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Abstract— Optimal power management of battery energy
storage systems (BESS) is crucial for their safe and efficient
operation. Numerical optimization techniques are frequently
utilized to solve the optimal power management problems.
However, these techniques often fall short of delivering real-
time solutions for large-scale BESS due to their computa-
tional complexity. To address this issue, this paper proposes
a computationally efficient approach. We introduce a new set
of decision variables called power-sharing ratios corresponding
to each cell, indicating their allocated power share from the
output power demand. We then formulate an optimal power
management problem to minimize the system-wide power
losses while ensuring compliance with safety, balancing, and
power supply-demand match constraints. To efficiently solve
this problem, a parameterized control policy is designed and
leveraged to transform the optimal power management problem
into a parameter estimation problem. We then implement the
ensemble Kalman inversion to estimate the optimal parameter
set. The proposed approach significantly reduces computational
requirements due to 1) the much lower dimensionality of the de-
cision parameters and 2) the estimation treatment of the optimal
power management problem. Finally, we conduct extensive sim-
ulations to validate the effectiveness of the proposed approach.
The results show promise in accuracy and computation time
compared with explored numerical optimization techniques.

I. INTRODUCTION

Battery energy storage systems (BESS) have found

widespread use in various applications ranging from small

portable electronics to large-scale battery packs for electric

vehicles and grid energy storage [1, 2]. These BESS comprise

many battery cells connected in series/parallel to deliver the

required output voltage/capacity requirements. BESS power

management commonly refers to power distribution among

these constituent cells for the sake of multiple operational ob-

jectives. Conventional power management strategies mainly

focus on state-of-charge (SoC) balancing to maximize the

BESS utilization [3]. However, recent studies have pointed

out further potentials that lie in optimal power manage-

ment, including temperature balancing and output voltage

regulation [4]. Despite the evident advantages of optimal

power management, its practical implementation presents a

nontrivial challenge. The underlying optimization problem

can quickly reach a formidable level of computational com-
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plexity with an increasing number of cells, rendering real-

time execution infeasible. While different strategies have

been explored in the literature to alleviate computational

requirements, optimal power management remains hardly

attainable for large-scale BESS. In this paper, we propose a

novel perspective on optimal power management, leveraging

Bayesian estimation to significantly reduce computation.

Next, we will review the existing literature on optimal power

management.

A. Literature Review

Optimal power management brings about several key

operational features, including power loss minimization, cell

balancing, and charge/discharge control. To fully harness

these functionalities, the literature has devised various op-

timization problems. Conventionally, the focus has centered

around SoC balancing to maximize the BESS utilization. For

instance, the study in [5] introduces a linear program aimed

at achieving SoC balancing either in minimum time or with

minimum power loss. This work is subsequently expanded

in [6] to enable inter- and intra-module level SoC balancing.

Further, in [7], a convex optimization problem is formulated

to achieve multiple objectives of cell balancing and power

loss minimization. Building upon this work, the studies in

[8, 9] extend this formulation to accommodate other BESS

configurations. We have also tailored a convex optimization

problem for a reconfigurable BESS in our previous study

[10]. The study in [11] also formulates a hierarchical model

predictive control for optimal power management.

In hindsight, optimal power management approaches

leverage the power of their underlying optimization problems

to enhance BESS performance. These problems are typically

solved through computationally intensive numerical tech-

niques. However, computational demands of these methods

become enormous when large-scale BESS presents large

numbers of decision variables, thus hindering the practical

implementation.

Distributed control is a valuable approach to managing

large-scale systems. This method involves distributing con-

trol tasks and computations among the constituent units

or agents of the system. This approach provides improved

efficiency and scalability, making it a useful choice for BESS

power control. Recent studies in [12, 13] treat individual

cells as autonomous agents and employed the concept of

distributed average consensus within networked multi-agent



systems to develop algorithms for SoC balancing. However,

these methods have limitations in optimizing critical metrics

such as power losses, making them non-optimal. Our previ-

ous research in [14] also proposes an innovative distributed

optimal power management approach that is specifically

designed for large-scale BESS.

