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Abstract—Lithium-ion battery packs consist of a varying
number of single cells, designed to meet specific application
requirements for output voltage and capacity. Effective fault
diagnosis in these battery packs is an essential prerequisite for
ensuring their safe and reliable operation. To address this need,
we introduce a novel model-based fault diagnosis approach. Our
approach distinguishes itself by leveraging informative structural
properties inherent in battery packs such as uniformity among
the constituent cells, and sparsity of fault occurrences to enhance
its fault diagnosis capabilities. The proposed approach formulates
a moving horizon estimation (MHE) problem, incorporating
such structural information to estimate different fault signals—
specifically, internal short circuits, external short circuits, and
voltage and current sensors faults. We conduct various simu-
lations to evaluate the performance of the proposed approach
under different fault types and magnitudes. The obtained results
validate the proposed approach and promise effective fault
diagnosis for battery packs.

Index Terms—battery systems, fault diagnosis, moving horizon
estimation

I. INTRODUCTION

Lithium-ion battery packs have emerged as an effective

solution for energy storage across various applications. Be-

ginning with their use in small portable devices, these battery

packs are continuously expanding their role in transportation

electrification, including electric aircraft, and in integration of

renewable energy through grid energy storage [1, 2]. Despite

the advantages of lithium-ion batteries, such as high energy

density and long lifespan, they are susceptible to safety risks

[3]. This necessitates careful monitoring within their battery

management systems to ensure their safe and reliable oper-

ation, especially in safety-critical applications. Consequently,

fault diagnosis is of utmost importance to lithium-ion battery

packs [4].

Fault diagnosis of lithium-ion battery packs has attracted

much attention from both researchers and practitioners. Ex-

isting studies can be broadly classified into two categories:

1) model-based approaches [5], and 2) data-driven approaches

[6]. Model-based approaches utilize a system model to iden-

tify fault occurrences by aligning measurements with model

predictions. On the other hand, data-driven approaches involve

training a classifier to differentiate between normal and faulty

operating conditions. This paper specifically focuses on the de-

velopment of a model-based approach for fault diagnosis. We

thus narrow the subsequent review to model-based approaches.

Recently, model-based fault diagnostics have become the

mainstream approach for lithium-ion battery packs. This is

mainly due to the advancements in our in-depth understanding

of their dynamics. One area of research focuses on sensor

fault detection and identification. For instance, the work in

[7] solely concentrates on voltage sensor faults in a single

battery cell. The study in [8] investigates voltage and current

sensor fault diagnosis in a serial-connected battery pack, while

[9] introduces a more comprehensive method for sensor fault

detection in both serial and parallel-connected battery packs.

Another body of research investigates cell fault detection and

identification. For example, the study in [10] aims to detect

short circuits in serial-connected battery packs. Additionally,

the works in [7, 11] develop fault detection approaches for

minor internal short circuits. While many studies focus exclu-

sively on either sensor or cell faults, there are comprehensive

approaches in the literature that simultaneously address both

types. For instance, the works in [12–14] present fault detec-

tion approaches that encompass both sensor and cell faults

simultaneously. However, it is worth noting that these studies

often rely on a high number of sensors.

Existing fault detection approaches usually require many

sensors to capture faults successfully, counter to the practical

need for economy in sensor utilization. This paper, however,

proposes that we can harness some structural properties in-

herent in battery packs to enable fault detection with fewer

sensors. For instance, exploiting the uniformity of identical

cells within the battery pack can significantly enhance fault

detection. Additionally, recognizing the distinct nature and

severity of various fault types, in conjunction with the low



probability of simultaneous occurrence, raises the question of

how such information can be effectively leveraged to improve

fault diagnosis. Further, our approach can accommodate sensor

faults, in contrast to various studies assuming faultless sensors.

Compared to the existing literature, this paper makes two

significant contributions. Firstly, the proposed fault diagno-

sis approach leverages the structural properties of battery

packs, including uniformity among constituent cells, severity

of different fault types, and sparsity of fault occurrences.

