on ships
along coastlines and operated by the military, are employed for
target detection. Additionally, the surrounding base stations,
including mobile road-side units (RSUs), are equipped with
radar sensing capabilities to identify the presence and intensity
of radars within their respective coverage areas. In a distributed
network, depending on the radar types identified, each base sta-
tion utilizes the proposed on-demand radar detection strategy
to decide whether to access the spectrum or not.

It is assumed that a particular base station in Fig. 2 has M
antennas. It is also assumed that the incumbent users (e.g.,
radars) have N antennas.
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Fig. 2: Scenario of radar sensing.

Y.
ﬂ N

Base station



B. Problem Formulation

With H, representing absence of radar (noise only) and
H; representing presence of radar plus noise, the statistical
hypothesis testing used for radar signal detection can be
described as follows

ey

{Ho 2 y[n] = z[n],
Hy : y[n] = z[n] + z[n].

where, y[n] denotes the received signal, z[n] denotes the white
Gaussian noise (WGN), and z[n] represents radar signal.

In the context of signal classification, features refer to dis-
tinctive signal characteristics that highlight specific phenomena
within the signal. We consider that the signals coming from
radar are received by M antennas of the base station for a
given time slot, as shown in Fig. 3. Our primary focus lies in
identifying signal attributes that prove valuable in the detection
of radar signals. To formulate the process, first we take absolute
values of the time stamps, |y;[n]| (where, ¢ = 1,2,..M)
of the same signal. Then we proceed with aggregating them
all together for each individual antenna to create a M X 1
dimensional vector, 3. Next, we generate M X M covariance
matrix, 4 for our model which is SPD in nature and can
be represented over Riemannian manifold. This is the sample
covariance matrix for a given time slot. We repeat the process
for all available time slots which provide several points over
Riemannian manifold. These points are represented as features
to the SVM binary classifier. SVM classifier is trained first then
tested to classify Hy and Hj.

There are two key probabilities that are essential for as-
sessing detection performance: the probability of false alarm,
denoted as Prp g = p(ﬁ 1/Hp), and the probability of detection,
represented as Pp = p(fj 1/H1). Pra indicates the probability
that the classifier incorrectly detects the presence of a radar
(ﬁl) when, in reality, no radar exist (Hp). Pp indicates the
probability that the classifier correctly detects the presence of
a radar (H,) when radar actually exist (H).

IV. RADAR DETECTION OVER RIEMANNIAN MANIFOLD

Intuitively, received signals at base stations in the presence
of incumbent radar should be statistically different from those
without radar, thanks to the additional radar-based term x[n] in
the received signal model of (1). In other words, second-order
statistics (i.e., covariance matrices) of the received signal vary
depending on the presence of incumbent radar. We explore
the adoption of machine learning approach to tackle radar
signal detection. This approach involves training a supervised
machine learning model using NIST dataset [15] of waveforms
that accurately represent the signals encountered within the
CBRS band.
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Fig. 3: Block diagram of radar sensing over Riemannian
manifold.

Considering (1), we can see that the problem is linked to
a two-class classification model where we try to detect the
presence of radar utilizing the sample covariance matrices of
the received signals. Therefore, we tackle the challenge of
identifying incumbent radar signals by framing it as a binary
classification problem. In supervised learning, the classifier
relies on having accurate labels indicating the presence or
absence of radar signals.

The SVM classifier is designed to create an optimal hyper-
plane for separating two classes. Since in our model, the classes
are not linearly separable, we employ the kernel method, which
transforms the feature space into a higher-dimensional context.
Commonly utilized kernels include linear, polynomial, radial
basis function (RBF), and sigmoid [17]. In this work, we
assess the detection performance by applying various kernel
functions. We analyze the classification accuracy first to select
the best kernel function. Then we use the best kernel function
for the probability output across a range of SNR values.

Algorithm 1 formalizes the training and testing process of
SVM classifier.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the dataset first, followed by an
explanation of the steps and procedures used for training the
models and eventually evaluating the performance. These radar
waveforms serve as representatives of the signals within the
CBRS band. The dataset includes radar signals randomly dis-
tributed within a fixed time frame and also the parameters are
randomly chosen for each pulse modulation type, intensifying
the complexity of the detection task and closely simulating
real-world conditions.



