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Abstract—Large-scale battery energy storage systems (BESS)
are helping transition the world towards sustainability with their
broad use, among others, in electrified transportation, power
grid, and renewables. However, optimal power management for
them is often computationally formidable. To overcome this
challenge, we develop a scalable approach in the paper. The
proposed approach partitions the constituting cells of a large-
scale BESS into clusters based on their state-of-charge (SoC),
temperature, and internal resistance. Each cluster is character-
ized by a representative model that approximately captures its
collective SoC and temperature dynamics, as well as its overall
power losses in charging/discharging. Based on the clusters, we
then formulate a problem of receding-horizon optimal power
control to minimize the power losses while promoting SoC and
temperature balancing. The cluster-based power optimization will
decide the power quota for each cluster, and then every cluster
will split the quota among the constituent cells. Since the number
of clusters is much fewer than the number of cells, the proposed
approach significantly reduces the computational costs, allowing
optimal power management to scale up to large-scale BESS.
Extensive simulations are performed to evaluate the proposed
approach. The obtained results highlight a significant computa-
tional overhead reduction by more than 60% for a small-scale
and 98% for a large-scale BESS compared to the conventional
cell-level optimization. Experimental validation based on a 20-
cell prototype further demonstrates its effectiveness and utility.

Index Terms—Advanced battery management, battery energy
storage systems, optimal control.

NOMENCLATURE
Variables
v Cell terminal voltage
u, U Cell open-circuit voltage (OCV), cluster OCV
ir, i, Cell current, cluster current
P,, Pg Cell internal power, cluster internal power
P, P Cell power loss, cluster power loss
P Cell output power
E, E Cell energy, lumped cluster energy
Py BESS output power demand

Total power losses of the cells, total power
losses of the clusters
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£ & Intra- and inter-cluster slack variables

Z, Z Intra- and inter-cluster optimization variables

Parameters

n Number of battery cells

ng Number of cells within cluster S

k Number of clusters

m, m Mass of a cell, lumped mass of a cluster

Q. Q Cell capacity, lumped cluster capacity

q, q SoC of a cell, lumped SoC of a cluster

Gavg Average SoC

Aq, Aq SoC imbalance tolerance among cells, SoC
imbalance tolerance among clusters

AFE, AE Energy balancing threshold among cells, en-
ergy balancing threshold among clusters

« Intercept coefficient of the SOC/OCV line

Ié] Slope coefficient of the SOC/OCV line

R, R Cell internal resistance, lumped cluster internal
resistance

Rc Resistance to capture the power losses of

DC/DC converters

Reonys Reony Cell convective thermal resistance, cluster con-
vective thermal resistance

A Cell external surface.

h Conductive heat transfer coefficient between

the cell’s surface and the environment

Ci, Cin Cell thermal capacitance, lumped cluster ther-
mal capacitance

T, T Cell temperature, lumped cluster temperature

Tove, Tavg Average cells’ temperature, average clusters’
temperature

Teny Environmental temperature

AT, AT  Temperature imbalance tolerance within cells
and clusters

A A Penalty weight for the intra- and inter-cluster
optimization

At Sampling time

H Optimization horizon

I. INTRODUCTION

ATTERY energy storage systems (BESS) have emerged

as an enabler for various applications ranging from
electric vehicles (passenger cars, semi trucks, etc.), electric
aircraft, smart grid, and renewable facilities [1-4]. Whether
small or large in size, BESS need power management strate-
gies to ensure their safe and proper operation, which provide
various functions including charging/discharging control, cell



balancing, and power loss minimization. While some sim-
plistic approaches have gained wide use, there is a growing
demand for more sophisticated optimal power management to
maximize the performance and fully utilize the capabilities
of BESS [5, 6]. However, optimal power management faces
the challenge of high computational expenses, due to the use
of numerical optimization. The challenge is especially intense
for large-scale BESS comprising great numbers of cells. We
broadly define large-scale BESS as those that offer high energy
or power capacity and that comprise many constituent entities
like cells or modules, with examples including grid- and
vehicle-scale BESS. Optimal power management for them
will involve large numbers of decision variables as well as
complex high-dimensional optimization landscapes. Despite
an increasing body of study on optimal BESS power manage-
ment, only limited effort has been dedicated to overcoming
the computational bottleneck in optimization.

A. Literature Review

Early optimal power management strategies in the literature
mainly focused on cell balancing for BESS. The studies
in [7, 8] use linear programming to analyze and evaluate
the performance of different balancing circuit topologies for
battery packs. However, the balancing considers only the SoC
while neglecting some other important factors like temperature
and internal resistance, and its computation can be heavy for
large battery packs.

The use of power electronic converters in BESS circuit
structures has enabled cell-level bidirectional power control.
Leveraging this capability, the study in [9] pursues optimal
power management to achieve SoC/temperature balancing and
terminal voltage regulation. The work in [10] further aims
to minimize the total power losses of a BESS while making
the cells satisfy safety and balancing requirements. It further
convexifies the non-convex power optimization problem using
a technique in [11] for the benefit of computation. The idea of
convexified power optimization also finds success in a hybrid
BESS consisting of battery cells and supercapacitors [12] and
a reconfigurable BESS [13].

Looking back, the existing optimal power management
strategies rely on numerical optimization methods, and the
need for computational resources increases fast with the num-
ber of cells of the concerned BESS. The literature has explored
two methods to alleviate the computational burden, namely,
hierarchical control and distributed control. A hierarchical
model predictive control is proposed in [14] with different
time scales and model complexities. The framework considers
both charge and temperature imbalances while minimizing the
total power losses. The study in [15] attempts to decompose
an optimal power management task into separate voltage and
balancing control subtasks. These methods can reduce the
computation to a certain extent but still lack scalability for
large-scale BESS.

Distributed control represents another means to accelerate
large-scale BESS power management, which distributes com-
putation among different computing units for higher efficiency
[16, 17]. The work in [16] employs a dynamic average con-
sensus protocol to achieve SoC balancing for a reconfigurable

BESS. An average consensus protocol is similarly used in [18]
to balance the SoC of serially connected BESS. Despite their
fast computation, the average consensus-based power manage-
ment strategies only focus on cell balancing, mostly in terms
of SoC, without consideration of optimality in some metrics
such as balancing time and power loss. The study in [19]
proposes a distributed approach for cell balancing and power
loss minimization for large-scale BESS. However, it requires
the use of distributed computing units and communication
networks, thus increasing the complexity of implementation.

