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Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors
due to their excellent isolation from the environment. These instruments can be utilized in searches
for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In
addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical
magnetic fields, ferromagnets are also sensitive to the effective magnetic field (or “axion wind”)
produced by an axion-electron coupling. While the dynamics of a levitated ferromagnet in response
to a DC magnetic field have been well studied, all of these couplings would produce AC fields. In
this work, we study the response of a ferromagnet to an applied AC magnetic field and use these
results to project their sensitivity to axion and dark-photon dark matter. We pay special attention
to the direction of motion induced by an applied AC field, in particular, whether it precesses around
the applied field (similar to an electron spin) or librates in the plane of the field (similar to a
compass needle). We show that existing levitated ferromagnet setups can already have comparable
sensitivity to an axion-electron coupling as comagnetometer or torsion balance experiments. In
addition, future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic
mixing, and axion-photon coupling, for ultralight dark matter masses mDM ≲ feV.

I. INTRODUCTION

Levitated ferromagnets can serve as excellent instru-
ments for precision measurements of torques and mag-
netic fields [1–5], which can be applied to tests of funda-
mental physics and searches for new physics [6, 7]. Due
to the intrinsic spin of its polarized electrons, a ferro-
magnet may act as a gyroscope in the limit where the
spin contribution S = Nℏ/2 to its total angular momen-
tum dominates over the contribution from its rotational
angular momentum L = Iω [1].1 In such a case, the
ferromagnet will precess around an applied DC magnetic
field, similar to a single electron spin. In the opposite
limit S ≪ L, the dominant motion of the ferromagnet
will be to librate in the plane of the applied field, similar
to a compass needle.

In order to realize the potential of this system, the

∗ kalias@umn.edu
1 Generically, this is a tensor relation. For simplicity, here we
assume the moment of inertia tensor I is diagonal; see also dis-
cussion following Eq. (7).

ferromagnet must be adequately isolated from its envi-
ronment. One of the most promising ways is to levitate
the ferromagnet over a superconducting plane [3–6, 8]. In
such a scenario, the ferromagnet is repelled by an “im-
age” magnetic dipole located below the plane. The pres-
ence of this superconducting plane can significantly affect
the dynamics of the ferromagnet, slowing down its pre-
cession frequency.2 Alternatively, it has been proposed
to place the ferromagnet in freefall [7], in order to avoid

2 As discussed in Ref. [6], a ferromagnet levitated above a super-
conducting surface by the Meissner effect possesses cylindrical
symmetry and thus conserves the angular momentum compo-
nent along the direction ẑ perpedicular to the superconducting
surface. If such a levitated ferromagnet experiences a torque
that would cause it to precess, in order to conserve angular mo-
mentum along z, the ferromagnet must tilt such that its spin
component Sz , counteracts the rotational angular momentum
component Lz induced by the precession. This in turn tilts the
image dipole in such a way as to suppress the torque experi-
enced by the ferromagnet, thereby suppressing the precession
frequency. This effect can suppress the precession frequency by
orders of magnitude for ferromagnets with characteristic sizes
above ∼ 0.1microns.
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the effects of any trapping potential.

One particularly interesting application of levitated
ferromagnets is the search for ultralight dark matter
candidates, including axion and axion-like dark matter
(henceforth, simply axion DM) and dark-photon dark
matter (DPDM). The former can address the strong-CP
problem [9–11], while both can exhibit the correct relic
abundance [12–16] and generically arise in new physics
theories of many different origins, see, e.g., a recent re-
view [17]. In the ultralight regime, these candidates be-
have as classical fields, which oscillate near their Comp-
ton frequencies [18, 19]. Axion DM could potentially
couple to electron spins, causing them to precess, as if
it were an AC magnetic field [20–23]. As a ferromagnet
is composed of many polarized electrons, axion DM can
impart a collective oscillating torque on the whole fer-
romagnet. In addition, axion DM and DPDM can both
couple to photons, generating a physical AC magnetic
field, which could also impart a torque on a ferromagnet.

While the response of a ferromagnet to an applied DC
magnetic field has been well studied, both in freefall and
above a superconductor [1, 6], the response to a driving
AC magnetic field has not been adequately addressed
thus far.

The purpose of this work is to study the dynamics of
a ferromagnet in response to an AC magnetic field and
to apply these dynamics to the case of ultralight DM. In
Sec. II, we derive the response of the system to an applied
AC magnetic field, which is qualitatively different from
the DC case. This is because, in the DC case, the preces-
sion frequency is given by the Larmor frequency, which is
proportional to the applied magnetic field. Meanwhile,
we will see that in the AC case, the frequency of the
ferromagnet dynamics is determined by the frequency of
the AC field (the Compton frequency, in the case of ul-
tralight DM). Therefore, whether the ferromagnet pre-
cesses as a gyroscope or librates as a compass needle will
be frequency-dependent. Moreover, as mentioned above,
the presence of a levitation/trapping mechanism can al-
ter the dynamics of the system. We will determine in
what contexts the ferromagnet undergoes precession vs.
libration.

In Sec. III, we compute the sensitivity of a ferromag-
net to an applied AC magnetic field. We review the rel-
evant noise sources and utilize the results of Sec. II to
determine the magnetic-field sensitivity of a ferromagnet
setup, accounting for motion in both angular directions.
We propose three cases of interest: one representative of
an existing levitated setup [5], a future levitated setup,
and a future freefall setup. The parameter choices for
these setups are shown in Tab. I and their magnetic-field
sensitivities are computed in Fig. 5.

In Sec. IV, we project the sensitivities of these setups
to ultralight DM. We review the physics of axion DM
coupled to electrons, kinetically mixed DPDM, and ax-
ion DM coupled to photons. In each case, we compute
the effective/physical AC magnetic field generated by the
DM candidate, and show the sensitivities of the three se-

tups of interest to the DM candidate in Fig. 6.
In Sec. V, we conclude. We make all the code used in

this work publicly available on Github [24].

II. LEVITATED FERROMAGNETS

In this section, we compute the response of a levitated
ferromagnet to an applied AC magnetic field. Impor-
tantly, we account for the effect of any trapping potential
on the ferromagnet’s response and determine when libra-
tion versus precession occurs. We begin by introducing
some examples of trapping potentials. Then, we derive
the equations of motion for the dynamics of the ferromag-
net in this trap. Finally, we show how these dynamics
are modified in the presence of a driving field.

A. Trapping potential

Generically, in order for the ferromagnet to remain lev-
itated, it must be trapped in both the translational and
angular directions. In other words, it must sit at the
minimum (x0, n̂0) of some potential V (x, n̂). Here x de-
notes the position of the ferromagnet, while n̂ = (θ, ϕ)
describes its orientation (using spherical coordinates with
θ = 0 the positive z-axis). In this work, we will consider
the magnetic moment of the ferromagnet to be locked to
its spatial orientation so that n̂ more specifically denotes
the direction of its magnetic moment.3 If the ferromagnet
consists of N polarized electron spins, then its magnetic
moment is given by

µ = −γeS ≡ −γe ·
Nℏ
2

n̂, (1)

where γe = geµB/ℏ is the electron gyromagnetic ratio.
(ge is the electron g-factor and µB = eℏ/2me is the Bohr
magneton.)
There are various ways in which the ferromagnet can

be trapped in a potential. Perhaps the simplest is to lev-
itate the ferromagnet in some static magnetic field B(x).
This gives the trapping potential

V (x, n̂) = −µ ·B(x) +mgz, (2)

3 In general, the individual electron spins Si within the ferromag-
net are not locked to its orientation n̂. The atomic lattice of the
ferromagnet exhibits some interaction with each electron spin,
which relaxes the spins to align with the lattice. This relaxation
occurs at a typical rate Γ ∼ GHz [25]. In this work, we only con-
sider dynamics at much lower frequencies than this (see Ref. [21]
for an example at higher frequencies, where such spin excita-
tions occur), and so it is safe to treat the macroscopic magnetic
moment of the ferromagnet to be locked to its orientation. We
do note that coupling of individual spin fluctuations to external
magnetic fields can act as an additional noise source, though this
noise is typically small [26].
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where the latter term arises due to gravity (m is the mass
of the ferromagnet, and g is the gravitational accleration
on Earth). In such a potential, the ferromagnet will al-
ways prefer to align with the local magnetic field, i.e.
n̂0 = B̂(x0).

