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Abstract—Cybersecurity concerns have arisen due to 

extensive information exchange among networked smart grid 

devices which also employ seamless firmware update. An 

outstanding issue is the presence of malware-injected malicious 

devices at the grid edge which can cause severe disturbances to 

grid operations and propagate malware on the power grid. This 

paper proposes a cloud-based, device-specific malware file 

detection system for smart grid devices. In the proposed system, 

a quantum-convolutional neural network (QCNN) with a deep 

transfer learning (DTL) is designed and implemented in a cloud 

platform to detect malware files targeting various smart grid 

devices. The proposed QCNN algorithm incorporates quantum 

circuits to extract more features from the malware image files 

than the filter in conventional CNNs and the DTL method to 

improve detection accuracy for different types of devices (e.g., 

processor architecture and operating systems). The proposed 

algorithm is implemented in the IBM Watson Studio cloud 

platform that utilizes IBM Quantum processor. The 

experimental results validate that the proposed malware file 

detection method significantly improves the malware file 

detection rates compared to the conventional CNN-based 

method. 
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I. INTRODUCTION 

The electric power grid has been transitioning into a smart 
grid with advanced networks and computational systems to 
provide enhancements for core grid needs such as situational 
awareness, optimal and resilient operations, and maintenance. 
Furthermore, newly developed smart grid devices (e.g., smart 
meters [1] and inverters [2]), software-defined networks [3], 
and microgrids [4] that update software to adapt to new 
workloads and demands enable solving grid problems at grid 
edge (i.e., software-defined smart grid [5]). However, 
cybersecurity concerns arise due to extensive information 
exchange among the networked devices, which may also 
employ seamless firmware update functions. Therefore, the 
attack surface of the smart power grid has been significantly 
expanded [6], [7].  

An outstanding threat is sophisticated attackers who keep 
trying to attack the main control center using malware (e.g., 
Stuxnet [8], Ukraine’s power grid attacks [9], SolarWinds 
attack [10], and ransomware attack on Colonial Pipeline [11]). 
Recently, adversaries to target networked embedded systems 
(e.g., Conti ransomware attacked wind turbines [12]). It is 
anticipated that malware-injected malicious devices at the grid 
edge can cause severe disturbances to grid operations and 

propagate malware on the power grid [13], which has been 
less studied.  

Recently, researchers have begun to explore the malware 
security of smart grid devices using machine learning (ML). 
Malicious smart inverter controller firmware modifications 
could be detected by machine learning (ML) algorithms that 
are trained and validated by data acquired from custom-built 
hardware performance counters (HPCs) using assembly 
firmware files [14]. However, a device-specific disassembler 
is necessary. The authors proposed a convolutional neural 
network (CNN)-based ransomware detection using 2-D 
grayscale image files converted from binary files without 
using a disassembler [15]. To detect smart inverter-specified 
malware types, the authors proposed a deep transfer learning 
(DTL)-based CNN method as a host-based malware file 
detection solution [16]. To find more malware detection 
methods, interest readers may read a survey paper [17].  

Meanwhile, the advent of quantum computers has led to 
develop quantum machine learnings (QMLs) which integrates 
quantum algorithms into classical ML models to improve the 
performance of ML models or address computing power 
issues, especially when training the convention deep learning 
models [18]. In [19], a quantum CNN (QCNN) was developed 
to classify image files. A series of quanvolutional layers 
consisting of quantum circuits in a gate model-based quantum 
computer was used to extract hidden features from the images.  

This paper is an extended work of [16] to develop a cloud-

based, device-specific malware file detection system utilizing 

QCNN and DTL techniques for smart grid devices. The 

proposed Q-CNN algorithm utilizes quantum circuits to 

extract more features from the malware image files than the 

filter used in the CNN [16]. The proposed algorithm is 

validated in the IBM Watson Studio cloud platform that 

utilizes an IBM-Q quantum processor. The experimental 

results show that the proposed method significantly improves 

the detection accuracy compared to the conventional CNN 

model. 

