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Abstract—Large-scale battery energy storage systems (BESS)
are helping transition the world towards sustainability with their
broad use, among others, in electrified transportation, power
grid, and renewables. However, optimal power management for
them is often computationally formidable. To overcome this
challenge, we develop a scalable approach in the paper. The
proposed approach partitions the constituting cells of a large-
scale BESS into clusters based on their state-of-charge (SoC),
temperature, and internal resistance. Each cluster is character-
ized by a representative model that approximately captures its
collective SoC and temperature dynamics, as well as its overall
power losses in charging/discharging. Based on the clusters, we
then formulate a problem of receding-horizon optimal power
control to minimize the power losses while promoting SoC and
temperature balancing. The cluster-based power optimization will
decide the power quota for each cluster, and then every cluster
will split the quota among the constituent cells. Since the number
of clusters is much fewer than the number of cells, the proposed
approach significantly reduces the computational costs, allowing
optimal power management to scale up to large-scale BESS.
Extensive simulations are performed to evaluate the proposed
approach. The obtained results highlight a significant computa-
tional overhead reduction by more than 60% for a small-scale
and 98% for a large-scale BESS compared to the conventional
cell-level optimization. Experimental validation based on a 20-
cell prototype further demonstrates its effectiveness and utility.

Index Terms—Advanced battery management, battery energy
storage systems, optimal control.

NOMENCLATURE

Variables
v Cell terminal voltage

u, ū Cell open-circuit voltage (OCV), cluster OCV

iL, īL Cell current, cluster current

Pb, P̄S Cell internal power, cluster internal power

Pl, P̄l Cell power loss, cluster power loss

P Cell output power

E, Ē Cell energy, lumped cluster energy

Pout BESS output power demand

L, L̄ Total power losses of the cells, total power

losses of the clusters
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ξ, ξ̄ Intra- and inter-cluster slack variables

z, z̄ Intra- and inter-cluster optimization variables

Parameters
n Number of battery cells

nS Number of cells within cluster S
k Number of clusters

m, m̄ Mass of a cell, lumped mass of a cluster

Q, Q̄ Cell capacity, lumped cluster capacity

q, q̄ SoC of a cell, lumped SoC of a cluster

qavg Average SoC

Δq, Δq̄ SoC imbalance tolerance among cells, SoC

imbalance tolerance among clusters

ΔE, ΔĒ Energy balancing threshold among cells, en-

ergy balancing threshold among clusters

α Intercept coefficient of the SoC/OCV line

β Slope coefficient of the SoC/OCV line

R, R̄ Cell internal resistance, lumped cluster internal

resistance

RC Resistance to capture the power losses of

DC/DC converters

Rconv, R̄conv Cell convective thermal resistance, cluster con-

vective thermal resistance

A Cell external surface.

h Conductive heat transfer coefficient between

the cell’s surface and the environment

Cth, C̄th Cell thermal capacitance, lumped cluster ther-

mal capacitance

T , T̄ Cell temperature, lumped cluster temperature

Tavg, T̄avg Average cells’ temperature, average clusters’

temperature

Tenv Environmental temperature

ΔT , ΔT̄ Temperature imbalance tolerance within cells

and clusters

λ, λ̄ Penalty weight for the intra- and inter-cluster

optimization

Δt Sampling time

H Optimization horizon

I. INTRODUCTION

BATTERY energy storage systems (BESS) have emerged

as an enabler for various applications ranging from

electric vehicles (passenger cars, semi trucks, etc.), electric

aircraft, smart grid, and renewable facilities [1–4]. Whether

small or large in size, BESS need power management strate-

gies to ensure their safe and proper operation, which provide

various functions including charging/discharging control, cell
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balancing, and power loss minimization. While some sim-

plistic approaches have gained wide use, there is a growing

demand for more sophisticated optimal power management to

maximize the performance and fully utilize the capabilities

of BESS [5, 6]. However, optimal power management faces

the challenge of high computational expenses, due to the use

of numerical optimization. The challenge is especially intense

for large-scale BESS comprising great numbers of cells. We

broadly define large-scale BESS as those that offer high energy

or power capacity and that comprise many constituent entities

like cells or modules, with examples including grid- and

vehicle-scale BESS. Optimal power management for them

will involve large numbers of decision variables as well as

complex high-dimensional optimization landscapes. Despite

an increasing body of study on optimal BESS power manage-

ment, only limited effort has been dedicated to overcoming

the computational bottleneck in optimization.

A. Literature Review
Early optimal power management strategies in the literature

mainly focused on cell balancing for BESS. The studies

in [7, 8] use linear programming to analyze and evaluate

the performance of different balancing circuit topologies for

battery packs. However, the balancing considers only the SoC

while neglecting some other important factors like temperature

and internal resistance, and its computation can be heavy for

large battery packs.
The use of power electronic converters in BESS circuit

structures has enabled cell-level bidirectional power control.

Leveraging this capability, the study in [9] pursues optimal

power management to achieve SoC/temperature balancing and

terminal voltage regulation. The work in [10] further aims

to minimize the total power losses of a BESS while making

the cells satisfy safety and balancing requirements. It further

convexifies the non-convex power optimization problem using

a technique in [11] for the benefit of computation. The idea of

convexified power optimization also finds success in a hybrid

BESS consisting of battery cells and supercapacitors [12] and

a reconfigurable BESS [13].
Looking back, the existing optimal power management

strategies rely on numerical optimization methods, and the

need for computational resources increases fast with the num-

ber of cells of the concerned BESS. The literature has explored

two methods to alleviate the computational burden, namely,

hierarchical control and distributed control. A hierarchical

model predictive control is proposed in [14] with different

time scales and model complexities. The framework considers

both charge and temperature imbalances while minimizing the

total power losses. The study in [15] attempts to decompose

an optimal power management task into separate voltage and

balancing control subtasks. These methods can reduce the

computation to a certain extent but still lack scalability for

large-scale BESS.
Distributed control represents another means to accelerate

large-scale BESS power management, which distributes com-

putation among different computing units for higher efficiency

[16, 17]. The work in [16] employs a dynamic average con-

sensus protocol to achieve SoC balancing for a reconfigurable

BESS. An average consensus protocol is similarly used in [18]

to balance the SoC of serially connected BESS. Despite their

fast computation, the average consensus-based power manage-

ment strategies only focus on cell balancing, mostly in terms

of SoC, without consideration of optimality in some metrics

such as balancing time and power loss. The study in [19]

proposes a distributed approach for cell balancing and power

loss minimization for large-scale BESS. However, it requires

the use of distributed computing units and communication

networks, thus increasing the complexity of implementation.

The notion of optimal power management extends to control

of distributed energy resources, which often appears as the

problem of optimal power dispatch among the resources. For

instance, the studies in [20–22] formulates different optimal

power management problems and solutions for shipboard

microgrid and all-electric ships. Optimal power management

also finds applications in the domain of hybrid electric vehicles

[23]. In these applications, the computational costs is also a

topic of concern and interest.

