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Mining Triangle-Dense Subgraphs of a Fixed
Size: Hardness, Lovász extension and

Applications
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Abstract—We introduce the triangle-densest-k-subgraph problem (TDkS) for undirected graphs: given a size parameter k, compute a
subset of k vertices that maximizes the number of induced triangles. The problem corresponds to the simplest generalization of the
edge-based densest-k-subgraph problem (DkS) to the case of higher-order network motifs. We prove that TDkS is NP-hard and is not
amenable to efficient approximation, in the worst-case. By judiciously exploiting the structure of the problem, we propose a relaxation
algorithm for the purpose of obtaining high-quality, sub-optimal solutions. Our approach utilizes the fact that the cost function of TDkS
is submodular to construct a convex relaxation for the problem based on the Lovász extension for submodular functions. We
demonstrate that our approaches attain state-of-the-art performance on real-world graphs and can offer substantially improved
exploration of the optimal density-size curve compared to sophisticated approximation baselines for DkS. We use document
summarization to showcase why TDkS is a useful generalization of DkS.

Index Terms—Dense subgraph discovery, triangle-motifs, intractability and approximation, submodularity, convex optimization.
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1 INTRODUCTION

The task of extracting dense subgraphs from a given
graph has diverse applications in graph mining ranging
from fraud detection [1], [2], chemical informatics [3], com-
putational biology [4] and knowledge discovery [5]–[7].
Owing to its practical relevance, the problem has received
extensive attention (see [8]–[10] and references therein) - we
briefly highlight some prominent formulations.

Given an undirected graph, the classic densest-subgraph
(DS) problem [11] aims to detect the subgraph with the
maximum average induced degree. The problem is known
to be polynomial-time solvable, and admits a simple linear-
time 1/2 approximation via a greedy algorithm [12]. These
ideas have also been extended to directed graphs (see [13]
and references therein). However, real-world examples are
known [14] where the greedy algorithm returns the trivial
solution corresponding to the graph itself as the densest
subgraph. This undesirable behavior can be attributed to the
fact that the approach does not allow explicit specification of
the desired subgraph size. Adding a simple size constraint
to the DS problem results in the densest-k-subgraph (DkS)
problem [15], which, for a specified node-size k, aims to
find the subgraph with the maximum number of induced
edges. Unfortunately, the constraint also renders DkS NP–
hard. Moreover, the problem is notorious for being very
difficult to approximate, in the worst-case sense [16]–[18].
Notwithstanding such pessimistic results, polynomial-time
algorithms which work well in practice for DkS are known
– these include low (constant) rank matrix approximation
techniques [19] and a recent work [20], which uses tools
from submodular optimization to construct a convex relax-
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ation for DkS. Another size constrained variant, DamkS,
[21] maximizes average degree subject to the size of the
subgraph being at most k, and is NP–hard. Meanwhile, the
DalkS problem [21] maximizes average degree subject to
the subgraph size being at least k. DalkS is also NP–hard
[22], with greedy and linear programming approximation
algorithms known.

A salient feature of the aforementioned formulations is
that they quantify subgraph density in terms of induced
edges, which represent pair-wise relationships between ver-
tices. However, real-world graphs are often rich in higher-
order motifs, which signify stronger associations among
vertices compared to pair-wise relationships alone [23].
This suggests that leveraging higher-order motif structure
for dense subgraph discovery can detect subgraphs which
are more clique-like compared to those obtained via the
edge-based formulations. For example, prior work [24] has
introduced the ℓ-clique densest subgraph problem to extract
the subgraph with the largest average number of induced ℓ-
cliques. This is a generalization of the DS problem (the latter
corresponds to choosing ℓ = 2) which remains polynomial-
time solvable and also admits effective approximation via
a greedy algorithm [24]. More importantly, applying this
formulation with ℓ = 3 (triangles, the simplest example
of a higher-order motif) to real-world graphs yields sub-
graphs of higher edge density compared to using the DS with
ℓ = 2. However, like its edge-based counterpart, the ℓ-clique
densest subgraph problem formulation does not provide a
means of explicitly controlling the desired subgraph size.
We argue that this is a restrictive feature, since it does
not allow the end-user the flexibility in picking a desired
solution. By varying the size explicitly, one can obtain small
subsets of vertices which are tightly knit, to larger subsets
which exhibit smaller density, and everything in-between.