B. Summary of Contributions

Despite efforts to reduce computational complexity, op-

timal power management for large-scale BESS applications

still remains beyond the reach of existing methods. Towards

overcoming the situation, our paper delivers the following

contributions:

1) We introduce power-sharing ratios for the cells which

indicate their power quota from the demanded output

power. This facilitates formulating an optimal power

management problem, leading to two benefits: firstly, the

optimal power-sharing ratios depend solely on current

cell conditions such as SoC, temperature, and internal

resistance. This allows us to propose a parameterized

control policy to reduce the number of decision variables

remarkably. Secondly, it streamlines the Bayesian estima-

tion treatment of the optimal power management problem

by limiting the search space of control variables.

2) We formulate and convert an optimal power management

problem into a Bayesian parameter estimation problem.

Avoiding tedious numerical optimization, we instead per-

form estimation to enable optimal power management.

We specifically leverage ensemble Kalman inversion to

estimate the optimal parameter set for the proposed

control policy. The estimation framework substantially

reduces computation time, making optimal power man-

agement potentially feasible and scalable for real-world

applications.

We validate our approach through extensive simulations,

demonstrating its efficacy in terms of accuracy and compu-

tation time.

II. OPTIMAL POWER MANAGEMENT OF BESS

This section elaborates on the BESS circuit structure, its

electro-thermal modeling, and optimal power management

formulation.

A. Circuit Structure

Fig. 1 illustrates the circuit structure of the considered

BESS. It comprises n battery cells. Each cell is equipped

with its corresponding DC/DC converter, which can be

interconnected in series or parallel configurations to sup-

ply the load under specific voltage/capacity ratings. The

DC/DC converters allow bidirectional power processing to

charge/discharge the cells with regulated power. This brings

about cell-level power control for the considered BESS.

This paper leverages this feature to enable cell balancing

and power loss minimization. It is worth mentioning that
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Fig. 1: The circuit structure of large-scale BESS.

the proposed approach in this work extends to other circuit

structures capable of cell-level power control. The following

subsection provides an electro-thermal model for the BESS

to pave the path for the problem formulation.

B. Electro-thermal Modeling

We begin by characterizing the electrical dynamics of

the considered BESS. Each cell is described by the Rint

model, which encompasses a SoC-dependent open-circuit

voltage (OCV) and a series resistance [15]. Further, we

model the DC/DC converters using an ideal DC transform

and a series resistance to capture their inherent inefficiencies.

The electrical model is illustrated in Fig. 1. For cell j, the

governing equations are given by

q̇j(t) = − 1

Qj
ij(t), (1a)

vj(t) = uj(qj(t))−Rjij(t), (1b)

where vj , uj , Rj , ij , Qj , qj are the terminal voltage, OCV,

internal resistance, current, capacity, and SoC, respectively.

The cell’s internal charging/discharging power Pbj is defined

as follows:

Pbj = uj(qj(t))ij(t). (2)

Further, the cell’s and its corresponding converter’s power

losses are expressed by

PLj = (Rj +RC)i
2
j (t). (3)



For the cells, let us introduce the power-sharing ratios. This

quantity indicates the portion of power allocated to each cell

from the total output power demand. They are defined as

μj =
Pbj

|Pout| , (4)

where μj and Pout are the power-sharing ratio and output

power demand, respectively. Note that we consider the

absolute value of Pout in (4) to accommodate both charging

and discharging cycles. Proceeding forward, we rewrite (1a)

and (3) to represent them in terms of μj . The new expressions

are as follows:

q̇j(t) = −μj(t)Pout(t)

Qjuj(qj(t))
, (5a)

PLj
=

(Rj +RC)μ
2
j (t)P

2
out(t)

u2j (qj(t))
. (5b)

Next, we describe the cells’ thermal behavior using a

lumped thermal circuit. The temperature of the cells is

influenced by heat generation due to internal power losses,

and heat dissipation due to environmental convection. For

cell j, the governing dynamic equation is

Cth,j Ṫj(t) =
Rjμ

2
jP

2
out(t)

u2j (qj(t))
− (Tj(t)− Tenv)/Rconv, (6)

where Cth,j , Tj , Tenv, and Rconv are the thermal capac-

itance, cell’s temperature, environmental temperature, and

convective thermal resistance, respectively. The collective

electro-thermal model, described in (5) and (6), strikes an

appropriate balance between expressiveness and computa-

tional tractability to pave the path toward optimal power

management formulation.