B. Statement of Contributions

Departing from the literature, this paper proposes clustering-

based optimization to achieve computationally efficient and

scalable optimal power management for large-scale BESS. The

key notion lies in grouping the cells of a BESS into clusters

based on their characteristics, then performing inter-cluster

power optimization, and finally running intra-cluster power

allocation for individual cells. Centering around the notion,

our main contribution are as follows. We develop a systematic

design of a clustering-based power management approach. The

approach, which is illustrated in Fig 1, includes the following

crucial elements.

• We leverage the k-means clustering method to partition

the cells into clusters according to their SoC, temperature,

and internal resistance. The cells within a cluster will

share similar characteristics while differing distinctly

from those in another cluster.

• We develop a representative electro-thermal model for

each cluster to capture the cluster’s aggregated dynamics

in SoC, temperature, and power loss in operation. Then,

using the cluster models, we formulate and solve an

optimal power management problem.

• Following the cluster-level optimization, we design three

power split schemes to determine the power to be as-

signed for the cells within each cluster.

The proposed approach is hierarchical—it breaks down a

large-scale optimal power management management problem

into two levels, inter-cluster power optimization and intra-

cluster power allocation. The subproblems at each level are

considerably smaller in size and simpler in structure to allow

fast computation, and the hierarchical design readily scales up

to large BESS. Meanwhile, the clustering based on the cells’

characteristics upholds the fidelity of the proposed approach

in solving the original problem, thus ensuring the overall

performance in power management.

We develop a 20-cell battery pack and conduct a series

of experiments, along with extensive simulations, to validate
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Fig. 1. The proposed clustering-based power management approach.

and assess the performance of the proposed approach. The

results demonstrate the effectiveness of the proposed optimal

power management approach in significantly reducing the

computation while maintaining good accuracy.

C. Organization

The rest of the paper is organized as follows. Section II

describes the circuit structure of the considered large-scale

BESS and the corresponding optimal power management prob-

lem. Section III presents the cell clustering approach, shows

how to develop a representative electro-thermal model for a

cluster, and implements an inter-cluster power optimization

problem for the clusters. We then derive three schemes to

handle cluster-to-cell power split. In Sections IV and V, the

simulation and experimental results demonstrate the effec-

tiveness of the proposed scalable optimal power management

approach. Finally, Section VI concludes the paper with final

remarks.

II. OVERVIEW OF OPTIMAL POWER MANAGEMENT

In this section, we first introduce the circuit structure of a

large-scale BESS, and then present the overarching control ob-

jectives for the large-scale BESS optimal power management.

A. Circuit Structure

Fig. 2 depicts the circuit structure of a large-scale BESS.

The BESS comprises n modules, each consisting of a cell and

a DC/DC converter. The modules are configured arbitrarily

in series, parallel, or a mix of both to meet the output

power, capacity, or voltage requirements. For the purpose of

illustration, modules 1 and 2 are connected in parallel, and

then connected serially with the other modules. The circuit

structure is taken from our earlier study in [13, 24], in which

the module connections are reconfigurable via power switches.

Here, we consider hardwired connections among the modules

so as to focus on the optimal power management design. Here,

we use synchronous DC/DC converters, but other types of

bidirectional DC/DC converter topologies are allowed in the

circuit structure. The DC/DC converter consists of an inductor,

a capacitor, and two power switches. They allow controlled

bidirectional power flow through cells in charging/discharging.

Because of the DC/DC converters, one can independently

regulate each cell’s charging/discharging power.

The cell-level power control capability of the circuit struc-

ture brings about several system-level advantages. First, this
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Fig. 2. The circuit structure of a large-scale BESS.

capability can be leveraged to promote the balanced use of

the cells in terms of their SoC and temperatures. Second,

unlike conventional structures, the circuit structure requires

no external power electronic devices to regulate its output

voltage—the embedded DC/DC converters can adjust the mod-

ules’ output voltages to supply the load adequately. Finally,

the circuit structure can accommodate heterogeneities among

the constituent cells, charging or discharging them based on

their individual conditions. In an extreme case, one can even

leverage it to construct a large-scale BESS using cells from

different manufacturers with different internal characteristics.

It is worth mentioning that the circuit structure can be extended

to modules or battery packs rather than cells. In this case, each

battery pack will be equipped with a DC/DC converter to allow

regulated charging and discharging.

Next, we define the control objectives in the optimal power

management of this BESS circuit structure to fully take
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advantage of its capability.

B. Control Objectives

Fig. 2 also illustrates how the circuit structure interacts with

the battery management system (BMS). The BMS comprises

two types of controllers. At the higher level, the optimal

power management block collects the real-time measurements

of the cells and computes the optimal power allocation among

them; at the lower level, the local controllers generate control

signals for the DC/DC converters to regulate the cells’ charg-

ing/discharging currents. This control architecture decouples

power management and local power control, and this paper

focuses only on the study of the former problem, with mature

technologies available for the latter.

As discussed above in Section II.A, the circuit structure of

the BESS allows cell-level power control, making it possible

to achieve various functions, such as cell balancing and power

loss minimization. To leverage this capability, we consider the

following optimal power management problem in the paper:

Problem 1. Find the reference values for the cells’ charg-
ing/discharging power to minimize the system-wide power
losses while ensuring the cells to comply with the physical,
safety, and balancing constraints and supplying the demanded
output power.

Problems of a similar kind have attracted various studies

[12–14] for different circuit structures. Existing studies gen-

erally adopt numerical optimization frameworks. Their com-

putational complexity depends on the number of optimization

variables, causing extremely heavy computational burdens for

large-scale BESS. To tackle the challenge, this paper proposes

a scalable optimal power management approach in the sequel.

III. THE PROPOSED SCALABLE OPTIMAL POWER

MANAGEMENT

This section presents the proposed scalable optimal power

management approach, elaborating its four main elements:

cell clustering, cluster model development, inter-cluster power

optimization, and intra-cluster power split. To begin with, we

partition the cells into clusters. We then introduce a represen-

tative electro-thermal model for the clusters. We formulate the

inter-cluster optimal power management. Finally, we propose

three schemes to split the power quota of clusters among their

constituent cells.

A. Clustering

Consider the BESS shown in Fig. 2 comprising n cells,

where n is a large number. As is common in practice, the cells

are heterogeneous in SoC, temperature, and internal resistance.

An important objective in power management is to overcome

the heterogeneity, or in other words, to balance the use of

the cells via optimizing the power allocation among them

based on their conditions. Running optimization over many

heterogeneous cells, however, is computationally expensive.

To treat this issue, we can group the cells into clusters. The

clusters are much fewer in number, and every cluster includes
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Fig. 3. Illustration of cell clustering for a large-scale BESS.

cells with similar characteristics. We are then able to deal with

cluster-level power optimization for computational benefits.

To this end, we leverage the k-means clustering method to

partition the n cells into k (k � n) clusters S1, ..., Sk [25].