For this purpose, in this paper, we introduce the triangle-
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densest-k-subgraph problem (TDkS). Given an undirected
graph G on n vertices and a desired subgraph size k, we
aim to compute the subgraph with the maximum number
of induced triangles over all possible

(n
k

)
subgraphs. Clearly,

TDkS is the simplest higher-order generalization of its edge-
based counterpart DkS. To the best of our knowledge,
however, this is the first time that the problem has been
studied. Can adopting such a formulation enable us to
discover denser subgraphs compared to DkS, and thereby
do a better job at exploring the optimal density-size curve
on real-world graphs? Can TDkS extract more meaningful
subsets than DkS in real-world applications? These are the
main questions considered in our paper. Given this context,
our contributions can be summarized as follows.
• Hardness: We prove that TDkS is NP-hard in the worst-
case. Additionally, we show that it is difficult to obtain a
favorable approximation of the optimal objective value of
TDkS in polynomial time.
• Submodular relaxation and algorithm: Not withstanding
such pessimistic worst-case results, we focus on developing
an approximation algorithm which can work well on real-
world instances. We show and leverage the fact that the
discrete cost function of TDkS is endowed with a specific
type of combinatorial structure - namely, it is a submodular
function. As such functions possess a unique, continuous,
convex extension (i.e., the Lovász extension), we devise
a convex relaxation for TDkS that minimizes the Lovász
extension over the convex hull of the cardinality constraints.
Additionally, a key technical contribution of our paper is
to show that for TDkS, the Lovász extension admits an
analytical functional form, which is difficult to determine
for general submodular functions. We exploit this structure
to develop a scalable Mirror Descent algorithm for solving
the problem, which, combined with a simple rounding pro-
cedure, can be employed for extracting candidate triangle-
dense subgraphs.
• Experiments: Our experiments reveal that the proposed
approach is very effective in mining triangle-dense sub-
graphs on real-world datasets. Interestingly, it can also
extract subgraphs of higher edge density than state-of-
the-art DkS baselines, which is a bonus. Our experiments
further indicate that when TDkS is used for unsupervised
document summarization it yields more meaningful and
interpretable summaries than DkS does.

We point out that, at a high level, our use of the Lovász
relaxation for TDkS is in the spirit of [20] which introduced
the Lovász relaxation for DkS. That being said, there are
also important differences (apart from the fact that the two
problems are distinct), the one key being that computing an
analytical functional form for the Lovász extension of TDkS
is substantially more challenging compared to the classical
edge-based case. Additionally, the form that the Lovász
extension of TDkS takes is more complicated than that for
DkS, which necessitates an entirely different algorithmic
approach. Finally, to put our contributions into broader
context, several recent works [24]–[27] have considered
generalizing classical edge-based graph mining tasks to
account for higher-order network motifs. Our present work
seeks to contribute to this thread of research by developing
new tools for tackling a challenging problem in this area.
• Summary of Differences: A conference version of this

work has previously appeared in [28]. Relative to that, the
present journal version adds a new section on problem
motivation to highlight the conceptual appeal of our formu-
lation, additional experiments including a comprehensive
and insightful case study on document summarization, and
fully fleshed out technical proofs.

2 PRIMER ON SUBMODULARITY

We provide a brief overview of basic concepts regarding
submodular functions [29]–[31]. For a set of n objects V =
{1, · · · , n}, a set function F : 2|V| → R assigns a real value to
any subset S ⊆ V . A set function F is said to be submodular
if and only if F (A ∪ B) + F (A ∩ B) ≤ F (A) + F (B) for
all subsets A,B ⊆ V . For the special case where n = 2 and
V = {a, b}, the above condition simplifies to F (∅)+F (V) ≤
F ({a})+F ({b}). A notable feature of submodular functions
is that they possesses a continuous, convex extension known
as the Lovász extension, which extends their domain from
2|V| to the unit interval [0, 1]n (recall n = |V|). Formally, the
Lovász extension fL : [0, 1]n → R of a given submodular
function F is

fL(x) := max
g∈BF

gTx, (1)

where the set BF is the base polytope associated with F and
is defined as

BF := {g ∈ Rn : gT1V = F (V); gT1S ≤ F (S), ∀ S ⊆ V}.
(2)

It can be seen that the Lovász extension is the support func-
tion of the base polytope BF , and is thus a convex function.
In fact, fL is convex if and only if F is submodular [29].
Furthermore, when evaluated at a binary vector x ∈ {0, 1}n,
the Lovász extension equals the value of the submodular
function F .