4 Note that in this case, the ferromagnet
will, in general, be trapped in both angular directions,

i.e. ∂2θV, ∂
2
ϕV

∣∣∣
(x0,n̂0)

> 0.5

Alternatively, the ferromagnet may be levitated above
a superconducting plane. The potential in such a setup
can be computed via the method of images; that is, if the
ferromagnet lies a distance z above the superconducting
plane, then one computes the potential it feels due to a
magnetic moment located a distance z below the super-
conducting plane [4, 6]. This gives a potential6

V (x, n̂) = −1

2
µ · µ0

4π

3(x̃ · µ̃)x̃− x̃2µ̃

x̃5
+mgz (3)

=
µ0µ

2

64πz3
(1 + cos2 θ) +mgz, (4)

where x̃ = 2zẑ is the distance between the ferromagnet
and its image, and µ̃ = (π − θ, ϕ) is the orientation of
the image magnetic moment. It is clear in this case that
the ferromagnet is trapped in the θ-direction, with its
minimum at θ0 = π/2 (parallel to the superconducting
plane), but it is free to rotate in the ϕ-direction. In a
physical system, this exact degeneracy in the ϕ-direction
will be broken, but nevertheless, the trapping in the ϕ-
direction can be significantly weaker than the trapping

in the θ-direction, i.e. ∂2θV
∣∣
(x0,n̂0)

≫ ∂2ϕV
∣∣∣
(x0,n̂0)

.

B. Ferromagnet dynamics

Now let us derive the equations of motion for the fer-
romagnet. We will first consider only the trapping po-
tential, without the presence of any driving AC magnetic
field. In the remainder of this work, we will also ignore
translational motion, and only focus on the angular de-
pendence of V (n̂).7 Let the total angular momentum of

4 By Earnshaw’s theorem, a static magnetic field alone cannot
stably levitate a magnetic dipole [27]. The equilibrium x0 can be
made stable through an active feedback loop, a method known as
electromagnetic levitation [28]. In this work, we focus primarily
on the angular motion of the ferromagnet, and so do not worry
about the stability of the translational modes.

5 We note that this spherical coordinate system becomes patho-
logical when n̂0 = ẑ because ϕ is not well-defined at this point.
In the sections that follow, we will consider only the angular de-
pendence of V (n̂), in which case we will be free to rotate our
coordinate system so that n̂0 ̸= ẑ.

6 Note the additional factor of 1
2
in the first term of Eq. (3). With-

out this factor, this term would describe the work required to
bring two physical dipoles from infinity to a distance 2z apart.
Because we have only one physical dipole, only half the work is
required to bring it to a distance 2z from its image.

7 The translational modes of the system will not be directly ex-
cited by a uniform magnetic field but instead can only be excited

the ferromagnet be given by J = S + L, which consists
of both an intrinsic spin contribution S and an orbital
angular momentum contribution L. The potential exerts
a torque

τ =
∂J

∂t
= −n̂×∇n̂V (5)

≡ −n̂×
(
∂V

∂θ
θ̂ +

1

sin θ

∂V

∂ϕ
ϕ̂

)
(6)

on the ferromagnet. Additionally, the orientation of the
ferromagnet rotates around its orbital angular momen-
tum

∂n̂

∂t
= Ω× n̂ = (I−1L)× n̂. (7)

Generically, the moment of inertia I may be an
anisotropic tensor. However, for simplicity, in this work,
we will take I to be diagonal, e.g., in the case of a spher-
ical ferromagnet. Note that because S ∝ n̂, then we
may replace L in this expression with J . If we make this
replacement, then these two equations of motion govern
the dynamics of n̂ and J . Let us normalize all of our
quantities by the intrinsic spin

J =
Nℏ
2

j (8)

L =
Nℏ
2

ℓ (9)

ωI =
Nℏ
2I

(10)

V =
Nℏ
2
v, (11)

so that we may rewrite the equations of motion Eqs. (5)
and (7) as

∂j

∂t
= −n̂×∇n̂v (12)

∂n̂

∂t
= ωI(j × n̂). (13)

The frequency ωI is known as the Einstein-de Haas fre-
quency [29].
Let us decompose these equations of motion in terms

of the unit vectors n̂, θ̂, and ϕ̂ in spherical coordinates.
The time derivatives of these coordinates are related by

∂n̂

∂t
=
∂θ

∂t
θ̂ + sin θ

∂ϕ

∂t
ϕ̂ (14)

∂θ̂

∂t
= −∂θ

∂t
n̂+ cos θ

∂ϕ

∂t
ϕ̂ (15)

∂ϕ̂

∂t
= − sin θ

∂ϕ

∂t
n̂− cos θ

∂ϕ

∂t
θ̂, (16)

by a magnetic field gradient. The DM models of interest and the
frequency regime considered in this work produce magnetic-field
signals that are relatively uniform, so in this work, we will ne-
glect any such gradients. In principle, the translational modes
may also exhibit some coupling to the angular modes, e.g. due
to inhomogeneities in the trap. This cross-coupling is small in
existing experiments [3, 4].
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and the total angular momentum j can be decomposed
as

j = jnn̂+ jθθ̂ + jϕϕ̂. (17)

Note that Eqs. (12) and (13) imply

∂jn
∂t

= j · ∂n̂
∂t

+
∂j

∂t
· n̂ = 0, (18)

so that jn is a constant of motion. If the ferromagnet is
not spinning around its magnetic moment axis, then the
orbital angular momentum ℓ has no component along n̂,
and so jn = 1. In the interest of maintaining general-
ity, we will leave our results in terms of jn. As we will
see in Sec. II C, the limit jn → 0 will correspond to the
“compass” behavior where the ferromagnet’s angular mo-
mentum is dominated by its orbital angular momentum,
while the limit jn → ∞ will correspond to the “electron
spin” behavior where it is dominated by its intrinsic an-
gular momentum.

In terms of our spherical-coordinate variables,

Eqs. (12) and (13) become

∂jθ
∂t

− jϕ cos θ
∂ϕ

∂t
+ jn

∂θ

∂t
=

1

sin θ

∂v

∂ϕ
(19)

∂jϕ
∂t

+ jθ cos θ
∂ϕ

∂t
+ jn sin θ

∂ϕ

∂t
= −∂v

∂θ
(20)

∂θ

∂t
= ωIjϕ (21)

sin θ
∂ϕ

∂t
= −ωIjθ. (22)

These can then be combined to give

∂2θ

∂t2
− sin 2θ

2

(
∂ϕ

∂t

)2

+ jnωI sin θ
∂ϕ

∂t
+ ωI

∂v

∂θ
= 0

(23)

sin2 θ
∂2ϕ

∂t2
+ sin 2θ

∂ϕ

∂t

∂θ

∂t
− jnωI sin θ

∂θ

∂t
+ ωI

∂v

∂ϕ
= 0.

(24)

Finally, let us suppose that the motion of the ferromagnet
is small,8 so that we may perturb Eqs. (23) and (24)
around the minimum n̂0 = (θ0, ϕ0) of v. Namely, let us
write θ = θ0 + δθ and ϕ = ϕ0 + δϕ. Then to first order,
these equations become

[
∂2t

(
1 0
0 sin2 θ0

)
+ jnωI sin θ0∂t

(
0 1
−1 0

)
+ ωI

(
vθθ vθϕ
vϕθ vϕϕ

)](
δθ
δϕ

)
= 0, (25)

where vαβ = ∂α∂βv|(θ0,ϕ0)
.

C. Response to AC magnetic field

Eq. (25) encodes all the important dynamics of the
ferromagnet. To understand the structure of this equa-
tion, let us consider the effect of an AC magnetic field
B(t) = B0 cosωt on the ferromagnet.9 This magnetic
field will have the same effect as a (time-dependent) po-
tential of the form of the first term in Eq. (2). If we

8 In the weakly coupled limit, the dark matter signal we consider
only generates a small, oscillating perturbation to the system.

9 In this subsection, we will assume that the AC magnetic field is
linearly polarized. This is because we will be interested in distin-
guishing whether the ferromagnet librates or precesses, and such
a notion is only well-defined if the direction of the field is fixed.
This will be the case for the magnetic-field signal from an axion-
photon coupling Baγ (see Sec. IVC), since its direction remains
fixed and only its phase oscillates. This will, however, not be
the case for an axion-wind or DPDM signal (see Secs. IVA and
IVB), as the components of the axion gradient or dark photon
may have different phases [e.g., see Eq. (74)], and so the resulting
magnetic-field signal may be elliptically polarized.

write

B0 = B0b̂ = B0

(
bnn̂0 + bθθ̂0 + bϕϕ̂0

)
(26)

in terms of the spherical-coordinate unit vectors at
(θ0, ϕ0), then this corresponds to a normalized potential

vB(θ0 + δθ, ϕ0 + δϕ, t) = ωL cosωt
(
n̂ · b̂

)
(27)

≈ ωL cosωt (bn + bθδθ + bϕ sin θ0δϕ) (28)

where ωL = γeB0. Plugging vB into Eqs. (23) and (24) as
an additional contribution to v, we find that it acts as an
AC driving force for the system (because ∂θvB , ∂ϕvB ̸=
0). In particular, it will appear on the right-hand side of
Eq. (25) as

−ωIωL cosωt

(
bθ

bϕ sin θ0

)
. (29)

We can then readily interpret the structure of Eq. (25).
The first row represents how the system responds to an
applied magnetic field in the θ-direction, while the sec-
ond row represents how the system responds to an ap-
plied magnetic field in the ϕ-direction. Meanwhile, the
first column represents motion in the θ-direction, and
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the second column represents motion in the ϕ-direction.
This tells us that the diagonal elements of Eq. (25) in-
dicate libration, while the off-diagonal elements indicate
precession.