We specifically aim to reduce our reliance on sensor mea-

surements and exploit these structural properties to enhance

fault diagnosis capabilities. Secondly, our approach formulates

a moving horizon estimation (MHE) problem to integrate

structural properties into fault diagnosis. To the best of our

knowledge, this study is the first to explore the application of

MHE for diagnosing faults in battery packs. The MHE-based

formulation enables us to incorporate structural properties for

estimating fault signals.

The rest of the paper is outlined as follows. Section II will

introduce the battery pack under study and its fault modeling.

In Section III, the proposed MHE-based fault diagnosis ap-

proach will be presented. Section IV will present simulation

results for validation, and we will conclude the paper in

Section V.

II. BATTERY PACK AND FAULT MODELING

This section introduces the considered faults for battery

packs and subsequently addresses the electro-thermal mod-

eling in the presence of these faults. Battery packs are

susceptible to various malfunctions, including cell internal

short circuits, external short circuits, sensor faults, resistance

increases due to connection looseness, and rapid cell aging

[15]. While all faults can impact the performance, internal and

external short circuits, along with sensor faults, are particularly

severe. Short circuits can induce rapid temperature increases,

leading to thermal runaways. Sensor faults can result in over-

charging/discharging, significantly affecting cell performance.

In this paper, our specific focus centers on 1) cell-level soft

internal short circuits, characterized by small incremental

currents with limited heat generation occurring in the early

stages of internal short circuits; 2) external short circuits; and

3) voltage/current sensor faults. Next, we discuss the battery

pack modeling with consideration of these efforts.

Fig. 1 illustrates the circuit structure of a battery module,

comprising n battery cells in parallel. The module is equipped

with voltage, current, and temperature sensors. Note that such

modules can be serially connected to construct larger battery

packs with higher output voltage. Nevertheless, we focus on

the fault diagnosis of a single module in this paper.

To begin with the electrical model, we employ the Rint

model to describe the electrical behavior of the cells, as

depicted in Fig. 2 (a). The Rint model encompasses an open-

circuit voltage source (OCV) and an internal resistance Rj

[16]. To account for internal short circuits, we introduce an

additional resistor RISC,j to represent and capture the occur-
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Fig. 1: The considered parallel-series battery pack.
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Fig. 2: The cell-level electro-thermal model. (a) The electrical

model of the module j. (b) The thermal model of the cell j.

rences within the cells. For cell j, the governing equations are

as follows:

q̇j(t) = − 1

Qj
(ij(t) + iISC,j(t)) , (1a)

vj(t) = uj(qj(t))−Rj (ij(t) + iISC,j(t)) , (1b)

where qj , Qj , uj , vj , and ij are the cell’s state-of-

charge (SoC), capacity, OCV, terminal voltage, and charg-

ing/discharging current, respectively. The term iISC,j denotes

the internal short circuit current. We also consider a linear

SoC/OCV relationship as follows:

uj(qj(t)) = αj + βjqj(t), (2)

where αj and βj are the intercept and slope coefficients of the

line.

The thermal behavior of the battery cells is characterized

through a lumped capacitance model, illustrated in Fig. 2 (b).

This model considers internal power losses as the primary

source of heat generation, with heat dissipating through con-

vection to the environment. The governing thermal dynamics

are given as follows:

CthṪj(t) = Rj (ij(t) + iISC,j(t))
2−(Tj(t)−Tenv)/Rconv, (3)

where Tj and Tenv are the temperature of cell j and the

environmental temperature, respectively. Further, Cth and Rconv

are the heat capacity and the convective thermal resistance

between cell j and the environment, respectively. Note that

iISC,j contributes as a heat generation term in the thermal

model.



We now shift our attention to external short circuit model-

ing. This fault is represented by a resistance RESC in parallel

with the module, as illustrated in Fig. 1. By Kirchoff’s current

law, we have:

i1 + i2 + ...+ in = iL + iESC, (4)

where iL and iESC are the applied current to the module and

the external short circuit current, respectively.

