

978-1-6654-7999-8/22/$31.00 ©2022 IEEE

Quantum Convolutional Neural Network-based

Online Malware File Detection for Smart Grid

Devices

Alve Rahman Akash, BoHyun Ahn, Alycia Jenkins, Ameya Khot, Lauren Silva, Hugo Tavares-Vengas, and

Taesic Kim*

2Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX, 78363 USA

{alve.akash; bohyun.ahn; alycia.jenkins; ameya.khot; lauren.silva; hugo.tavares-venegas}@students.tamuk.edu,

taesic.kim@tamuk.edu

Abstract—Cybersecurity concerns have arisen due to

extensive information exchange among networked smart grid

devices which also employ seamless firmware update. An

outstanding issue is the presence of malware-injected malicious

devices at the grid edge which can cause severe disturbances to

grid operations and propagate malware on the power grid. This

paper proposes a cloud-based, device-specific malware file

detection system for smart grid devices. In the proposed system,

a quantum-convolutional neural network (QCNN) with a deep

transfer learning (DTL) is designed and implemented in a cloud

platform to detect malware files targeting various smart grid

devices. The proposed QCNN algorithm incorporates quantum

circuits to extract more features from the malware image files

than the filter in conventional CNNs and the DTL method to

improve detection accuracy for different types of devices (e.g.,

processor architecture and operating systems). The proposed

algorithm is implemented in the IBM Watson Studio cloud

platform that utilizes IBM Quantum processor. The

experimental results validate that the proposed malware file

detection method significantly improves the malware file

detection rates compared to the conventional CNN-based

method.

Keywords—cybersecurity, deep transfer learning,

cybersecurity, malware detection, quantum convolutional neural

network, smart grid devices

I. INTRODUCTION

The electric power grid has been transitioning into a smart
grid with advanced networks and computational systems to
provide enhancements for core grid needs such as situational
awareness, optimal and resilient operations, and maintenance.
Furthermore, newly developed smart grid devices (e.g., smart
meters [1] and inverters [2]), software-defined networks [3],
and microgrids [4] that update software to adapt to new
workloads and demands enable solving grid problems at grid
edge (i.e., software-defined smart grid [5]). However,
cybersecurity concerns arise due to extensive information
exchange among the networked devices, which may also
employ seamless firmware update functions. Therefore, the
attack surface of the smart power grid has been significantly
expanded [6], [7].

An outstanding threat is sophisticated attackers who keep
trying to attack the main control center using malware (e.g.,
Stuxnet [8], Ukraine’s power grid attacks [9], SolarWinds
attack [10], and ransomware attack on Colonial Pipeline [11]).
Recently, adversaries to target networked embedded systems
(e.g., Conti ransomware attacked wind turbines [12]). It is
anticipated that malware-injected malicious devices at the grid
edge can cause severe disturbances to grid operations and

propagate malware on the power grid [13], which has been
less studied.

Recently, researchers have begun to explore the malware
security of smart grid devices using machine learning (ML).
Malicious smart inverter controller firmware modifications
could be detected by machine learning (ML) algorithms that
are trained and validated by data acquired from custom-built
hardware performance counters (HPCs) using assembly
firmware files [14]. However, a device-specific disassembler
is necessary. The authors proposed a convolutional neural
network (CNN)-based ransomware detection using 2-D
grayscale image files converted from binary files without
using a disassembler [15]. To detect smart inverter-specified
malware types, the authors proposed a deep transfer learning
(DTL)-based CNN method as a host-based malware file
detection solution [16]. To find more malware detection
methods, interest readers may read a survey paper [17].

Meanwhile, the advent of quantum computers has led to
develop quantum machine learnings (QMLs) which integrates
quantum algorithms into classical ML models to improve the
performance of ML models or address computing power
issues, especially when training the convention deep learning
models [18]. In [19], a quantum CNN (QCNN) was developed
to classify image files. A series of quanvolutional layers
consisting of quantum circuits in a gate model-based quantum
computer was used to extract hidden features from the images.