The notion of optimal power management extends to control
of distributed energy resources, which often appears as the
problem of optimal power dispatch among the resources. For
instance, the studies in [20-22] formulates different optimal
power management problems and solutions for shipboard
microgrid and all-electric ships. Optimal power management
also finds applications in the domain of hybrid electric vehicles
[23]. In these applications, the computational costs is also a
topic of concern and interest.

B. Statement of Contributions

Departing from the literature, this paper proposes clustering-
based optimization to achieve computationally efficient and
scalable optimal power management for large-scale BESS. The
key notion lies in grouping the cells of a BESS into clusters
based on their characteristics, then performing inter-cluster
power optimization, and finally running intra-cluster power
allocation for individual cells. Centering around the notion,
our main contribution are as follows. We develop a systematic
design of a clustering-based power management approach. The
approach, which is illustrated in Fig 1, includes the following
crucial elements.

o We leverage the k-means clustering method to partition
the cells into clusters according to their SoC, temperature,
and internal resistance. The cells within a cluster will
share similar characteristics while differing distinctly
from those in another cluster.

o« We develop a representative electro-thermal model for
each cluster to capture the cluster’s aggregated dynamics
in SoC, temperature, and power loss in operation. Then,
using the cluster models, we formulate and solve an
optimal power management problem.

o Following the cluster-level optimization, we design three
power split schemes to determine the power to be as-
signed for the cells within each cluster.

The proposed approach is hierarchical—it breaks down a
large-scale optimal power management management problem
into two levels, inter-cluster power optimization and intra-
cluster power allocation. The subproblems at each level are
considerably smaller in size and simpler in structure to allow
fast computation, and the hierarchical design readily scales up
to large BESS. Meanwhile, the clustering based on the cells’
characteristics upholds the fidelity of the proposed approach
in solving the original problem, thus ensuring the overall
performance in power management.

We develop a 20-cell battery pack and conduct a series
of experiments, along with extensive simulations, to validate
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Fig. 1. The proposed clustering-based power management approach.

and assess the performance of the proposed approach. The
results demonstrate the effectiveness of the proposed optimal
power management approach in significantly reducing the
computation while maintaining good accuracy.

C. Organization

The rest of the paper is organized as follows. Section II
describes the circuit structure of the considered large-scale
BESS and the corresponding optimal power management prob-
lem. Section III presents the cell clustering approach, shows
how to develop a representative electro-thermal model for a
cluster, and implements an inter-cluster power optimization
problem for the clusters. We then derive three schemes to
handle cluster-to-cell power split. In Sections IV and V, the
simulation and experimental results demonstrate the effec-
tiveness of the proposed scalable optimal power management
approach. Finally, Section VI concludes the paper with final
remarks.

II. OVERVIEW OF OPTIMAL POWER MANAGEMENT

In this section, we first introduce the circuit structure of a
large-scale BESS, and then present the overarching control ob-
jectives for the large-scale BESS optimal power management.

A. Circuit Structure

Fig. 2 depicts the circuit structure of a large-scale BESS.
The BESS comprises n modules, each consisting of a cell and
a DC/DC converter. The modules are configured arbitrarily
in series, parallel, or a mix of both to meet the output
power, capacity, or voltage requirements. For the purpose of
illustration, modules 1 and 2 are connected in parallel, and
then connected serially with the other modules. The circuit
structure is taken from our earlier study in [13, 24], in which
the module connections are reconfigurable via power switches.
Here, we consider hardwired connections among the modules
so as to focus on the optimal power management design. Here,
we use synchronous DC/DC converters, but other types of
bidirectional DC/DC converter topologies are allowed in the
circuit structure. The DC/DC converter consists of an inductor,
a capacitor, and two power switches. They allow controlled
bidirectional power flow through cells in charging/discharging.
Because of the DC/DC converters, one can independently
regulate each cell’s charging/discharging power.

The cell-level power control capability of the circuit struc-
ture brings about several system-level advantages. First, this
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Fig. 2. The circuit structure of a large-scale BESS.

capability can be leveraged to promote the balanced use of
the cells in terms of their SoC and temperatures. Second,
unlike conventional structures, the circuit structure requires
no external power electronic devices to regulate its output
voltage—the embedded DC/DC converters can adjust the mod-
ules’ output voltages to supply the load adequately. Finally,
the circuit structure can accommodate heterogeneities among
the constituent cells, charging or discharging them based on
their individual conditions. In an extreme case, one can even
leverage it to construct a large-scale BESS using cells from
different manufacturers with different internal characteristics.
It is worth mentioning that the circuit structure can be extended
to modules or battery packs rather than cells. In this case, each
battery pack will be equipped with a DC/DC converter to allow
regulated charging and discharging.

Next, we define the control objectives in the optimal power
management of this BESS circuit structure to fully take



advantage of its capability.

B. Control Objectives

Fig. 2 also illustrates how the circuit structure interacts with
the battery management system (BMS). The BMS comprises
two types of controllers. At the higher level, the optimal
power management block collects the real-time measurements
of the cells and computes the optimal power allocation among
them; at the lower level, the local controllers generate control
signals for the DC/DC converters to regulate the cells’ charg-
ing/discharging currents. This control architecture decouples
power management and local power control, and this paper
focuses only on the study of the former problem, with mature
technologies available for the latter.

As discussed above in Section II.A, the circuit structure of
the BESS allows cell-level power control, making it possible
to achieve various functions, such as cell balancing and power
loss minimization. To leverage this capability, we consider the
following optimal power management problem in the paper:

Problem 1. Find the reference values for the cells’ charg-
ing/discharging power to minimize the system-wide power
losses while ensuring the cells to comply with the physical,
safety, and balancing constraints and supplying the demanded
output power.