Let us now analyze the behavior of this system in
various cases. Without loss of generality, we may ori-
ent our coordinates so that θ0 = π

2 , ϕ0 = 0, and

vθϕ = vϕθ = 0. Moreover, let us complexify the AC mag-
netic field B(t) = B0e

−iωt. The homogeneous response
of δθ and δϕ will then be(

δθ
δϕ

)
= −NℏγeB0

2
· χ(ω)

(
bθ
bϕ

)
, (30)

where the mechanical susceptibility χ(ω) is given by

χ(ω)−1 = I

[
−ω2

(
1 0
0 1

)
− ijnωIω

(
0 1
−1 0

)
+ ωI

(
vθθ 0
0 vϕϕ

)]
. (31)

We will consider a few properties of the system based
on the characteristics of χ(ω). First, we will be interested
in the resonances of the system, which occur at the fre-
quencies where χ(ω)−1 becomes singular. Second, we will
determine whether libration or precession dominates the
motion, based on whether the off-diagonal components
of χ are larger than its diagonal components.10 Finally,
we will consider the behavior of the sensitivity as a func-
tion of frequency ω. As shown in Appendix A, the peak
sensitivity of the system is primarily determined by the
eigenvalue of χ with the largest absolute value λmax(ω).
We consider three cases of interest for this system (with-
out loss of generality, we take vθθ ≫ vϕϕ in all three
cases, but their roles will simply be interchanged if the
hierarchy is flipped):

• Trapped (vθθ/jn ≫ vϕϕ/jn ≫ jnωI): This will
be the case, for instance, when the ferromagnet is
trapped by a strong magnetic field, as in Eq. (2).
At all frequencies, the second term in Eq. (31) can
be neglected, and so the dominant motion is li-
bration. The system exhibits two resonances at
ω ≈ √

ωIvθθ and ω ≈ √
ωIvϕϕ. For ω ≪ √

ωIvϕϕ,
the response of the system is flat as a function of
ω, that is λmax(ω) ≈ (IωIvϕϕ)

−1
. Meanwhile for

ω ≫ √
ωIvϕϕ, it decays as |λmax(ω)| ≈ I−1ω−2

(except near the resonance ω ≈ √
ωIvθθ).

• Partially trapped (vθθ/jn ≫ jnωI ≫ vϕϕ/jn):
This will be the case, for instance, when the fer-
romagnet is trapped above a superconductor, as

10 One may wonder whether this definition of libration/precession
is coordinate-dependent. Because we have assumed B(t) is lin-
early polarized (see footnote 9), then bθ and bϕ are real, and so we
should restrict our coordinate transformations to be orthogonal
(as opposed to unitary). Given any 2 × 2 Hermitian matrix, an
orthogonal transformation can always be performed so that the
off-diagonal components become purely imaginary. This coordi-
nate choice minimizes the size of the off-diagonal components,
and libration/precession can always be defined in these coordi-
nates. The matrix in Eq. (31) is conveniently already in these
coordinates, so we require no transformation.

in Eq. (4) [and the degeneracy in the ϕ-direction
is only weakly broken]. The resonant frequen-
cies are again ω ≈ √

ωIvθθ and ω ≈ √
ωIvϕϕ.

The off-diagonal components of Eq. (31) are al-
ways subdominant to the θθ-component, however,
for jnωI ≫ ω ≫ vϕϕ/jn, they are larger than the
ϕϕ-component. This implies that in this frequency
range, an AC magnetic field in the ϕ-direction will
result in libration, while one in the θ-direction will
result in precession. The behavior of λmax is the
same as in the trapped case. We note that in the
frequency range where precession can occur, the
eigenvector associated with λmax is closely aligned
with the ϕ-direction. Therefore even though pre-
cession can be achieved, it is not the dominant be-
havior of the system.

• Gyroscope (jnωI ≫ vθθ/jn ≫ vϕϕ/jn): This
will be the case, for instance, when the ferromag-
net is in (near) freefall. The resonant frequen-
cies are now ω ≈ ωI and ω ≈ √

vθθvϕϕ. When
jnωI ≫ ω ≫ vθθ/jn, the off-diagonal components
dominate, and there is precession in both direc-
tions. When vθθ/jn ≫ ω ≫ vϕϕ/jn, there will
be precession in one direction and libration in the
other. For all other frequencies, there will only be
libration. The response of such a system as a func-
tion of frequency is given by

|λmax(ω)| ≈


(IωIvϕϕ)

−1
, ω ≪ √

vθθvϕϕ/jn
vθθ/(j

2
nIωIω

2), vθθ/jn ≫ ω ≫ √
vθθvϕϕ/jn

(IjnωIω)
−1, jnωI ≫ ω ≫ vθθ/jn

I−1ω−2, ω ≫ jnωI .
(32)

In Figs. 1 and 2, we show the behavior of χ in the “par-
tially trapped” and “gyroscope” cases, respectively. The
left plots show the behavior of the eigenvalues λmax, λmin

of χ(ω). The right plots show the elements of χ(ω). We
show in green the regions where precession is possible,
which occurs when the off-diagonal elements are larger
than the diagonal elements.
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FIG. 1. Absolute values of the eigenvalues (left) and elements (right) of χ(ω) in the “partially trapped” case. In these plots,
we set vθθ = 2π · 104 Hz, ωI = 2π · 1Hz, vϕϕ = 2π · 10−4 Hz, and jn = 1. On the left, the blue line denotes the larger
eigenvalue, which predominantly determines the sensitivity of the system, while the orange line denotes the smaller eigenvalue.
Note that the larger eigenvalue exhibits resonances at ω =

√
ωIvϕϕ and ω =

√
ωIvθθ. On the right, the blue, orange, and red

lines represent I|χθθ|, I|χθϕ|, and I|χϕϕ|, respectively. Note that |χθϕ| > |χθθ| for jnωI ≫ ω ≫ vϕϕ/jn (green shaded region),
indicating that an AC magnetic field in the θ-direction can induce precession in this frequency range.

III. MAGNETIC-FIELD SENSITIVITY

In this section, we compute the sensitivity of vari-
ous ferromagnet setups to an applied AC magnetic field.
First, we review the dominant noise sources present in
such a setup, accounting for noise in both angular direc-
tions using the formalism developed in Sec. II. Then, we
consider the physical constraints of a levitated ferromag-
net setup in order to determine optimal parameters for
a future levitated setup. These parameters are shown in
Tab. I, along with parameters representative of an ex-
isting setup and ones for a space-based freefall setup.
Finally, we review other potential noise sources.

A. Dominant noise sources

Now, we characterize the relevant noise sources in our
system. The noise analysis presented in this subsection
parallels the analysis in Ref. [30], but we account for the
motion of the ferromagnet in both angular directions.
To this end, we generalize many of the scalar quantities
introduced in Ref. [30] to 2 × 2 matrices [as we did for
the mechanical susceptibility χ(ω) in Eq. (31)].

We consider three primary noise sources: thermal, im-
precision, and back-action noise. Let us first begin with
thermal noise. The thermal torque noise acting on the

ferromagnet is given by

Sth
ττ (ω) =

(
Sth
ττ,θθ(ω) Sth

ττ,θϕ(ω)

Sth
ττ,ϕθ(ω) Sth

ττ,ϕϕ(ω)

)
(33)

= 4kBIγT

(
1 0
0 1

)
, (34)

where Sττ,αβ represents the cross-correlation between
torque noise in the α- and β-directions, and γ is the dis-
sipation rate of the system.11 An applied magnetic field
induces a torque

τ = −µn̂×B , (35)

where µ = Nℏγe/2 is the magnetic moment of the ferro-
magnet, or equivalently(

τθ
τϕ

)
= µ

(
0 1
−1 0

)(
Bθ

Bϕ

)
. (36)

Then the torque noise in Eq. (34) can be translated into

11 We assume that the dissipation rate is the same for both modes,
e.g., in the case of damping due to gas collisions. For a more
general case, one can extend this formalism directly.
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FIG. 2. Same as Fig. 1, but in the “gyroscope” case. In these plots, we set ωI = 2π · 104 Hz, vθθ = 2π · 1Hz, vϕϕ = 2π · 10−4 Hz,
and jn = 1. Note that the resonances in the left plot are now at ω =

√
vθθvϕϕ and ω = ωI , and that the blue line exhibits

the scaling behavior indicated in Eq. (32). On the right, note that |χθϕ| > |χθθ|, |χϕϕ| for jnωI ≫ ω ≫ vθθ/jn (darker green
shaded region), indicating that there is precession in both directions in this frequency range.

a magnetic-field noise

Sth
BB(ω) =

1

µ2

(
0 −1
1 0

)
Sth
ττ (ω)

(
0 1
−1 0

)
(37)

=
4kBIγT

µ2

(
0 −1
1 0

)(
1 0
0 1

)(
0 1
−1 0

)
(38)

=
4kBIγT

µ2

(
1 0
0 1

)
. (39)