This paper is an extended work of [16] to develop a cloud-

based, device-specific malware file detection system utilizing

QCNN and DTL techniques for smart grid devices. The

proposed Q-CNN algorithm utilizes quantum circuits to

extract more features from the malware image files than the

filter used in the CNN [16]. The proposed algorithm is

validated in the IBM Watson Studio cloud platform that

utilizes an IBM-Q quantum processor. The experimental

results show that the proposed method significantly improves

the detection accuracy compared to the conventional CNN

model.

II. RELATED WORK: SMART GRID DEVICE MALWARE

THREAT

As a case study on malware file detection for smart grid
devices, this paper focuses on malware attacks on a smart
inverter. Fig. 1 shows a commercial smart inverter [20].
Specifically, Network and Application Layer Board (L1)
includes: 1) a microprocessor unit (MPU) with ARM
architecture that has relatively high computational power with
ROM bootloader and operates smart inverter applications with

This work was supported in part by the National Science Foundation

(NSF) under award No. CNS-2219733 and No. CNS-2131163.

Embedded Linux OS; 2) an SPI flash memory that stores
bootloaders (e.g., UBoot) and a root file system; and 3)
additional peripheral network components and interfaces such
as local area network (LAN) ports, a Wi-Fi module, a USB, a
serial communication interface (SCI) module, and a JTAG
debug port. L1 is similar to a typical IoT edge devices (i.e.,
smart grid devices incorporating the network layer) enabling
direct connection to external servers in a secure tunnel with
TLS 1.2/1.3 via internet. L1 Linux-based malware files can be
loaded to the L1 using several attack vectors (e.g., remote
firmware update and physical reverse engineering).

However, no specific malware security methods were
found beyond the firmware and booting security in the smart
inverter. The local factory reset could be used if remote
patching was disabled by malware. However, a long recovery
time is anticipated due to the manual recovery process by
physical access. Besides, stolen confidential data from the
smart inverter will bring chances for the next ransomware
attacks.

In a worst case, a compromised smart inverter or smart
grid device by worm might propagate to compromise other
connected smart grid devices and the utility control center
through the network. The worm-infected utility control center
and devices may spread worms to the other power grid
stakeholders. If the widespread of the worm attack is

successful, there will be severe damages of the power grid and
the longest recovery time is anticipated since it is unclear how
many devices and systems are infected by worms. Therefore,
it is necessary to have a device-specific malware file detection
system for the smart grid devices, which can proactively
detect the malware files during firmware update and reactively
detect malware files from the suspicious smart grid devices.

III. PROPOSED QCNN-BASED ONLINE MALWARE FILE

DETECTION

Fig. 2 shows the proposed cloud-based malware file
detection pipeline using QCNN with DTL. Once the target file
is transferred to the cloud system and then converted into the
images using data pre-processing techniques, each datapoint
is first passed through a quantum encoding layer to be
compatible with the quantum circuit. Quantum Convolution is
performed to generate final datapoints after they have been
processed by the quantum circuits in the quantum processor.
Lastly, they are passed into a fully connected CNN model (i.e.,
pretrained/basis model) which contains the feature vector
layer of the DTL and several dense layers for optimization and
normalization. A device specific QCNN model is developed
by the retraining the pretrained CNN model (trained by
general Linux-based malware and benign files) through the
DTL technique with the device specific firmware files. The
proposed malware file detection system can be used when the
smart grid devices are necessary to update firmware as well as
to conduct online malware forensics.

A. Device-Specfic Data Collection and Preprocessing

Benign firmware files can be collected from the Linux file
system stored in Serial Peripheral Interface (SPI) flash
memory on a target commercial smart inverter [20] and
firmware files available from vendors. After a serial
connection between the smart inverter and a reverse
engineering PC, target firmware files were extracted by
exploiting a dump command in flashrom open-source tool.
Binary manipulation methods [21] are used to generate
variants of Conti ransomware file.

Fig. 3 depicts binary files (a benign firmware file and a
malware file) installed in the smart inverter and corresponding
binary image files. A static binary firmware file is mapped to
an array of integers between 0 and 255. Hence each binary is

Fig. 2. Proposed cloud-based malware file detection pipeline using IBM Watson and IBM-Q.

