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Abstract— Essential to various practical applications of
lithium-ion batteries is the availability of accurate equivalent
circuit models. This paper presents a new coupled electro-
thermal model for batteries and studies how to extract it
from data. We consider the problem of maximum likelihood
parameter estimation, which, however, is nontrivial to solve
as the model is nonlinear in both its dynamics and mea-
surement. We propose to leverage the Bayesian optimization
approach, owing to its machine learning-driven capability in
handling complex optimization problems and searching for
global optima. To enhance the parameter search efficiency, we
dynamically narrow and refine the search space in Bayesian
optimization. The proposed system identification approach can
efficiently determine the parameters of the coupled electro-
thermal model. It is amenable to practical implementation,
with few requirements on the experiment, data types, and
optimization setups, and well applicable to many other battery
models.

I. INTRODUCTION

The global push for sustainability and decarbonization has

driven the widespread use of lithium-ion batteries (LiBs)

as power sources or energy storage systems for electric

mobility, smart grid, and renewable energy. In all these

applications, battery management systems run to ensure the

safety, performance, and longevity of LiBs from cell to

system level. They often adopt equivalent circuit models

(ECMs) to predict the behaviors of LiBs, because ECMs

can strike a desired balance between predictive accuracy and

computational efficiency [1].

The existing body of literature has introduced a range of

ECMs. After choosing an ECM for LiBs, it becomes crucial

to determine the model parameters. A popular methodology

among practitioners for this purpose is experiment-based

parameter calibration. Its core idea is that one can design

and implement specific current profiles on a LiB cell to

stimulate relevant dynamic processes and excite the effects

of concerned parameters on the measurements. Various stud-

ies about the Thevenin model leverage voltage transient

responses under pulse current charging/discharging to deter-

mine the internal resistance and capacitance parameters [2,

3]. It is also a common practice to use trickle constant current

charging/discharging to calibrate the mapping from the state-

of-charge (SoC) to the open-circuit voltage (OCV) [4]. Some
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studies have proposed specialized charging/discharging pro-

tocols that involve systematized testing procedures to extract

a complete ECM [5, 6]. Experimental calibration techniques

are easy to comprehend and handy to implement, but they

provide barely sufficient accuracy, restrict to some specific

current profiles, and require long hours of testing.

System identification represents a more formalized and

mathematical approach to extracting ECMs from data. In this

regard, a widely adopted method is to minimize the predic-

tion error of an ECM with respect to the measurements. This

generally leads to the formulation of nonlinear optimization

problems. For example, nonlinear least squares are consid-

ered in [7]–[9] to perform parameter estimation for ECMs.

Some recent studies deal with system identification for

ECMs from the viewpoint of statistical inference. They pose

maximum likelihood or maximum a posteriori estimation

problems [10] and then recast them as optimization problems

to solve for the unknown parameters. In general, optimization

problems for ECM identification are tractable under some

strong conditions like constant current excitation and linear

dynamics in the ECM. However, they can become highly

nonlinear and nonconvex in other cases, e.g., when one

uses arbitrary or variable current profiles, or when the ECM

is nonlinear in its dynamics. Gradient-based optimization

will easily get stuck in local optima and be sensitive, even

vulnerable, to initial parameter guesses. Global optimization

methods, e.g., particle swarm optimization [1, 11] and the

Cuckoo search [12, 13], thus gain use in some studies to

identify ECMs, but at the expense of high computational

complexity.

When ECMs capture coupled electro-thermal dynamics,

they present more challenges for system identification. This

is because the interaction between the electrical and ther-

mal submodels will result in more unknown parameters,

stronger nonlinearity, and lower parameter identifiability. For

such ECMs, it is possible to parameterize the temperature

dependence and then calibrate the ECMs at different tem-

peratures [2]. An alternative way is to control the testing

conditions so that only either the electrical or the thermal

dynamics will be excited and identified at a time [14]–[16].

These techniques, however, either require many experiments,

or involve empiricism or approximations to limit the achiev-

able level of accuracy. It thus remains a challenge to identify

ECMs with coupled electro-thermal dynamics.