3 PROBLEM STATEMENT

Consider an undirected graph G := (V , E) on n vertices.
Given a size parameter k ∈ {4, · · · , n} and a subset of k
vertices S ⊆ V , let ρ2(S, k) denote the edge density of the
subgraph GS induced by S . This quantity equals the ratio
of the sum of the induced edges and the maximum possible
number of induced edges

(k
2

)
. In an analogous fashion, let

ρ3(S, k) denote the triangle density of S . In this paper, we
consider the problem of extracting the subgraph of size k
that exhibits the maximum sum of induced triangles. Let
Xk := {x ∈ {0, 1}n : 1Tx = k} be the set of all binary vec-
tors with k non-zero entries. Formally, the triangle-densest-
k-subgraph (TDkS) problem can be expressed as

max
x∈Xk

{
f(x) :=

∑
{u,v,w}∈∆

wtxuxvxw

}
, (3)

where ∆ denotes the set of triangles in the graph (each
counted once), and wt is a positive weight associated with
triangle t := {u, v, w} ∈ ∆ 1.

Let x∗ denote an optimal solution of (3) and f(x∗)
represent the optimal sum of induced triangles. If we denote
the optimal vertex subset as S∗ = {i ∈ V : x∗

i = 1}, then

1. If G is unweighted, each triangle t ∈ ∆ has weight wt = 1.
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the maximum triangle density is ρ3(S∗, k) := f(x∗)/
(k
3

)
.

Note that by varying the size parameter k, TDkS outputs a
spectrum of dense subgraphs. We designate this spectrum
as the triangle density versus size curve - each point on this
curve corresponds to a pair (k, ρ3(S∗, k)).

3.1 Motivation
It is evident that TDkS is a higher-order extension of DkS,
i.e., it quantifies subgraph density with respect to triangles,
as opposed to edges. Since the triangle motif is a higher-
order clique compared to an edge, it is then natural to
consider what additional benefits the TDkS formulation (3)
can offer relative to DkS.

To this end, consider a subgraph S ⊆ V on k vertices,
with edge and triangle densities ρ2(S, k) and ρ3(S, k) re-
spectively. It is known that these two quantities obey the
following relationship.

Fact 1. The Kruskal-Katona Theorem [32], [33]: For any
subgraph, it always holds that

ρ2(S, k) ≥ ρ3(S, k)
2
3 . (4)

Hence, maximizing triangle density for a fixed subgraph
size serves as a surrogate for maximizing edge density
as well. The above fact formalizes the simple notion that
maximizing the number of induced triangles in a subgraph
also has the effect of increasing the number of induced
edges.

Additionally, for a subgraph S ⊆ V , let τ(S) denotes its
transitivity (i.e., global clustering coefficient). Recall that it
can be expressed as

τ(S) = 3 · No. of triangles induced by S
No. of paths of length 2 in S

. (5)

The value of subgraph transitivity always lies in the unit in-
terval, and can be interpreted as the probability of sampling
(uniformly at random) a path of length 2 from GS , and hav-
ing its endpoints connected to connected to form a triangle.
Simply put, it determines how globally “triangle-like“ the
subgraph is. Hence, transitivity can serve as an alternate
means of quantifying density with regard to triangle motifs.
However, it turns out that transitivity obeys the following
relationship with triangle density.

Lemma 1. Given a subgraph S on k := |S| vertices, its
transitivity τ(S) is at least its triangle density ρ3(S, k), with
equality if and only if S is a k-clique.

Proof. The denominator of τ(S) can be expressed as∑
u∈S

(du

2

)
, where du is the induced degree of vertex u ∈ S .

It then holds that

1

3

∑
u∈S

(
du
2

)
≤ k

3

(
dmax

2

)
≤ k

3

(
k − 1

2

)
=

(
k

3

)
, (6)

where dmax ≤ k − 1 is the largest induced degree in S .
Consequently, we have

τ(S) ≥ No. of triangles induced by S(k
3

) = ρ3(S, k). (7)

The above inequality is satisfied with equality if and only if
all inequalities in (6) hold with equality, which is true if and
only if the subgraph induced by S is a k-clique.

The result is intuitive, since increasing the number of in-
duced triangles in a subgraph cannot decrease its transitiv-
ity. Hence, for a fixed subgraph size, maximizing triangle
density additionally serves as a surrogate for maximizing
transitivity.

Thus far, we have demonstrated that employing triangle
motifs for maximizing subgraph density via TDkS offers the
twin advantages of additionally improving the edge density
and transitivity. At this point, it is instructive to compare
the following two problems - TDkS and its closest counter-
part in the literature, the triangle-densest-subgraph (TDS)
formulation [24], [34]. The TDS problem can be expressed as

max
z∈{0,1}n

{
g(z) :=

f(z)

1T z

}
. (8)

Recall that f(.) denotes the weighted sum of triangles
induced by a vertex subset with indicator vector z. The
objective function of TDS assigns a greater reward to those
subgraphs for which the average (induced) triangle degree
of the vertices comprising the subgraph is large. In contrast
to TDkS, the problem does not explicitly constrain the size
of the desired subgraph. Interestingly, it turns out that
we can establish a link between the solution of the two
problems. Let z∗ denote an optimal solution of (8) and
Z∗ = {i ∈ V : z∗i = 1} denote the optimal vertex subset.
Then, we have the following claim.