Fig. 1. A commercial smart inverter consisting of three layers: Network and

Application Layer (L1), Controller Layer (L2), and Power Electronics
Hardware Layer (L3).

converted into a one-dimensional array [0; 255]. Then the
array is normalized to [0, 1] by dividing by 255. The
normalized array is then reshaped into a two-dimensional
array. The height of the file is the total length of the one-
dimensional array divided by the width. Interest readers may
refer to [15] for more detail of the data preprocessing.

B. QCNN Artchiecture

The proposed QCNN architecture involves encoding pre-
processed image data and performing controlled rotations on
each datapoint to extract hidden features. Fig. 4 shows a
QCNN architecture using Resnet50V2 pretrained CNN model
used for malware image file detection. This ensures maximum
feature retention and prevents loss of the image file data. The
encoding of the classical input values into quantum states is
done using the RY gate, which rotates the qubit state around
the Y axis. We construct a Sobel-inspired filter using quantum
circuits. A series of controlled-rotation gates is used to
perform the convolution operation on the quantum state.
Using the proposed filter (i.e., Q-filter), better extracted
features can be identified rather than a ‘random layer’ of
quantum circuit based on the quanvolutional filter [19]. An
example of the Q-filter algorithm is shown in Table I, which
converts the image form (128, 128, 3) to (14, 14, 3) when the
number of qubits of the quantum hardware is limited to less
than seven qubits. To implement a Q-filter in a quantum
circuit level, a series of CROT gates are used to perform the
convolution operation. The controlled-rotation gates can be
implemented using the ‘qml.CRot’ PennyLane’s quantum

gate as shown in Fig. 4. Two CROT gates are coupled together
to process each qubit and set the ‘alpha’ and ‘phi’ constants to
a value of pi/4. This essentially means that the gates will

perform a controlled rotation on the target qubit by an angle
of pi/4 radians around the x and z axes, respectively.

Once the features are mapped, additional Flatten and
Dropout layers are added to normalize the datapoints. Finally,
the carefully crafted dense layers enable to achieve supremacy
when compared to traditional CNN methods for malware
image file detection.

C. Retraining Q-CNN using DTL

DTL freezes a portion of the fully connected layers, and
the last few layers (not frozen) are retrained on the new image
datasets. In this paper, the new feature extraction layer is set
to be non-trainable. The remaining layers are created as a
sequential Keras model with batch normalization, dense layers
with dropout and activation functions, and a final output layer
with the 'softmax' activation function. we carefully chose
hyper-parameters including loss_functions, optimizers and
learning_rate. Additionally, optimization involves the use of
Dropout, kernel_initializer and kernel_regulizer to prevent
overfitting when working with less data counts. Our last effort
to reduce overfitting was to use a Leaky_Relu activation
function on the last few dense layers and setting the output
activation to ‘softmax’.

Fig. 4. QCNN architecture using Resnet50V2 pretrained model.

.

Fig. 3. Binary files and corresponding image files extracted from the smart

inverter.

Table I.

Q-Filter algorithm using Quantum Gates
Input: i, j:Int; phi:Intarray

Output: phi_updated:Intarray

1: var phi, i, j:Int; phi_updated:Inarray;

2:

3: function Circuit(phi:Intarray): Intarray;

4: for j in range(4)

5: qml.RY(pi*phi[j], wires = j) /*encoding data*/

6:

/* Quantum Circuit Using Pennylane*/

 qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,
wires=[0, 1]) /*operating from q[0] – q[1]*/

7:
 qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,

 wires=[1, 2]) /*operating from q[1] – q[2]*/

8:
 qml.CRot(phi = pi/4, theta = 0, omega = np.pi/4,

 wires=[2, 3]) /*operating from q[2] – q[3]*/

9:
return phi_updated
/* circuit params after quantum evaluation*/

Benign

Malware

Figure 2: Processing Data of each class

IV. VALIDATION

A. Experimental Setup

Fig. 5 shows the experimental setup to validate the
proposed method. The proposed QCNNs with DTL were
designed and trained by using the Microsoft Visual Studio
Code IDE and Pennylane library [18] (i.e., a python library for
QML) in a laptop (Apple M1 SoC, 8 core CPU, 7 core GPU,
8 GBs of RAM). A total of 4 Qubits are used to design the Q-
filter and three CNN models (ResNet50V2, Densenet121, and
EfficientnetV2) typically used for binary malware image file
detection. A total of 1,070 benign programs and 1,130
malware files applicable for an ARM-based architecture and
embedded Linux OS are used for training (80%) and
validation (20%) using the DTL technique to develop device-
specific QCNN models. After that, the deployed models are
implemented in IBM Watson cloud platform with 2 core
vCPU and 8 GB RAM environment and interfacing the IBM
Q quantum processor to perform the online malware file
detection using 93 additional testing files consisting of 85
benign and 8 malware files. A raspberry pie (R-Pi) is used as
an interface to the smart inverter through the JTAG port and it
sends firmware files to the Laptop and the IBM Waston via
internet.