In this paper, we consider a new electro-thermal model for

LiBs, which results from adding the temperature dependence

to the nonlinear double capacitor (NDC) model in [10].

Called NDC-T, the model has nonlinear dynamics and mea-



surement, while involving a few more parameters than other

ECMs of similar kind in the literature. To successfully extract

it from data, we consider a maximum likelihood parameter

estimation problem and solve it using Bayesian optimization

(BayesOpt) [17]. BayesOpt is a machine learning approach

for optimization—it builds a data-driven probabilistic sur-

rogate model for the objective function, iteratively updates

the surrogate, and uses the surrogate to search for optima

by balancing exploitation (searching promising regions) and

exploration (searching uncertain regions). This approach is

capable of handling objective functions difficult to evaluate,

obviating the use of gradients, and finding global optima

in complex search spaces. Gaining from the benefits of

BayesOpt, we can accurately identify the physical parameters

of the continuous-time NDC-T model directly from measure-

ment data based on a wide range of current profiles. We also

introduce a procedure to dynamically shrink the parameter

search space to accelerate the search and computation. The

proposed system identification approach well lends itself to

other ECMs and electrochemical models.

The remainder of the paper is organized as follows.

Section II introduces the NDC-T model and the parame-

ter identification problem. In Section III, we propose our

BayesOpt-based system identification approach. Section IV

provides a simulation study to validate the approach. Finally,

Section V ends the paper with conclusions.

II. NDC-T MODEL AND PARAMETER IDENTIFICATION

PROBLEM

This section presents the NDC-T model, a coupled electro-

thermal model for LiBs, and the challenges in its parameter

identification.

The NDC-T model integrates the NDC model in [10] and

the lumped thermal model in [18] to capture the electro-

thermal behavior of LiBs, as shown in Fig. 1. The NDC

model uses equivalent electrical circuits to approximate both

the lithium-ion diffusion and nonlinear voltage behavior

inside a LiB cell. The model uses an RC chain composed

of Rb,T , Cb and Cs so that the charge transfer between

Cb and Cs simulates the migration of lithium ions between

the core and surface of an electrode. Note that Vb and Vs,

the respective voltage across the Cb and Cs, are analogous

to the lithium-ion concentrations at the core and surface,

respectively, and that Rb,T emulates the lithium-ion diffusion

resistance [19]. Coupled with the RC chain is the open-

circuit voltage (OCV) source U = hOCV(Vs) and the internal

resistor Ro,T . The governing equations of the NDC model

are given by:[
V̇b(t)

V̇s(t)

]
=

[ −1
CbRb,T

1
CbRb,T

1
CsRb,T

−1
CsRb,T

] [
Vb(t)
Vs(t)

]
+

[
0
1
Cs

]
I(t),

V (t) = hOCV(Vs(t)) +Ro,T I(t),

where I is the input current, with I < 0 for discharging, and

I > 0 for charging. The SoC is given by

SoC =
CbVb + CsVs

Cb + Cs
× 100%.

Fig. 1: The NDC-T model, which couples the NDC submodel

and the lumped thermal submodel.

Here, we have Vb = Vs = 0 V when SoC = 0%, and

Vb = Vs = 1 V when SoC = 100%.

We consider a cylindrical LiB cell and use an equivalent

thermal circuit to capture its thermal dynamics. As shown in

Fig. 1, the circuit lumps the spatial temperature distribution

into the temperatures at the core and the surface, which are

denoted as Tc and Ts. This lumped thermal model is given

by[
Ṫc(t)

Ṫs(t)

]
=

[ −1
RcoreCcore

1
RcoreCcore

1
RcoreCsurf

−1
RsurfCsurf

+ −1
RcoreCsurf

] [
Tc(t)
Ts(t)

]

+

[ 1
Ccore

0

0 1
RsurfCsurf

] [
Q̇gen(t)
Tamb(t)

]
.