Algorithm 1: Training and testing SVM classifier for
coexistence scenario over Riemannian manifold
Input: M, total number of base station antennas; 7',
total number of time slots per antenna; W, total
number of waveforms; Wi, training set size; C',,
SPD covariance matrix storage
Output: Mt ,, confusion matrix.
for we {1,...,W} do
1: Take absolute values and aggregate time stamps
per antenna having dimension M x 1
2: Calculate covariance matrix C,, of dimension
M x M

end
3: Prepare features from covariance matrices
4: Extract labels corresponding to waveforms
5: Standardize features by z-scoring
6: Split dataset into training and testing subsets
7: Define kernel options
K + {‘linear’, ‘polynomial’, ‘rbf’, ‘sigmoid’}
for k € K do
8: Train SVM model SV M, with kernel k
9: Predict test labels with SV M,
10: Compute confusion matrix Mcont,k
end
11: Compute Pr4 and Pp.

A. NIST Dataset

To build our model, we rely on synthetically generated
NIST dataset [15]. The dataset offers numerous waveforms,
each lasting 80 milliseconds, presented as pairs of I and
Q values. We use 800,000 time stamps for each of these
waveforms. Also, these waveforms are associated with a 10
MHz band. Approximately half of these waveforms solely
represent receiver noise without any radar signal, while the
remaining waveforms include radar signals. Based on their
characteristics, five distinct radar types are categorized in the
dataset determined by their pulse modulation and parameter
ranges. These categories are referred to as waveform bins.
Each bin encompasses a specific range of parameters that
represent various radar designs within the 3.5 GHz CBRS
band, both existing and anticipated in the future. Among the
waveforms that contain radar signals, each may have at most
one radar signal, randomly selected from the five radar types.
In addition, the radar signals are placed at randomly chosen
times within the fixed duration which makes the detection
problem more challenging and closer to real-world scenarios.
Furthermore, the Signal-to-Noise Ratio (SNR) of these radar
signals is randomly chosen from the range of [10, 12, 14, 16,
18, 20] dB. In both the training and testing phases, we apply Z-
score normalization, a method that standardizes feature values

to possess an average of 0 and a standard deviation of 1. This
process involves subtracting the feature’s mean from each value
and subsequently dividing by the standard deviation.

B. Classifier Training

A total of 4000 waveforms are employed for training,
evenly divided into two categories: one half comprises radar
signals, while the other consists solely of noise. For the
purpose of training our model with each considered SNR value,
we select 200 waveforms, ensuring an equal distribution of
radar and noise-only signals. To prevent any potential bias
stemming from data order, we randomize the sequence of these
waveforms. Subsequently, we utilize 50% of these randomized
waveform samples for the training process.

C. Evaluating Detection Performance

We use the trained SVM model to test rest of the 50%
waveform samples for different kernel types. We first check the
overall classification accuracy of the model combined across
all SNR values and all radar types. Then we verify the radar
detection accuracy and false alarm rate individually against the
SVM kernel which has the best classification accuracy.

1) Classification Accuracy: This accuracy metric reflects
the overall ability of the model to correctly classify instances
as either radar or non-radar. Classification accuracy is the pro-
portion of true results (both true positives and true negatives)
among the total number of cases examined. Following is the
list of different performance measuring terms:

o True positive (TP): Radar signals correctly identified as
radar.

o True negative (TN): Non-radar signals correctly identified
as non-radar.

« False positive (FP): Non-radar signals incorrectly identi-
fied as radar.

« False negative (FN): Radar signals incorrectly identified
as non-radar.