Problems of a similar kind have attracted various studies
[12—14] for different circuit structures. Existing studies gen-
erally adopt numerical optimization frameworks. Their com-
putational complexity depends on the number of optimization
variables, causing extremely heavy computational burdens for
large-scale BESS. To tackle the challenge, this paper proposes
a scalable optimal power management approach in the sequel.

III. THE PROPOSED SCALABLE OPTIMAL POWER
MANAGEMENT

This section presents the proposed scalable optimal power
management approach, elaborating its four main elements:
cell clustering, cluster model development, inter-cluster power
optimization, and intra-cluster power split. To begin with, we
partition the cells into clusters. We then introduce a represen-
tative electro-thermal model for the clusters. We formulate the
inter-cluster optimal power management. Finally, we propose
three schemes to split the power quota of clusters among their
constituent cells.

A. Clustering

Consider the BESS shown in Fig. 2 comprising n cells,
where n is a large number. As is common in practice, the cells
are heterogeneous in SoC, temperature, and internal resistance.
An important objective in power management is to overcome
the heterogeneity, or in other words, to balance the use of
the cells via optimizing the power allocation among them
based on their conditions. Running optimization over many
heterogeneous cells, however, is computationally expensive.
To treat this issue, we can group the cells into clusters. The
clusters are much fewer in number, and every cluster includes
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Fig. 3. Illustration of cell clustering for a large-scale BESS.

cells with similar characteristics. We are then able to deal with
cluster-level power optimization for computational benefits.
To this end, we leverage the k-means clustering method to
partition the n cells into k& (k < n) clusters Sy, ..., S [25].
This method is a favorable choice here because of its com-
putational efficiency and capability to handle large datasets,
even though alternative clustering techniques, e.g., density-
based spatial clustering, are also applicable [26]. For cell ¢, its
condition is characterized by the tuple x; = {q¢;,T;, R;} for
i=1,2,...,n, where ¢;, T;, and R; are the SoC, temperature
and internal resistance, respectively. The clustering problem
can be translated into the following optimization problem:

n k
min Y Y g llwi — )
Tij,Cj - - Y ! ! ’
=1 j=1

. )
s.t. Zrij =1 Vi=1,..,n,
j=1

where ¢; is the centroid of cluster S;, and r;; € {0,1} with
rij = 0if ; ¢ S; and r;; = 1 if x; € S;. The problem
in (1) is NP-hard, often defying closed-form solution. Many
heuristic algorithms have been proposed in the literature to
solve it. Here, we use the naive k-means algorithm because
of its effectiveness and efficiency. The algorithm starts with
an arbitrary set of centroids ¢;(0),...,cx(0) and follows an
alternate two-step procedure [27]. First, ; for ¢ = 1,2,...,n
are each assigned to its nearest centroid at the ¢-th iteration,
ie.,

. . 2
rin(0) = 1 if k = argmin, [|z; — ¢; ()| )
0 else
Then, the centroids are refined and updated as follows:
v (0
Cj(€+1):z:1zlrj( )(E ) (3)

Yima i (6)
The k-means algorithm iterates these two steps until conver-
gence when the cluster assignments stop changing. Note that
the algorithm requires to pre-specify the number of clusters
k. Clearly, the more diverse the cells, the more clusters are
needed to effectively categorize them. There are some useful
techniques, e.g., elbow curve [28] or gap statistics [29], to
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Fig. 4. The cell-level electro-thermal model. (a) The electrical model of the
module j. (b) The thermal model of the cell j.

determine the optimal number of clusters, and gap statistics is
the choice in this paper.

Fig. 3 illustrates the clustering of a 400-cell BESS for k = 4.
The clusters are labeled in different colors, and the cells within
a cluster are closer to each other in terms of SoC, temperature,
and internal resistance. Next, we will develop a representative
model to capture the virtual collective dynamics of a cluster.

B. Electro-thermal Modeling

We first introduce a cell-level electro-thermal model and
then aggregate the cells to formulate a cluster-level model.

1) Electrical Modeling: The electrical model of module j
is shown in Fig. 4 (a). We use the Rint Model to describe
the electrical dynamics of cell j, which consists of an open-
circuit voltage (OCV) and a series internal resistor [30]. The
Rint model offers a simple yet accurate enough representation
of the cells. The model’s governing equations are as follows:

4(t) = —=-ir, (t), (4a)

v;(t) = u;(g;(t)) — Rjir, (1),

where @, u;, vj, and ir,; are the cell’s capacity, OCV,
terminal voltage, and charging/discharging current, respec-
tively. Following [13], this paper assumes a piecewise linear
approximation for the cell’s SoC/OCV relationship as follows:

u;(q; () = af(q; (1) + 85 (q; (1) g5 (1), ()

where a§- and ,Bji- are the intercept and slope coefficients of the
i-th line segment. The cell’s charging/discharging power can
be expressed as

(4b)

Py, =u;(q;(t))ir, (t). (6)

Further, we idealize the DC/DC converter as a DC transformer
with a series resistance R to capture its power loss. The
output power of the module is then given by

Pj(t) = u;(g;(t))ir, (t) — (R; + Ro)iz, (), (T)

where R;i? 7,(t) and Rci? 1, (t) represent the power losses on
the cell and converter respectlvely Next, we extend this cell-
level model to the cluster level.

Consider cluster S; with ng; cells numbered from 1 to ng;,
with Z?Zl ns, = n. We intend to aggregate the cell models
to derive a cluster model for S;. Here, S; can be viewed as
a virtual module, though the cells within it may not share
hardwired connection. Then, we can assume the constituent
cells to be connected virtually either in parallel or series. We

Cluster S; -

;(q; ()

u1(q1(8)) o

Fig. 5. Representative cluster-level electrical model.

choose virtual parallel connection here to derive the aggregate
model for S;. Fig. 5 illustrates the idea of lumping the cell-
level models into a single model for cluster .S;.