Imprecision and back-action are noise sources related
to the readout scheme. For concreteness, here we will
consider a readout scenario that utilizes two SQUIDs (to
read the two angular modes of the ferromagnet). Each
SQUID exhibits both a flux noise Sφφ,j and current noise
SJJ,j (for j = 1, 2).12 They can be combined to define the

energy resolution κj =
√
Sφφ,jSJJ,j of the SQUID, which

is bounded below by the uncertainty relation κj ≥ ℏ [31].
Currents in the SQUIDs lead to back-action torques on
the ferromagnet. These can be defined by a coupling
matrix(

τθ
τϕ

)
= τ = −n̂× ηJ (40)

=

(
0 1
−1 0

)(
ηθ1 ηθ2
ηϕ1 ηϕ2

)(
J1
J2

)
. (41)

12 In this work, we neglect any correlations SφJ between flux and
current noise.

(Note that if we wish to reduce to the case of a single-
SQUID readout, this can be done by taking ηθ2, ηϕ2 → 0.)
Likewise, fluxes in the SQUIDs correspond to angular

displacements n̂ =
(
η−1

)T
φ. We can then express the

current and flux noise as torque and angular uncertain-
ties, respectively

Sback
ττ =

(
0 1
−1 0

)
ηSJJη

T

(
0 −1
1 0

)
(42)

=

(
0 1
−1 0

)
η

(
SJJ,1 0
0 SJJ,2

)
ηT

(
0 −1
1 0

)
(43)

Simp
n̂n̂ =

(
η−1

)T
Sφφη

−1 (44)

=
(
η−1

)T (
Sφφ,1 0
0 Sφφ,2

)
η−1. (45)

Much like the thermal noise, it is straightforward to
translate the back-action noise into a magnetic-field noise

Sback
BB (ω) =

1

µ2
ηSJJη

T . (46)

The imprecision noise, on the other hand, requires the
use of χ(ω), as in Eq. (30), in order to translate it into a
magnetic-field noise13

Simp
BB (ω) =

1

µ2
χ(ω)−1

(
η−1

)T
Sφφη

−1χ(ω)−1. (47)

13 One may consider adding a damping term (corresponding to the
quality factor of the system) to the definition of χ(ω) in Eq. (31),
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The total magnetic-field noise will be given by

Stot
BB(ω) = Sth

BB(ω) + Simp
BB (ω) + Sback

BB (ω). (48)

As the imprecision and back-action noise scale in opposite
ways with the coupling η, there exists a trade-off between
them, and so we should consider our choice of η carefully.
Let us begin by making a slight change of variables to
Eqs. (46) and (47); that is, let us define

κ = S
1/2
JJ S

1/2
φφ =

(
κ1 0
0 κ2

)
(49)

η̃ = ηS
1/4
JJ S

−1/4
φφ , (50)

so that we may write

Sback
BB (ω) =

1

µ2
η̃κη̃T (51)

Simp
BB (ω) =

1

µ2
χ(ω)−1

(
η̃−1

)T
κη̃−1χ(ω)−1. (52)

As we can see from Figs. 1 and 2, the response of the
system is maximized for frequencies at/below the low-
est resonance, and so this is where we will get the best
sensitivity. As such, we will choose η to maximize our
sensitivity in this region. Note that in this frequency
range, the last term in Eq. (31) always dominates (re-
gardless of what parameter regime we are in). Therefore,
χ(ω) is always nearly diagonal. Since κ is also diagonal,
it will be advantageous for us to take η̃ diagonal as well.
In that case, we find14

Sback
BB (ω) =

1

µ2

(
κ1η̃

2
1 0

0 κ2η̃
2
2

)
(53)

Simp
BB (ω) ≈ 1

µ2

(
κ1η̃

−2
1 V 2

θθ 0
0 κ2η̃

−2
2 V 2

ϕϕ

)
, (54)

where the approximation in Eq. (54) holds for
ω ≤ √

ωIvϕϕ,
√
vθθvϕϕ, and we have defined Vαβ =

∂α∂βV |(θ0,ϕ0)
and set

η̃ =

(
η̃θ 0
0 η̃ϕ

)
. (55)

in order to regulate the behavior of this expression near the res-
onances of χ(ω). Below, we will consider parameters such that
imprecision noise never dominates on-resonance, so it is reason-
able to exclude this damping term.

14 In many cases, Eq. (54) is not the correct expression for Simp
BB ,

as we have neglected the contributions from the off-diagonal el-
ements of χ(ω)−1. Nevertheless, Eq. (54) possesses the correct

eigenvalues and eigenvectors for Simp
BB , which are the only prop-

erties we require. This is because Eq. (54) has the correct value

for Simp
BB,θθ, which is much larger than the other elements. This

ensures that κ1η̃
−2
1 V 2

θθ/µ
2 is indeed an eigenvalue of Simp

BB , with

corresponding eigenvector approximately equal to θ̂. The other
eigenvector is fixed by orthogonality, and the other eigenvalue is

fixed by the determinant of Simp
BB [which depends negligibly on

the off-diagonal elements of χ(ω)−1].

Once we have chosen η̃ to be diagonal, we see that the
choice of coupling along each axis is independent. As
shown in Appendix A, the total sensitivity of our system
ultimately depends on the sensitivity in both directions,
but it will be predominantly determined by the sensitiv-
ity along the more sensitive axis. Let us first address how
to choose the coupling for a single axis. There are two
cases one should consider. First, if the thermal noise is
larger than the geometric mean of the back-action and
low-frequency imprecision noise, that is,

Sth
BB,αα ≥

√
Simp
BB,αα(ω = 0) · Sback

BB,αα, (56)

or equivalently

η̃(res)α ≥ η̃(broad)α , (57)

where

η̃(res)α =

√
4kBIγT

κj
(58)

η̃(broad)α =
√
Vαα, (59)

then both imprecision and back-action noise can be made
subdominant to thermal noise at frequencies at/below
the resonance of this mode. This is achieved so long as

η̃(res)α ≥ η̃α ≥
[
η̃(broad)α

]2
/η̃(res)α . (60)

The closer η̃ is to the upper bound in Eq. (60), the better
the sensitivity will be at higher frequencies (as impreci-
sion noise always dominates at sufficiently high frequen-
cies), but if the primary goal is to maximize sensitivity
at/below the resonance, then any coupling in this range
will suffice.
If Eq. (57) is not met, then one of imprecision or

back-action noise will always dominate at low frequen-
cies. There are then two possible approaches. If we wish
to maximize the sensitivity on-resonance, then we should
set the back-action noise equal to thermal noise, i.e. the
choice of η̃ in Eq. (58). If, instead, we wish to opti-
mize for sensitivity at low frequencies, then we should
set back-action noise equal to low-frequency imprecision
noise, i.e., the choice of η̃ in Eq. (59). In this way, an
individual mode can be optimized for either resonant or
broadband detection. If two SQUIDs are utilized to track
both modes, then we can make this choice for each mode
separately.

B. Parameter estimation

In this section, we estimate the parameters that can
be realistically achieved in a future levitation setup. In
particular, we need estimations for the ferromagnet pa-
rameters, the trapping potential V , the temperature T
and dissipation rate γ that determine the thermal noise,
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FIG. 3. Scheme of the circular pick-up coils considered for
the estimation of coupling. The spherical magnet at equi-
librium height z0 has its magnetic dipole oriented along n̂.
Rotations along the spherical angles θ and ϕ are detected
with maximum efficiency by the horizontal coil (radius Rp,θ)
and vertical coil (radius Rp,ϕ) respectively.

and finally, the energy resolution κ and coupling η̃ of the
readout.

For concreteness, we consider a setup with a per-
manent hard ferromagnetic sphere with magnetization
M = Bs/µ0 (with Bs saturation remanence field), den-
sity ρ, and radius R, levitated via the Meissner effect
above a type-I superconducting plane [3, 4], i.e., with a
potential of the form in Eq. (4). We consider the plane
to be made of lead, which has a critical field Bc = 80mT.
The equilibrium levitation height can be expressed as [3]

z0 =

(
µ0M

2R3

16ρg

) 1
4

. (61)

A typical neodymium-based rare earth alloy used in
current experiments features M ≈ 7× 105 A/m and ρ ≈
7400 kg/m3. For these parameters, the maximum field
produced by the magnet at the superconducting surface

Bsurf =
2Bs

3

(
R

z0

)3

(62)

increases with R and approaches the critical field for
R ≈ 35mm. This is an ultimate upper limit on R for
pure Meissner levitation above lead. A safe choice for a
future experiment is R = 2 mm, which implies a field at
the surface of ∼ 9mT, one order of magnitude below the
critical field. Levitating a larger magnet would require
using a type-II superconductor [32], in which case mod-
eling would be more complex, and additional dissipation
from vortex motion would arise.