B. Results

Fig. 6 shows the comparison of training and validation
accuracy curves of the conventional CNN-based malware file
detection model (ResNet50V2 with DTL) and the proposed
QCNN with DTL based on ResNet50V2. The conventional
CNN model requires over 100 epochs to converge in the
training stage, while about 40 epochs for training the QCNN
model. Therefore, it is evident that using the QCNN using the
Q-filter layer significantly improve the detection accuracy.

Table II compares the performance of the four CNN
models including the conventional CNN with DTL model and
three variants of QCNN with DTL models using the
evaluation metrics including Training stage metrics (Training
time & Validation Accuracy) using the laptop and deployment
stage metrics (Recall, Precision, and F1 Score) using the IBM
Watson cloud platform. Overall, QCNN models outperform
the conventional CNN model in terms of training time and

(a)

(b)

Fig. 6. Accuracy curves of training and validation: (a) classical ResNe50V2
and (b) Q-CNN ResNet50V2.

Fig. 5. Experimental setup.

accuracy. Overall, QCNN models outperform the classical
CNN models due to the enhanced feature extraction by the Q-
filter, Among QCNN models, the QCNN coupled with
ResNet50V2 achieves the best malware detection rates while
requiring the shortest training. In the online deployment
experiments using the IBM Watson platform, the proposed
QCNN with ResNet50V2 successfully classifies all 8 malware
files, with only one misclassification of a benign file as
malware. Detection accuracy improvement will be possible by
adding more qubits.

V. CONCLUSION

This paper explored the potential threat of malware attacks
targeting a commercial smart inverter and proposed a cloud-
based, device-specific online malware file detection method
using a cloud-based quantum computing service for smart grid
devices. The proposed method utilizes QCNN incorporating
quantum circuits with the DTL technique to build a device
specific malware file detection. The experimental results show
that the proposed method outperforms the classical CNN with
DTL methods with higher accuracy with minimum time and
effort. The proposed QCNN malware file detection system
can be applied to screen new firmware to be installed and to
conduct online malware forensics for suspicious smart grid
devices. Future works include: 1) investigating more practical
malware attack scenarios targeting smart grid devices, 2)
studying on malware variant and obfuscation technique to
generate potential malware variants, and 3) validating the
proposed concept for other smart grid devices.

REFERENCES

[1] NVIDIA, “Software-defined smart grid meter.” [Online]. Available:
https://www.enterpriseai.news/2021/12/16/ nvidia-utilidata-partner-
on-software-defined-smart-grid-chip-development/

[2] Enphase, “Software-defined micro solar inverter.” [Online]. Available:
https://enphase.com/installers/microinverters

[3] M. Cokic and I. Seskar, “Software defined network management for
dynamic smart grid traffic,” Future Generation Computer Systems, vol.
96, pp. 270–282, Jul. 2019.

[4] M. Ndiaye, G. P. Hancke, A. B. Abu-Mahfouz, and H. Zhang,
“Software-defined power grids: A survey on opportunities and
taxonomy for microgrids,” IEEE Access, vol. 9, pp. 98 973–98 991,
Jul. 2021.

[5] P. T. Lee, “The software-defined power grid: How software and
sensors are bringing century-old grid technology into the modern age,”
IEEE Spectrum, vol. 5, no. 7, pp. 40–46, Jun. 2020.

[6] B. Li, R. Lu, G. Xiao, T. Li, and K.-K. R. Choo, “Detection of false
data injection attacks on smart grids: A resilience-enhanced scheme,”
IEEE Trans. Power Systems, vol. 37, no. 4, pp. 2679-2692, Jul. 2022.