Lemma 2. For the choice of the size parameter k = |Z∗|, Z∗ is
also an optimal solution for TDkS.

Proof. We proceed via contradiction. Suppose that Z∗ is
not optimal for TDkS with k = |Z∗|. Then, there exists a
subgraph Z̄ ̸= Z∗ on k vertices such that the weighted sum
of triangles it induces f(z̄) > f(z∗). Since both subgraphs
are of size k, this further implies that g(z̄) > g(z∗), which
contradicts the optimality of Z∗ for TDS.

Thus, the solution of TDS corresponds to a point on the
triangle-density versus size curve. The caveat of TDS, how-
ever, is that one cannot control the subgraph size explicitly.
Hence, given a graph, one cannot predict apriori how large
or small the size of the solution will be; i.e., pinpoint the
exact location on the triangle-density versus size curve
where the solution of TDS will land.

In order to empirically assess the quality of the solution
of TDS, we tested the method of [34] 2 on several publicly
available graph datasets 3. The results are summarized in
Table 1, from which it can be seen that in general, the
solution computed by TDS is large in size with low density
(see Table 1). These observations motivate the need to con-
sider the additional flexibility afforded by TDkS in explicitly
specifying the size parameter k, as TDS may not yield a
satisfactory solution.

3.2 Hardness

Problem (3) corresponds to maximizing a discrete third-
order polynomial subject to a cardinality constraint. This
suggests that it is no easier to solve compared to the discrete

2. The code is available at https://github.com/tsourolampis/
Scalable-Large-Near-Clique-Detection.

3. For details about the datasets, see Section VI.
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Table 2: Statistics of the triangle-densest-subgraph com-
puted using the method of [34] on representative datasets.

Graph Size Edge density Triangle density

PPI-HUMAN 361 0.42 0.14
FACEBOOK-B 198 0.36 0.08

CAIDA 75 0.55 0.20
WEB-STANFORD 684 0.17 0.02

WEB-GOOGLE 66 0.85 0.64

quadratic maximization form associated with its classic
edge-based counterpart, which is known to be NP–hard
[15], and also very difficult to approximate. We make these
notions concrete by proving the following pair of negative
results regarding TDkS.

Theorem 1. TDkS is NP–hard.

Proof. Consider the decision version of the maximum clique
problem, which is known to be NP–complete [35]. For a
unweighted, undirected graph G, the decision variant of
the maximum clique problem asks whether G contains a
complete subgraph on α ≥ 3 vertices. For such an instance,
let fα(x

∗) denote the optimal value of problem (3) with
k = α. Note that fα(x∗) cannot exceed

(α
3

)
, with equality

attained if and only if G contains a clique on α vertices.
Hence, solving problem (1) is at least as hard as solving an
arbitrary decision instance of the maximum clique problem.

In light of the above result, it is unlikely that the problem ad-
mits an efficient solution in polynomial time. Consequently,
we focus on developing effective approximation algorithms
for problem (3) that run in polynomial time. However,
we first show that TDkS is fundamentally not amenable to
favorable approximation in the worst-case sense; in fact it is
more difficult to approximate compared to DkS.

More precisely, given an instance of DkS, let M∗ denote
the optimal solution and ρ2(M∗, k) denote the optimal
edge-density. Regarding the hardness of approximation of
DkS, the following result is known [18].

Fact 2. Assuming that the Exponential Time Hypothesis (ETH) is
valid, there is no polynomial-time algorithm that can approximate
the optimal value of DkS better than a multiplicative factor
α(n) := n1/(log log n)c , where c > 0 is a universal constant.

Note that the quantity α(n) > 1. Hence, given an arbitrary
instance of DkS, there is no polynomial-time algorithm
which can output a size-k subgraph whose edge-density
is guaranteed to be no worse than a fraction 1/(α(n))1−ϵ

of the optimal edge-density ρ2(M∗, k), for any ϵ > 0. In
other words, if M denotes the output of any polynomial-
time approximation algorithm applied on a fixed instance
of DkS and ρ2(M, k) is the achieved edge density, it must
hold that

ρ2(M∗, k) ≥ ρ2(M, k) ≥ O

(
1

α(n)

)
ρ2(M∗, k). (9)

We now demonstrate that the above hardness result for
DkS can be utilized to derive an analogous hardness of
approximation result for TDkS as well.