The magnetic confinement in the polar direction Vθθ
can be determined via Eq. (4). The azimuthal confine-
ment Vϕϕ has been recently shown to be tunable in a

wide range between 10−5 and 10−1 times Vθθ by applying
a bias field [5]. For concreteness we set Vϕϕ = 10−3Vθθ.
For the thermal noise we set γ = 2×10−6 Hz and T = 50
mK. Such values appear within reach and have been ap-
proached by a recent experiment [33], where γ ≲ 10−5

Hz was measured at the operating temperature T = 30
mK. In that experiment, an excess noise of a factor 100
larger than the thermal noise was attributed to insuf-
ficient vibrational isolation. We also remark that even
lower dissipation γ ≈ 4 × 10−7 Hz has been measured
with a nanoparticle in ultrahigh vacuum levitated within
a Paul trap [34].
For the readout, we consider two circular supercon-

ducting pick-up coils. In accordance with the choice
of setting η̃ to be diagonal [see Eq. (55)], we optimally
orient the coils to sense rotations along the θ- and ϕ-
directions, with number of loops Np,α and radius Rp,α.
This arrangement is sketched in Fig. 3. Each pick-up
coil, with inductance Lp, is connected to the input coil of
a DC SQUID. The latter has inductance LS , the input
coil has inductance Li, and they have mutual inductance
Mi = k

√
LiLS , with k ≤ 1 a geometrical coupling factor.

A DC SQUID can be modeled as a linear detector
of magnetic flux, with imprecision flux noise SφSφS

and
circulating current back-action noise SJSJS

. These can
alternatively be expressed as flux/current energy reso-
lution κφ = SφSφS

/LS and κJ = SJSJS
LS (so that

κ2 = κφκJ).
15 The advantage of this normalization is

that the quantum limit for each noise source is given by
κφ, κJ ≥ ℏ.
In a pick-up coil configuration, the flux effectively cou-

pled into the SQUID is φS = (Mi/L)φ, where φ = ηθθ
or φ = ηϕϕ is the flux coupled into the pick-up coil by
a rotation angle θ or ϕ of the ferromagnet. Here, L =
Li + Lp is the total inductance of the superconducting
flux transformer loop. Likewise, a circulating current in
the SQUID JS translates into a current J = (Mi/L)JS in
the pick-up coil. This is shown in Fig. 4. The flux trans-
former loop thus behaves as an equivalent SQUID with
inductance L, imprecision noise Sφφ = SφSφS

/(Mi/L)
2

and back-action noise SJJ = SJSJS
(Mi/L)

2. The energy
product κ = SJJSφφ is invariant, while η̃ = (Mi/L)η̃S is
rescaled.

The coupling η between the rotating ferromagnet and
pick-up coil for the optimal geometrical configuration
shown in Fig. 3 is given by

η =
Npµ0µ

2Rp
. (63)

If one wishes to increase the coupling η̃, then one should
maximize the product η ·Mi/L. This is most easily done
by modifying the pick-up coil, specifically by varying the

15 We note that in the literature, these energy resolutions are some-
times defined as ϵφ = κφ/2 and ϵJ = κJ/2. Here, we omit the
factor of 2 to agree with our definition of κ.
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FIG. 4. A SQUID connected through a superconducting
pick-up coil to the ferromagnet motion [subfigure (a)] is equiv-
alent to a SQUID directly connected to the ferromagnet [sub-
figure (b)], with the backward scaling J/JS = Mi/L and the
forward scaling φS/φ = Mi/L. Here, Mi is the mutual induc-
tance between the input coil and SQUID, and L = Li + Lp.
The effective coupling η to the equivalent SQUID coincides
with the coupling to the pick-up coil. The imprecision and
back-action noises Sϕϕ and SJJ of the equivalent SQUID are
rescaled by (Mi/L)

−2 and (Mi/L)
2 with respect to the real

SQUID noises. As a result, κ is the same for the effective and
real SQUIDs, while η̃ is rescaled by Mi/L.

number of loops. A pick-up coil made of Np circular
superconducting loops of radius R with wire radius a has
inductance

Lp = N2
pµ0Rp

[
log

(
8Rp

ap

)
− 2

]
. (64)

As a function of Np, the product η ·Mi/L will be maxi-
mized when Lp = Li. (Alternatively, if one wishes to re-
duce η̃, the number of coils can be decreased/increased.)

In Tab. I, we show sample parameters for three dif-
ferent setups: ones representative of an existing levi-
tated setup [5], ones for a future levitated setup, and
ones for a space-based freefall setup. Their corresponding
magnetic field sensitivities SBB(f) are shown in Fig. 5.
The future setup takes the ferromagnet (R, M , and ρ)
and system parameters (T , γ, and Vϕϕ) described above.
For the readout, we take Rp = 8mm, ap = 100µm,
LS = 80pH, Li = 1.8µH, and k = 0.85. With these
values, the optimal number of loops (to achieve Lp ≈ Li)
is Np = 6. We also assume a quantum-limited read-
out κ = κφ = κJ = ℏ. With these parameter choices,
we see that the system exhibits the “trapped” behav-
ior described in Sec. II C because vθθ, vϕϕ ≫ ωI . (We
set jn = 1 in all cases.) Moreover, both modes satisfy
Eq. (60), so the readout is appropriately coupled.

The existing case uses ferromagnet and system param-
eters comparable to the setup in Ref. [5]. For the readout

of the θ-mode, we take the same parameters as in the fu-
ture setup, but with a smaller pick-up loop Rp = 1mm
and worse energy resolution κ = κφ = κJ = 1000ℏ. With
this pick-up loop radius, the optimal number of coils is
Np = 25. For the readout of the ϕ-mode, the setup in
Fig. 3 is not achievable since the equilibrium point of
the ferromagnet is so close to the superconducting plane
z0 ≈ 250µm. Instead, different geometries may be re-
alized. For instance, in Ref. [5], the ϕ-mode is read out
using a figure-eight-shaped coil lying in a plane above
the ferromagnet. Such a geometry will naturally exhibit
a weaker coupling than the θ-readout. In Tab. I, we sim-
ply fix a coupling η̃ϕ = 5 × 10−9

√
J comparable to that

of Ref. [5], without focusing on any particular geometric
realization. In this case, neither mode satisfies Eq. (60),
so both modes are undercoupled.
Finally, the freefall case considers a space-based ex-

periment with parameters comparable to the LISA
Pathfinder mission [35, 36]. We take a ferromagnet of
similar dimensions to the LISA test mass (but we take
a neodymium sphere rather than a gold cube). We con-
sider the system to be at room temperature T = 300K
with a dissipation rate γ = 10−10 Hz that produces
a thermal noise slightly better than LISA Pathfinder’s
angular sensitivity [35]. The ferromagnet will experi-
ence some weak trapping from stray DC magnetic fields
inside the apparatus. The Sun’s magnetic field near
LISA’s position averages ∼ 5 nT, which can be reduced
by a few orders of magnitude with moderate magnetic
shielding. On the other hand, the shielding itself will
exhibit some residual magnetization, which will likely
dominate the stray fields inside the apparatus. We as-
sume a residual magnetic field of ∼ 300 pT [37],16 re-
sulting in a trapping potential V ∼ 7 × 10−9 J. Finally,
a SQUID readout will be difficult to implement effec-
tively at room temperature. Instead, LISA utilizes an
interferometric readout with positional imprecision noise√
Sxx ∼ 3 × 10−14 m/

√
Hz [36], which translates to an

angular imprecision
√
Sn̂n̂ ∼ 10−12 rad/

√
Hz. Assuming

a quantum-limited readout κ = ℏ, this corresponds to
a coupling η̃ ∼ 10−5 J. We see that both modes satisfy
Eq. (60), so that the low-frequency sensitivity is domi-
nated by thermal noise. However, since η̃ is far from the
upper bound of Eq. (60), the high-frequency sensitivity
could be improved if the coupling can be increased fur-
ther. Also note that despite the fact that the experiment
is in freefall, this case still exhibits the “trapped” rather
than “gyroscope” behavior (i.e., vθθ, vϕϕ ≫ ωI still). To
achieve the gyroscope behavior with such a large ferro-
magnet would require significantly better shielding.