C. Problem Formulation

Here, we introduce the proposed optimal power man-

agement approach based on the power-sharing ratios. The

main objective of our approach is to achieve a power-

loss-minimized BESS operation while adhering to safety,

balancing, and power supply-demand match requirements.

The formulation in the sequel is represented in discrete time

after discretizing the electro-thermal model via the forward

Euler method.

To begin with, we express the BESS power losses at time

instant t as follows:

J [t] =

n∑
j=1

(Rj +RC)μ
2
j [t]P

2
out[t]

u2j (qj [t])
. (7)

To ensure the safe operation of the BESS, we impose the

following constraints:

imin
j ≤ ij ≤ imax

j , (8a)

qmin
j ≤ qj ≤ qmax

j , (8b)

where imin/max
j and qmin/max

j are the lower/upper safety bounds

for the cells’ current and SoC. Note that we can express (8a)

in terms of the power-sharing ratios as follows:

uj(qj [t])∣∣Pout[t]
∣∣ imin

j ≤ μj [t] ≤ uj(qj [t])∣∣Pout[t]
∣∣ imax

j . (9)

To promote balanced cell use, we further enforce constraints

on BESS operation as follows:∣∣qj [t]− qavg[t]
∣∣ ≤ Δq, (10a)∣∣Tj [t]− Tavg[t]
∣∣ ≤ ΔT, (10b)

where qavg[t] and Tavg[t] represent the average SoC and

temperature, and Δq and ΔT are the allowed deviation

of the cells’ SoC and temperature from their respective

average values. The power supply-demand balance can also

be guaranteed using the following constraint:

n∑
j=1

(
μj [t]−

(Rj +RC)μ
2
j [t]
∣∣Pout[t]

∣∣
u2j (qj [t])

)
= 1. (11)

Having laid out the power loss expression and the constraints,

we can now proceed to formulate the optimal power man-

agement problem over a receding horizon as follows:

min
μj ,j=1,...,n

k+H∑
t=k

J [t],

s.t. (5a), (6), (8b), (9), (10), (11),

(12)

where H is the horizon length. Note that the optimization

problem stated in (12) is both non-linear and non-convex,

and requires optimization of 3nH − n variables. While it

may be feasible to manage its computation for small n, it can

quickly become extremely challenging for large-scale BESS.

Therefore, we aim to develop a computationally efficient

solution for (12) in the next section.

III. EFFICIENT OPTIMAL POWER MANAGEMENT

APPROACH

This section introduces a parameterized control policy for

the optimal power management problem and then translates

it into a Bayesian parameter estimation problem. Finally,

we leverage the ensemble Kalman inversion for parameter

estimation.

A. Input Parameterization

As previously discussed, the computational complexity of

(12) hinders the adoption of optimal power management

for large-scale BESS. To alleviate this issue, we propose

a parameterized control policy based on the BESS opera-

tional conditions. By doing so, we intend to map a high-

dimensional control space, power-sharing ratios, into a low-

dimensional parameter space. Before introducing the control

policy, we explain the rationale behind this design with

an example. Let us consider a BESS with uniform SoC

distribution except for one cell with a relatively lower SoC

value. To achieve a balance, we require this cell to be

allocated more/less power in charging/discharging cycles. We



also need analogous behavior for the cells’ temperatures and

internal resistances. We thus parameterize the control policy

as follows to generate such behaviors:

μj [k] =
[
θ1 θ2 1− θ1 − θ2

]� ⎡⎣ lq,jlT,j

lR,j

⎤
⎦ , (13)

where θ1 and θ2 are the parameters; lq,j , lT,j , and lR,j are

also defined as follows:

lq,j =

⎧⎪⎨
⎪⎩
∑n

i=1

(
qj
qi

)−β1

Pout ≥ 0∑n
i=1

(
qi
qj

)−β1

Pout < 0
, (14a)

lT,j =
n∑

i=1

(
Tj
Ti

)−β2

, (14b)

lR,j =

(
n∑

i=1

Rj

Ri

)−1

, (14c)

where β1 and β2 are the hyperparameters. These hyperparam-

eters play a crucial role in the SoC and temperature balancing

performance, as they amplify the impact of imbalance on the

power-sharing ratios. Specifically, higher values of β lead to

greater differentiation in power allocation among the cells.

One can select β1 and β2 based on BESS specifications.