This method is a favorable choice here because of its com-

putational efficiency and capability to handle large datasets,

even though alternative clustering techniques, e.g., density-

based spatial clustering, are also applicable [26]. For cell i, its

condition is characterized by the tuple xi = {qi, Ti, Ri} for

i = 1, 2, ..., n, where qi, Ti, and Ri are the SoC, temperature

and internal resistance, respectively. The clustering problem

can be translated into the following optimization problem:

min
rij ,cj

n∑
i=1

k∑
j=1

rij ‖xi − cj‖2 ,

s.t.

k∑
j=1

rij = 1 ∀i = 1, ..., n,

(1)

where cj is the centroid of cluster Sj , and rij ∈ {0, 1} with

rij = 0 if xi /∈ Sj and rij = 1 if xi ∈ Sj . The problem

in (1) is NP-hard, often defying closed-form solution. Many

heuristic algorithms have been proposed in the literature to

solve it. Here, we use the naive k-means algorithm because

of its effectiveness and efficiency. The algorithm starts with

an arbitrary set of centroids c1(0), ..., ck(0) and follows an

alternate two-step procedure [27]. First, xi for i = 1, 2, ..., n
are each assigned to its nearest centroid at the �-th iteration,

i.e.,

rik(�) =

{
1 if k = argminj ‖xi − cj(�)‖2
0 else

. (2)

Then, the centroids are refined and updated as follows:

cj(�+ 1) =

∑n
i=1 rij(�)xi∑n
i=1 rij(�)

. (3)

The k-means algorithm iterates these two steps until conver-

gence when the cluster assignments stop changing. Note that

the algorithm requires to pre-specify the number of clusters

k. Clearly, the more diverse the cells, the more clusters are

needed to effectively categorize them. There are some useful

techniques, e.g., elbow curve [28] or gap statistics [29], to
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Fig. 4. The cell-level electro-thermal model. (a) The electrical model of the
module j. (b) The thermal model of the cell j.

determine the optimal number of clusters, and gap statistics is

the choice in this paper.

Fig. 3 illustrates the clustering of a 400-cell BESS for k = 4.

The clusters are labeled in different colors, and the cells within

a cluster are closer to each other in terms of SoC, temperature,

and internal resistance. Next, we will develop a representative

model to capture the virtual collective dynamics of a cluster.

B. Electro-thermal Modeling

We first introduce a cell-level electro-thermal model and

then aggregate the cells to formulate a cluster-level model.

1) Electrical Modeling: The electrical model of module j
is shown in Fig. 4 (a). We use the Rint Model to describe

the electrical dynamics of cell j, which consists of an open-

circuit voltage (OCV) and a series internal resistor [30]. The

Rint model offers a simple yet accurate enough representation

of the cells. The model’s governing equations are as follows:

q̇j(t) = − 1

Qj
iLj (t), (4a)

vj(t) = uj(qj(t))−RjiLj
(t), (4b)

where Qj , uj , vj , and iLj
are the cell’s capacity, OCV,

terminal voltage, and charging/discharging current, respec-

tively. Following [13], this paper assumes a piecewise linear

approximation for the cell’s SoC/OCV relationship as follows:

uj(qj(t)) = αi
j(qj(t)) + βi

j(qj(t))qj(t), (5)

where αi
j and βi

j are the intercept and slope coefficients of the

i-th line segment. The cell’s charging/discharging power can

be expressed as

Pbj = uj(qj(t))iLj (t). (6)

Further, we idealize the DC/DC converter as a DC transformer

with a series resistance RC to capture its power loss. The

output power of the module is then given by

Pj(t) = uj(qj(t))iLj
(t)− (Rj +RC)i

2
Lj
(t), (7)

where Rji
2
Lj
(t) and RCi

2
Lj
(t) represent the power losses on

the cell and converter, respectively. Next, we extend this cell-

level model to the cluster level.

Consider cluster Sj with nSj
cells numbered from 1 to nSj

,

with
∑k

j=1 nSj
= n. We intend to aggregate the cell models

to derive a cluster model for Sj . Here, Sj can be viewed as

a virtual module, though the cells within it may not share

hardwired connection. Then, we can assume the constituent

cells to be connected virtually either in parallel or series. We

Cluster
Representative Model

Fig. 5. Representative cluster-level electrical model.

choose virtual parallel connection here to derive the aggregate

model for Sj . Fig. 5 illustrates the idea of lumping the cell-

level models into a single model for cluster Sj .

For cluster Sj , the aggregated capacity Q̄j and applied

current īLj can be expressed as follows:

Q̄j =

nSj∑
i=1

Qi, īLj =

nSj∑
i=1

iLi . (8)

The cluster’s SoC q̄j is governed by

˙̄qj(t) = − 1

Q̄j
īLj

(t). (9)

Further, the cluster’s internal resistance R̄j and OCV ūj are

as follows:

R̄j =
RnSj

+RC

1 +
∑nSj

−1

i=1

RnSj
+RC

Ri+RC

, (10a)

ūj =
1

1 +
∑nSj

−1

i=1

RnSj
+RC

Ri+RC

⎛
⎝nSj∑

i=1

RnSj
+RC

Ri +RC
ui

⎞
⎠ . (10b)

The cluster’s SoC/OCV relationship is approximated as

ūj(q̄j(t)) = ᾱi
j(q̄j(t)) + β̄i

j(q̄j(t))q̄j(t), (11)

where

ᾱi
j =

1

nSj

nSj∑
j=1

αi
j , β̄i

j =
1

nSj

nSj∑
j=1

βi
j . (12)

The cluster’s internal charging/discharging power can be ex-

pressed by

P̄Sj
= ūj(q̄j(t))̄iLj

(t). (13)

Its total power losses can be calculated as

L̄Sj = R̄j ī
2
Lj
(t). (14)

Putting together (8)-(14), we obtain an electrical model for

cluster Sj to grasp the aggregated dynamics of the constituent

cells.

2) Thermal Modeling: This paper uses a lumped thermal

model to describe the cells’ thermal dynamics [10]. This model

assumes that the cell’s temperature is concentrated at a single

point. The simplification makes it tractable to deal with the

cell-to-cluster thermal modeling. Fig. 4 (b) depicts the model

for cell j. It considers the cell’s internal power loss, Rji
2
Lj
(t),

as the source of heat generation and concentrates on the
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convection between the cell and the environment. The cell-

level thermal model can then be expressed by

mjCthṪj(t) = Rji
2
Lj
(t)− (Tj(t)− Tenv)/Rconv, (15)

where Tj and Tenv are the temperature of cell j and the

environmental temperature, respectively. Further, mj and Cth

are the mass of cell j and specific heat capacity, respectively;

Rconv is the convective thermal resistance between cell j and

the environment, specified by

Rconv =
1

hAj
,

where h and Aj are the heat transfer coefficient between the

cell’s surface and the environment, and the external surface

area of cell j, respectively.

