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Abstract—Lithium-ion battery packs consist of a varying
number of single cells, designed to meet specific application
requirements for output voltage and capacity. Effective fault
diagnosis in these battery packs is an essential prerequisite for
ensuring their safe and reliable operation. To address this need,
we introduce a novel model-based fault diagnosis approach. Our
approach distinguishes itself by leveraging informative structural
properties inherent in battery packs such as uniformity among
the constituent cells, and sparsity of fault occurrences to enhance
its fault diagnosis capabilities. The proposed approach formulates
a moving horizon estimation (MHE) problem, incorporating
such structural information to estimate different fault signals—
specifically, internal short circuits, external short circuits, and
voltage and current sensors faults. We conduct various simu-
lations to evaluate the performance of the proposed approach
under different fault types and magnitudes. The obtained results
validate the proposed approach and promise effective fault
diagnosis for battery packs.

Index Terms—Dbattery systems, fault diagnosis, moving horizon
estimation

I. INTRODUCTION

Lithium-ion battery packs have emerged as an effective
solution for energy storage across various applications. Be-
ginning with their use in small portable devices, these battery
packs are continuously expanding their role in transportation
electrification, including electric aircraft, and in integration of
renewable energy through grid energy storage [1, 2]. Despite
the advantages of lithium-ion batteries, such as high energy
density and long lifespan, they are susceptible to safety risks
[3]. This necessitates careful monitoring within their battery
management systems to ensure their safe and reliable oper-
ation, especially in safety-critical applications. Consequently,
fault diagnosis is of utmost importance to lithium-ion battery
packs [4].

Fault diagnosis of lithium-ion battery packs has attracted
much attention from both researchers and practitioners. Ex-
isting studies can be broadly classified into two categories:
1) model-based approaches [5], and 2) data-driven approaches

[6]. Model-based approaches utilize a system model to iden-
tify fault occurrences by aligning measurements with model
predictions. On the other hand, data-driven approaches involve
training a classifier to differentiate between normal and faulty
operating conditions. This paper specifically focuses on the de-
velopment of a model-based approach for fault diagnosis. We
thus narrow the subsequent review to model-based approaches.

Recently, model-based fault diagnostics have become the
mainstream approach for lithium-ion battery packs. This is
mainly due to the advancements in our in-depth understanding
of their dynamics. One area of research focuses on sensor
fault detection and identification. For instance, the work in
[7] solely concentrates on voltage sensor faults in a single
battery cell. The study in [8] investigates voltage and current
sensor fault diagnosis in a serial-connected battery pack, while
[9] introduces a more comprehensive method for sensor fault
detection in both serial and parallel-connected battery packs.
Another body of research investigates cell fault detection and
identification. For example, the study in [10] aims to detect
short circuits in serial-connected battery packs. Additionally,
the works in [7, 11] develop fault detection approaches for
minor internal short circuits. While many studies focus exclu-
sively on either sensor or cell faults, there are comprehensive
approaches in the literature that simultaneously address both
types. For instance, the works in [12—14] present fault detec-
tion approaches that encompass both sensor and cell faults
simultaneously. However, it is worth noting that these studies
often rely on a high number of sensors.

Existing fault detection approaches usually require many
sensors to capture faults successfully, counter to the practical
need for economy in sensor utilization. This paper, however,
proposes that we can harness some structural properties in-
herent in battery packs to enable fault detection with fewer
sensors. For instance, exploiting the uniformity of identical
cells within the battery pack can significantly enhance fault
detection. Additionally, recognizing the distinct nature and
severity of various fault types, in conjunction with the low



probability of simultaneous occurrence, raises the question of
how such information can be effectively leveraged to improve
fault diagnosis. Further, our approach can accommodate sensor
faults, in contrast to various studies assuming faultless sensors.

Compared to the existing literature, this paper makes two
significant contributions. Firstly, the proposed fault diagno-
sis approach leverages the structural properties of battery
packs, including uniformity among constituent cells, severity
of different fault types, and sparsity of fault occurrences.
We specifically aim to reduce our reliance on sensor mea-
surements and exploit these structural properties to enhance
fault diagnosis capabilities. Secondly, our approach formulates
a moving horizon estimation (MHE) problem to integrate
structural properties into fault diagnosis. To the best of our
knowledge, this study is the first to explore the application of
MHE for diagnosing faults in battery packs. The MHE-based
formulation enables us to incorporate structural properties for
estimating fault signals.

The rest of the paper is outlined as follows. Section II will
introduce the battery pack under study and its fault modeling.
In Section III, the proposed MHE-based fault diagnosis ap-
proach will be presented. Section IV will present simulation
results for validation, and we will conclude the paper in
Section V.