Theorem 2. Assuming ETH is true, there is no polynomial-time
algorithm that can approximate the optimal value of TDkS better
than a multiplicative factor β(n) := (α(n))3/2.

Proof. See Appendix B in the supplement.

The above result implies that TDkS is more difficult to ap-
proximate compared to DkS, which is already known to be a
challenging problem. Roughly speaking, Theorem 2 asserts
that even the best possible polynomial-time approximation
algorithm for TDkS must exhibit an approximation gap that
grows as a sub-polynomial in the size of the problem input
n, which is a very pessimistic result.

That being said, the results of Theorem 1 and 2 are based
on viewing the problem from the perspective of the worst-
case scenario, which may not always arise in practice. With
this in mind, we propose a convex relaxation for TDkS with
the aim of obtaining high-quality, sub-optimal solutions on
real-world instances.

4 THE LOVÁSZ RELAXATION

In order to explain our approach, we first reformulate TDkS
in combinatorial form as follows. Let C := {S ⊂ V : |S| =
k} denote the collection of subsets of vertices of size k.
Note that there is a one-to-one correspondence between the
elements of Xk and C; every vector x ∈ Xk is precisely the
indicator function of a subset of vertices S ∈ C, i.e., given a
vector x ∈ Xk and a set S ∈ C, we have the equivalence

xu =

{
1 ⇔ u ∈ S
0 ⇔ u /∈ S.

(10)

This observation allows us to equivalently express problem
(3) in minimization form as

min
S∈C

{
F (S) :=

∑
(u,v,w)∈∆

Fuvw(S)
}
, (11)

where for each triangle (u, v, w) ∈ ∆, we have defined the
function

Fuvw(S) := F (S ∩ {u, v, w}) =
{
−wt, if (u, v, w) ∈ S,
0, otherwise.

(12)
Hence, the cost function F (S) linearly decomposes over the
set of triangles of G, with each component function Fuvw(S)
contributing to the overall cost if and only if all three vertices
constituting a triangle are included in the subgraph induced
by S ∈ C. Our starting point is the following observation
regarding the cost function F (S).

Theorem 3. F (S) is a submodular function.

Proof. See Appendix C in the supplement.

Note that Theorem 3 does not change the fact that
problem (3) is difficult to solve in the worst-case. However, it
does allow us to adopt the following relaxation strategy. Let
Pk := {x ∈ [0, 1]n;1Tx = k} denote the convex hull of the
combinatorial sum-to-k constraints. The key idea underpin-
ning our approach is the following. Since the cost function of
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(11) is submodular, we can replace it by its Lovász extension
to obtain the following equivalent problem

min fL(x)

s.to x ∈ {0, 1}n ∩ Pk.
(13)

Note that the equivalence stems from the fact that the
Lovász extension equals the value of F (.) at all binary
{0, 1}n vectors. Upon dropping the discrete constraints, we
obtain the relaxed problem

min
x∈Pk

fL(x) (14)

which corresponds to minimizing the Lovász extension of
F over the convex hull of the combinatorial set C. Our
rationale for employing the Lovász extension as a convex
surrogate of F stems from the fact that it corresponds to the
convex closure of F on the domain [0, 1]n. In other words, in
a certain sense, the Lovász extension is the tightest convex
under-estimator of F .

It is evident that problem (14) is convex, and hence can
be optimally solved in polynomial-time to obtain a lower
bound on the optimal value of (11). However, from an
algorithmic standpoint, a major issue in solving the above
problem is that the Lovász extension of a submodular func-
tion does not admit an analytical functional form in general.
This can be attributed to the fact that the base polytope BF

is characterized by (potentially) an exponential number of
inequalities in the problem dimension n. In a seminal paper,
Edmonds [36] established that a greedy algorithm based
on sorting and querying F on n specific subsets suffices to
compute a subgradient of the Lovász extension at any point
x ∈ [0, 1]n without requiring explicit specification of the
base polytope BF . While this result can be utilized within
a projected subgradient framework for solving (14), for our
present problem, we elect not to do so. This is due to the fact
that the greedy algorithm is generic, i.e., it is not tailored to
exploit the form of the submodular cost function of (11),
which, in addition to its incremental nature, can result in a
heavy computational footprint on large graphs.