We calculate the classification accuracy (CA) as

B TP+ TN
 TP+TN+FP+FN
Table I represents the classification accuracy of different
SVM kernel functions. Although, sigmoid function give a good
classification accuracy of 86.54%, RBF kernel has the best
classification accuracy than rest of the functions with 87%

CA

@)

accuracy. This performance metric measures how often the

classifier is correct. ) .
2) Detection under various SNR: In Figure 4, we present

the detection rate and false positive rate across various SNR
values. The true positive rate, or detection rate, is represented
on the left y-axis, while the false positive rate, or probability of
false alarm, is depicted on the right y-axis. Since, RBF kernel



TABLE I: Classification Accuracy of SVM Kernels

Kernel Type Classification Accuracy (%)
Linear 83.89
Polynomial 83.06
Sigmoid 86.54
RBF 87.00

Detection Rate
False Positive Rate

=——©— Detection Rate
0.1} = False Positive Rate

10 12 14 16 18 20
SNR (dB)

Fig. 4: SNR versus detection rate and false positive rate for
SVM with Gaussian (RBF) kernel

TABLE II: Performance metrics of SVM with RBF kernel

SNR Recall Precision F1-score
10 0.79 0.62 0.69
12 0.84 0.73 0.78
14 0.85 0.91 0.88
16 0.85 0.95 0.90
18 0.91 0.95 0.93
20 0.93 1 0.96

showcase best classification accuracy, we evaluate our data
using RBF kernel. Notably, RBF kernel achieves a detection
accuracy of over 90% and the lowest false positive rate up to
an SNR of 14 dB. For the case of spectrum sharing, false
negative rate is also a vital parameter as it determines the
instances when the model incorrectly identifies radar signals
as non-radar signal. RBF kernel maintains less than 9% false
negative rate up to 14 dB SNR in our proposed model. Given
the complexity of the dataset, achieving such a high level of
accuracy is not assured by alternative methods of a similar
kind.

Performance metrics like recall, precision, and Fl-score are
crucial for evaluating the performance of any classification
model. The recall, precision, and Fl-score can be expressed
as follows

TP
Recall = m (3)
TP
Precision = —— 4)

TP+ FP

TABLE III: Confusion Matrices for SVM with RBF kernel

Predicted
Positive | Negative
Actual Positive 44.00% | 12.33%
(TP) (FN)
Actual Negative 1.67% 36.00%
(FP) (TN)

a) SNR range in [10, 14] dB

Predicted
Positive | Negative
Actual Positive 52.94% | 1.38%
(TP) (FN)
Actual Negative 4.84% | 40.83%
(FP) (TN)

b) SNR range in [16, 20] dB

2 X Precision x Recall
F1-S = 5
core Precision + Recall )

High recall value indicates that the model is good at iden-
tifying all actual positive cases which also means it hardly
misses the positive cases (i.e., a low number of false negatives),
whereas high precision means a low false positive rate, and
a high F1 score indicates a balance between precision and
recall, signifying a model that performs well both in correctly
identifying positive instances and in minimizing false positives.
The results illustrated in Table II show the recall, precision, and
F1-score (weighted average of the precision and recall) for our
model of SVM classifier with RBF kernel. It is seen that the
SVM classifier with RBF kernel function maintains a precision
of above 0.90 up to 14 dB SNR and then it starts to decrease
with decreasing SNR.

Finally, Table III presents a comparison of accuracy results
between the testing dataset with higher SNR (SNR range in
[16, 20] dB) and the lower SNR (SNR range in [10, 14] dB)
when employing the RBF kernel. With a decrease in the SNR
range, we observe a decline in overall accuracy from 93.77%
to 80% and an increase in overall false prediction from 6.22%
to 20%.

VI. CONCLUSION

In this paper, we present a novel coexistence scenario
modeled over Riemannian manifold. Such modeling includes
reception of waveforms by each of the antennas and utilization
of their covariance matrices to ensure feature extraction in
simplified way from a dataset which is relatively challenging
and close to the real-world scenario. Our main objective is to
detect radar signals at the base station to employ on-demand
spectrum access strategies. In the decentralized mode, this



process will enable the base station to decide whether to use
a shared band like CBRS with radars or not. As a supervised
machine learning technique, we use support vector machine
(SVM) with different kernel functions to serve as the classifier
between two classes of consideration. Results verify that SVM
with RBF kernel maintains more than 90% radar detection
accuracy for SNR value up to 14 dB along with comparatively
lower false alarm rate. Furthermore, we evaluate other essential
performance metrics like recall, precision, and F1-score for the
RBF kernel. These metrics also verify the robustness of the
model.
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