Remark 1. The control policy proposed in (13) maintains
optimality regarding power loss minimization. This is be-
cause (14c) is indeed the solution of (12) when the safety and
balancing constraints (8b), (9), and (10) are not active. By
setting θ1 = θ2 = 0, the designed control policy reflects the
absence of balancing constraints. Thus, the resultant power-
sharing ratios achieve power-loss-minimizing operation.

With the above control policy parameterization, the num-

ber of optimization variables reduce to 2nH +2, in contrast

to 3nH − n in the original problem. We will make further

effort next to find out the best optimization variables with

fast computation.

B. Bayesian Estimation Formulation

We leverage the designed control policy in (13) to translate

(12) into a Bayesian parameter estimation problem. The

estimation framework centers around utilizing the cost func-

tion (power losses) and the constraints (safety, balancing,

and power conservation) to collectively guide the inference

of optimal parameter set. The primary objective of this

transformation is twofold. Firstly, it provides us access to

sophisticated tools developed in the field of estimation. Sec-

ondly, it leads to a significant reduction in computation. We

begin the transformation by introducing a virtual dynamic

system. While doing so, we use simplified notations for

compact representations and adopt the convention of using

boldface lowercase letters for vectors and boldface uppercase

letters for matrices. The virtual dynamics are expressed as

follows: {
x[t+ 1] = f

(
x[t],πθ(x[t])

)
,

y[t] = h
(
x[t],πθ(x[t])

)
+ v[t],

(15)

where x[t], μ[t], and θ collect the cells’ SoC and temperature

values, power-sharing ratios, and parameters as follows:

x[t] =
[
q1[t] . . . qn[t] T1[t] . . . Tn[t]

]�
,

μ[t] =
[
μ1[t] . . . μn[t]

]�
,

θ =
[
θ1 θ2 1− θ1 − θ2

]�
.

Further, f denotes the discretized dynamic equations in (5a)

and (6) for all cells; μ[t] = πθ(x[t]) represents the parame-

terized control policy in (13). The virtual measurement y[t]

is characterized by

h
(
x[t],πθ(x[t])

)
= J [t] + ψ

(
g (x[t],πθ(x[t]))

)
, (16)

where g[t] gathers the constraints in (8b), (9), (10), (11) for

all cells at time t. Also, ψ(·) is a barrier function to measure

the constraint satisfaction as follows:

ψ(x) =

{
0 x ≤ 0

∞ x > 0
. (17)

In this framework, we relax the virtual measurement y[t] to

be stochastic by introducing a random noise variable v[t].

We highlight that the virtual system replicates the dy-

namics of the original system as in (12). The only differ-

ence is that the hard constraints in (12) are relaxed to a

soft constraint and added as a penalty term in the virtual

measurements. Furthermore, it is crucial for the behavior

of virtual measurements to mirror the characteristics of the

optimization problem in (12). This necessitates that the

virtual measurements conform to the form where y[t] = 0

holds for t = k, . . . , k + H . Requiring y[t] = 0 drives

the BESS operation close to the ideal case characterized by

negligible power losses and constraint satisfaction.

We are now ready to perform parameter estimation given

the virtual dynamics in (15). This involves the consideration

of the posterior distribution p(θ |y = 0) with the concate-

nated measurements from t = k, . . . , k +H , i.e.,

y =
[
y[k] . . . y[k +H]

]�
.

To estimate θ, we apply the maximum a posteriori (MAP)

estimation:

θ̂∗ = argmax
θ

log p(θ |y = 0). (18)

Theorem 1. Assume that p(θ) ∼ N (θ̄,Σθ) and that p(v) ∼
N (0, R) in (15) is white noise. Then, the problems in (12)

and (18) share the same optima when θ has a noninformative
prior, i.e., Σθ → ∞.

Proof. Using the Bayes’ rule and the Markovian property of



(15), we have

p(θ |y = 0) ∝
k+H∏
t=k

p(y[t] = 0 |θ)p(θ),

which implies

log p(θ |y = 0) =
k+H∑
t=k

log p(y[t] = 0 |θ) + log p(θ).

Because p(y[t] = 0 |θ) ∝ p(v[t]) ∼ N (0, R), we get

log p(y[t] = 0 |θ) ∝ 1

R
h2 (x[t],πθ(x[t])) .