II. RELATED WORK: SMART GRID DEVICE MALWARE 

THREAT 

As a case study on malware file detection for smart grid 
devices, this paper focuses on malware attacks on a smart 
inverter.  Fig. 1 shows a commercial smart inverter [20]. 
Specifically, Network and Application Layer Board (L1) 
includes: 1) a microprocessor unit (MPU) with ARM 
architecture that has relatively high computational power with 
ROM bootloader and operates smart inverter applications with 
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Embedded Linux OS; 2) an SPI flash memory that stores 
bootloaders (e.g., UBoot) and a root file system; and 3) 
additional peripheral network components and interfaces such 
as local area network (LAN) ports, a Wi-Fi module, a USB, a 
serial communication interface (SCI) module, and a JTAG 
debug port. L1 is similar to a typical IoT edge devices (i.e., 
smart grid devices incorporating the network layer) enabling 
direct connection to external servers in a secure tunnel with 
TLS 1.2/1.3 via internet. L1 Linux-based malware files can be 
loaded to the L1 using several attack vectors (e.g., remote 
firmware update and physical reverse engineering).  

However, no specific malware security methods were 
found beyond the firmware and booting security in the smart 
inverter. The local factory reset could be used if remote 
patching was disabled by malware. However, a long recovery 
time is anticipated due to the manual recovery process by 
physical access. Besides, stolen confidential data from the 
smart inverter will bring chances for the next ransomware 
attacks.  

In a worst case, a compromised smart inverter or smart 
grid device by worm might propagate to compromise other 
connected smart grid devices and the utility control center 
through the network. The worm-infected utility control center 
and devices may spread worms to the other power grid 
stakeholders. If the widespread of the worm attack is 

successful, there will be severe damages of the power grid and 
the longest recovery time is anticipated since it is unclear how 
many devices and systems are infected by worms. Therefore, 
it is necessary to have a device-specific malware file detection 
system for the smart grid devices, which can proactively 
detect the malware files during firmware update and reactively 
detect malware files from the suspicious smart grid devices.   

III. PROPOSED QCNN-BASED ONLINE MALWARE FILE 

DETECTION 

Fig. 2 shows the proposed cloud-based malware file 
detection pipeline using QCNN with DTL. Once the target file 
is transferred to the cloud system and then converted into the 
images using data pre-processing techniques, each datapoint 
is first passed through a quantum encoding layer to be 
compatible with the quantum circuit. Quantum Convolution is 
performed to generate final datapoints after they have been 
processed by the quantum circuits in the quantum processor. 
Lastly, they are passed into a fully connected CNN model (i.e., 
pretrained/basis model) which contains the feature vector 
layer of the DTL and several dense layers for optimization and 
normalization. A device specific QCNN model is developed 
by the retraining the pretrained CNN model (trained by 
general Linux-based malware and benign files) through the 
DTL technique with the device specific firmware files. The 
proposed malware file detection system can be used when the 
smart grid devices are necessary to update firmware as well as 
to conduct online malware forensics.  

A. Device-Specfic Data Collection and Preprocessing 

Benign firmware files can be collected from the Linux file 
system stored in Serial Peripheral Interface (SPI) flash 
memory on a target commercial smart inverter [20] and 
firmware files available from vendors. After a serial 
connection between the smart inverter and a reverse 
engineering PC, target firmware files were extracted by 
exploiting a dump command in flashrom open-source tool. 
Binary manipulation methods [21] are used to generate 
variants of Conti ransomware file. 

Fig. 3 depicts binary files (a benign firmware file and a 
malware file) installed in the smart inverter and corresponding 
binary image files. A static binary firmware file is mapped to 
an array of integers between 0 and 255. Hence each binary is 

 
 

Fig. 2. Proposed cloud-based malware file detection pipeline using IBM Watson and IBM-Q. 