II. BATTERY PACK AND FAULT MODELING

This section introduces the considered faults for battery
packs and subsequently addresses the electro-thermal mod-
eling in the presence of these faults. Battery packs are
susceptible to various malfunctions, including cell internal
short circuits, external short circuits, sensor faults, resistance
increases due to connection looseness, and rapid cell aging
[15]. While all faults can impact the performance, internal and
external short circuits, along with sensor faults, are particularly
severe. Short circuits can induce rapid temperature increases,
leading to thermal runaways. Sensor faults can result in over-
charging/discharging, significantly affecting cell performance.
In this paper, our specific focus centers on 1) cell-level soft
internal short circuits, characterized by small incremental
currents with limited heat generation occurring in the early
stages of internal short circuits; 2) external short circuits; and
3) voltage/current sensor faults. Next, we discuss the battery
pack modeling with consideration of these efforts.

Fig. 1 illustrates the circuit structure of a battery module,
comprising n battery cells in parallel. The module is equipped
with voltage, current, and temperature sensors. Note that such
modules can be serially connected to construct larger battery
packs with higher output voltage. Nevertheless, we focus on
the fault diagnosis of a single module in this paper.

To begin with the electrical model, we employ the Rint
model to describe the electrical behavior of the cells, as
depicted in Fig. 2 (a). The Rint model encompasses an open-
circuit voltage source (OCV) and an internal resistance R
[16]. To account for internal short circuits, we introduce an
additional resistor Rjsc ; to represent and capture the occur-
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Fig. 2: The cell-level electro-thermal model. (a) The electrical
model of the module j. (b) The thermal model of the cell j.

rences within the cells. For cell j, the governing equations are
as follows:

q;(t) = —C;j (i (t) +i1sc,; (),

v;(t) = u;(q;(t)) — R; (i5(t) +d1sc,; (1)) »

where ¢j, Qj, uj, v;, and i; are the cell’s state-of-
charge (SoC), capacity, OCV, terminal voltage, and charg-
ing/discharging current, respectively. The term ij5¢c,; denotes
the internal short circuit current. We also consider a linear
SoC/OCYV relationship as follows:

ui(q;(t)) = aj + Bq;(t), 2

where a; and 3; are the intercept and slope coefficients of the
line.

The thermal behavior of the battery cells is characterized
through a lumped capacitance model, illustrated in Fig. 2 (b).
This model considers internal power losses as the primary
source of heat generation, with heat dissipating through con-
vection to the environment. The governing thermal dynamics
are given as follows:

Otth (t) - Rj (7’] (t) + Z‘ISC,j (t))z - (TJ (t) 7jjenv)/chnV7 (3)

where T; and T, are the temperature of cell j and the
environmental temperature, respectively. Further, Cy, and Rony
are the heat capacity and the convective thermal resistance
between cell ;7 and the environment, respectively. Note that
i1sc,; contributes as a heat generation term in the thermal
model.

(Ta)
(1b)



We now shift our attention to external short circuit model-
ing. This fault is represented by a resistance Rggc in parallel
with the module, as illustrated in Fig. 1. By Kirchoff’s current
law, we have:

i1 +i2 + ... + iy =41 + ESC, 4)

where i7 and igsc are the applied current to the module and
the external short circuit current, respectively.

As we explained earlier, each module is equipped with three
sensors for Voltage, current, and temperature measurements.
The voltage sensor measures the voltage across the parallel-
connected cells as follows:

Vin = v1 + fo, &)

where V,,, is the measured voltage and f, denotes the sensor
fault signal (f, # O indicates a failed sensor). Also note that
v = v = --- = v, since the cells are parallel-connected.
The current sensor also measures the applied current to the
module as follows:

im =11 + fi, (6)

where f; is the current sensor fault signal. The module’s
temperature is also monitored through a temperature sensor.
Here, we assume a uniform temperature distribution among
the cells, i.e.,

Typn=Tr = =Ty, (7

where T, is the measured temperature. Additionally, it is
important to note that we do not account for temperature
sensor faults in this study. In what follows, we will utilize
the presented electro-thermal model in conjunction with the
identified faults to formulate the proposed model-based fault
diagnosis approach.

III. THE PROPOSED FAULT DIAGNOSIS APPROACH

The central idea of this paper is to investigate the utilization
of specific structural properties for the fault diagnosis of bat-
tery packs. We specifically focus on integrating the following
information into our fault diagnosis approach:

1) Sparsity of fault occurrences: A battery pack may be
subject to various fault types, but at any given time,
only a few faults are likely to occur. This suggests that
fault occurrences should be sparse. Although one fault
may lead to others over time, sparsity will help us detect
the initial fault in the early stages.