Further, log p(θ) → 0 as Σθ → ∞. Putting together the

above, we see that the cost function in (18) is the scaled

opposite of the cost function and soft constraints in (12).

The theorem is thus proven.

Theorem 1 suggests the equivalence between the estima-

tion problem in (18) and the problem in (12) under mild

conditions. However, finding an analytical solution to (18) is

not possible, so we develop approximate solutions to (18). It

is important to note that the noninformative prior assumption

for p(θ) in Theorem 1 implies that the initial prior covariance

should be large enough to enable the exploration of the

entire search space. Next, we employ the ensemble Kalman

inversion to approximately solve (18).

C. Parameter Estimation via Ensemble Kalman Inversion

Tracing to ensemble Kalman filtering, the ensemble

Kalman inversion method enables sampling-based approx-

imation of a target posterior distribution [16]. It is effective

in finding the unknown parameters of a complex system

given measurement data. Its computation is derivative-free

and fast by harnessing the power of sampling. Specifically,

the method iteratively approximates p(θ�+1 | y) through

p(θ�+1 |y) ∝ p(y |θ�)α�p(θ�), (19)

where � is the iteration index and 0 ≤ α� ≤ 1 is a varying

hyperparameter used to temper the likelihood. As will be

seen later, α� will play the role of a stepsize parameter in

the sampling-based update procedure [17]. We consider that

p(θ�) ∼ N (θ̄�,Σ
θ
l ). Note that p(y |θ�)α� has covariance

α−1
� R, where R = diag(R, . . . , R). We assume

p

([
θ�
y

])
∼ N

⎛
⎝[θ̄�

ȳ�

]
,

⎡
⎣ Σθ

� Σθy
�(

Σθy
�

)�
Σy

� + α�
−1R

⎤
⎦
⎞
⎠ .

(20)

It follows from (20) that

p(θ�+1 |y) ∼ N (
θ̄�+1,Σ

θ
�+1

)
, (21)

where

θ̄�+1 = θ̄� +Σθy
�

(
Σy

� + α�
−1R

)−1
(y − ȳ�) , (22a)

Σθ
�+1 = Σθ

� +Σθy
�

(
Σy

� + α�
−1R

)−1
(
Σθy

�

)�
. (22b)

Based on (21)-(22), we can perform sampling-based ap-

proximation and update the posterior distribution. At iteration

�, we have θ
(i)
� ∼ N (θ�,Σ

θ
l ) for i = 1, . . . , N , and then

generate the sampled trajectories for the state for k ≤ t ≤
k +H by

x
(i)
� [t+ 1] = f

(
x
(i)
� [t],π

θ
(i)
�

(x
(i)
� [t])

)
, i = 1, . . . , N.

(23)

Then, the samples to approximate p(y |θ�) can be computed

by

y
(i)
� [t] = h

(
x
(i)
� [t],π

θ
(i)
�

(x
(i)
� [t])

)
+ v

(i)
� [t], (24)

where v
(i)
� [t] ∼ N (0, R). We now can calculate the means

and covariances as below:

θ̄� =
1

N

N∑
i=1

θ
(i)
� , ȳ� =

1

N

N∑
i=1

y
(i)
� , (25a)

Σθ
� =

1

N − 1

N∑
i=1

(
θ
(i)
� − θ̄�

)(
θ
(i)
� − θ̄�

)�
, (25b)

Σy
� =

1

N − 1

N∑
i=1

(
y
(i)
� − ȳ�

)(
y
(i)
� − ȳ�

)�
, (25c)

Σθy
� =

1

N − 1

N∑
i=1

(
θ
(i)
� − θ̄�

)(
y
(i)
� − ȳ�

)�
. (25d)

By (22a), the samples to approximate p(θ�+1 |y) are

θ
(i)
�+1 = θ

(i)
� +Σθy

�

(
Σy

� + α�
−1R

)−1
(
y − y

(i)
�

)
. (26)

Generally, α� takes a small value in early iterations, and

increases towards 1 as the iteration moves forward. One can

also use a bisection search algorithm to identify the best α�

for each iteration [18]. Then, we have

θ�+1 =
1

N

N∑
i=1

θ
(i)
�+1. (27)

The iteration procedure repeats itself until convergence when

the difference in two consecutive iterations is less than a pre-

specified tolerance ε. This is the ensemble Kalman inversion

method. The sampling-based iteration yields approximations

of the posterior distribution of the unknown parameters,

which can also be viewed as a search within the parameter

space. The method is useful in dealing with complex nonlin-

ear relationships from the parameters to the measurements

and offers much faster computation than gradient-based

optimization when dealing with many complex problems. Al-

gorithm 1 shows a summary of optimal power management

based on the method.