For cluster S;, the aggregated capacity Q_]‘ and applied
current ij can be expressed as follows:

ns,

ZQu ir, —ZZL (®)

The cluster’s SoC ¢; is governed by

. 1-
gi(t) = —=1ir, (t). ©)
J Qj J
Further, the cluster’s internal resistance R; and OCV 1; are
as follows:

S RTLS + RC

R] o ’rLs —1 Rns +Rc? (10a)
L+ RiRe

77 1 TLS + RC

U= ns; —1 R”S +Rc Z R +RC U; . (10b)

1+

The cluster’s SoC/OCV relationship is approximated as

"R,+Rc +Rc

a;(g;(t) = a4 (g;(t) + B;(q;(1))a; (1), (11
where ns, ns,
—Zaj, B = ZBZ (12)

J]l J]l

The cluster’s internal charging/discharging power can be ex-
pressed by

Ps, = u;(q;(t))ir, (¢). (13)
Its total power losses can be calculated as

Ls, = R;ii (t). (14)

Putting together (8)-(14), we obtain an electrical model for
cluster S; to grasp the aggregated dynamics of the constituent
cells.

2) Thermal Modeling: This paper uses a lumped thermal
model to describe the cells’ thermal dynamics [10]. This model
assumes that the cell’s temperature is concentrated at a single
point. The simplification makes it tractable to deal with the
cell-to-cluster thermal modeling. Fig. 4 (b) depicts the model
for cell j. It considers the cell’s internal power loss, Rji%j (t),
as the source of heat generation and concentrates on the



convection between the cell and the environment. The cell-
level thermal model can then be expressed by

ijtth (t) = RinLj (t) = (T5(t) = Tenv)/ Reonv

where T; and T, are the temperature of cell j and the
environmental temperature, respectively. Further, m; and Cy,
are the mass of cell j and specific heat capacity, respectively;
Rcony 18 the convective thermal resistance between cell j and
the environment, specified by

15)

L
hA;’

where h and A; are the heat transfer coefficient between the
cell’s surface and the environment, and the external surface
area of cell j, respectively.

Given (15), we approximate the thermal dynamics of cluster
S; as follows:

Rconv =

m;Cn (1) = Ryi3, (1) = (T5(t) — Ten) /Reomvj-~ (16)

Here, T}, M, and Reony,; are respectively the lumped temper-
ature, mass, and thermal resistance of cluster S;, which are
calculated as

Ly,

J]l

1
Z m]v conv,j — T —nms. . *
h Z j:]1 Aj
From above, we have a cluster-level coupled electro-thermal
model. The model has a low-order, compact structure and is

computationally amenable to subsequent power optimization.

C. Inter-Cluster Optimal Control

Based on the cell clustering and cluster modeling, we
are now in a good position to deal with the optimal power
management for the clusters.

1) Problem formulation: For the considered large-scale
BESS, our goal is to minimize the total power losses in
operation, while satisfying the physical, safety, and balancing
constraints and ensuring the continuous power supply to the
load. In pursuit of the goal, we develop an inter-cluster
optimization problem. The total power losses for the clusters
within the time horizon [t,¢ + H) are

a7)

where H is the horizon length and L(t) = Z’;zl R;ii (1)
We further impose constraints on the charging/discharging
currents, temperatures, and SoC of the clusters to guarantee
their safe operation as follows:

it <ip, <ipY (18a)
T < T; < T, (18b)
< g <, (18c¢)

where zIEm/ M, Tmin/maxand @min/maare the upper/lower

safety bounds for ‘the current, temperature and SoC, respec-

tively. Note that the bounds for i, depend on ns;s ie.,

~min/max __ min/max mm/ma

ns.
s
ir, = > i-11r, , where i is the upper/lower

current bounds for cell 7. We also enforce cluster-level SoC
and temperature balancing constraints as follows:

(19a)
(19b)

|(jj - Cjavg' S A(j,
|Tj - Tavg| S AT»

where Ag and AT are the maximum allowed SoC and tem-
perature deviations among the clusters, respectively. The terms
favg and Tavg represent the average SoC and temperature of all
the clusters, respectively. Further, the following constraint is
introduced to ensure the power supply and demand balance:

k
> P
j=1

where P,y is the output power demand. Collecting the cost
function and constraints, one can compactly express the opti-
mal power management problem as

— Rji}, = Pou, (20)

~ min
1L g =1

st (9),(16), (18)-(20).

21

This problem seeks to find out the best ELJ. for cluster j for
7 = 1,...k in a predictive manner over a receding horizon.
However, it is a non-convex optimization problem due to the
nonlinearity of the equality constraint in (20), thus resisting
the search for the global optimum. We adopt and modify the
convexification technique in [11] to overcome this issue.
2) Convexification of (21): To start with, we define

1. 5,

B(t) = 505u5(;(t)) —

Ej, (22)

where E'j(t)iis the remaining energy of cluster S, C; =
Q;/B;j, and EY = %Cjﬂf(qj(O)) is the initial energy. Here, F;
is introduced to replace SoC for the purpose of convexification,
as vyill be seen later. Given (9), (11) and (22), the evolution
of F; is governed by

By(t) = (23)
The power losses of cluster .S; can also be expressed in terms
of F; and Pg, as

—}55_7_,

_ R;C;P%
J J
In the convex formulation of the optimal power management
problem, we control psj to minimize the total power losses of
the clusters, so (24) serves as a nonlinear equality constraint
resulting in a non-convex problem. Since the power loss term
appears in the cost function of the problem, the following
relaxation can be considered:

_ R,C;P2
By, >-—— 15 (25)
7= 2(E; + EY)

where the optimization problem will reduce ]5lj to its lower
bound.



Proceeding forward, we can reformulate the safety con-
straints (18a) and (18c) in terms of E; and Pg; as follows:

2
C;

_ . _ 92 _ _
(Ej + E0)ipn < Ps, <\ | = (E; + Ei™, (26)

J

Q

1_ . _ 1.
§Cja§(qym(t)) <E;+E)< 50]-@?(@;"%)). (26b)

We also rewrite and modify the constraints in (19) as

k
1 2 - _ _
ZEO-3 S ZEM|<AEB+E7, @Ta

- Tavg(ﬂ‘ < AT + gj(-T)»

(27b)

where AE; = (a; + B;Aq)? — 65?, and f_j(E) and EJ(T) are
respectively the energy and temperature slack variables. The
addition of the slack variables is to help fix the potential
infeasibility issue, which would happen when the clusters face
too large variations in their initial SoC and temperature [13].
The slack variables will also be included in the cost function
to penalize constraint violations.