2) Uniformity among identical constituent cells: Battery
packs consist of almost identical cells arranged in series
and parallel to meet specific output requirements. It is
reasonable to anticipate that cells should exhibit con-
sistent behavior. Deviations in the behavior of a single
cell compared to others may indicate a malfunction,
such as an internal short circuit. Therefore, we exploit
the fact that constituent cells are identical and impose
a maximum discrepancy threshold among them. Any
deviation beyond the predefined threshold can be utilized
to detect and identify faults.

3) Severity of various fault types: It is important to ac-
knowledge that distinct fault types have varying impacts
on battery packs. Let us, for instance, compare an
internal short circuit fault with an external one. An
internal short circuit primarily affects individual cells
within a battery pack. Characterized by a minor short
circuit current, detecting and identifying faults becomes
challenging due to its limited impact on overall per-
formance. In contrast, external short circuits have the
potential to affect more than a single cell—potentially
the entire module—with a substantial impact and high
short circuit current. Incorporating these characteristics
of different fault types will enhance the accuracy in fault
diagnosis.

For the battery pack in Fig. 1, we formulate an MHE prob-
lem for estimating fault signals while leveraging the structural
properties mentioned above. First introduced in [17], MHE is
a method that employs the most recent measurements within
a time window to estimate unknown states. This method finds
application in tasks such as state estimation, fault detection,
and disturbance estimation. MHE formulates the estimation as
an optimization problem that enables possible incorporation of
further constraints on estimated variables.

To begin with, we discretize the system dynamics in (2)
and (3) through the forward Euler method. We will also
adopt the convention of using bold lowercase and uppercase
letters for vectors and matrices, respectively. Subsequently, we
compactly represent the system dynamics and measurement
models as follows:

z[k + 1] = g (x[k], ulk], fisc[k]) + wq k],
ylk] = h (z[k], ulk], fesc[k], foilk]) + wy K],

(8a)
(8b)

where x, u, y are the states, inputs, and measurements,
respectively; fisc, fesc, and f, ; are the internal short circuit,
external short circuit, and sensor fault signals, respectively.
These variables are specified as follows:

q1
q. Vo 0 1sc,1
n . .
T = sy Y= lm |, U= ) .fISC = : )
T . , E
. m in 1SC,n
_Tn_

foi= B})] , Jesc = iEsc-

7

The terms w, € R?" and w, € R? are also the bounded
process and measurement disturbances, respectively.
Proceeding forward, we focus on the formulation of a cost
function for the MHE problem. Our design aims to promote
the sparsity of fault occurrences within our fault diagnosis
approach. To achieve this objective, we introduce an {g-



norm regularization term into the cost function of the MHE
framework as follows:

k—1
2 2
¢kl = > lwaltlllg + lwy Al 5 + 1 FEl, + I1AF ],
t=k—H
+ [lwy [kl 5 + duc (2[5 — H]) )
where F' = [ fic fesc fT]T is the concatenated fault vector

and ||-||, denotes its £o-norm; AF is the incremental changes
in the fault signals defined as

AF[k] = Flk] — F[k — 1]. (10)
Further, H is the horizon length, @ and R are weight matrices,
and @[k — H| is the estimated « at time step k — H. In addi-
tion, ¢, ([k — H]) denotes the arrival cost. The arrival cost
represents an estimation of the initial condition, encompassing
prior information beyond the horizon window, from time ¢t = 0
tot=kF—H.

Note that the inclusion of the £g-norm in (9) renders the cost
function nondifferentiable and the underlying optimization
problem non-convex, making the solution computationally de-
manding [18]. To make the problem tractable, we introduce a
relaxation of the fp-norm using a mixed ¢ ;-norm as follows:

Aisc [ fiscll,
Xesc || fesclla |||
)‘v,i ”.fv,i”z 1

1]y, = (11

where Aisc, Agsc, and A, ; are the respective weights for
each fault type [19, 20]. Further, ||-||; and |-||, denote the ¢4
and {y-norm operators and ””?Q = (-)7Q(-). The motivation
behind the design in (11) is twofold. First, we aim to promote
sparsity among different fault types. Practically, the occurrence
of multiple fault types simultaneously is improbable, and the
promotion of sparsity can be fine-tuned through the respective
weights assigned to each fault type. Secondly, by incorporating
the /5-norm of each fault type, we effectively penalize fault
signals within each category, thereby promoting sparsity at a
lower level. We also relax the £y-norm of AF in (9) with its
{o-norm and subsequently express the cost function for the
MHE problem as follows:

k—1
Ok = duc (&l — H) + > waltlllg + 1wy [
t=k—H
b1 (12)
+llwy Bl R+ > IAF[HE + IF[H3,
t=k—H

where P is a weight matrix. Having laid out the cost function
of the MHE problem, we can now shift our focus to the
constraints.