Here, Tamb is the ambient temperature; Ccore/surf is the heat

capacity at the cell’s core/surface; Rcore is the conduction

resistance between the cell’s core and surface; Rsurf is the

convection resistance between the cell’s surface and the

environment; Q̇gen is the heat generation rate, which is

assumed to be concentrated in the core of the cell.

Next, we join the two models so that they will interact

with each other to describe the cell’s dynamics with higher

fidelity. The coupling involves two aspects. First, the internal

resistance Ro,T and the diffusion resistance Rb,T are made

dependent on Tc following the Arrhenius law

Ro,T = Ro · exp
(
κ1

(
1

Tc
− 1

Tref

))
,

Rb,T = Rb · exp
(
κ2

(
1

Tc
− 1

Tref

))
,



where κ1 and κ2 are coefficients, and Tref is the reference

temperature. Second, the heat generation term Q̇gen is a

function of the voltage and SoC

Q̇gen = I(V − hOCV(SoC)).

With the coupling, we obtain the NDC-T model that is

able to characterize the electro-thermal dynamics of the cell.

The model is supplemented with two measurements, i.e.,

the terminal voltage yV and surface temperature yT . The

measurements are subject to noises due to imperfect sensors:

yV (t) = V (t) + eV ,

yT (t) = Ts(t) + eT ,

where eV ∼N (0, RV ) and eT∼N (0, RT ) are white Gaussian

noises.

For simplicity, we summarize and rewrite the NDC-T

model compactly as follows:

{
ẋ = f(x,u),

y = h(x,u) + e,

(1a)

(1b)

where x = [Vb Vs Tc Ts]
�, u = [I Tamb]

�, y = [yV yT ]
�,

e = [eV eT ]
�, f is the nonlinear state function, and h is the

nonlinear output function. Based on (1), it is of our interest

to extract the NDC-T model parameters from measurement

data.

We introduce the parameter identification for the NDC-

T model from the perspective of maximum likelihood es-

timation. To formulate a tractable problem, we introduce

two reasonable assumptions for the NDC-T model. First,

the SoC-OCV function hOCV(·) has been determined be-

forehand using some techniques like trickle current charg-

ing/discharging [20]. Second the model has no process noise.

For the NDC-T model, the unknown parameters to identify

include

θ =
[
Cb Cs Rb Ro Ccore Csurf Rcore Rsurf κ1 κ2

]�
,

where θ denotes the parameter vector.

To estimate θ, we apply a current sequence to the LiB

cell and collect the voltage and temperature measurements

at consecutive time instants t1, . . . , tN . The dataset thus

includes

u1:N =
[
u1 · · · uN

]�
, y1:N =

[
y1 · · · yN

]�
,

where un = u(tn), yn = y(tn). Our goal is to obtain θ̂
which maximizes the log-likelihood of the measurements:

θ̂ = argmax
θ

L(θ) := log p(y1:N |u1:N ,θ), (2)

where p(y1:N |u1:N ,θ) is the likelihood distribution of the

measurements conditioned on u1:N and θ.

However, the system identification problem in (2) is non-

trivial. The primary cause is that the model is nonlinear,

presents itself in the state-space form, and involves a good

number of physical parameters. This will give rise to several

challenges.

• The model is continuous-time, and discretization of it

will introduce errors. Such errors will propagate into

the identification to reduce the parameter estimation

accuracy.

• The model’s nonlinearity will lead to complex non-

convex optimization landscapes. Gradient-based opti-

mization will struggle to find global optima. It could

be a brittle solution here, because of the sensitivity to

initial guesses and the difficulty to find or compute the

gradients of the objective function.

• The large parameter space, due to the 10 unknown

parameters, will hinder the performance and chance of

success in parameter search.

To tackle the challenges, we will develop a BayesOpt-

based approach to treat the problem in (2).

III. PARAMETER IDENTIFICATION APPROACH

This section proposes our solution to the NDC-T’s iden-

tification problem in Section II. First, we present a Monte

Carlo simulation approach to evaluate L(θ) at a given θ.

Then, we briefly introduce the two components of BayesOpt.