Now, we are ready to introduce a convex inter-cluster power
optimization problem and present it in a discrete-time form for
the sake of computation and implementation. We denote by
zj = [Ps; P, B; Ty &) &1 |" the vector of the optimization
variables for j = 1, ..., k. We state the new problem as

H k
SN B+ ABEER [ + A,
t=0 j=1

min
zj,j=1,....k
Safety constraints:
2 _ o _
7 (Bl + EDIL] < Psylt] <
J
T]mln S T’] S ijax

14 —2 ¢ —min »
SC@™) < Byft] +

.0
IN

Balancing constraints:

t
&= 1 2 5 Al
I T511] - Tualtl] < AT + &1,
Power loss constraint:
P Y P2
Pyt > 2T
(Ej [t] + Ej)
Energy dynamics:
Ej[t + 1] — E;[t] = —Ps, [t]At,
Thermal dynamics:
Tylt+1) = Tyft] + — (P4, £] = (T [t] = Tenw)/ Beom|
;O L2 j v v
Power supply-demand balance:

< AE; +E7[1),

k
Z psj [t] - Plj [t] = Poult],
j=1
(23)

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF (28)

Method # of optimization variables # of constraints

[13] 6Hn —n
6Hk — k

11Hn +5n+ H

(28) in our approach 11Hk +5k+ H

k<n

where A(®) and A(T) are the penalization weights for &)
and £(T) respectively. The optimization problem in (28) is
convex because the cost function and the domain are both
convex. The convexity would allow efficient computation of
the global optimum with well-known algorithms.

Remark 1. Cell-based optimal power management for BESS
has been investigated in different studies, including our prior
work [13], but the existing approach face a significant compu-
tational bottleneck. For example, one must solve a receding-
horizon constrained optimization problem in [13] that is akin
to (28) but involves all cells. Its computation will quickly
reach a formidable level when the number of cells grows. Our
cluster-based approach, as shown in (28), will be computation-
ally much cheaper. This is because it involves only 6 Hk — k
optimization variables and 11Hk + 5k + H constraints with
k < n, contrasting with 6 Hn—n variables and 11 Hn+5n+H
constraints in [13], as summarized in Table I. While the clus-
tering and power splitting will add some computation, there
is little compromise to the overall efficiency and scalability of
our approach.

We emphasize that, while (28) attempts to balance the
clusters in SoC and temperature, it is of our interest to make
the cells balanced as well. But some cells might be slightly
outside the desired balancing bounds due to the aggregation
in the cluster modeling. We address this issue by an adaptive
choice of AE; and AT, as discussed next.

3) Adaptive cell balancing: The adaptive selection of bal-
ancing bounds has been examined within the framework of
two conditions: bound tightening and bound relaxing.

o Bound tightening: To clarify why a cluster-level balancing
constraint may not effectively enforce cell-level balanc-
ing, Fig. 6 (a) illustrates an example in which seven
cells are grouped into two clusters, S; and S2. The
aggregated temperatures of the clusters S; and Sy are
Ty and T3, respectively. The average of them is Tyy,.
Suppose that |T; — Ty | = AT for i = 1,2 as shown in
Fig. 6. Even though the clusters are balanced in this case,
some cells (marked in red) are still outside of the desired
balancing bounds. As minor as the deviation might be,
it is still preferable to maximize the cell-level balance
even in the cluster-level optimization procedure. The
same phenomenon may also appear in SoC balancing.
To address this issue, we suggest to dynamically modify



Ag and AT as follows:

1

A =Aq- max{d\?, ..., d\"}, (29a)
, 1

AT' = AT - max{d{", ...,d"}, (29b)

where AG and AT’ are the modified cluster-level bal-
ancing bounds to replace Ag and AT in (28), and d§.q/ B
is the maximum deviation of a cell’s SoC/temperature
from the centroid of cluster .S;. With (29), we practically
tighten the balancing bounds for the clusters so as to
improve the cell balancing.

e Bound relaxing: This condition involves adjusting the
bounds to expand the permissible range of cluster-level
balancing. As illustrated in Figure 6 (b), the temperature
distribution of cells within clusters S; and S5 adheres to
the desired bound of AT. To enhance power loss min-
imization, the balancing bounds for the clusters are re-
laxed, providing the optimization process with increased
flexibility. The relaxation of bounds is determined by
utilizing (29), where d\*") < 0.

Note that we do not update the balancing bounds at every
time instant. Instead, (29) is applied only when EJ(E) and EJ(»T)
reach zero—at this moment, the clusters are balanced so that
it is tenable to narrow/relax the bounds. The adaptive cell
balancing procedure will be examined in the simulation results.

D. Cluster-to-Cell Power Split

Suppose that the optimal power quota Pgi is obtained for
cluster j for j = 1, ...k by solving the optimization problem
in (28). The remaining question is how to split P;j among
the cells within the cluster. We propose three schemes that
derive from different assumptions about the intra-cluster cell
discrepancy.

Scheme #1: Equal power split. The first scheme assumes
that the constituent cells of the clusters are approximately
identical, neglecting discrepancies among them in terms of
SoC, temperature and internal resistance. It is thus sensible to
equally divide the optimal power assigned to a cluster among
the constituent cells. For cluster S;, we have

*
Pb1:-~-:Pb :st

n Sj

. (30)
nsj
Scheme #2: Internal-resistance-based power split. The sec-
ond scheme considers the internal resistance variations among
the cells and aims to reduce the power losses by an uneven
distribution of the cluster power. It divides ng by
1 px
~ LG
Py =~ 1Rl - 1
R PR

3D

, 1=1,..

From above, the less R; is, the larger P, is.

Compared to scheme #1, this scheme prioritizes loss mini-
mization over SoC and temperature balancing. However, both
of them are based on heuristics, implying suboptimal cell-level
power assignment. One can perform intra-cluster optimization
to achieve optimal power split among the cells.

x a

5"

| o &
K’T}/ Tan

(b)

Fig. 6. Adaptive cell balancing illustration. (a) Bound tightening. (b) Bound
relaxing.