Given (15), we approximate the thermal dynamics of cluster

Sj as follows:

m̄jCth
˙̄Tj(t) = R̄j ī

2
Lj
(t)− (T̄j(t)− Tenv)/R̄conv,j . (16)

Here, T̄j , m̄j , and R̄conv,j are respectively the lumped temper-

ature, mass, and thermal resistance of cluster Sj , which are

calculated as

T̄j =
1

nSj

nSj∑
j=1

Tj , m̄j =

nSj∑
j=1

mj , R̄conv,j =
1

h
∑nSj

j=1 Aj

.

From above, we have a cluster-level coupled electro-thermal

model. The model has a low-order, compact structure and is

computationally amenable to subsequent power optimization.

C. Inter-Cluster Optimal Control

Based on the cell clustering and cluster modeling, we

are now in a good position to deal with the optimal power

management for the clusters.

1) Problem formulation: For the considered large-scale

BESS, our goal is to minimize the total power losses in

operation, while satisfying the physical, safety, and balancing

constraints and ensuring the continuous power supply to the

load. In pursuit of the goal, we develop an inter-cluster

optimization problem. The total power losses for the clusters

within the time horizon [t, t+H) are∫ t+H

t

L̄(τ)dτ, (17)

where H is the horizon length and L̄(t) =
∑k

j=1 R̄j ī
2
Lj
(t).

We further impose constraints on the charging/discharging

currents, temperatures, and SoC of the clusters to guarantee

their safe operation as follows:

īmin
Lj

≤ īLj ≤ īmax
Lj

, (18a)

T̄min
j ≤ T̄j ≤ T̄max

j , (18b)

q̄min
j ≤ q̄j ≤ q̄max

j , (18c)

where ī
min/max
Lj

, T̄min/max
j

, and q̄min/max
j

are the upper/lower

safety bounds for the current, temperature, and SoC, respec-

tively. Note that the bounds for īLj
depend on nSj

, i.e.,

ī
min/max
Lj

=
∑nSj

i=1 i
min/max
Li

, where i
min/max
Li

is the upper/lower

current bounds for cell i. We also enforce cluster-level SoC

and temperature balancing constraints as follows:

|q̄j − q̄avg| ≤ Δq̄, (19a)∣∣T̄j − T̄avg

∣∣ ≤ ΔT̄ , (19b)

where Δq̄ and ΔT̄ are the maximum allowed SoC and tem-

perature deviations among the clusters, respectively. The terms

q̄avg and T̄avg represent the average SoC and temperature of all

the clusters, respectively. Further, the following constraint is

introduced to ensure the power supply and demand balance:

k∑
j=1

P̄Sj
− R̄j ī

2
Lj

= Pout, (20)

where Pout is the output power demand. Collecting the cost

function and constraints, one can compactly express the opti-

mal power management problem as

min
īLj

,j=1,...,k

∫ t+H

t

L̄(t)dt,

s.t. (9), (16), (18)-(20).

(21)

This problem seeks to find out the best īLj for cluster j for

j = 1, ...k in a predictive manner over a receding horizon.

However, it is a non-convex optimization problem due to the

nonlinearity of the equality constraint in (20), thus resisting

the search for the global optimum. We adopt and modify the

convexification technique in [11] to overcome this issue.

2) Convexification of (21): To start with, we define

Ēj(t) =
1

2
C̄j ū

2
j (q̄j(t))− Ē0

j , (22)

where Ēj(t) is the remaining energy of cluster Sj , C̄j =
Q̄j/β̄j , and Ē0

j = 1
2 C̄j ū

2
j (q̄j(0)) is the initial energy. Here, Ēj

is introduced to replace SoC for the purpose of convexification,

as will be seen later. Given (9), (11) and (22), the evolution

of Ēj is governed by

˙̄Ej(t) = −P̄Sj
. (23)

The power losses of cluster Sj can also be expressed in terms

of Ēj and P̄Sj
as

P̄lj =
R̄jC̄jP̄

2
Sj

2(Ēj + Ē0
j )

. (24)

In the convex formulation of the optimal power management

problem, we control P̄Sj to minimize the total power losses of

the clusters, so (24) serves as a nonlinear equality constraint

resulting in a non-convex problem. Since the power loss term

appears in the cost function of the problem, the following

relaxation can be considered:

P̄lj ≥ R̄jC̄jP̄
2
Sj

2(Ēj + Ē0
j )

, (25)

where the optimization problem will reduce P̄lj to its lower

bound.
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Proceeding forward, we can reformulate the safety con-

straints (18a) and (18c) in terms of Ēj and P̄Sj as follows:

√
2

C̄j
(Ēj + Ē0

j )̄i
min
Lj

≤ P̄Sj
≤

√
2

C̄j
(Ēj + Ē0

j )̄i
max
Lj

, (26a)

1

2
C̄j ū

2
j (q̄

min
j (t)) ≤ Ēj + Ē0

j ≤ 1

2
C̄j ū

2
j (q̄

max
j (t)). (26b)

We also rewrite and modify the constraints in (19) as∣∣∣∣∣ 2

C̄j
Ēj(t)− 1

k

k∑
l=1

2

C̄l
Ēl(t)

∣∣∣∣∣ ≤ ΔĒj + ξ̄
(E)
j , (27a)

∣∣T̄j(t)− T̄avg(t)
∣∣ ≤ ΔT̄ + ξ̄

(T )
j , (27b)

where ΔĒj = (ᾱj + β̄jΔq̄)2 − ᾱ2
j , and ξ̄

(E)
j and ξ̄

(T )
j are

respectively the energy and temperature slack variables. The

addition of the slack variables is to help fix the potential

infeasibility issue, which would happen when the clusters face

too large variations in their initial SoC and temperature [13].

The slack variables will also be included in the cost function

to penalize constraint violations.

Now, we are ready to introduce a convex inter-cluster power

optimization problem and present it in a discrete-time form for

the sake of computation and implementation. We denote by

z̄j = [ P̄Sj
P̄lj

Ēj T̄j ξ̄
(E)
j ξ̄

(T )
j ]

�
the vector of the optimization

variables for j = 1, ..., k. We state the new problem as

min
z̄j ,j=1,...,k

H∑
t=0

k∑
j=1

P̄lj [t] + λ̄(E)ξ̄
(E)
j [t] + λ̄(T )ξ̄

(T )
j [t],

Safety constraints:√
2

C̄j
(Ēj [t] + Ē0

j )̄i
min
Lj

≤ P̄Sj [t] ≤
√

2

C̄j
(Ēj [t] + Ē0

j )̄i
max
Lj

,

T̄min
j ≤ T̄j ≤ T̄max

j

1

2
C̄j ū

2
j (q̄

min
j [t]) ≤ Ēj [t] + Ē0

j ≤ 1

2
C̄j ū

2
j (q̄

max
j [t]),

Balancing constraints:∣∣∣∣∣ 2

C̄j
Ēj [t]− 1

k

t∑
l=1

2

C̄l
Ēl[t]