We now demonstrate that it is possible to circumvent the
aforementioned challenges related to solving (14) efficiently,
and the main reason is that the Lovász extension for TDkS
does admit an analytical form. In order to formally establish
the result, we exploit the fact that F is linearly decompos-
able over the triangle-set ∆, which in turn implies that its
base polytope can be expressed as the Minkowski sum of
the base polytopes of the constituent functions Fuvw [37,
Theorem 44.6], i.e., we have

BF =
∑

{u,v,w}∈∆

BFuvw
, (15)

where BFuvw is the base polytope associated with the com-
ponent Fuvw, and we have overloaded notation to represent
Minkowski sum 4 using the standard addition operator.
Our next result shows that each such “sub”-polytope BFuvw

admits a simple characterization.

Lemma 3. The base polytope of Fuvw is given by

BFuvw
= −wtconv(eu, ev, ew). (16)

4. The Minkowski sum of two sets A and B is given by A + B =
{a+ b | a ∈ A,b ∈ B}.

Proof. See Appendix E in the supplement.

Hence, the base polytope of Fuvw is the probability
simplex in the space spanned by the coordinates indexed via
(u, v, w) reflected about the origin and scaled by the weight
wt. Next, we exploit this result to derive an analytical form
for the Lovász extension of F .

Theorem 4. The Lovász extension of F is given by

fL(x) = −
∑

{u,v,w}∈∆

wt min{xu, xv, xw}

Proof. See Appendix F in the supplement.

The above result allows us to explicitly express problem
(14) as

min
x∈[0,1]n,∑n
u=1 xu=k

∑
{u,v,w}∈∆

wt max{−xu,−xv,−xw}, (17)

which we designate as the Lovász relaxation. On inspecting
the problem, however, it offers little in terms of an intuitive
explanation as to why it can serve as a useful approximation
for TDkS. To this end, our next result shows that the Lovász
extension can be cast in an alternate form, which provides
additional insight regarding (17).

Theorem 5. The Lovász extension of F can be expressed as

fL(x) = −tTx+
∑

{u,v,w}∈∆

wt · ϕt(xu, xv, xw) (18)

where ϕt(xu, xv, xw) := max{xu + xv − 2xw, xv + xw −
2xu, xu + xw − 2xv}.

Proof. See Appendix G in the supplement.

In the above expression, t is the n × 1 vector whose
ith entry denotes the number of triangles that vertex i
participates in. Using the above derived form, we now
provide an intuitive explanation for the Lovász relaxation.
Given any subset of vertices S ⊆ V , define the triangle
“volume” vol∆(S) :=

∑
v∈S tv of S to be the sum of the

weighted triangle counts of the vertices that constitute S .
Using a double counting argument, the triangle volume of
any subset S ⊆ V can be equivalently expressed as

vol∆(S) = t1(S) + 2t2(S) + 3t3(S), (19)

where t1(S), t2(S) and t3(S) denote the weighted sum of
triangles with one, two and three endpoints in S , respec-
tively. The above identity can be re-written as

t3(S) = (vol∆(S)− [2t2(S) + t1(S)])/3, ∀ S ⊆ V . (20)

Note that the term on the left hand side corresponds to
the objective function of TDkS. Hence, among subgraphs
of a given size, those containing a large number of induced
triangles must exhibit a large triangle volume (the first term
on the right hand side) while simultaneously having few
triangles being cut as a result of crossing the boundary of
S (measured by the sum of the two terms subtracted from
the volume). To be precise, for any given subset, a severed
triangle with two endpoints {u, v} ∈ S affects the triangle
counts (tu, tv) of both respective vertices (and hence the
−2 factor), whereas a cut triangle with a single endpoint
u ∈ S affects the triangle count tu of only that vertex (and
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hence the −1 factor). The above equation asserts that for
subgraphs with high triangle density, these losses stemming
from severed triangles should be small compared to the
triangle volume.

In order to establish the link with the form of the Lovász
extension established in Theorem 5, we re-write (20) as

−t3(S) = −(vol∆(S) + [2t2(S) + t1(S)])/3. (21)

Since we have already established that −t3(S) is a sub-
modular function and vol∆(S) is a modular (and thus
submodular) function, the remainder on the right hand side
must also be submodular, as submodularity is preserved
under addition. Furthermore, as the Lovász extension of
the sum of submodular functions equals the sum of the
Lovász extensions of the component functions, inspecting
the result of Theorem 5 reveals that it corresponds to the
sum of the Lovász extensions of the terms on the right
hand side of (21). Hence, the extension preserves the first
term, corresponding to the triangle volume, whereas it uses
a convex surrogate for the second term to approximate the
losses in the volume stemming from severed triangles. In
particular, when solving the Lovász relaxation, each vertex
is assigned a soft score that indicates how likely it is to
belong to the triangle-densest-k subgraph. The formulation
then assigns the highest emphasis on those vertices which
have large triangle counts, but also exhibit small variation
in scores across triangles.