As we explained earlier, each module is equipped with three

sensors for voltage, current, and temperature measurements.

The voltage sensor measures the voltage across the parallel-

connected cells as follows:

Vm = v1 + fv, (5)

where Vm is the measured voltage and fv denotes the sensor

fault signal (fv �= 0 indicates a failed sensor). Also note that

v1 = v2 = · · · = vn since the cells are parallel-connected.

The current sensor also measures the applied current to the

module as follows:

im = iL + fi, (6)

where fi is the current sensor fault signal. The module’s

temperature is also monitored through a temperature sensor.

Here, we assume a uniform temperature distribution among

the cells, i.e.,

Tm = T1 = · · · = Tn, (7)

where Tm is the measured temperature. Additionally, it is

important to note that we do not account for temperature

sensor faults in this study. In what follows, we will utilize

the presented electro-thermal model in conjunction with the

identified faults to formulate the proposed model-based fault

diagnosis approach.

III. THE PROPOSED FAULT DIAGNOSIS APPROACH

The central idea of this paper is to investigate the utilization

of specific structural properties for the fault diagnosis of bat-

tery packs. We specifically focus on integrating the following

information into our fault diagnosis approach:

1) Sparsity of fault occurrences: A battery pack may be

subject to various fault types, but at any given time,

only a few faults are likely to occur. This suggests that

fault occurrences should be sparse. Although one fault

may lead to others over time, sparsity will help us detect

the initial fault in the early stages.

2) Uniformity among identical constituent cells: Battery

packs consist of almost identical cells arranged in series

and parallel to meet specific output requirements. It is

reasonable to anticipate that cells should exhibit con-

sistent behavior. Deviations in the behavior of a single

cell compared to others may indicate a malfunction,

such as an internal short circuit. Therefore, we exploit

the fact that constituent cells are identical and impose

a maximum discrepancy threshold among them. Any

deviation beyond the predefined threshold can be utilized

to detect and identify faults.

3) Severity of various fault types: It is important to ac-

knowledge that distinct fault types have varying impacts

on battery packs. Let us, for instance, compare an

internal short circuit fault with an external one. An

internal short circuit primarily affects individual cells

within a battery pack. Characterized by a minor short

circuit current, detecting and identifying faults becomes

challenging due to its limited impact on overall per-

formance. In contrast, external short circuits have the

potential to affect more than a single cell—potentially

the entire module—with a substantial impact and high

short circuit current. Incorporating these characteristics

of different fault types will enhance the accuracy in fault

diagnosis.

For the battery pack in Fig. 1, we formulate an MHE prob-

lem for estimating fault signals while leveraging the structural

properties mentioned above. First introduced in [17], MHE is

a method that employs the most recent measurements within

a time window to estimate unknown states. This method finds

application in tasks such as state estimation, fault detection,

and disturbance estimation. MHE formulates the estimation as

an optimization problem that enables possible incorporation of

further constraints on estimated variables.

To begin with, we discretize the system dynamics in (2)

and (3) through the forward Euler method. We will also

adopt the convention of using bold lowercase and uppercase

letters for vectors and matrices, respectively. Subsequently, we

compactly represent the system dynamics and measurement

models as follows:

x[k + 1] = g (x[k],u[k],fISC[k]) +wx[k], (8a)

y[k] = h (x[k],u[k], fESC[k],fv,i[k]) +wy[k], (8b)

where x, u, y are the states, inputs, and measurements,

respectively; fISC, fESC, and fv,i are the internal short circuit,

external short circuit, and sensor fault signals, respectively.

These variables are specified as follows:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
...

qn
T1

...

Tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡
⎣Vm

im
Tm

⎤
⎦ , u =

⎡
⎢⎣
i1
...

in

⎤
⎥⎦ , fISC =

⎡
⎢⎣
iISC,1

...

iISC,n

⎤
⎥⎦ ,

fv,i =

[
fv
fi

]
, fESC = iESC.

The terms wx ∈ R
2n and wy ∈ R

3 are also the bounded

process and measurement disturbances, respectively.