G
~ N

Scheme #3: Optimal power split. We can apply the idea in
(28) to achieve optimal power split by minimizing the power
losses of all the cells within the cluster under some safety and
SoC balancing constraints. Considering cluster S;, the total
power losses can be expressed as

’I’sz

Li(t) =Y (R + Ro)ii, (t).

=1

(32)

We enforce the following constraints to ensure safety and intra-
cluster balancing:

AP <, <P (33a)

M < Ty < TP, (33b)

gt < q < g™, (33¢)

lar — qj,ave] < Ag, (33d)

1T} — Tjave| < AT, (33e)

for I = 1,...,ng,, where Tlmin/ max— Tj‘_“in/ max . d q;nin/max _

_min/max
I / , and @¢jave and T 4. are the average SoC and tem-

perature for cluster j, respectively. Further, we must make the
total power of the cells equal to the cluster’s optimal power.
That is,

ns.
SJ

> (Py = (Ri+ Re)ii,) = Ps, — P
=1

(34)

We can then derive the intra-cluster optimization problem as:
min

L(t
ir, 1=1,...ns, HOR

subject to  (9), (16), (33), (34).

(35)

For the constituent cells of each cluster, the above nonlinear
continuous optimization problem aims to find out the best
currents iy, forl =1,...,ng,. Note that (35), similar to (21),
is non-convex due to the nonlinearity of the equality constraint
(34). We can follow the same convexification procedure as in
(28) to formulate an alternative convex optimization problem



to solve (35). Considering cluster S;, the problem is stated as
below:

'n,sj
min > P[]+ AP + AT,
zl,l=1,...,nsj =
Safety constraints:
2 -min 2 -max
& Bl + B < Pl < \[ - (Bl + BD)iE,
Tlmin S Tl S Tlmax

1 i 1 ax
SO (g™ [0) < Bulk] + BY < 5 Cruif ([0,

Balancing constraints:

ns.
2 1 L2
— [t — — — L[t
ci 1] nSj;Cl 1]

ITilt] — Tavelt]] < AT + 1],
Power loss constraint:

(Rl + Rc)ClP2 [t]
Pt > RS
2(El[t] + EY)

Energy dynamics:

E; [t + 1] —F [t] = _Pbl [t]At,

Thermal dynamics:

< AE + P11,

At
Tt +1] = Ty[t] + [Pll [t] — (T1[t] — Tenv)/Rconv} ;
m; Crn
Power supply-demand balance:
ns;
> (Bylt) - Pult]) = P&t - Pr ],
=1
(36)
where z; = [P, B, B T, £ €™ ]T collects the optimization

variables, F; denotes the remaining energy in cell [, §l(E)

and ﬁl(T) represent the energy and temperature slack variables
with associated penalizing weights A(¥) and A7) in the
cost function. We highlight that scheme #3 must address the
above intra-cluster optimization problems for each cluster and
thus requires more computation. However, each such problem
involves only 6ng; optimization variables, and independent
of each other, they can be parallelized in computing. Thus,
scheme #3 can still be manageable if there are enough com-
puting resources.

IV. SIMULATION RESULTS

In this section, we carry out simulations for a BESS
consisting of 400 cells. Table II summarizes the specifications
of the BESS and the parameters of the proposed optimal power
management approach. The battery cells are based on Samsung
INR18650-25R whose parameters have been identified and
reported in [31]. The profile of the output power F,, is based
on the Urban Dynamometer Driving Schedule (UDDS) with
the peak charging and discharging power of 6 kW and 10 kW,
respectively. The simulations simulate the BESS operation for
2,400 seconds, in which the proposed approach runs with a 10-
second predictive horizon. We use the CVX package [32, 33]
with Matlab to solve the convex optimization problems in (28)

TABLE II
SPECIFICATIONS OF THE CONSIDERED LARGE-SCALE BESS

Symbol Parameter Value [Unit]
n Number of battery cells 400
v Cell nominal voltage 3.6 [V]
Q Cell nominal capacity 2.5 [Ah]
R Cell internal resistance 31.3 [mQ2]
[g™ g™]  Cell SoC limits [0.05,0.95]
[imin jmax]  Cell current limits [-7.5,7.5] [A]
Ci Specific thermal capacitance 918.49 [J/(K.Kg)]
m Cell Mass 0.0438 [Kg]
A External surface area 0.0042 [m?]
h Convection heat transfer coefficient 5.8 [W/(K.m?)]
Reony Convection thermal resistance 41.05 [K/W]
Teny Environment temperature 298 [K]
AqG SoC balancing threshold 0.5%
AT Temperature balancing threshold 0.5 [K]
At Sampling time 1 [s]
H Horizon length 10 [s]

and (36) using a workstation with a 3.5GHz Intel Core i9-
10920X CPU and 128GB of RAM.

We initialize the cells by randomly sampling their initial
SoC, temperature, and internal resistance from the uniform dis-
tributions ¢/(0.7,0.75), U (301, 305) K, and ¢/(31.3,41.3) mS),
respectively. The randomized variations will lead to many
possible combinations within the cells at the clustering stage,
allowing us to better investigate the efficacy of the proposed
approach in handling the cell heterogeneities. Further, we
conduct the simulations with schemes #1-3 for the cluster-
to-cell power split to compare their respective performances.

Fig. 7 depicts the SoC and temperature balancing perfor-
mance of the proposed approach. The proposed approach
under three power split schemes effectively alleviates the SoC
and temperature unbalance among the cells and successfully
drives the cells within the desired bounds. Having a closer
look at Figs. 7 (a)-(c), we see that schemes #1 and #2
show similar SoC balancing performances, and the proposed
approach drives the cells within the desired bound after about
1,000 seconds. Scheme #3 shows superior performance, and
the cell balancing is achieved only after 700 seconds. A
similar performance is observed for the temperature balancing
in Figs. 7 (d)-(f), where scheme #3 outperforms schemes #1
and #2 with a balancing time of 1,100 seconds versus 1,400
and 1,700 seconds. To conclude, schemes #1 and #2 provide
acceptable performance and high computational efficiency,
and scheme #3 would deliver the best balancing performance
while requiring more computation. A user may choose one of
them in practice based on the performance expectations and
computing resources.