∣∣∣∣∣ ≤ ΔĒj + ξ̄
(E)
j [t],

∣∣T̄j [t]− T̄avg[t]
∣∣ ≤ ΔT̄ + ξ̄

(T )
j [t],

Power loss constraint:

P̄lj [t] ≥
R̄jC̄jP̄

2
Sj
[t]

2(Ēj [t] + Ē0
j )

,

Energy dynamics:

Ēj [t+ 1]− Ēj [t] = −P̄Sj
[t]Δt,

Thermal dynamics:

T̄j [t+ 1] = T̄j [t] +
Δt

m̄jCth

[
P̄lj [t]− (T̄j [t]− Tenv)/R̄conv

]
,

Power supply-demand balance:

k∑
j=1

P̄Sj [t]− P̄lj [t] = Pout[t],

(28)

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF (28)

Method # of optimization variables # of constraints

[13] 6Hn− n 11Hn+ 5n+H

(28) in our approach 6Hk − k 11Hk + 5k +H

k � n

where λ̄(E) and λ̄(T ) are the penalization weights for ξ̄(E)

and ξ̄(T ), respectively. The optimization problem in (28) is

convex because the cost function and the domain are both

convex. The convexity would allow efficient computation of

the global optimum with well-known algorithms.

Remark 1. Cell-based optimal power management for BESS

has been investigated in different studies, including our prior

work [13], but the existing approach face a significant compu-

tational bottleneck. For example, one must solve a receding-

horizon constrained optimization problem in [13] that is akin

to (28) but involves all cells. Its computation will quickly

reach a formidable level when the number of cells grows. Our

cluster-based approach, as shown in (28), will be computation-

ally much cheaper. This is because it involves only 6Hk − k
optimization variables and 11Hk + 5k + H constraints with

k � n, contrasting with 6Hn−n variables and 11Hn+5n+H
constraints in [13], as summarized in Table I. While the clus-

tering and power splitting will add some computation, there

is little compromise to the overall efficiency and scalability of

our approach.

We emphasize that, while (28) attempts to balance the

clusters in SoC and temperature, it is of our interest to make

the cells balanced as well. But some cells might be slightly

outside the desired balancing bounds due to the aggregation

in the cluster modeling. We address this issue by an adaptive

choice of ΔĒj and ΔT̄ , as discussed next.

3) Adaptive cell balancing: The adaptive selection of bal-

ancing bounds has been examined within the framework of

two conditions: bound tightening and bound relaxing.

• Bound tightening: To clarify why a cluster-level balancing

constraint may not effectively enforce cell-level balanc-

ing, Fig. 6 (a) illustrates an example in which seven

cells are grouped into two clusters, S1 and S2. The

aggregated temperatures of the clusters S1 and S2 are

T̄1 and T̄2, respectively. The average of them is T̄avg.

Suppose that
∣∣T̄i − T̄avg

∣∣ = ΔT̄ for i = 1, 2 as shown in

Fig. 6. Even though the clusters are balanced in this case,

some cells (marked in red) are still outside of the desired

balancing bounds. As minor as the deviation might be,

it is still preferable to maximize the cell-level balance

even in the cluster-level optimization procedure. The

same phenomenon may also appear in SoC balancing.

To address this issue, we suggest to dynamically modify
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Δq̄ and ΔT̄ as follows:

Δq̄′ = Δq̄ − 1

2
max{d(q)1 , ..., d

(q)
k }, (29a)

ΔT̄ ′ = ΔT̄ − 1

2
max{d(T )

1 , ..., d
(T )
k }, (29b)

where Δq̄′ and ΔT̄ ′ are the modified cluster-level bal-

ancing bounds to replace Δq̄ and ΔT̄ in (28), and d
(q/T )
j

is the maximum deviation of a cell’s SoC/temperature

from the centroid of cluster Sj . With (29), we practically

tighten the balancing bounds for the clusters so as to

improve the cell balancing.

• Bound relaxing: This condition involves adjusting the

bounds to expand the permissible range of cluster-level

balancing. As illustrated in Figure 6 (b), the temperature

distribution of cells within clusters S1 and S2 adheres to

the desired bound of ΔT̄ . To enhance power loss min-

imization, the balancing bounds for the clusters are re-

laxed, providing the optimization process with increased

flexibility. The relaxation of bounds is determined by

utilizing (29), where d
(q,T )
j ≤ 0.

Note that we do not update the balancing bounds at every

time instant. Instead, (29) is applied only when ξ̄
(E)
j and ξ̄

(T )
j

reach zero—at this moment, the clusters are balanced so that

it is tenable to narrow/relax the bounds. The adaptive cell

balancing procedure will be examined in the simulation results.

D. Cluster-to-Cell Power Split

Suppose that the optimal power quota P̄ ∗
Sj

is obtained for

cluster j for j = 1, ...k by solving the optimization problem

in (28). The remaining question is how to split P̄ ∗
Sj

among

the cells within the cluster. We propose three schemes that

derive from different assumptions about the intra-cluster cell

discrepancy.

Scheme #1: Equal power split. The first scheme assumes

that the constituent cells of the clusters are approximately

identical, neglecting discrepancies among them in terms of

SoC, temperature and internal resistance. It is thus sensible to

equally divide the optimal power assigned to a cluster among

the constituent cells. For cluster Sj , we have

Pb1 = ... = PbnSj
=

P̄ ∗
Sj

nSj

. (30)

Scheme #2: Internal-resistance-based power split. The sec-

ond scheme considers the internal resistance variations among

the cells and aims to reduce the power losses by an uneven

distribution of the cluster power. It divides P̄ ∗
Sj

by

Pbi =

1
Ri

P̄ ∗
Sj

1
R1

+ 1
R2

+ ...+ 1
RnSj

, i = 1, ..., nSj
. (31)

From above, the less Ri is, the larger Pbi is.

Compared to scheme #1, this scheme prioritizes loss mini-

mization over SoC and temperature balancing. However, both

of them are based on heuristics, implying suboptimal cell-level

power assignment. One can perform intra-cluster optimization

to achieve optimal power split among the cells.

(a)

(b)
Fig. 6. Adaptive cell balancing illustration. (a) Bound tightening. (b) Bound
relaxing.

Scheme #3: Optimal power split. We can apply the idea in

(28) to achieve optimal power split by minimizing the power

losses of all the cells within the cluster under some safety and

SoC balancing constraints. Considering cluster Sj , the total

power losses can be expressed as

Lj(t) =

nSj∑
l=1

(Rl +RC)i
2
Ll
(t). (32)

We enforce the following constraints to ensure safety and intra-

cluster balancing:

imin
Ll

≤ iLl
≤ imax

Ll
, (33a)

Tmin
l ≤ Tl ≤ Tmax

l , (33b)

qmin
l ≤ ql ≤ qmax

l , (33c)

|ql − qj,avg| ≤ Δq, (33d)

|Tl − Tj,avg| ≤ ΔT, (33e)

for l = 1, ..., nSj , where T
min/max
l = T̄

min/max
j and q

min/max
l =

q̄
min/max
j , and qj,avg and Tj,avg are the average SoC and tem-

perature for cluster j, respectively. Further, we must make the

total power of the cells equal to the cluster’s optimal power.