Finally, we present a search space reduction scheme for a

more efficient parameter search.

A. Sampling-Based Evaluation of L(θ)

The evaluation of p(y1:N |u1:N ,θ) is difficult, as there is

no analytical solution because the NDC-T model is nonlinear.

We thus turn to Monte Carlo sampling to perform numerical

evaluation. Using Bayes’ rule, we have

p(y1:N |u1:N ,θ)

=

∫
p(y1:N |x1:N ,u1:N ,θ)p(x0:N |u1:N ,θ) dx0:N , (3)

where x0:N =
[
x0 · · · xN

]�
, xn = x(tn). Considering

that p(x0) is known based on the cell’s initial condition, we

can build an empirical distribution for p(x0:N |u1:N ,θ):

p(x0:N |u1:N ,θ) ≈ 1

Np

Np∑
i=1

δ(x0:N − x
(i)
0:N ), (4)

where x
(i)
0:N for i = 1, 2, . . . , Np is is the i-th sample-

based state trajectory by running the NDC-T model forward.

Given (4), (3) can be approximated as

p(y1:N |u1:N ,θ) ≈ 1

Np

Np∑
i=1

p(y1:N |x(i)
1:N ,u1:N ,θ)

=
1

Np

Np∑
i=1

N∏
n=1

p(yn |x(i)
n ,un,θ).

Therefore, L(θ) is approximated by

L(θ) ≈ − logNp + log

Np∑
i=1

N∏
n=1

p(yn |x(i)
n ,un,θ). (5)

Note that sampling from p(x0:N |u1:N ,θ) is hard for general

nonlinear state space systems [21]. However, since (1a) of the

NDC-T model is deterministic, we can compute x1:N given



θ by running (1a) forward after sampling x0. The model run

can be based on the Runge-Kutta method or other numerical

methods. For high accuracy, we can use a small enough step

size.

Remark 1: The above maximum likelihood-based formu-

lation for parameter estimation can be easily extended to the

case of multiple datasets. Consider that M datasets y1:M ={
y1
1:N1

, · · · ,yM
1:NM

}
and u1:M =

{
u1
1:N1

, · · · ,uM
1:NM

}
are

collected independently, we have

log p(y1:M |u1:M ,θ) =

M∑
m=1

log p(ym
1:Nm

|um
1:Nm

,θ).

This implies that the total log-likelihood given a θ will be

the sum of the log-likelihoods for each dataset. Mostly, the

use of more datasets will improve the accuracy in parameter

estimation.

B. BayesOpt

BayesOpt considers L(θ) as a black-box function and

uses Gaussian processes to capture probabilistic relations

between θ and L(θ). The Gaussian process will serve as a

surrogate model to approximate L(θ) and be used to search

for the optimal solution. For clarity, we denote the surrogate

for L(θ) as L̂(θ). As a Gaussian process, L̂(θ) takes the

following prior distribution:

L̂(θ) ∼ GP(μ(θ), k(θ,θ′)),

where μ(·) and k(·, ·) are the mean and kernel functions.

Note that k(θ,θ′) encodes the correlation between L̂(θ)
and L̂(θ′), where θ and θ′ belong to the parameter space.

Common choices of k(·, ·) include the squared exponen-

tial kernel and Màtern kernel [17]. Given q parameters

and their corresponding log-likelihood values L(θ1:q) =

[L(θ1) · · · L(θq)]
�

, the posterior distribution of L̂(θ) can

be obtained as

L̂(θ) | L(θ1:q) ∼ N (μq(θ),Σq(θ)), (6)

where

μq(θ) = μ(θ) + k̄(θ,θ1:q)K
−1 (L(θ1:q)− μ(θ1:q)) ,

Σq(θ) = k(θ,θ)− k̄(θ,θ1:q)K
−1k̄(θ)�.

Here,

μ(θ1:q) =
[
μ(θ1) · · · μ(θq)

]�
,

k̄(θ,θ1:q) =
[
k(θ,θ1) · · · k(θ,θq)

]
,

K =

⎡
⎢⎣

k(θ1,θ1) · · · k(θ1,θq)
...