We have addressed fault sparsity by penalizing signals in
the cost function and will further consider uniformity among
cells and fault severity through additional constraints. We

apply constraints to leverage the uniformity among identical
constituent cells, as follows:

(13a)
(13b)

lgj+1 — gj| < Ag,
T2 — 15| < AT,
where Aq and AT are the pre-specified thresholds. These
constraints mirror the consistent behavior expected from in-
dividual cells within a battery pack. Note that we only impose
constraints on adjacent cells in a parallel-connected module
to enforce the uniformity with a small number of inequalities.
To distinguish between the severity of different fault types, we
further introduce upper and lower limits on the magnitude of
the fault signals as follows:

fiEn < fisc < fioe, (14a)
fRe < fEsc < fEse (14b)
gl;n < fui < Ej?xv (140)

where f™/min denotes the upper/lower bound of each fault
type. Similar upper and lower bounds are also introduced
for noise signals to differentiate them from faults. These
constraints are also expressed as follows:

(15a)
(15b)

w;nin S w, S w?ax
min max
w, <wy < w,
We are now ready to formulate the MHE problem for our

fault diagnosis approach. The MHE problem is expressed as
follows:

k-1
minimize ly (] )+ Z [|w. [t HQ‘FHwa”R

t=k—H
k—1
2 2 2
+lwy k]l + Y IAF[EIE + IFHI5,
t=k—H

SoC dynamics:

A
Gt +1] = 4 = 5 5[4+ isc, ).
J
Temperature dynamics:
Tylt+1] = Tyl + S [Ry (lk) + s K]
th
- (T7 [t} - Tenv)/Rconv:| )

Incremental fault dynamics:

Ft+ 1] = F[t]+ AF[t + 1],

Fault and noise constraints:

FRE < fise < RS B < fese < fiSE,
fmm S .fv,i § :;nzilxa
wgm S w, S ,u)rmnax7 w;nin S wy S w;nax,
Balancing constraints:

- qj‘ S A%

= T;| < AT,

|Qj+1

T +1
(16)
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Fig. 3: Simulation results for the voltage and current sensor faults. (a) The SoC of the cells under voltage sensor fault. (b)
The temperature of the cells under voltage sensor fault. (¢) The estimated fault signals under voltage sensor fault. (d) The
estimated noise signals under voltage sensor fault. (e) The SoC of the cells under current sensor fault. (f) The temperature of
the cells under current sensor fault. (g) The estimated fault signals under current sensor fault. (h) The estimated noise signals

under current sensor fault.

where At is the sampling time. While fully characterizing the
arrival cost poses challenges, literature has explored various
techniques for its estimation. One approach involves employ-
ing an unconstrained probabilistic estimation method, such as
Kalman filtering, before optimizing the problem, followed by
imposing a penalty on the discrepancy between the current
and previous estimates. In this study, we specifically employ
the approach in [21] using an extended Kalman filter. Overall,
the optimization problem in (16) effectively estimates the fault
signals while leveraging the inherent structural properties of
the battery pack.

IV. SIMULATION RESULTS

In this section, we perform various simulations on a battery
pack under different fault conditions to validate the proposed
fault diagnosis approach. The considered system is a module,
as depicted in Fig. 1, comprising three cells in parallel. The
specifications are summarized in Table I. The initial SoC of the
cells is set to 0.8, and the module is discharged at a constant
current of 6 A. We also assign the parameters in (11), namely
Aisc, Aesc, and )\, ;, values of 1.5, 1, and 2, respectively. The
fmincon package in the Matlab software is used to solve the
optimization problem in (16). We initially assess the proposed
approach’s performance under sensor faults and subsequently
shift our focus to short circuit faults.