That is,

nSj∑
l=1

(
Pbl − (Rl +RC)i

2
Ll

)
= P̄ ∗

Sj
− P̄ ∗

lj . (34)

We can then derive the intra-cluster optimization problem as:

min
iLl

,l=1,...,nSj

Lj(t),

subject to (9), (16), (33), (34).
(35)

For the constituent cells of each cluster, the above nonlinear

continuous optimization problem aims to find out the best

currents iLl
for l = 1, . . . , nSj . Note that (35), similar to (21),

is non-convex due to the nonlinearity of the equality constraint

(34). We can follow the same convexification procedure as in

(28) to formulate an alternative convex optimization problem
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to solve (35). Considering cluster Sj , the problem is stated as

below:

min
zl,l=1,...,nSj

nSj∑
l=1

Pll [t] + λ(E)ξ
(E)
l [t] + λ(T )ξ

(T )
l [t],

Safety constraints:√
2

Cl
(El[t] + E0

l )i
min
Ll

≤ Pbl [t] ≤
√

2

Cl
(El[t] + E0

l )i
max
Ll

,

Tmin
l ≤ Tl ≤ Tmax

l

1

2
Clu

2
l (q

min
l [t]) ≤ El[k] + E0

l ≤ 1

2
Clu

2
l (q

max
l [t]),

Balancing constraints:∣∣∣∣∣ 2Cl
El[t]− 1

nSj

nSj∑
l=1

2

Cl
El[t]

∣∣∣∣∣ ≤ ΔEl + ξ
(E)
l [t],

|Tl[t]− Tavg[t]| ≤ ΔT + ξ
(T )
l [t],

Power loss constraint:

Pll [t] ≥
(Rl +RC)ClP

2
bl
[t]

2(El[t] + E0
l )

,

Energy dynamics:

El[t+ 1]− El[t] = −Pbl [t]Δt,

Thermal dynamics:

Tl[t+ 1] = Tl[t] +
Δt

mlCth

[
Pll [t]− (Tl[t]− Tenv)/Rconv

]
,

Power supply-demand balance:
nSj∑
l=1

(Pbl [t]− Pll [t]) = P̄ ∗
Sj
[t]− P̄ ∗

lj [t],

(36)

where zl = [ Pbl
Pll

El Tl ξ
(E)
l ξ

(T )
l ]

�
collects the optimization

variables, El denotes the remaining energy in cell l, ξ
(E)
l

and ξ
(T )
l represent the energy and temperature slack variables

with associated penalizing weights λ(E) and λ(T ) in the

cost function. We highlight that scheme #3 must address the

above intra-cluster optimization problems for each cluster and

thus requires more computation. However, each such problem

involves only 6nSj
optimization variables, and independent

of each other, they can be parallelized in computing. Thus,

scheme #3 can still be manageable if there are enough com-

puting resources.

IV. SIMULATION RESULTS

In this section, we carry out simulations for a BESS

consisting of 400 cells. Table II summarizes the specifications

of the BESS and the parameters of the proposed optimal power

management approach. The battery cells are based on Samsung

INR18650-25R whose parameters have been identified and

reported in [31]. The profile of the output power Pout is based

on the Urban Dynamometer Driving Schedule (UDDS) with

the peak charging and discharging power of 6 kW and 10 kW,

respectively. The simulations simulate the BESS operation for

2,400 seconds, in which the proposed approach runs with a 10-

second predictive horizon. We use the CVX package [32, 33]

with Matlab to solve the convex optimization problems in (28)

TABLE II
SPECIFICATIONS OF THE CONSIDERED LARGE-SCALE BESS

Symbol Parameter Value [Unit]

n Number of battery cells 400

v Cell nominal voltage 3.6 [V]

Q Cell nominal capacity 2.5 [Ah]

R Cell internal resistance 31.3 [mΩ]

[qmin, qmax] Cell SoC limits [0.05,0.95]

[imin, imax] Cell current limits [-7.5,7.5] [A]

Cth Specific thermal capacitance 918.49 [J/(K.Kg)]

m Cell Mass 0.0438 [Kg]

A External surface area 0.0042 [m2]

h Convection heat transfer coefficient 5.8 [W/(K.m2)]

Rconv Convection thermal resistance 41.05 [K/W]

Tenv Environment temperature 298 [K]

Δq̄ SoC balancing threshold 0.5%

ΔT̄ Temperature balancing threshold 0.5 [K]

Δt Sampling time 1 [s]

H Horizon length 10 [s]

and (36) using a workstation with a 3.5GHz Intel Core i9-

10920X CPU and 128GB of RAM.

We initialize the cells by randomly sampling their initial

SoC, temperature, and internal resistance from the uniform dis-

tributions U(0.7, 0.75), U(301, 305)K, and U(31.3, 41.3)mΩ,

respectively. The randomized variations will lead to many

possible combinations within the cells at the clustering stage,

allowing us to better investigate the efficacy of the proposed

approach in handling the cell heterogeneities. Further, we

conduct the simulations with schemes #1-3 for the cluster-

to-cell power split to compare their respective performances.

Fig. 7 depicts the SoC and temperature balancing perfor-

mance of the proposed approach. The proposed approach

under three power split schemes effectively alleviates the SoC

and temperature unbalance among the cells and successfully

drives the cells within the desired bounds. Having a closer

look at Figs. 7 (a)-(c), we see that schemes #1 and #2

show similar SoC balancing performances, and the proposed

approach drives the cells within the desired bound after about

1,000 seconds. Scheme #3 shows superior performance, and

the cell balancing is achieved only after 700 seconds. A

similar performance is observed for the temperature balancing

in Figs. 7 (d)-(f), where scheme #3 outperforms schemes #1

and #2 with a balancing time of 1,100 seconds versus 1,400

and 1,700 seconds. To conclude, schemes #1 and #2 provide

acceptable performance and high computational efficiency,

and scheme #3 would deliver the best balancing performance

while requiring more computation. A user may choose one of

them in practice based on the performance expectations and

computing resources.

Fig. 8 shows the power loss profiles of the BESS under

the proposed approach with the three power split schemes,

while comparing with the conventional case of no cell-level

power control. Overall, we observe the proposed approach

leads to lower power losses than in the conventional case. The

magnified views in the two time windows of Fig. 8 show that
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Fig. 7. Simulation results of the SoC and temperature balancing. (a) The SoC of the cells in scheme #1. (b) The SoC of the cells in scheme #2. (c) The SoC
of the cells in scheme #3. (d) The temperature of the cells in scheme #1. (e) The temperature of the cells in scheme #2. (f) The temperature of the cells in
scheme #3.
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Fig. 9. The total cumulative power loss.

scheme #3 causes conspicuously minimum power losses when

the cells are unbalanced and that the three schemes produce

almost the same power losses when the cells are balanced.