5 ALGORITHM: MIRROR DESCENT

In this section, we describe our algorithm for efficiently
solving the Lovász relaxation (17), which is a convex prob-
lem. Since the Lovász extension is non-differentiable, this
suggests employing a Euclidean projected subgradient al-
gorithm for solving (17). The algorithm starts from an initial
feasible point x0 ∈ Pk and then proceeds in the following
iterative fashion

xr+1 = arg min
x∈Pk

{
(gr)Tx+

1

βr
∥x− xr∥22

}
, ∀ r ∈ N (22)

where gr ∈ ∂fL(x
r) denotes a subgradient of the Lovász

extension fL(x) at the current iterate x = xr and βr > 0 is
the learning rate. A standard result in convex optimization
states that if the subgradients of fL are bounded in the
Euclidean sense; i.e., there exists a constant G > 0 such
that

∥g∥2 ≤ G, ∀ g ∈ ∂fL(x), ∀ x ∈ Pk, (23)

then using the learning rate schedule βr = O(1/(
√
r)) is

sufficient to guarantee convergence to the optimal cost of
(17) at a sublinear-rate of O(G/

√
r) [38, Theorem 3.2]. From

this result, one can hope that the iteration complexity of
the Euclidean subgradient algorithm is independent of the
problem dimension n, which is a desirable trait for scaling
up to large problem instances. However, the above claim is
true provided that the Lipschitz constant G of the Lovász
extension is independent of n. Unfortunately, this is not the
case for our problem, as we now demonstrate.

Since fL is linearly separable over the set of triangles in
the graph, a standard result in convex analysis [39] asserts

that a subgradient of the Lovász extension g ∈ ∂fL(x) at a
feasible point x ∈ Pk can be expressed as

g =
∑

{u,v,w}∈∆

guvw, (24)

where guvw ∈ ∂fuvw(x) denotes a subgradient of fuvw at
the point x ∈ Pk, and we have overloaded notation to
represent set addition using the standard addition operator.
The subdifferential set of each component function fuvw is
characterized by the equation

∂fuvw(x) ∈ arg max
y∈BFuvw

yTx. (25)

From the form of the base polytope BFuvw
given by Lemma

3, it follows that any subgradient guvw ∈ ∂fuvw(x) obeys

∥guvw∥∞ ≤ wt, ∀ {u, v, w} ∈ ∆. (26)

Combining this observation with equation (24), we obtain
that a subgradient of the Lovász extension g ∈ ∂fL(x) is
bounded in the ℓ∞ sense as

∥g∥∞ ≤
∑

{u,v,w}∈∆

∥guvw∥∞ ≤
∑

{u,v,w}∈∆

wt. (27)

Since the sum of all triangle weights is a constant and
∥g∥2 ≤

√
n∥g∥∞, this implies that the Lipschitz constant

G of fL as defined in (23) in terms of ℓ2-distances is O(
√
n),

which is dependent on the dimension. Consequently, the
Euclidean subgradient method (22) applied to solve (17)
attains a dimension-dependent convergence rate of O(

√
n
r ),

which has undesirable implications for large-scale instances.
Thus, the non-Euclidean geometry of the problem ren-

ders the standard subgradient method (which measures
distances in the ℓ2-sense) a poor fit. In order to correct
for this “mismatch” in geometry, we propose to employ
the Mirror Descent algorithm (MDA) [40], which can be
viewed as a generalization of the subgradient algorithm to
non-Euclidean spaces. To be specific, MDA is an iterative
first-order algorithm that starts from a point x0 ∈ Pk and
performs the following updates

xr+1 = arg min
x∈Pk

{
(gr)Tx+

1

βr
D(x,xr)

}
, ∀ r ∈ N (28)

where D(., .) is an appropriate “proximity”-measuring func-
tion. For example, on choosing D(x,xr) = ∥x − xr∥22, we
obtain the standard subgradient algorithm. This proximal
term can be viewed as the Bregman divergence associated
with the function ∥x∥22, which is strongly convex w.r.t. the
ℓ2 norm.

Since the subgradients of the Lovász extension have con-
stant size when measured using the ℓ∞ norm, this motivates
measuring distances using the ℓ1 norm (which is the dual
norm of the ℓ∞ norm). This observation also suggests the
choice of D(., .) in MDA to be the un-normalized Kullback-
Leibler (KL) divergence between the points x and xr , which

is defined as DKL(x,x
r) =

∑n
i=1 xi

(
log xi

xr
i
− 1

)
+ xr

i .