A. Sensor Faults

Fig. 3 illustrates the simulation results for the sensor faults.
Starting with a faultless voltage sensor, a +1 V bias is intro-
duced to the voltage measurement (i.e., f,, = 1) at time instant

TABLE I: Specifications of the considered battery pack

Symbol Parameter Value [Unit]
n Number of battery cells 3

v Cell nominal voltage 3.6 [V]

Q Cell nominal capacity 2.5 [Ah]

R Cell internal resistance 31.3 [mQ]
Cn Thermal capacitance 40.23 [J/K]
Reony Convection thermal resistance 41.05 [K/W]
Tenv Environment temperature 298 [K]

Aq SoC balancing threshold 0.5%

AT Temperature balancing threshold 0.5 [K]

At Sampling time 30 [s]

H Horizon length 300 [s]

800 s, and subsequently reduced to 0.5 V at the 1300-second
mark. Figs. 3 (a)-(b) present the actual and estimated SoC
and temperature values for the cells. The estimation accuracy
is high before the occurrence of the voltage sensor fault;
however, slight deviations are observed in the SoC estimation
performance afterwards. Fig. 3 (c) depicts the estimated fault
signals, indicating the successful identification of the voltage
sensor fault along with its magnitude. The corresponding noise
signals are also illustrated in Fig. 3 (d).

Subsequently, we conduct simulations with a current sensor
fault, characterized by a bias of +1 A, starting at time instant
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Fig. 4: Simulation results of the internal and external short circuit faults. (a) The SoC of the cells under external short circuit
fault. (b) The temperature of the cells under external short circuit fault. (c) The estimated external short circuit fault signal.
(d) The estimated noise signals under external short circuit fault. (e) The SoC of the cells under internal short circuit fault.
(f) The temperature of the cells under internal short circuit fault. (g) The estimated internal short circuit fault signal. (h) The

estimated noise signals under internal short circuit fault.

800 s. Fig. 3 (e) shows the estimated SoC values. It is
evident that SoC estimation remains accurate prior to the
occurrence of the fault. However, post-fault, the estimation
tends to underestimate SoC values due to the measured current
exceeding the actual applied current to the module. Fig. 3 (f)
further presents the estimated cell temperatures. The estimated
fault signals are illustrated in Fig. 3 (g). We observe that our
approach effectively detects the fault, although the estimated
fault magnitude is not very accurate, and the detection is
comparatively slower than that observed for the voltage sensor
fault. This is because a faulty current sensor results in inac-
curate SoC estimation. Given the slow dynamics of SoC in
cells, effective fault detection takes some time. Additionally,
it is worth noting that the severity of the current sensor fault
correlates with the speed of detection.

B. Short Circuit Faults

We evaluate the efficacy of the proposed approach for
internal and external short circuit faults. Figs. 4 (a)-(d) present
the obtained results for a 5 A external short circuit fault. In
Figs. 3 (a)-(b), the SoC and temperature estimation perfor-
mances are depicted with good accuracy. Fig. 4 (c) illustrates
the estimated fault signals, indicating the successful and quick
detection of the fault. This rapid detection is due to the
severity of external short circuits, which significantly impacts
the module’s performance. The corresponding estimated noise
signals are also depicted in Fig. 4 (d).

We investigate an internal short circuit on cell 1 by introduc-
ing a resistance Rysc,1 = 4 €2, starting at time instant 800 s.

Fig. 4 (e) depicts the estimated SoC of the cells. The proposed
approach tends to overestimate the SoC values, as the internal
short circuit depletes SoC without providing clear indications
through sensor measurements. The estimated temperatures of
the cells are depicted in Fig. 4 (f) with good precision. The
estimated fault signals are illustrated in Fig. 4 (g). We observe
that our approach detects internal short circuit faults in all cells
in parallel. This implies that while our approach can detect
faults, it cannot precisely identify the specific cell affected.
The primary reason for this limitation lies in the structural non-
differentiation among Rjsc,; in the presented model. Also note
that the detection is not rapid for internal short circuit faults, as
we assume minor internal short circuits with minimal effects
on the performance of the battery pack.

V. CONCLUSION

The sweeping growth of lithium-ion battery packs in safety-
critical applications, such as electric vehicles and aircraft,
underscores the need for effective fault diagnosis. This pa-
per addresses this issue by introducing a novel model-based
fault diagnosis approach. The proposed approach, at its core,
aims to explore how specific structural information—including
the different nature and severity of fault types, uniformity
among identical constituent cells, and the sparsity of fault
occurrences—can be leveraged to enhance fault diagnosis. Our
approach enables this central idea by formulating an MHE-
based fault diagnosis problem where the structural information
is used as constraints and penalization terms. By doing so, we
effectively estimate the fault signals with fewer number of



sensors and measurements. The proposed approach also han-
dles multiple fault types of internal and external short circuits
and sensor faults. For validation, we conduct various simula-
tions under different fault scenarios. The obtained results are
promising in terms of fault detection and identification with a
low sensor count.
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