Fig. 9 shows the total cumulative power losses. It is interesting

to observe that the proposed approach bears more power losses

for the sake of cell balancing in the early time interval of 0-200

seconds. However, its cumulative power loss will become less
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Fig. 10. Evolution in the number of clusters.

as time goes by and lower by 4.6% than in the conventional

case at the end of the simulation run.

Fig. 10 illustrates the change in the number of clusters k
throughout the simulation run. The value of k depends on the

level of variations in the cells’ SoC, temperature, and internal

resistance. The more balanced the cells, the fewer the clusters.

We can see that the cells are initially grouped into 17 clusters,

and fewer clusters are formed as the cells become more

uniform. Note that the number of clusters also determines the

computational costs of the inter-cluster optimization in (28),

so computation becomes less as the simulation runs forward.

It is of our interest to observe the evolution of the cells’ SoC

and temperature. Fig. 11 provides snapshots from the cell’s

SoC and temperature under the three power split schemes

at the time instants of 1,500, 1,000, and 2,000 seconds.

The black boxes in the plots show the desired SoC and

temperature balancing bounds, and each color represents a

cluster. The proposed optimal power management approach

effectively categorizes the cells into clusters, performs inter-

cluster optimization, and drives the cells into the desired bound

under all three power split schemes. Taking a closer look at
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Fig. 11. The evolution of cells’ SoC, temperature, and the clustering
procedure. (a) Scheme #1. (b) Scheme #2. (c) Scheme #3.

Fig. 11 (c) at the time instant of 2,000 seconds, one can see that

the 400 cells form seven distinct clusters. However, the cells

are more scattered at the same time instant for schemes #1 and

#2, while scheme #3 leads to better intra-cluster convergence.

We further assess the roles of the slack variables and

balancing bounds. Fig. 12 depicts the evolution of the slack

variables over clusters
∑k

j=1 ξ̄
(E)
j and

∑k
j=1 ξ̄

(T )
j . Note that

the cells and the resulting clusters are not fully bounded by

the balancing constraints in (27). Because of this, the power

optimization problem in (28) would have been infeasible to

solve even at the beginning time instant without the introduc-

tion of the slack variables. However, the slack variables help

prevent the infeasibility issue from occurring. They are initially

nonzero to slightly relax the balancing constraints and then

penalized to decrease toward zero as the balancing constraints
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Fig. 12. The evolution of the slack variables. (a) Energy slack variables. (b)
Temperature slack variables.

are increasingly satisfied.

While zero cluster-level slack variables suggest that the

clusters should be balanced, this does not guarantee that all

the cells are within the desired bounds, as aforementioned in

Section III.C. Fig. 13 shows the utility of the adaptive cell

balancing bounds Δq̄ and ΔT̄ . We can see that the original

SoC and temperature balancing bounds are 0.5% and 0.5 K,

respectively. According to Fig. 12 (b), the temperature slack

variables reach zero at the time instant of 400 seconds. At

this moment, the temperature balancing bounds are tightened

as shown in Fig. 13 (b), which leads to an increase in the

temperature slack variables. Fig. 12 (a) also indicates that the

SoC slack variables reach zero between the time steps of 750-

900 seconds for the three power split schemes. At the same

time instants, we can see an update in the SoC balancing

bounds in Fig. 13 (a). We can conclude from the evolution

of the balancing bounds the usefulness of tighter bounds for

the cluster-level balancing to improve the uniformity at the

cell level.

As a main objective of the study is to enable computa-

tionally efficient optimal power management, we measure the

computation time of the approach under schemes #1 and #3

for different cell numbers and cluster numbers. Note that

scheme #2 is skipped as its computational performance is

similar to that of scheme #1. We also compare the proposed

approach with cell-based power optimization as in the works

[10, 12, 13]. Table III summarizes the computation time,

with further illustration shown in Fig. 14. We observe several

key findings. Firstly, the computation time for scheme #1
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Fig. 13. The evolution of the balancing bounds. (a) Energy balancing bounds.
(b) Temperature balancing bounds.

remains independent of the cell number and depends only

on the number of clusters. Secondly, the proposed approach

under scheme #3 requires more computation time than scheme

#1 due to the optimal power split among the constituent

cells of the clusters. Finally, our proposed approach exhibits

substantially less computation time compared to the cell-level

optimization. The improvement is more significant when deal-

ing with larger numbers of cells. For instance, our proposed

approach takes 6.76 and 19.43 seconds for schemes #1 and

#3 with 15 clusters, less than 2% of the about 1200 seconds

required by the cell-level optimization. The results validate

the computational efficiency and scalability of the proposed

approach for large-scale BESS.

V. EXPERIMENTAL RESULTS

We develop a lab-scale prototype to validate the proposed

optimal power management approach. The experimental val-

idation encompasses various aspects, including the evalua-

tion of cell clustering, model aggregation, optimization, and

cluster-to-cell power split. Fig. 15 (a) depicts the experimental

setup, and Fig. 15 (b) shows a 20-cell 4s5p battery pack.

Table IV lists the specifications of the key components of

the battery pack. We use K-type thermocouples to measure

the surface temperatures of the cells. The thermocouples are

connected to a National Instruments PCIe-6321 DAQ board,

and the measurements are collected via LabVIEW. We solve

the optimization problem using the CVX package [32, 33],

and the optimal control decisions are transferred to local con-

TABLE III
NUMERICAL COMPARISON OF THE PROPOSED APPROACH AND

CELL-LEVEL OPTIMIZATION

Cell Number (n) Method
Average

Computation
Time (s)

Relative
Computation

Time Reduction
(%)

50

Cell-level optimization 29.02 —
Scheme #1 (15 clusters) 6.69 76.94
Scheme #1 (10 clusters) 4.75 83.63
Scheme #1 (5 clusters) 2.74 90.55

Scheme #3 (15 clusters) 10.49 63.85
Scheme #3 (10 clusters) 7.55 73.98
Scheme #3 (5 clusters) 5.99 79.35

100

Cell-level optimization 72.77 —
Scheme #1 (15 clusters) 6.67 90.83
Scheme #1 (10 clusters) 4.75 93.47
Scheme #1 (5 clusters) 2.69 96.30

Scheme #3 (15 clusters) 11.71 83.90
Scheme #3 (10 clusters) 8.61 88.16
Scheme #3 (5 clusters) 7.65 89.48

200

Cell-level optimization 274.97 —
Scheme #1 (15 clusters) 6.70 97.56
Scheme #1 (10 clusters) 4.75 98.27
Scheme #1 (5 clusters) 2.76 98.99

Scheme #3 (15 clusters) 14.13 94.86
Scheme #3 (10 clusters) 10.61 96.14
Scheme #3 (5 clusters) 10.68 96.11

400

Cell-level optimization 1200.45 —
Scheme #1 (15 clusters) 6.76 99.43
Scheme #1 (10 clusters) 4.83 99.59
Scheme #1 (5 clusters) 2.79 99.76

Scheme #3 (15 clusters) 19.43 98.38
Scheme #3 (10 clusters) 14.46 98.79
Scheme #3 (5 clusters) 16.80 98.60
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Fig. 14. Comparative analysis of computation times: the proposed approach
with schemes #1 and #3 versus the cell-level optimization.

trollers through DSP TMS320F28335. The local controllers

generate 200-kHz switching signals for the DC/DC converters.