[7] X. Wang, Y. Liu, and K. R. Choo, “Fault-tolerant multisubset
aggregation scheme for smart grid,” IEEE Trans. Ind. Informatics, vol.
17, no. 6, pp. 4065–4072, 2021.

[8] I. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber ware,”
Survival, vol. 53, no. 1, pp. 23–40, Jan. 2011.

[9] D. E. Whitehead, K. Owens, D. Gammel, and J. Smith, “Ukraine cyber-
induced outage: Analysis and practical mitigation strategies,” in Proc.
IEEE 2017 70th Annual Conference for Protective Relay Engineers,
2017, pp. 1–8.

[10] U.S. CISA, “Alert (aa20-352a).” [Online]. Available: https://us-
cert.cisa.gov/ncas/alerts/aa20-352a

[11] CNN, “Colonial pipeline ransomware recovered.” [Online]. Available:
https://www.cnn.com/2021/06/ 07/politics/colonial-pipeline-
ransomware-recovered/index.html

[12] Eclypsium, “Conti targets critical firmware,” Jun. 2, 2022. [Online].
Available: https://eclypsium.com/2022/06/02/conti-targets-critical-
firmware/

[13] T. Z. P. Eder-Neuhauser and J. Fabini, “Malware propagation in smart
grid networks: metrics, simulation and comparison of three malware
type,” J. Computer Virology and Hacking Techniques, vol. 15, pp.
109–125, 2019.

[14] A. P. Kuruvila, I. Zografopoulos, K. Basu, and C. Konstaninou,
“Hardware-assisted detection of firmware attack in inverter-based
cyberphysical microgrids,” Int. J. Electric Power & Energy Systems,
vol. 132, p. 107150, Nov. 2021.

[15] S. Alvee, B. Ahn, T. Kim, Y. Su, Y-W. Yoon, and M-H. Ryu,
“Ransomware attack modeling and artificial intelligence-based
ransomware detection for digital substations,” in Proc. 2021 6th IEEE
Workshop on Electronic Grid (eGrid), New Orleans, LA, Nov. 8-10,
2021, pp.1-5.

[16] S. Alvee, B. Ahn, S. Ahmad, K. Kim, T. Kim, and J. Zeng, “Device-
centric firmware malware detection for smart inverters using deep
transfer learning,” in Proc. 2022 IEEE Design Methodologies
Conferences, Bath U.K., Sep. 1-2, 2022, pp. 1-5.

[17] Ö. A. Aslan and R. Samet, “A comprehensive review on malware
detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, Jan. 2020.

[18] Y. Zhang and Q. Ni, “Recent advancecs in quantum machine learning,”
Quantum Engineering, vol. 2, no. 1, pp. 1-20, Mar. 2020.

[19] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
netowrks,” Nature Physics, vol. 15, no. 12, pp. 1273-1278, Aug. 2019.

[20] A. M. Jenkins, B. Ahn, A. Akash, and T. Kim, “Device-centric
ransomware detection using machine learning-based memory forensics
for smart inverters,” in Proc. Eighth Annual Industrial Control System
Security (ICSS) Workshop, Austin, TX, USA, Dec. 6, 2022, pp. 1-7.

[21] A. Abusnaina, et. al., “Systemically evaluating the robustness of ML-
based IoT malware detectors,” in Proc. 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks -
Supplemental Volume (DSN-S), Taipei, Taiwan, June 21- 24, 2021, pp.
3-4.

[22] A. Mari, “Quanvolutional neural networks — PennyLane,” [Online].
Available: https://pennylane.ai/qml/demos/tutorial_quanvolution.html

Table II

Performance Comparison of CNN-based Malware File Detection Models.

CNN-based Models
Training Evaluation Online Deployment Evaluation

Training Time (s) Accuracy (%) Recall Precision F1 Score

Classical ResNet50V2 1484 75.40 0.829 0.867 0.848

Classical VGG-16 [16] 2256 91.31 0.925 0.956 0.942

Q-CNN ResNet50V2 512 97.78 0.988 1 0.994

Q-CNN DenseNet121 633 95.03 1 0.977 0.951

Q-CNN EfficientNetV2 569 92.31 1 0.966 0.932