Proceeding forward, we focus on the formulation of a cost

function for the MHE problem. Our design aims to promote

the sparsity of fault occurrences within our fault diagnosis

approach. To achieve this objective, we introduce an �0-



norm regularization term into the cost function of the MHE

framework as follows:

φ[k] =

k−1∑
t=k−H

‖wx[t]‖2Q + ‖wy[t]‖2R + ‖F [t]‖0 + ‖ΔF [t]‖0

+ ‖wy[k]‖2R + φac (x̂[k −H]) , (9)

where F = [ f�
ISC fESC f�

v,i ]� is the concatenated fault vector

and ‖·‖0 denotes its �0-norm; ΔF is the incremental changes

in the fault signals defined as

ΔF [k] = F [k]− F [k − 1]. (10)

Further, H is the horizon length, Q and R are weight matrices,

and x̂[k−H] is the estimated x at time step k−H . In addi-

tion, φac (x̂[k −H]) denotes the arrival cost. The arrival cost

represents an estimation of the initial condition, encompassing

prior information beyond the horizon window, from time t = 0
to t = k −H .

Note that the inclusion of the �0-norm in (9) renders the cost

function nondifferentiable and the underlying optimization

problem non-convex, making the solution computationally de-

manding [18]. To make the problem tractable, we introduce a

relaxation of the �0-norm using a mixed �2,1-norm as follows:

‖F ‖2,1 =

∥∥∥∥∥∥
⎡
⎣λISC ‖fISC‖2
λESC ‖fESC‖2
λv,i ‖fv,i‖2

⎤
⎦
∥∥∥∥∥∥
1

, (11)

where λISC, λESC, and λv,i are the respective weights for

each fault type [19, 20]. Further, ‖·‖1 and ‖·‖2 denote the �1
and �2-norm operators and ‖·‖2Q = (·)�Q(·). The motivation

behind the design in (11) is twofold. First, we aim to promote

sparsity among different fault types. Practically, the occurrence

of multiple fault types simultaneously is improbable, and the

promotion of sparsity can be fine-tuned through the respective

weights assigned to each fault type. Secondly, by incorporating

the �2-norm of each fault type, we effectively penalize fault

signals within each category, thereby promoting sparsity at a

lower level. We also relax the �0-norm of ΔF in (9) with its

�2-norm and subsequently express the cost function for the

MHE problem as follows:

φ[k] = φac (x̂[k −H]) +

k−1∑
t=k−H

‖wx[t]‖2Q + ‖wy[t]‖2R

+ ‖wy[k]‖2R +

k−1∑
t=k−H

‖ΔF [t]‖2P + ‖F [t]‖22,1 ,
(12)

where P is a weight matrix. Having laid out the cost function

of the MHE problem, we can now shift our focus to the

constraints.

We have addressed fault sparsity by penalizing signals in

the cost function and will further consider uniformity among

cells and fault severity through additional constraints. We

apply constraints to leverage the uniformity among identical

constituent cells, as follows:

|qj+1 − qj | ≤ Δq, (13a)

|Tj+1 − Tj | ≤ ΔT, (13b)

where Δq and ΔT are the pre-specified thresholds. These

constraints mirror the consistent behavior expected from in-

dividual cells within a battery pack. Note that we only impose

constraints on adjacent cells in a parallel-connected module

to enforce the uniformity with a small number of inequalities.

To distinguish between the severity of different fault types, we

further introduce upper and lower limits on the magnitude of

the fault signals as follows:

fmin
ISC ≤ fISC ≤ fmax

ISC , (14a)

fmin
ESC ≤ fESC ≤ fmax

ESC , (14b)

fmin
v,i ≤ fv,i ≤ fmax

v,i , (14c)

where fmax/min denotes the upper/lower bound of each fault

type. Similar upper and lower bounds are also introduced

for noise signals to differentiate them from faults. These

constraints are also expressed as follows:

wmin
x ≤ wx ≤ wmax

x , (15a)

wmin
y ≤ wy ≤ wmax

y . (15b)