 
Fig. 1. A commercial smart inverter consisting of three layers: Network and 

Application Layer (L1), Controller Layer (L2), and Power Electronics 
Hardware Layer (L3). 



converted into a one-dimensional array [0; 255]. Then the 
array is normalized to [0, 1] by dividing by 255. The 
normalized array is then reshaped into a two-dimensional 
array. The height of the file is the total length of the one-
dimensional array divided by the width. Interest readers may 
refer to [15] for more detail of the data preprocessing.  

B. QCNN Artchiecture  

The proposed QCNN architecture involves encoding pre-
processed image data and performing controlled rotations on 
each datapoint to extract hidden features. Fig. 4 shows a 
QCNN architecture using Resnet50V2 pretrained CNN model 
used for malware image file detection. This ensures maximum 
feature retention and prevents loss of the image file data. The 
encoding of the classical input values into quantum states is 
done using the RY gate, which rotates the qubit state around 
the Y axis. We construct a Sobel-inspired filter using quantum 
circuits. A series of controlled-rotation gates is used to 
perform the convolution operation on the quantum state. 
Using the proposed filter (i.e., Q-filter), better extracted 
features can be identified rather than a ‘random layer’ of 
quantum circuit based on the quanvolutional filter [19]. An 
example of the Q-filter algorithm is shown in Table I, which 
converts the image form (128, 128, 3) to (14, 14, 3) when the 
number of qubits of the quantum hardware is limited to less 
than seven qubits. To implement a Q-filter in a quantum 
circuit level, a series of CROT gates are used to perform the 
convolution operation. The controlled-rotation gates can be 
implemented using the ‘qml.CRot’ PennyLane’s quantum 

gate as shown in Fig. 4. Two CROT gates are coupled together 
to process each qubit and set the ‘alpha’ and ‘phi’ constants to 
a value of pi/4. This essentially means that the gates will 

perform a controlled rotation on the target qubit by an angle 
of pi/4 radians around the x and z axes, respectively. 

Once the features are mapped, additional Flatten and 
Dropout layers are added to normalize the datapoints. Finally, 
the carefully crafted dense layers enable to achieve supremacy 
when compared to traditional CNN methods for malware 
image file detection.  

C. Retraining Q-CNN using DTL  

DTL freezes a portion of the fully connected layers, and 
the last few layers (not frozen) are retrained on the new image 
datasets. In this paper, the new feature extraction layer is set 
to be non-trainable. The remaining layers are created as a 
sequential Keras model with batch normalization, dense layers 
with dropout and activation functions, and a final output layer 
with the 'softmax' activation function. we carefully chose 
hyper-parameters including loss_functions, optimizers and 
learning_rate. Additionally, optimization involves the use of 
Dropout, kernel_initializer and kernel_regulizer to prevent 
overfitting when working with less data counts. Our last effort 
to reduce overfitting was to use a Leaky_Relu activation 
function on the last few dense layers and setting the output 
activation to ‘softmax’. 

 
 

Fig. 4. QCNN architecture using Resnet50V2 pretrained model. 

. 

 
Fig. 3. Binary files and corresponding image files extracted from the smart 

inverter. 

Table I.   

Q-Filter algorithm using Quantum Gates 
Input: i, j:Int;  phi:Intarray 

Output: phi_updated:Intarray 

1: var                  phi, i, j:Int; phi_updated:Inarray; 

2:  

3: function Circuit(phi:Intarray): Intarray; 

4:                    for j in range(4) 

5:       qml.RY(pi*phi[j], wires = j)  /*encoding data*/ 

6: 

/* Quantum Circuit Using Pennylane*/ 

        qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,      
wires=[0, 1]) /*operating from q[0] – q[1]*/ 

7: 
       qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,      

      wires=[1, 2]) /*operating from q[1] – q[2]*/ 

8: 
       qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,      

      wires=[2, 3])  /*operating from q[2] – q[3]*/ 

9: 
return phi_updated  
/* circuit params after quantum evaluation*/ 

 