Algorithm 1 EnKI-OPM Ensemble Kalman inversion-based

optimal power management

1: Set up the optimization problem as in (12)

2: Convert the problem to a Bayesian parameter estimation

problem of p(θ |y = 0)

3: Initialize by setting � = 0, θ̄0 , Σθ
0 , and Δθ0

4: Draw samples θ
(i)
0 ∼ N (θ̄0,Σ

θ
0 ), for i = 1, . . . , N

5: while Δθ� ≥ ε do
6: for t = k, . . . , k +H do
7: Generate x

(i)
� [t] using (23)

8: Generate y
(i)
� [t] as in (24)

9: end for
10: Construct y

(i)
� =

[
y
(i)
� [k] . . . y

(i)
� [k +H]

]�

11: Compute θ̄� and ȳ� via (25a)

12: Compute Σθ
� , Σy

� , and Σθy
� via (25b) - (25d)

13: Specify α� via bisection search

14: Update θ
(i)
�+1 via (26)

15: Compute θ̄�+1 using (27)

16: Compute criteria Δθ�+1 ← ‖θ̄�+1 − θ̄�‖
17: Set � ← �+ 1

18: end while
19: Extract θ̂∗[k] on convergence

20: Compute power-sharing ratios μ[k] using (13)

21: Apply power-sharing ratios to BESS

TABLE I: Specifications of the BESS

Symbol Parameter Value [Unit]

n Number of battery cells 100

Q̄ Cell nominal capacity 2.5 [A.h]

R Cell internal resistance 30 [mΩ]

RC Cell internal resistance 10 [mΩ]

[qmin, qmax] Cell SoC limits [0.05,0.95]

[imin, imax] Cell current limits [-5,5] [A]

Cth Thermal capacitance 40.23 [J/K]

Rconv Convection thermal resistance 41.05 [K/W]

Tenv Environment temperature 298 [K]

Δq SoC balancing threshold 1%

ΔT Temperature balancing threshold 0.75 [K]

ε EnKI convergence tolerance 10−4

H Horizon length 10 [s]

IV. SIMULATION RESULTS

This section presents the simulation results of the proposed

efficient optimal power management on a BESS comprising

100 cells. The key specifications of the considered BESS

are summarized in Table I, which are based on the Samsung

INR18650-25R cells. The output power profile is designed
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Fig. 2: The output power profile.

to periodically charge and discharge the BESS at 1 kW every

twenty minutes, as illustrated in Fig. 2. We simulate the

BESS operation for one hour with the time steps of one

second. We program with Matlab to solve the parameter

estimation problem using a workstation with a 3.5 GHz Intel

Core i9-10920X CPU and 128 GB of RAM.

For the purpose of implementation, we use a softplus

function as the barrier function:

ψ(x) =
1

α
ln(1 + exp(βx)), (28)

where α and β are chosen such that ψ(x) is nearly zero

when x ≤ 0 and takes large numbers when x > 0

[19]. Furthermore, β1 and β2 in (13) are set to 8 and 12,

respectively.

In order to evaluate how well the proposed approach

performs, we start by setting the cells’ SoC values and

internal resistances from uniform distributions U(0.7, 0.75)
and U(0.03, 0.04) Ω, respectively. The cells’ initial temper-

atures are set to be 298 K. The results obtained from these

initializations are presented below.

In Fig. 3, we see the performance of the proposed approach

in terms of SoC and temperature balancing. For better

interpretation, we also present the estimated parameters in

Fig. 4. The simulation starts with an uneven distribution of

SoC across the cells. We observe in Fig. 4 that the proposed

approach initially prioritizes SoC balancing by setting θ1
close to one. This results in the ensuing convergence of the

cells’ SoC values, as shown in Figs. 3 (a), (b). However, the

cells’ temperatures start to drift away from each other, and

at about 300 seconds, the deviation in temperatures reaches

the maximum allowed threshold (see Figs. 3 (c), (d)). At this

point, the approach reduces θ1 and increases θ2 to maintain

the cells’ temperature within the desired range, as illustrated

in Fig. 4.