We are now ready to formulate the MHE problem for our

fault diagnosis approach. The MHE problem is expressed as

follows:

minimize �ac (x̂[k −H]) +

k−1∑
t=k−H

‖wx[t]‖2Q + ‖wy[t]‖2R

+ ‖wy[k]‖2R +

k−1∑
t=k−H

‖ΔF [t]‖2P + ‖F [t]‖22,1 ,

SoC dynamics:

qj [t+ 1] = qj [t]− Δt

Qj
(ij [k] + iISC,j [k]) ,

Temperature dynamics:

Tj [t+ 1] = Tj [t] +
Δt

Cth

[
Rj (ij [k] + iISC,j [k])

2

− (Tj [t]− Tenv)/Rconv

]
,

Incremental fault dynamics:

F [t+ 1] = F [t] + ΔF [t+ 1],

Fault and noise constraints:

fmin
ISC ≤ fISC ≤ fmax

ISC , fmin
ESC ≤ fESC ≤ fmax

ESC ,

fmin
v,i ≤ fv,i ≤ fmax

v,i ,

wmin
x ≤ wx ≤ wmax

x , wmin
y ≤ wy ≤ wmax

y ,

Balancing constraints:

|qj+1 − qj | ≤ Δq,

|Tj+1 − Tj | ≤ ΔT,
(16)
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Fig. 3: Simulation results for the voltage and current sensor faults. (a) The SoC of the cells under voltage sensor fault. (b)

The temperature of the cells under voltage sensor fault. (c) The estimated fault signals under voltage sensor fault. (d) The

estimated noise signals under voltage sensor fault. (e) The SoC of the cells under current sensor fault. (f) The temperature of

the cells under current sensor fault. (g) The estimated fault signals under current sensor fault. (h) The estimated noise signals

under current sensor fault.

where Δt is the sampling time. While fully characterizing the

arrival cost poses challenges, literature has explored various

techniques for its estimation. One approach involves employ-

ing an unconstrained probabilistic estimation method, such as

Kalman filtering, before optimizing the problem, followed by

imposing a penalty on the discrepancy between the current

and previous estimates. In this study, we specifically employ

the approach in [21] using an extended Kalman filter. Overall,

the optimization problem in (16) effectively estimates the fault

signals while leveraging the inherent structural properties of

the battery pack.

IV. SIMULATION RESULTS

In this section, we perform various simulations on a battery

pack under different fault conditions to validate the proposed

fault diagnosis approach. The considered system is a module,

as depicted in Fig. 1, comprising three cells in parallel. The

specifications are summarized in Table I. The initial SoC of the

cells is set to 0.8, and the module is discharged at a constant

current of 6 A. We also assign the parameters in (11), namely

λISC, λESC, and λv,i, values of 1.5, 1, and 2, respectively. The

fmincon package in the Matlab software is used to solve the

optimization problem in (16). We initially assess the proposed

approach’s performance under sensor faults and subsequently

shift our focus to short circuit faults.

A. Sensor Faults

Fig. 3 illustrates the simulation results for the sensor faults.

Starting with a faultless voltage sensor, a +1 V bias is intro-

duced to the voltage measurement (i.e., fv = 1) at time instant

TABLE I: Specifications of the considered battery pack

Symbol Parameter Value [Unit]

n Number of battery cells 3

v Cell nominal voltage 3.6 [V]

Q Cell nominal capacity 2.5 [Ah]

R Cell internal resistance 31.3 [mΩ]

Cth Thermal capacitance 40.23 [J/K]

Rconv Convection thermal resistance 41.05 [K/W]

Tenv Environment temperature 298 [K]

Δq SoC balancing threshold 0.5%

ΔT Temperature balancing threshold 0.5 [K]

Δt Sampling time 30 [s]

H Horizon length 300 [s]

800 s, and subsequently reduced to 0.5 V at the 1300-second

mark. Figs. 3 (a)-(b) present the actual and estimated SoC

and temperature values for the cells. The estimation accuracy

is high before the occurrence of the voltage sensor fault;

however, slight deviations are observed in the SoC estimation

performance afterwards. Fig. 3 (c) depicts the estimated fault

signals, indicating the successful identification of the voltage

sensor fault along with its magnitude. The corresponding noise

signals are also illustrated in Fig. 3 (d).