Fig. 8 shows the power loss profiles of the BESS under
the proposed approach with the three power split schemes,
while comparing with the conventional case of no cell-level
power control. Overall, we observe the proposed approach
leads to lower power losses than in the conventional case. The
magnified views in the two time windows of Fig. 8 show that
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scheme #3 causes conspicuously minimum power losses when
the cells are unbalanced and that the three schemes produce
almost the same power losses when the cells are balanced.
Fig. 9 shows the total cumulative power losses. It is interesting
to observe that the proposed approach bears more power losses
for the sake of cell balancing in the early time interval of 0-200
seconds. However, its cumulative power loss will become less
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Fig. 10. Evolution in the number of clusters.

as time goes by and lower by 4.6% than in the conventional
case at the end of the simulation run.

Fig. 10 illustrates the change in the number of clusters k
throughout the simulation run. The value of k£ depends on the
level of variations in the cells’ SoC, temperature, and internal
resistance. The more balanced the cells, the fewer the clusters.
We can see that the cells are initially grouped into 17 clusters,
and fewer clusters are formed as the cells become more
uniform. Note that the number of clusters also determines the
computational costs of the inter-cluster optimization in (28),
so computation becomes less as the simulation runs forward.

It is of our interest to observe the evolution of the cells’ SoC
and temperature. Fig. 11 provides snapshots from the cell’s
SoC and temperature under the three power split schemes
at the time instants of 1,500, 1,000, and 2,000 seconds.
The black boxes in the plots show the desired SoC and
temperature balancing bounds, and each color represents a
cluster. The proposed optimal power management approach
effectively categorizes the cells into clusters, performs inter-
cluster optimization, and drives the cells into the desired bound
under all three power split schemes. Taking a closer look at
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Fig. 11 (c) at the time instant of 2,000 seconds, one can see that
the 400 cells form seven distinct clusters. However, the cells
are more scattered at the same time instant for schemes #1 and
#2, while scheme #3 leads to better intra-cluster convergence.

We further assess the roles of the slack variables and
balancing bounds. Fig. 12 depicts the evolution of the slack
variables over clusters Zle EJ(E) and Z;ﬂ:l EJ(-T). Note that
the cells and the resulting clusters are not fully bounded by
the balancing constraints in (27). Because of this, the power
optimization problem in (28) would have been infeasible to
solve even at the beginning time instant without the introduc-
tion of the slack variables. However, the slack variables help
prevent the infeasibility issue from occurring. They are initially
nonzero to slightly relax the balancing constraints and then
penalized to decrease toward zero as the balancing constraints
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Fig. 12. The evolution of the slack variables. (a) Energy slack variables. (b)
Temperature slack variables.

are increasingly satisfied.

While zero cluster-level slack variables suggest that the
clusters should be balanced, this does not guarantee that all
the cells are within the desired bounds, as aforementioned in
Section III.C. Fig. 13 shows the utility of the adaptive cell
balancing bounds Ag and AT. We can see that the original
SoC and temperature balancing bounds are 0.5% and 0.5 K,
respectively. According to Fig. 12 (b), the temperature slack
variables reach zero at the time instant of 400 seconds. At
this moment, the temperature balancing bounds are tightened
as shown in Fig. 13 (b), which leads to an increase in the
temperature slack variables. Fig. 12 (a) also indicates that the
SoC slack variables reach zero between the time steps of 750-
900 seconds for the three power split schemes. At the same
time instants, we can see an update in the SoC balancing
bounds in Fig. 13 (a). We can conclude from the evolution
of the balancing bounds the usefulness of tighter bounds for
the cluster-level balancing to improve the uniformity at the
cell level.

As a main objective of the study is to enable computa-
tionally efficient optimal power management, we measure the
computation time of the approach under schemes #1 and #3
for different cell numbers and cluster numbers. Note that
scheme #2 is skipped as its computational performance is
similar to that of scheme #1. We also compare the proposed
approach with cell-based power optimization as in the works
[10, 12, 13]. Table III summarizes the computation time,
with further illustration shown in Fig. 14. We observe several
key findings. Firstly, the computation time for scheme #l
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remains independent of the cell number and depends only
on the number of clusters. Secondly, the proposed approach
under scheme #3 requires more computation time than scheme
#1 due to the optimal power split among the constituent
cells of the clusters. Finally, our proposed approach exhibits
substantially less computation time compared to the cell-level
optimization. The improvement is more significant when deal-
ing with larger numbers of cells. For instance, our proposed
approach takes 6.76 and 19.43 seconds for schemes #1 and
#3 with 15 clusters, less than 2% of the about 1200 seconds
required by the cell-level optimization. The results validate
the computational efficiency and scalability of the proposed
approach for large-scale BESS.

V. EXPERIMENTAL RESULTS

We develop a lab-scale prototype to validate the proposed
optimal power management approach. The experimental val-
idation encompasses various aspects, including the evalua-
tion of cell clustering, model aggregation, optimization, and
cluster-to-cell power split. Fig. 15 (a) depicts the experimental
setup, and Fig. 15 (b) shows a 20-cell 4s5p battery pack.
Table IV lists the specifications of the key components of
the battery pack. We use K-type thermocouples to measure
the surface temperatures of the cells. The thermocouples are
connected to a National Instruments PCle-6321 DAQ board,
and the measurements are collected via LabVIEW. We solve
the optimization problem using the CVX package [32, 33],
and the optimal control decisions are transferred to local con-

TABLE III
NUMERICAL COMPARISON OF THE PROPOSED APPROACH AND
CELL-LEVEL OPTIMIZATION

Relative
Average Computation
Cell Number (n) Method Computation . P .
. Time Reduction
Time (s)

(%)

Cell-level optimization 29.02 —
Scheme #1 (15 clusters) 6.69 76.94
Scheme #1 (10 clusters) 4.75 83.63
50 Scheme #1 (5 clusters) 2.74 90.55
Scheme #3 (15 clusters) 10.49 63.85
Scheme #3 (10 clusters) 7.55 73.98
Scheme #3 (5 clusters) 5.99 79.35