. . .
...

k(θ1,θq)
� · · · k(θq,θq)

⎤
⎥⎦ .

The posterior distribution in (6) represents the prediction of

L̂(θ) based on the existing data points. It will be used to

find out the next sample θq+1.

BayesOpt uses the so-called acquisition function to guide

the search for θq+1. For the acquisition function design,

a popular choice is the expected improvement. The im-

provement refers to the increase of L̂(θ) with respect to

the maximum of the so far observed L(θ1:q). As L̂(θ)
is probabilistic, we must consider the expectation of the

improvement. Specifically, denoting L∗ = maxL(θ1:q), the

expected improvement is defined as

EI(θ) = E

[(
L̂(θ)− L∗

)+ ∣∣∣ L(θ1:q)
]
,

where (·)+ = max(·, 0), and the expectation is taken over

the posterior distribution given by (6). Then, θq+1 is selected

to be the point that maximizes EI(θ), that is

θq+1 = argmax
θ

EI(θ).

The expected improvement-based search for θ1:q will not

only exploit the available knowledge, embodied by L(θ1:q),
but also explore the parameter space by harnessing the

probabilistic uncertainty. This balance between exploitation

and exploration eventually will facilitate the search for global

optima.

C. Search Space Reduction

While BayesOpt has some important benefits, its imple-

mentation often requires much computation to thoroughly

search through the parameter space. The computational cost

will be especially high when there are many parameters. The

challenge carries over to the identification of the NDC-T

model. To speed up the optimization process, we leverage

the technique in [22] to reduce the search space. The key

idea lies in using the existing evaluations and data points

after every few iterations to determine the best search space,

which is narrower in size, for the subsequent iterations.

We consider shaping the search space for θ as an ellipsoid:

{Θ | (θ − c)
�
A (θ − c) ≤ 1},

where c is the center of the ellipsoid, and A > 0 is the

shape matrix. Suppose that we have collected a few data

points in the foregoing search, and then pick the best τ data

from them which have the largest L. They are denoted as

L(θ1:τ ) evaluated at θı for ı = 1, 2, . . . , τ . It is plausible

to suppose that these τ data points approximately shape up

a space that encompasses the maximum of L(θ). We can

determine the space by finding an ellipsoid such that θı for

ı = 1, 2, . . . , τ will all lie in it. This is achieved through

addressing the following optimization problem:

min
A,c

log det(A−1),

s.t. (θı − c)
�
A (θı − c) ≤ 1, ı = 1, 2, . . . , τ,

A > 0.

The problem admits a solution known as the Khachiyan

algorithm [23]. We introduce rounds of BayesOpt, where

one round consists of running BayesOpt for several iterations

and then adjusting the parameter search space. By narrowing

down the search space in this way, BayesOpt will gain more

computational efficiency. The standard version of BayesOpt

can be readily modified to incorporate a constrained search

space, as shown in [24].



TABLE I: Initial parameter search space and comparison of

the true and the identified parameters of the NDC-T model.

Parameters Search range True Identified

Cb [F] 7000∼11000 10037 10043

Cs [F] 700∼1100 973 964

Rb [Ω] 0∼0.1 0.019 0.0188

Ro [Ω] 0∼0.1 0.026 0.0259

Ccore [J/kelvin] 20∼70 40 41.69

Csurf [J/kelvin] 0∼20 10 13.67

Rcore [kelvin/W] 0∼10 4 2.80

Rsurf [kelvin/W] 5∼15 7 7.27

κ1 0∼100 30 31.07

κ2 0∼100 70 62.69

To sum up, the advantages of using the proposed algorithm

are three-fold:

1) The parameters are identified directly in the

continuous-time space. Unlike other approaches,

we avoid the burdensome procedure of identifying the

discrete-time model first and then converting it back

to the continuous-time model. The algorithm can also

handle the use of any current load profiles.

2) The algorithm is gradient-free. Therefore, there is no

need to calculate the gradient with respect to θ.