Moving forward, after around 750 seconds of the simu-

lation, it is no longer possible to maintain both SoC and

temperature balanced. This behavior is a consequence of

the infeasibility of the underlying optimization problem,

where achieving both SoC and temperature balancing is not

feasible. As a result, a slight deviation of the cells’ SoC

is allowed to keep the cells’ temperature within the desired
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Fig. 3: Simulation results of the SoC and temperature balancing. (a) The SoC of the cells. (b) The deviation of the cells’

SoC from the average. (c) The temperature of the cells. (d) The deviation of the cells’ temperature from the average.

bound. This behavior continues until the charging cycle starts

for the BESS at the 1200-th second.

The charging cycle allows the proposed approach to attain

SoC and temperature balancing simultaneously. Looking at

Fig. 4, we observe that the proposed approach increases θ1.

At roughly the 1300-th second, the cells are balanced, and the

proposed approach maintains the balance from thereon. After

ensuring that both the SoC and temperature are balanced,

the proposed approach focuses on minimizing the power

losses by reducing θ1 and θ2 after the 1300-second mark.

During this period, the BESS operation allocates the output

power demand among the cells based on their internal

resistances to achieve the power-loss-minimized operation.

This period lasts until the 1600-second mark, when the

SoC balancing constraint is activated (as shown in Fig. 3

(b)). After this point, the proposed approach increases θ1
and θ2 and continues to minimize power losses while also

maintaining balanced SoC and temperature among the cells.

At the time instant of 2400 seconds, the BESS transitions

to a discharging cycle. This shift allows the proposed ap-

proach to enforce power loss minimization while adhering to

the SoC and temperature balancing constraints. As a result,

θ1 and θ2 are decreased, as shown in Fig. 4. However, the

SoC values of the cells diverge until they reach the SoC

balancing threshold at around the 2850-th second. At this

point, the proposed approach increases θ1 and θ2 to keep

the cells within the desired balancing bounds.

Fig. 4 shows the parameters of the designed control policy,
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Fig. 4: The estimated parameters of the control policy.

and based on these parameters, we use (13) to calculate the

power-sharing ratios of the cells, which are illustrated in

Fig. 5. These power-sharing ratios are used to distribute the

output power demand among the cells. This differentiation

aims to minimize the power losses while ensuring that the

SoC and temperature of each cell are balanced. It is essential

to observe that when the cells are almost balanced (e.g.,

during the time interval of 2900∼3600 seconds), the power-

sharing ratios converge towards 1/n, requiring only minor

adjustments to maintain the balancing condition.

The objective of our proposed approach is to deliver a

computationally efficient solution for the optimal power man-

agement of large-scale BESS. Table II presents the average

computation times associated with our approach, considering

different cell numbers and ensemble sizes for the EnKI.
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TABLE II: Computation times of the proposed approach.

Ensemble size
Number of cells

20 50 100

EnKI-50 0.79 s 1.33 s 3.29 s

EnKI-100 0.99 s 1.89 s 6.24 s

EnKI-200 1.57 s 2.89 s 6.37 s

Our results demonstrate that the computation time for our

proposed approach consistently remains below 10-second,

even when handling 100 cells. In contrast, gradient-based

numerical optimization (12) would typically demand several

minutes for just 20 cells and would become impractically

burdensome and collapse for 100 cells.

V. CONCLUSIONS

As BESS becomes prevalent in various sectors of in-

dustry and economy, optimal power management becomes

necessary for achieving peak performance. However, optimal

power management of large-scale BESS poses significant

challenges in terms of computational requirements. To over-

come this bottleneck, this paper proposes a computationally

efficient approach. We start by introducing power-sharing

ratios for the cells, reflecting their corresponding power quota

from the output demand. Subsequently, we formulate an

optimal power management problem aimed at minimizing

power losses, while complying with the safety, balancing,

and power conservation constraints. To efficiently solve this

problem, we design a parameterized control policy and

then recast the optimal power management problem into a

parameter estimation task. The ensemble Kalman inversion

is employed to perform this parameter estimation. Through

extensive simulations, we validate the effectiveness of our

proposed approach. Our results demonstrate significant im-

provements in computation time while maintaining good

accuracy.
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