16 We note that it may be possible to reduce the stray fields in
the apparatus further [38, 39]. Ultimately, trapping by stray
fields does not limit our final sensitivity. This will only affect the
imprecision noise at low frequencies, but as can be seen from the
bottom plot of Fig. 5, we are dominated by thermal noise at low
frequencies.
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Parameter Existing Future Freefall

Ferromagnet radius R 20µm 2mm 2 cm

Ferromagnet magnetization M 7× 105 A/m

Ferromagnet density ρ 7400 kg/m3

Temperature T 4K 50mK 300K

Dissipation rate γ 10−2 Hz 2× 10−6 Hz 10−10 Hz

Azimuthal trapping Vϕϕ 10−14 J 10−3Vθθ 7× 10−9 J

Energy resolution κθ = κϕ 1000ℏ ℏ ℏ
Polar coupling η̃θ 1.1× 10−7

√
J 3.7× 10−3

√
J 10−5

√
J

Azimuthal coupling η̃ϕ 5× 10−9
√
J 3.7× 10−3

√
J 10−5

√
J

η̃
(res)
θ = η̃

(res)
ϕ 9.1× 10−7

√
J 4.6× 10−3

√
J 2.5

√
J

η̃
(broad)
θ 6.4× 10−7

√
J 3.6× 10−3

√
J 10−5

√
J

η̃
(broad)
ϕ 10−7

√
J 1.1× 10−4

√
J 10−5

√
J

ωI 2π · 0.53Hz 2π · 5.3× 10−5 Hz 2π · 5.3× 10−7 Hz

vθθ 2π · 4.9× 105 Hz 2π · 1.6× 107 Hz 2π · 0.12Hz

vϕϕ 2π · 1.2× 104 Hz 2π · 1.6× 104 Hz 2π · 0.12Hz

TABLE I. Parameters choices for various setups. Here, we show three sets of parameters: one representative of an existing
levitated setup [5] (but with an additional readout mode; see text), a future levitated setup, and a space-based freefall setup with
parameters comparable to LISA Pathfinder. Each section of the table includes ferromagnet parameters, system parameters,
readout parameters, and resulting quantities defined in Secs. II and IIIA. In the first two cases, the polar trapping Vθθ can
be computed via Eq. (4), while in the third case, it is the same as Vϕϕ. In the future setup, both modes satisfy Eq. (60), so
the readout is appropriately coupled. In the existing setup, both modes are undercoupled. In the freefall setup, they satisfy
Eq. (60), but the sensitivity would benefit at higher frequencies from an even larger coupling. In all three cases, the system
exhibits “trapped” behavior (i.e. vθθ, vϕϕ ≫ ωI).

C. Other noise sources

Before we move on to estimate the sensitivity of these
setups to DM, we note a couple of additional sources
of noise, which are not inherent but may take addi-
tional care to mitigate. The first is vibrational noise,
which can lead to translational motion of the ferro-
magnet if not properly attenuated. If the translational
and rotational motions of the ferromagnet exhibit some
small coupling (see footnote 7), this will translate into
noise in its angular orientation n̂ (similar to imprecision
noise). The angular imprecision noise for the future lev-

itated setup is
√
Sn̂n̂ ∼ 3 × 10−15 rad/

√
Hz. Assuming

a O(0.01) coupling between the translational and rota-
tional modes, this setup would require a vibrational noise√
Sxx ≲ 6 × 10−16 m/

√
Hz in order for vibrations to be

subdominant. The corresponding requirement for the ex-
isting and freefall setups is

√
Sxx ≲ 10−12 m/

√
Hz. LIGO

has achieved vibrational noises below these thresholds for
frequencies f ≳ 10Hz [40].

Another noise source of concern is 1/f noise in the
SQUID readout, which typically dominates at low fre-
quencies f ≲ 10 kHz and results in flux noise

√
Sφφ ∼

5− 10µΦ0/
√
Hz at f ∼ 1Hz [41] (compared to the much

lower noise
√
Sφφ ∼ 0.04µΦ0/

√
Hz assumed in our fu-

ture setup). Methods to substantially reduce 1/f noise
by material engineering have demonstrated suppression
down to

√
Sφφ ∼ 0.3µΦ0/

√
Hz at f ∼ 1Hz [41]. A

more complex approach is to mitigate 1/f noise by up-

converting the signal to a higher pump frequency where
1/f noise is negligible. This can be achieved via a capac-
itor bridge transducer [42, 43], or an inductance bridge
transducer [44]. Henceforth, we assume that our readout
implements such a scheme. This allows us to neglect
1/f noise and validates our assumption of frequency-
independent flux noise.

IV. SEARCHING FOR ULTRALIGHT DM

In this section, we introduce a few ultralight DM candi-
dates/couplings which could be detected with ferromag-
nets. All of these candidates manifest in laboratory ex-
periments as effective/physical AC magnetic fields, and
so a ferromagnet will respond to these DM candidates
in the manner described in Sec. II. We can then use
the magnetic-field sensitivities computed in Sec. III to
project the sensitivity of ferromagnets to these DM can-
didates. In this section, we consider two possible inter-
actions of axion DM: a coupling to electrons gae and
a coupling to photons gaγ . The former directly causes
precession of electron spins, while the latter creates an
observable magnetic field (which in turn leads to preces-
sion of magnetic moments). In addition, we also consider
DPDM with kinetic mixing ε, which generates a similar
observable magnetic field.
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FIG. 5. Magnetic field sensitivities for the three setups shown in Tab. I. We show the thermal contribution in red, the backaction
contribution in yellow, and the imprecision contribution in blue. For the imprecision noise, the smaller eigenvalue of Simp

BB ,
which dominates the sensitivity, is shown as solid, while the larger eigenvalue is dashed. In black, we show the total noise,

specifically Tr
[(
Stot
BB

)−2
]−1/2

, as this is the quantity which appears in Eq. (71).a Note that the future and freefall setups have

broadband sensitivity because they are adequately coupled [satisfy Eq. (60)], while the existing case has resonant sensitivity
(in both modes) because it is undercoupled. The freefall setup demonstrates better sensitivity than the future setup at low
frequencies, but becomes dominated by imprecision noise at much lower frequencies than in the future case. This can be
improved by increasing the coupling towards the upper bound in Eq. (60). Both cases show significantly better sensitivity than
the existing case.

a In some cases, the black curve appears lower than the colored curves by a factor of
√
2, as the colored curves show the eigenvalues of

the individual contributions.
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A. Axion-electron coupling

An axionlike particle a, with mass ma, is a pseu-
doscalar which may generically exhibit various interac-
tions with SM particles. One such possible interaction is
a coupling to electrons via the operator

Lae ⊃
gae

√
ℏ3c

2me
∂µaψ̄eγ

µγ5ψe, (65)

where me is the electron mass and ψe is its wavefunction.
When the electron is non-relativistic, this leads to a cou-
pling between the axion gradient and electron spins, i.e.
a Hamiltonian of the form

H ⊃ gae
√
ℏ3c

2me
σe · ∇a ≡ −γeSe ·Bae, (66)

where Se = ℏ
2σe is the spin of the electron (and −γeSe

is its magnetic moment). We then see that an axion
gradient (or “axion wind”) has the same effect on an
electron spin as an effective magnetic field17

Bae = −2gae
√
ℏc

gee
∇a. (67)

As a ferromagnet is composed of many polarized elec-
trons spins, the axion wind will also generate a torque
on the ferromagnet, just as a real magnetic field would.
(See also Ref. [21] for another example where ferromag-
netic materials are used to probe an axion wind, although
at much higher masses than the range considered in this
work.)

If axionlike particles make up the DM, then they will
also be non-relativistic. This implies that a oscillates at
its Compton frequency fa = mac

2/2πℏ, namely

a(x, t) ≈ a0(x) cos(2πfat). (68)

Moreover, the spatial gradients of a are suppressed by its
velocity vDM ∼ 10−3c, so that

∇a ∼ vDM

c2

√
2ρDM sin(2πfat), (69)

where ρDM ≈ 0.3GeV/cm
3
is the local DM energy den-

sity [46]. The effective magnetic field in Eq. (67) is then
an AC field with frequency fa and amplitude

Bae ∼ gae · 4× 10−8 T. (70)

17 We note that Bae may receive a suppression from the magnetic
shielding of the experimental apparatus in certain contexts [anal-
ogous to the mA′L shielding suppression appearing in the DPDM
signal in Eq. (76)]. In particular, this can occur if the shielding
is accomplished with a material of high permeability, such as
mu-metal, but it will not occur if superconducting shielding is
used [45]. Note that in the case of multiple layers of shielding, it
is only the composition of the innermost layer which is relevant
for this suppression.

Note that the monochromatic time dependence in
Eq. (68) only applies on timescales shorter than the co-
herence time tcoh ∼ c2/fav

2
DM. On longer timescales, the

amplitude a0 and gradient of the axion will vary stochas-
tically [47–51].18 Equivalently, in frequency space, the
AC signal will be peaked at fa, but exhibit a linewidth
∼ 10−6fa.
In the top left plot of Fig. 6, we show the projected

sensitivity of the setups described in Tab. I to an axion-
electron coupling for tint = 1yr of integration time. As
shown in Appendix A, the signal-to-noise ratio (SNR) for
a given setup is

SNR =
B2

ae

6

√
Tr

[
(Stot

BB)
−2

]
· tint ·min(tint, tcoh), (71)

where Bae is the amplitude in Eq. (70), and the last
factor accounts for the incoherence of the signal when
tint > tcoh. In all our projections, we set SNR = 3. In
Fig. 6, we show a number of existing constraints on gae,
including the following: limits based on old comagne-
tometer data [22], constraints on axion-mediated forces
from a torsion pendulum experiment [54], limits on so-
lar axions from XENONnT electronic recoil data [55],
and constraints based on the brightness of the tip of the
red-giant branch [56]. Laboratory-based constraints (co-
magnetometers, torsion pendulum, and XENONnT) are
shown in darker shades of gray, while astrophysical ones
(tip of the red-giant branch) are shown in lighter shades.
Fig. 6 shows that even an existing levitated ferromagnet
setup can be competitive with the limits from comagne-
tometer or torsion pendulum experiments, while a future
levitated or freefall setup can surpass all existing probes
of an axion-electron coupling for ma ≲ 10−15 eV.