Cell-level optimization 72.77 —
Scheme #1 (15 clusters) 6.67 90.83
Scheme #1 (10 clusters) 4.75 93.47
100 Scheme #1 (5 clusters) 2.69 96.30
Scheme #3 (15 clusters) 11.71 83.90
Scheme #3 (10 clusters) 8.61 88.16
Scheme #3 (5 clusters) 7.65 89.48

Cell-level optimization 274.97 —
Scheme #1 (15 clusters) 6.70 97.56
Scheme #1 (10 clusters) 4.75 98.27
200 Scheme #1 (5 clusters) 2.76 98.99
Scheme #3 (15 clusters) 14.13 94.86
Scheme #3 (10 clusters) 10.61 96.14
Scheme #3 (5 clusters) 10.68 96.11

Cell-level optimization 1200.45 —
Scheme #1 (15 clusters) 6.76 99.43
Scheme #1 (10 clusters) 4.83 99.59
400 Scheme #1 (5 clusters) 2.79 99.76
Scheme #3 (15 clusters) 19.43 98.38
Scheme #3 (10 clusters) 14.46 98.79
Scheme #3 (5 clusters) 16.80 98.60
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Fig. 14. Comparative analysis of computation times: the proposed approach
with schemes #1 and #3 versus the cell-level optimization.

trollers through DSP TMS320F28335. The local controllers
generate 200-kHz switching signals for the DC/DC converters.
We use a 150-W power load to discharge the battery pack.
The experiment lasts thirty minutes with a step size of thirty
seconds for the optimization, i.e., At = 30 s.

The cells’ initial SoC ranges from 75% to 80%, whereas
their initial temperature is 21.7°C. The cells’ output dis-
charging current is limited to be no more than 5 A. In the
experiment, we also examine the performance of the three
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cluster-to-cell power split schemes. Because the constituent
cells are identical, scheme #2 will reduce to scheme #1,
and both will generate the same results. Therefore, we will
apply only schemes #1 and #3 to do the power split in the
experiment. The experimental results are given in Figs. 16-17.

Fig. 16 (a) shows the cells’ SoC profiles under scheme #1.
We can observe that the initial SoC values of the cells are not
balanced and do not lie within the desired bound. However, the
proposed approach successfully distributes the output power
among different cells to drive the cells’ SoC to enter the
tolerable bounds. Fig. 16 (b) illustrates the SoC difference
of the cells from the average for a better visualization of the
SoC balancing trend. It can be seen that scheme #1 manages
to balance cells’ SoC after about 900 seconds. Fig. 16 (c)
and Fig. 16 (d) depict the cells’ temperature profiles and
the differences from the average, respectively. The cells see

TABLE IV
Li1sT OF KEY COMPONENTS IN THE EXPERIMENTAL SETUP

Device Model (Value)
MOSFET CSD86356Q5D
Gate driver TPS28225
Inductor SER2915H-333KL (33 nH)
Capacitor (10 pF)
Local controller STMS8S003F3P6
Main controller TMS320f28335

Battery cell Samsung INR18650-25R

their temperatures drift away from each other due to the
uneven power allocation among the cells, but the deviation is
bounded within the tolerance range. Note that, under scheme
#1, the cells are categorized to three to six clusters during the
experiment.

Fig. 16 (e) and Fig. 16 (f) show the cells’ SoC profiles and
the deviation from the average under scheme #3. In this case,
the SoC is balanced among the cells after about 750 seconds,
faster than when scheme #1 is applied, because of the optimal
intra-cluster power split. Fig. 16 (g) and Fig. 16 (h) also depict
the temperature of the cells and the temperature difference
from the average, respectively. Similar to Figs. 16 (c)-(d), the
cells’ temperatures diverge mildly from the same initial point,
but the divergence is almost constantly bounded throughout
the experiment. There is a minor violation in the temperature
balancing constraint around 70-80 seconds which is allowed
by the slack variables for the sake of the feasibility of the
optimization problem. This experiment finds a maximum of
four clusters, fewer than under scheme #1.

Figs. 17 (a)-(b) illustrate the output profiles of the cells
under schemes #1 and #3, respectively. Both show the cells are
assigned different power levels based on their conditions, and
after the balancing is achieved eventually, they are assigned the
same power. Yet, there is an interesting difference in Figs. 17
(a)-(b). Scheme #1 distributes the total power load equally
among the cells within a cluster; by contrast, scheme #3
performs intra-cluster power split in an optimal way, leading
to more variability in power allocation, but faster adjustment,
among the cells.

VI. CONCLUSION AND FUTURE WORK

The rapidly growing use of large-scale BESS is transform-
ing grid, transportation, and more sectors towards decarboniza-
tion and a sustainable future. However, an open challenge
for this technology is optimal power management, which
struggles with high computational complexity in optimization.
Thus, this paper proposes a computationally efficient and
scalable approach to deal with the challenge. The approach
distinguishes itself from the literature by enabling clustering-
based optimization. It partitions a large number of cells
into just a much smaller number of clusters based on their
characteristics and develops aggregated electro-thermal models
for the clusters. Inter-cluster power management then naturally
arises to compute the power quota among the clusters at con-
siderably high computational efficiency. Intra-cluster power
split then divides the power quota among the cells within
each cluster under three different schemes. We further pro-
pose adaptive cell balancing bounds to improve the cell-level
control performance. The proposed approach is designed to
perform cell balancing in terms of SoC and temperature while
minimizing the total power losses. We conduct simulations
for a 400-cell BESS to validate the computational efficiency
and scalability of the proposed approach. The results show a
substantial reduction in computational overhead, by margins
as large as 98% for a 400-cell BESS when compared to
conventional cell-level optimization. Further, we develop a
lab-scale 20-cell prototype for practical validation. The results
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show that the approach can effectively reduce power losses,
enhance cell balancing, and require much less computational
costs. The study can be expanded in several directions. Our
future work will include extending the proposed approach to
second-life battery systems, incorporating more sophisticated
battery models, and studying multi-level clustering for stronger
scalability.
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