Benign

Malware

Figure 2: Processing Data of each class



IV. VALIDATION 

A. Experimental Setup 

Fig. 5 shows the experimental setup to validate the 
proposed method. The proposed QCNNs with DTL were 
designed and trained by using the Microsoft Visual Studio 
Code IDE and Pennylane library [18] (i.e., a python library for 
QML) in a laptop (Apple M1 SoC, 8 core CPU, 7 core GPU, 
8 GBs of RAM). A total of 4 Qubits are used to design the Q-
filter and three CNN models (ResNet50V2, Densenet121, and 
EfficientnetV2) typically used for binary malware image file 
detection. A total of 1,070 benign programs and 1,130 
malware files applicable for an ARM-based architecture and 
embedded Linux OS are used for training (80%) and 
validation (20%) using the DTL technique to develop device-
specific QCNN models. After that, the deployed models are 
implemented in IBM Watson cloud platform with 2 core 
vCPU and 8 GB RAM environment and interfacing the IBM 
Q quantum processor to perform the online malware file 
detection using 93 additional testing files consisting of 85 
benign and 8 malware files. A raspberry pie (R-Pi) is used as 
an interface to the smart inverter through the JTAG port and it 
sends firmware files to the Laptop and the IBM Waston via 
internet. 

B. Results 

Fig. 6 shows the comparison of training and validation 
accuracy curves of the conventional CNN-based malware file 
detection model (ResNet50V2 with DTL) and the proposed 
QCNN with DTL based on ResNet50V2. The conventional 
CNN model requires over 100 epochs to converge in the 
training stage, while about 40 epochs for training the QCNN 
model. Therefore, it is evident that using the QCNN using the 
Q-filter layer significantly improve the detection accuracy.  

Table II compares the performance of the four CNN 
models including the conventional CNN with DTL model and 
three variants of QCNN with DTL models using the 
evaluation metrics including Training stage metrics (Training 
time & Validation Accuracy) using the laptop and deployment 
stage metrics (Recall, Precision, and F1 Score) using the IBM 
Watson cloud platform. Overall, QCNN models outperform 
the conventional CNN model in terms of training time and 
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Fig. 6.  Accuracy curves of training and validation: (a) classical ResNe50V2 
and (b) Q-CNN ResNet50V2. 

 
Fig. 5. Experimental setup. 



accuracy. Overall, QCNN models outperform the classical 
CNN models due to the enhanced feature extraction by the Q-
filter, Among QCNN models, the QCNN coupled with 
ResNet50V2 achieves the best malware detection rates while 
requiring the shortest training. In the online deployment 
experiments using the IBM Watson platform, the proposed 
QCNN with ResNet50V2 successfully classifies all 8 malware 
files, with only one misclassification of a benign file as 
malware. Detection accuracy improvement will be possible by 
adding more qubits. 

V. CONCLUSION 

This paper explored the potential threat of malware attacks 
targeting a commercial smart inverter and proposed a cloud-
based, device-specific online malware file detection method 
using a cloud-based quantum computing service for smart grid 
devices. The proposed method utilizes QCNN incorporating 
quantum circuits with the DTL technique to build a device 
specific malware file detection. The experimental results show 
that the proposed method outperforms the classical CNN with 
DTL methods with higher accuracy with minimum time and 
effort. The proposed QCNN malware file detection system 
can be applied to screen new firmware to be installed and to 
conduct online malware forensics for suspicious smart grid 
devices.  Future works include: 1) investigating more practical 
malware attack scenarios targeting smart grid devices, 2) 
studying on malware variant and obfuscation technique to 
generate potential malware variants, and 3) validating the 
proposed concept for other smart grid devices. 
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Table II  

Performance Comparison of CNN-based Malware File Detection Models. 

CNN-based Models 
Training Evaluation Online Deployment Evaluation 

Training Time (s) Accuracy (%) Recall Precision F1 Score 

Classical ResNet50V2 1484 75.40 0.829 0.867 0.848 

Classical VGG-16 [16] 2256 91.31 0.925 0.956 0.942 

Q-CNN ResNet50V2 512 97.78 0.988 1 0.994 

Q-CNN DenseNet121 633 95.03 1 0.977 0.951 

Q-CNN EfficientNetV2 569 92.31 1 0.966 0.932 

 