B. Dark-photon kinetic mixing

A kinetically mixed dark photon A′
µ, with mass mA′ ,

is a vector boson which may mix with the SM photon.
There are multiple equivalent descriptions of the interac-
tion between the dark photon and SM photon (see Ap-
pendix A of Ref. [52] for further discussion), but the most
useful for very low dark-photon masses is via the operator

LA′ ⊃ ε

µ0

(mA′c

ℏ

)2

AµA
′µ. (72)

We see that if A′
µ is treated as a background field, then

it has an effect equivalent to a current

Jµ
eff = − ε

µ0

(mA′c

ℏ

)2

A′µ. (73)

18 If the integration time tint of the experiment exceeds one day,
then the direction of the gradient will also precess (in the frame
of the experiment) due to the rotation of the Earth. Such effects
must be accounted for in the data analysis (see e.g. Ref. [52, 53]),
but will not affect the overall sensitivity of the setup. A similar
effect will occur for the DPDM direction in the case of Sec. IVB.
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Much like the case of axion DM, if dark photons make
up the DM, they will be non-relativistic, and so should
have negligible spatial gradients and oscillate at their
Compton frequency fA′ . Moreover, because its equations
of motion necessitate ∂µA

′µ = 0, then the DPDM should
have A′0 = 0 (i.e., no effective charge). In this case,

A′(x, t) ≈ Re

 ∑
i=x,y,z

A′
i,0e

−2πifA′ t

 , (74)

where A′
i,0 are complex amplitudes for each spatial com-

ponent of A′
0 (which may have independent phases, so

that A′ can be elliptically polarized; see footnote 9.).
The (spatial components of the) effective current Jeff

will also be approximately constant throughout space
and oscillate at frequency fA′ . This effective current will
generate observable electromagnetic fields through the
Ampère-Maxwell law

∇×B − ∂tE

c2
= µ0Jeff . (75)

The electric field term in Eq. (75) can be ignored in con-
texts where the Compton wavelength λA′ = c/fA′ of the
dark photon is much larger than the size of the exper-
imental apparatus L.19 This implies that the primary
observable effect of the dark photon is an oscillating mag-
netic field. Generically, this magnetic field will have am-
plitude

BA′ ∼ µ0JeffL ∼
√
2µ0ρDMc

ℏ
εmA′L (76)

∼ 7× 10−21 T
( ε

10−8

)(
fA′

30Hz

)(
L

10 cm

)
. (77)

Note that by symmetry, BA′ generically vanishes at the
center of the apparatus [30], and so the ferromagnet
should be located off-center within the apparatus in order
to experience a nonzero DPDM-induced magnetic field.
In scenarios where the ferromagnet is levitated above a
superconductor, this will typically be satisfied, as the fer-
romagnet will be much closer to the floor than the ceiling
of the apparatus.

In the top right plot of Fig. 6, we show the pro-
jected sensitivity of ferromagnets to DPDM. The exist-
ing DPDM constraints shown include limits from: global
unshielded magnetometer data maintained by the Su-
perMAG collaboration [52, 53, 58]; unshielded magne-
tometer measurements made by the SNIPE Hunt collab-
oration [59]; magnetometer measurements taken inside a
shielded room by the AMAILS collaboration [60]; non-
observation of CMB-photon conversion into (non-DM)

19 More specifically, by “apparatus” here, we mean the size of the
conducting shield which sets the electric field boundary condi-
tions; see Refs. [30, 52, 57] for further discussion.

dark photons by the FIRAS instrument [61]; heating
of the dwarf galaxy Leo T [62]; and resonant conver-
sion of DPDM during the dark ages [63]. A future lev-
itated setup could become the leading probe of DPDM
across the entire mass range shown in Fig. 6. Addition-
ally, a freefall setup could be competitive with even the
leading astrophysical constraint (Leo T) at low masses
mA′ ≲ 10−16 eV.

C. Axion-photon coupling

In addition to the coupling to electrons described by
Eq. (65), an axionlike particle may also exhibit a coupling
to photons via the operator

L ⊃ gaγ
√
ℏc3

4µ0
aFµν F̃

µν , (78)

where F̃µν = 1
2ϵ

µνρσFρσ. Similar to the DPDM case, this
operator is equivalent to an effective current

Jµ
eff = −gaγ

√
ℏc3

µ0
∂νaF̃

µν . (79)

Again taking the axion DM ansatz in Eq. (68) [with neg-
ligible spatial gradients], we find J0

eff = 0 and spatial
components

Jeff =

√
c5

ℏ
gaγmaa0

µ0
B0 sin(2πfat) (80)

One crucial difference from the DPDM case is that the
effective current in Eq. (80) requires the presence of a
background magnetic field B0. In our case, the mag-
netic field of the ferromagnet itself can act as B0! (See
also Ref. [64] for another example where the magnetic
field from a ferromagnet is used to induce axion-photon
conversion.)
Unlike the DPDM case, the current in Eq. (80) will not

be uniform, and so computing the resulting AC magnetic
field Baγ is more complicated. Generically, this must be
evaluated numerically, but in Appendix B, we paramet-
rically estimate it as

Baγ ∼ O(0.1) ·
√

2ℏcρDMµ0
gaγµ

L2
(81)

∼ 3× 10−21 T

(
gaγ

10−9 GeV−1

)(
µ

20mA ·m2

)(
10 cm

L

)2

,

(82)

where µ is the magnetic moment of the ferromagnet, and
L is again the size of the experimental apparatus.
In the bottom plot in Fig. 6, we show the projected

sensitivity of ferromagnets to an axion-electron coupling.
The existing constraints on gaγ shown include limits from
SuperMAG [58, 65], SNIPE Hunt, the CAST helioscope
search for solar axions [66], non-observation of gamma
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rays in coincidence with SN1987A [67], and X-ray ob-
servations of the quasar H1821+643 from the Chandra
telescope [68]. Note that in the case of an axion-photon
coupling, a freefall setup may have significantly better
sensitivity than a levitated setup. This is because the
background magnetic field B0 is sourced by the ferro-
magnet itself. A ferromagnet in freefall can be much
larger (and so source B0 over a larger volume) than a
ferromagnet levitated over a superconductor because, in
the latter case, the size is constrained by the critical field
of the superconductor [see Eq. (62)]. In fact, a freefall
setup can even be more sensitive than all existing con-
straints at low masses ma ≲ 10−15 eV.
We note that in levitated setups, it may be possible to

apply an additional magnetic field to act as B0 in order
to enhance the sensitivity to an axion-photon coupling
[although this will affect the trapping potential V (x, n̂)].
We leave further exploration of this idea to future work.

V. CONCLUSION

In this work, we determined the sensitivity of levitated
ferromagnets to AC magnetic fields and to various ultra-
light DM candidates. In the presence of an applied mag-
netic field, a ferromagnet may either precess around the
applied field (similar to an electron spin) or librate in the
plane of the applied field (similar to a compass needle).
While the distinction between these behaviors has been
studied for DC magnetic fields, the cases when precession
v.s. libration occurs in the presence of an AC magnetic
field has not been adequately studied. In this work, we
determined the response of a ferromagnet to an AC mag-
netic field as a function of frequency, paying special at-
tention to the presence of any trapping potential used to
levitate the ferromagnet. We determined three possible
cases for the behavior of the system: a “trapped” case,
where the trapping potential is strong in both directions
so that only libration occurs; a “partially trapped” case,
where the ferromagnet is only trapped strongly in one di-
rection, so precession is possible in one direction within a
certain frequency range; and a “gyroscope” case, where
the ferromagnet is weakly trapped, so that precession can
occur in both directions within a certain frequency range.