We use a 150-W power load to discharge the battery pack.

The experiment lasts thirty minutes with a step size of thirty

seconds for the optimization, i.e., Δt = 30 s.

The cells’ initial SoC ranges from 75% to 80%, whereas

their initial temperature is 21.7°C. The cells’ output dis-

charging current is limited to be no more than 5 A. In the

experiment, we also examine the performance of the three
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Fig. 15. The lab-scale prototype. (a) The experimental setup. (b) The circuit.

cluster-to-cell power split schemes. Because the constituent

cells are identical, scheme #2 will reduce to scheme #1,

and both will generate the same results. Therefore, we will

apply only schemes #1 and #3 to do the power split in the

experiment. The experimental results are given in Figs. 16-17.

Fig. 16 (a) shows the cells’ SoC profiles under scheme #1.

We can observe that the initial SoC values of the cells are not

balanced and do not lie within the desired bound. However, the

proposed approach successfully distributes the output power

among different cells to drive the cells’ SoC to enter the

tolerable bounds. Fig. 16 (b) illustrates the SoC difference

of the cells from the average for a better visualization of the

SoC balancing trend. It can be seen that scheme #1 manages

to balance cells’ SoC after about 900 seconds. Fig. 16 (c)

and Fig. 16 (d) depict the cells’ temperature profiles and

the differences from the average, respectively. The cells see

TABLE IV
LIST OF KEY COMPONENTS IN THE EXPERIMENTAL SETUP

Device Model (Value)

MOSFET CSD86356Q5D

Gate driver TPS28225

Inductor SER2915H-333KL (33 μH)

Capacitor (10 μF)

Local controller STM8S003F3P6

Main controller TMS320f28335

Battery cell Samsung INR18650-25R

their temperatures drift away from each other due to the

uneven power allocation among the cells, but the deviation is

bounded within the tolerance range. Note that, under scheme

#1, the cells are categorized to three to six clusters during the

experiment.

Fig. 16 (e) and Fig. 16 (f) show the cells’ SoC profiles and

the deviation from the average under scheme #3. In this case,

the SoC is balanced among the cells after about 750 seconds,

faster than when scheme #1 is applied, because of the optimal

intra-cluster power split. Fig. 16 (g) and Fig. 16 (h) also depict

the temperature of the cells and the temperature difference

from the average, respectively. Similar to Figs. 16 (c)-(d), the

cells’ temperatures diverge mildly from the same initial point,

but the divergence is almost constantly bounded throughout

the experiment. There is a minor violation in the temperature

balancing constraint around 70-80 seconds which is allowed

by the slack variables for the sake of the feasibility of the

optimization problem. This experiment finds a maximum of

four clusters, fewer than under scheme #1.

Figs. 17 (a)-(b) illustrate the output profiles of the cells

under schemes #1 and #3, respectively. Both show the cells are

assigned different power levels based on their conditions, and

after the balancing is achieved eventually, they are assigned the

same power. Yet, there is an interesting difference in Figs. 17

(a)-(b). Scheme #1 distributes the total power load equally

among the cells within a cluster; by contrast, scheme #3

performs intra-cluster power split in an optimal way, leading

to more variability in power allocation, but faster adjustment,

among the cells.

VI. CONCLUSION AND FUTURE WORK

The rapidly growing use of large-scale BESS is transform-

ing grid, transportation, and more sectors towards decarboniza-

tion and a sustainable future. However, an open challenge

for this technology is optimal power management, which

struggles with high computational complexity in optimization.

Thus, this paper proposes a computationally efficient and

scalable approach to deal with the challenge. The approach

distinguishes itself from the literature by enabling clustering-

based optimization. It partitions a large number of cells

into just a much smaller number of clusters based on their

characteristics and develops aggregated electro-thermal models

for the clusters. Inter-cluster power management then naturally

arises to compute the power quota among the clusters at con-

siderably high computational efficiency. Intra-cluster power

split then divides the power quota among the cells within

each cluster under three different schemes. We further pro-

pose adaptive cell balancing bounds to improve the cell-level

control performance. The proposed approach is designed to

perform cell balancing in terms of SoC and temperature while

minimizing the total power losses. We conduct simulations

for a 400-cell BESS to validate the computational efficiency

and scalability of the proposed approach. The results show a

substantial reduction in computational overhead, by margins

as large as 98% for a 400-cell BESS when compared to

conventional cell-level optimization. Further, we develop a

lab-scale 20-cell prototype for practical validation. The results
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Fig. 16. Experimental results of the SoC and temperature balancing. (a) The SoC of the cells in scheme #1. (b) The SoC difference of the cells from the
average in scheme #1. (c) The temperature of the cells in scheme #1. (d) The temperature difference of the cells from the average in scheme #1. (e) The
SoC of the cells in scheme #3. (f) The SoC difference of the cells from the average in scheme #3. (g) The temperature of the cells in scheme #3. (h) The
temperature difference of the cells from the average in scheme #3.

200 400 600 800 1000 1200 1400 1600 1800
Time (s)

5

6

7

8

9

10

11

12

C
el

l P
o

w
er

 (
W

)

Cell 1
Cell 2
Cell 3
Cell 4

Cell 5
Cell 6
Cell 7
Cell 8

Cell 9
Cell 10
Cell 11
Cell 12

Cell 13
Cell 14
Cell 15
Cell 16

Cell 17
Cell 18
Cell 19
Cell 20

(a)

200 400 600 800 1000 1200 1400 1600 1800
Time (s)

2

4

6

8

10

12

14

16

C
el

l P
o

w
er

 (
W

)

Cell 1
Cell 2
Cell 3
Cell 4

Cell 5
Cell 6
Cell 7
Cell 8

Cell 9
Cell 10
Cell 11
Cell 12

Cell 13
Cell 14
Cell 15
Cell 16

Cell 17
Cell 18
Cell 19
Cell 20

(b)
Fig. 17. The output power profiles of the cells. (a) Scheme #1. (b) Scheme
#3.

show that the approach can effectively reduce power losses,

enhance cell balancing, and require much less computational

costs. The study can be expanded in several directions. Our

future work will include extending the proposed approach to

second-life battery systems, incorporating more sophisticated

battery models, and studying multi-level clustering for stronger

scalability.
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“Multi-objective control of balancing systems for li-ion battery packs: A paradigm
shift?” in IEEE Vehicle Power and Propulsion Conference, 2014, pp. 1–7.

[10] C. Pinto, J. V. Barreras, E. Schaltz, and R. E. Araújo, “Evaluation of advanced
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