Subsequently, we conduct simulations with a current sensor

fault, characterized by a bias of +1 A, starting at time instant
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Fig. 4: Simulation results of the internal and external short circuit faults. (a) The SoC of the cells under external short circuit

fault. (b) The temperature of the cells under external short circuit fault. (c) The estimated external short circuit fault signal.

(d) The estimated noise signals under external short circuit fault. (e) The SoC of the cells under internal short circuit fault.

(f) The temperature of the cells under internal short circuit fault. (g) The estimated internal short circuit fault signal. (h) The

estimated noise signals under internal short circuit fault.

800 s. Fig. 3 (e) shows the estimated SoC values. It is

evident that SoC estimation remains accurate prior to the

occurrence of the fault. However, post-fault, the estimation

tends to underestimate SoC values due to the measured current

exceeding the actual applied current to the module. Fig. 3 (f)

further presents the estimated cell temperatures. The estimated

fault signals are illustrated in Fig. 3 (g). We observe that our

approach effectively detects the fault, although the estimated

fault magnitude is not very accurate, and the detection is

comparatively slower than that observed for the voltage sensor

fault. This is because a faulty current sensor results in inac-

curate SoC estimation. Given the slow dynamics of SoC in

cells, effective fault detection takes some time. Additionally,

it is worth noting that the severity of the current sensor fault

correlates with the speed of detection.

B. Short Circuit Faults

We evaluate the efficacy of the proposed approach for

internal and external short circuit faults. Figs. 4 (a)-(d) present

the obtained results for a 5 A external short circuit fault. In

Figs. 3 (a)-(b), the SoC and temperature estimation perfor-

mances are depicted with good accuracy. Fig. 4 (c) illustrates

the estimated fault signals, indicating the successful and quick

detection of the fault. This rapid detection is due to the

severity of external short circuits, which significantly impacts

the module’s performance. The corresponding estimated noise

signals are also depicted in Fig. 4 (d).

We investigate an internal short circuit on cell 1 by introduc-

ing a resistance RISC,1 = 4 Ω, starting at time instant 800 s.

Fig. 4 (e) depicts the estimated SoC of the cells. The proposed

approach tends to overestimate the SoC values, as the internal

short circuit depletes SoC without providing clear indications

through sensor measurements. The estimated temperatures of

the cells are depicted in Fig. 4 (f) with good precision. The

estimated fault signals are illustrated in Fig. 4 (g). We observe

that our approach detects internal short circuit faults in all cells

in parallel. This implies that while our approach can detect

faults, it cannot precisely identify the specific cell affected.

The primary reason for this limitation lies in the structural non-

differentiation among RISC,j in the presented model. Also note

that the detection is not rapid for internal short circuit faults, as

we assume minor internal short circuits with minimal effects

on the performance of the battery pack.

V. CONCLUSION

The sweeping growth of lithium-ion battery packs in safety-

critical applications, such as electric vehicles and aircraft,

underscores the need for effective fault diagnosis. This pa-

per addresses this issue by introducing a novel model-based

fault diagnosis approach. The proposed approach, at its core,

aims to explore how specific structural information—including

the different nature and severity of fault types, uniformity

among identical constituent cells, and the sparsity of fault

occurrences—can be leveraged to enhance fault diagnosis. Our

approach enables this central idea by formulating an MHE-

based fault diagnosis problem where the structural information

is used as constraints and penalization terms. By doing so, we

effectively estimate the fault signals with fewer number of



sensors and measurements. The proposed approach also han-

dles multiple fault types of internal and external short circuits

and sensor faults. For validation, we conduct various simula-

tions under different fault scenarios. The obtained results are

promising in terms of fault detection and identification with a

low sensor count.
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