We then computed the magnetic-field sensitivity of var-
ious ferromagnet setups, using the formalism of Sec. II to
account for motion in both angular modes. We consid-
ered three possible setups: one representative of an exist-
ing levitated setup [5] (but with an additional readout for
the θ-mode), a future levitated setup, and a space-based
freefall setup comparable to LISA Pathfinder. All three
setups manifest the “trapped” behavior. In Eq. (60), we
show the optimal range for the readout coupling. This
range comes from demanding that thermal noise domi-
nates over imprecision and back-action noise at low fre-
quencies. (This is only possible when Eq. (57) is met;
see Sec. III A for optimal choices when this condition is
not met.) Both modes of the existing setup do not fall

in the range in Eq. (60), and so are under-coupled. The
other two lie in the range in Eq. (60), but the freefall
setup could benefit from an even stronger coupling, which
would improve its sensitivity at high frequencies. We also
note that the freefall setup could be further improved if
the system can be lowered to cryogenic temperatures and
ultrahigh vacuum, similar to Gravity Probe B [7, 74].
Finally, we use the results of Sec. III to determine

the sensitivity of these setups to various DM candidates.
We consider sensitivity to an axion-electron coupling, a
dark-photon kinetic mixing, and an axion-photon cou-
pling. While many experiments which detect magnetic
fields have sensitivity to either an axion-electron cou-
pling [22] or to a kinetic mixing and an axion-photon cou-
pling [30, 52, 59, 65], levitated ferromagnets are unique
in their ability to achieve good sensitivity to all three of
these potential DM couplings. In all three cases, ferro-
magnet setups could become the most sensitive labora-
tory probes of these DM candidates, and for the axion
DM cases, they could surpass even the leading astrophys-
ical constraints at low frequencies. Levitated ferromag-
nets may also be sensitive to gravitational waves [75].
We leave further exploration of this idea to future work.
While the results of this work are already quite promis-
ing, further optimization of the setups proposed here may
lead to even better detection prospects for new physics.
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FIG. 6. Projected sensitivities of ferromagnets to an axion-electron coupling gae, DPDM kinetic mixing ε, and an axion-photon
coupling gaγ . In each case, we show three projections corresponding to the parameter choices in Tab. I. In all cases, we take an
integration time of tint = 1yr and set SNR = 3. In the DPDM and axion-photon cases, we take an apparatus size of L = 10 cm.
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Appendix A: Signal-to-noise ratio

In this appendix, we derive an appropriate SNR for
our system. Defining such an SNR is complicated by the
fact that we have sensitivity to magnetic fields in two di-
rections, so in this appendix, we pay special attention to
the matrix nature of our noise Stot

BB(ω). Here, we consider
sensitivity to an AC magnetic field signal20

BS(t) = BS,n cos(ωSt+ΦS,n)n̂0

+BS,θ cos(ωSt+ΦS,θ)θ̂0

+BS,ϕ cos(ωSt+ΦS,ϕ)ϕ̂0 (A-1)

of unknown direction and phase. (As we are insensitive
to the n̂0 direction, we will ignore BS,n.) We will take
the distribution of BS to be Gaussian and isotropic so
that each component follows an independent Gaussian

distribution with mean zero and ⟨B2
S,α⟩ = B

2

S/3 (where

⟨·⟩ represents an ensemble average). Meanwhile, the noise
BN (t) has a Fourier transform whose components satisfy

⟨B̃N,α(ω)B̃N,β(ω)
∗⟩ =

Stot
BB,αβ(ω)tint

2
, (A-2)

where tint is the integration time of the experiment (and

B̃N is uncorrelated at different frequencies).
When we perform an experiment, we measure the

Fourier transform of the total magnetic field B̃tot =
B̃S + B̃N , if there exists a signal, or simply B̃tot = B̃N ,
if there does not. To distinguish these two scenarios, we
ought to combine the information from the different com-
ponents of B̃tot (for a fixed frequency) into a single test
statistic

q = B̃†
totXB̃tot, (A-3)

for some Hermitian matrix X to be chosen momentarily.
In the scenario where there is no signal, this statistic has

⟨q⟩0 =
〈
B̃†

NXB̃N

〉
= Tr

[
X

〈
B̃NB̃†

N

〉]
(A-4)

=
tint
2

Tr
[
XStot

BB

]
, (A-5)

⟨q2⟩0 =
〈
B̃†

NXB̃NB̃†
NXB̃N

〉
(A-6)

=
t2int
4

(
Tr

[
XStot

BB

]2
+Tr

[
XStot

BBXS
tot
BB

])
. (A-7)

20 This would be the form of the signal in the case of an axion-
electron coupling or DPDM kinetic mixing. In the case of an
axion-photon coupling, each term in Eq. (A-1) would have the
same phase ΦS , so that the signal is linearly polarized [see foot-
note 9]. Moreover, the direction of the signal is, in principle, not
random but rather can be predicted through a sufficiently accu-
rate signal calculation. As we do not perform such a calculation
in this work, we treat the direction as random in our sensitivity
projections, and so we still apply the formalism of this appendix.

On the other hand, when a signal is present, its expecta-
tion is

⟨q⟩S =
〈
B̃†

SXB̃S

〉
+

〈
B̃†

NXB̃N

〉
(A-8)

=
B

2

St
2
int

12
Tr [X] +

tint
2

Tr
[
XStot

BB

]
. (A-9)

A signal is distinguishable when the difference between q
with/without the signal exceeds the standard deviation
of q without any signal. That is, we should define the
SNR as

SNR =
⟨q⟩S − ⟨q⟩0√
⟨q2⟩0 − ⟨q⟩20

(A-10)

=
B

2

StintTr [X]

6
√
Tr [XStot

BBXS
tot
BB ]

. (A-11)

Now we can consider what an optimal choice of X
would be. The only matrix structure available is Stot

BB ,
and so we should choose X ∝ (Stot

BB)
n for some n. If Stot

BB
has two eigenvalues λ1, λ2, then this becomes

SNR =
B

2

Stint(λ
n
1 + λn2 )

6
√
λ2n+2
1 + λ2n+2

2

. (A-12)

It is not difficult to show that this expression is maxi-
mized for n = −2, leading to an optimal SNR of

SNR =
B

2

Stint
6

√
λ−2
1 + λ−2

2 (A-13)

=
B

2

Stint
6

√
Tr

[
(Stot

BB)
−2

]
. (A-14)

This can be equivalently phrased as computing the two
SNRs representing the sensitivity along each eigenvector,
and then summing them in quadrature.
Finally, we note that the above discussion applies when

the signal is entirely coherent throughout the duration
of the experiment. If the coherence time of the signal is
shorter than the duration of the experiment, then we can
consider each coherence time as an independent experi-
ment. In this case, the SNRs for the individual exper-
iments can be summed in quadrature, so that the total
SNR is

SNR =
B

2

Stcoh
6

√
Tr

[
(Stot

BB)
−2

]
·
√
tint
tcoh

. (A-15)

Appendix B: Axion-photon coupling signal

In this appendix, we estimate the magnetic-field signal
Baγ induced by axion DM which couples to photons.
This computation largely follows Appendix B of Ref. [30],
but the background magnetic field B0 in this case will be
sourced by a magnetic dipole (the ferromagnet) instead
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of a pair of anti-Helmholtz coils. The axion DM signal is
given by [30, 76]

Baγ(r) =
∑
n

cn
fn
fa

Bn(r)e
−imat, (B-1)

cn = −
√
ℏc3gaγf2aa0
f2n − f2a

∫
dV En(r)

∗ ·B0(r), (B-2)

where En and Bn are the electric/magnetic fields for
the cavity modes of the shield (which have corresponding
frequencies fn and are normalized so that

∫
dV |En|2 =

1).

In order to estimate the overlap integral in Eq. (B-2),
it is useful to write B0 as the gradient of a magnetic po-
tential, which is possible in the absence of free currents or
magnetization (for static magnetic fields). Of course, the
ferromagnet is magnetized, so B0 itself cannot be written
this way. However because there are no free currents, we
may write B0 = µ0(H0+M) with ∇×H0 = 0. Because
H0 is curl-free, it can be written as H0 = ∇Ψ0. Then
the overlap integral becomes

∫
dV E∗

n ·B0 = µ0

(∫
dA ·EnΨ0 +

∫
dV E∗

n ·M
)
.

(B-3)
The second integral in Eq. (B-3) only has support over
the volume of the ferromagnet. Assuming that the fer-
romagnet is much smaller than the size of the shield, En

will be roughly constant over this volume, and so we can

approximate this integral as µ0E
∗
n · µ, where µ is the

magnetic moment of the ferromagnet.
To compute the first integral in Eq. (B-3) requires an

exact expression for Ψ0 on the boundary of the shield. In
the absence of the shield, this is just a magnetic dipole.
However, if the shield is superconducting, then B0 will
be modified in order to ensure that the perpendicular
magnetic field vanishes at the boundary of the shield. As
in Sec. IIA, this can be accounted for via the method of
images. As we only wish to derive a parametric estimate
for the axion DM signal, we will simply take the magnetic
potential of a dipole

Ψ0(r) =
µ · (r − r0)

4π|r − r0|3
, (B-4)

where r0 is the location of the ferromagnet. Parametri-
cally, the first integral in Eq. (B-3) is then also ∼ µ0E

∗
n·µ.

Since En, Bn ∼ L−3/2 and fn ∼ c
L ≫ fa, then para-

metrically Eq. (B-1) becomes

Baγ ∼
√
ℏc3gaγfaa0

fn
· µ0Enµ ·Bn (B-5)

∼
√

2ℏcρDMµ0
gaγµ

L2
. (B-6)

In principle, the overlap integrals in Eq. (B-3) can be
computed for each mode, and they can be summed to
determine the exact proportionality constant in Eq. (B-
6). Numerically, we find that this sum exhibits poor con-
vergence, and so we remain content with a parametric
estimate. (In Eq. (81), we include a conservative O(0.1)
factor, in line with the factor computed in Ref. [30].) In
future work, detailed finite element method calculations
may be necessary to predict an accurate axion DM signal.
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