3) BayesOpt is provably effective at finding global op-

tima [17], presenting a promise to identify the NDC-

T model accurately. Its computational demands are

reasonable, especially when given the search space

reduction. It ensures a physically meaningful estimate

with reasonable computational time.

Note that the proposed algorithm is applicable to a broader

spectrum of ECMs and even electrochemical models, though

we consider the NDC-T model specifically in this paper.

IV. SIMULATION STUDIES

This section presents a simulation study to demonstrate

the effectiveness of the proposed algorithm.

We consider a 3.3 Ah NCA/graphite LiB cell, whose

parameters are taken from [6, 10] and shown in Table I.

Multiple synthetic datasets are generated by discharging

the cell from full (SoC(0) = 1) using the US06, UDDS

and LA92 current profiles [25]. Each current profile is

scaled to be between 0∼4 A. The datasets also account for

different ambient temperatures so as to identify the thermal

parameters. The Tamb is set to be 313 kelvin, 283 kelvin,

and 298 kelvin for the US06, UDDS, and LA92 profiles,

respectively. The sampling interval is 1 s. The covariances

of the measurement noises are set to be RV = 10−4 and

RT = 10−3. The reference temperature is Tref = 298 kelvin.

In the simulations, the cell’s initial state is known, which is

Vb(0) = Vs(0) = 1 and Tc(0) = Ts(0) = Tamb.

In implementing BayesOpt, we use the initial parameter

search space shown in Table I, and narrow the search space

three times, after every 200 iterations. The ellipsoidal search

space is determined using the best 20 data points. Because

the parameters vary across different orders of magnitude,
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Fig. 2: Upper and lower bounds on the search space for

each parameter over four rounds of BayesOpt. “−” for upper

bound, “−” for lower bound, and “−” for the true parameter.

Fig. 3: Projection of the ellipsoid-shaped parameter search

space on Cs, Rsurf and Ro in round one to three of BayesOpt.

they are pre-processed by normalization before feeding to

the Gaussian process, as often recommended in the practice

of Gaussian process regression.

The parameter estimation is shown in Table I, which well

agrees with the truth. The figures are further supplementary

evidence. Figs. 2-3 show that the search space reduction in

the optimization process. The shrinking size implies that the
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Fig. 4: Average maximum log-likelihood over 20 indepen-

dent runs. “ − ” shows the log-likelihood evaluated at the

true parameters.

parameter estimation performance improves. Fig. 4 shows

the L(θ̂) with respect to the iterations. The comparison with

the standard BayesOpt also shows that the search space

shrinking accelerates the search. Fig. 5 illustrates a compar-

ison between the predicted voltage and surface temperature

and the measurements when the battery is applied with the

UDDS current profile. Throughout the discharging process,

the voltage error is within 0.04 V, and the temperature error

is within 0.2 kelvin. These results indicate that the proposed

algorithm delivers good system identification performance.

V. CONCLUSIONS

System identification for LiBs has attracted perennial

interest due to its essential role in various applications.

The problem becomes challenging and intriguing when a

LiB model integrates the electrical and thermal dynamics to

be nonlinear and complex. We consider such an equivalent

circuit model in this study, the NDC-T model, and harnesses

BayesOpt to enable the maximum likelihood estimation of its

parameters. The use of BayesOpt is motivated by its power

in globally optimizing hard-to-evaluate objective functions

through probabilistic machine learning. To speed up the

implementation of BayesOpt for the considered problem,

we add a procedure to reduce the parameter search space

dynamically. The proposed parameter identification approach

shows some useful merits for practical LiB applications.

First, it can well handle the NDC-T model which has a non-

linear continuous-time state-space representation. Second, it

extracts the physical parameters directly from measurement

data. Finally, it allows the use of a wide range of current pro-

files. We validate the effectiveness of the proposed method

through simulation and highlight its potential for identifying

more equivalent circuit models.
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Fig. 5: Comparison of the measured and predicted voltage

and surface temperature under the UDDS discharging profile

at Tamb = 283 kelvin.
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