Such a choice is based on the fact that the KL divergence
is the Bregman divergence associated with the negative
entropy function, which is strongly convex w.r.t. ℓ1 norm
on the feasible set Pk. On performing the MDA udpates
(28) using KL divergence with the learning rate schedule
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βr = O(
√
log n/r), invoking a standard result in convex

optimization [38, Theorem 4.2] guarantees a convergence
rate of O(G∞

√
log n/r), where G∞ denotes the Lipschitz

constant of fL w.r.t. the ℓ1 norm. From (27), since this
quantity is a constant, we obtain a convergence rate that
exhibits a significantly improved dependence on the prob-
lem dimension n compared to that of the standard subgra-
dient algorithm. Hence, fixing the geometry mismatch by
employing the ℓ1 norm to measure distances in MDA pays
substantial dividends in this case.

With the above choice of KL divergence, the MDA up-
dates (28) can be equivalently expressed as

xr+1 = arg min
x∈Pk

{
DKL(x,x

r ⊛ exp(−βrgr))

}
, (29)

where the ⊛ operator denotes element-wise multiplication.
The update reveals that the algorithm utilizes a subgradient
of the Lovász extension fL to perform a multiplicative
update on the present iterate xr followed by computing the
KL projection of the result onto Pk in order to ensure iterate
feasibility. Hence, the potentially intensive tasks that have to
be performed at each step are: (a) computing a subgradient
of fL, and (b) computing the KL projection onto the feasible
set Pk. As it turns out, these operations can be computed
efficiently - with task (a) requiring O(|∆|) time and task (b)
being solvable via bisection search.
(A) Computing a subgradient: In order to compute a sub-
gradient of fL at a given point x ∈ Pk, it suffices to com-
pute a subgradient of each component function fuvw, and
then sum the results up. From equation (25), a subgradient
guvw ∈ ∂fuvw(x) is given by

guvw = −wtes∗ , s
∗ ∈ arg min

s∈{u,v,w}
{xs}. (30)

Then, the full subgradient g ∈ ∂fL(x) is g =∑
{u,v,w}∈∆ guvw. We implement this procedure as follows:

we visit each component function fuvw and extract the
index of the sub-vector [xu, xv, xw]

T that attains the min-
imum (with ties broken arbitrarily). This operation incurs
O(|∆|) time, and can be trivially parallelized. For a vertex
u ∈ V , let ∆u denote the sub-collection of component
functions fuvw (and corresponding triangles) and is the
index that attains the minimum in (30). Since each sub-
gradient guvw corresponds to updating a single coordi-
nate of the full subgradient g, its entries are given by
gu = −

∑
t∈∆u

wt, ∀ u ∈ V . In the case where the graph
is unweighted, i.e., wt = 1, ∀ t ∈ ∆, the update can be
further simplified to gu = −|∆u|, ∀ u ∈ V . Implementing
this update requires counting the number of times xu attains
the minimum across all the component functions that it
participates in (which correspond to the triangles that vertex
u ∈ V belongs to).
(B) Computing KL projections: Let yr := xr ⊛ exp(−βrgr)
denote the vector obtained by performing the multiplicative
subgradient update. The MDA update (29) can then be
expressed as

xr+1 = arg min
x∈Pk

{
DKL(x,y

r)

}
. (31)

Our next result provides an explicit characterization of the
optimal solution of the above problem.

Algorithm 1 MIRROR DESCENT

Input: Triangle list ∆, triangle weights {wt}t∈∆, subgraph size k,
bisection tolerance ϵ > 0.
Initialize: x1 = (k/n)1, r = 1.
1: while Convergence criterion is not met do
2: Obtain gr ∈ ∂fL(x

r).
3: Update step-size βr = c/

√
r.

4: yr := xr ⊛ exp(−βrgr).
5: xr+1 = BISECTION(yr, k, ϵ).
6: Update r = r + 1.
7: end while
8: return xL = (1/r)

∑r
i=1 x

i

Lemma 4. The solution xr+1 satisfies the conditions

xr+1
i = min

{
1, exp(−ν∗)yri

}
, ∀ i ∈ [n],

n∑
i=1

xr+1
i = k,

where ν∗ ∈ R is the optimal dual variable associated with the
sum-to-k constraint.

Proof. See Appendix H in the supplement.

The above result can be exploited to solve (31) via a simple
procedure. Define the positive variable α∗ := exp(−ν∗).
Note that in order to solve for xr+1, it suffices to solve for
α∗. This in turn, can be accomplished by finding the root of
the non-linear, continuous equation

ϕ(α) :=

[ n∑
i=1

min{1, αyri }
]
− k. (32)

To this end, note that ϕ(α) is a continuous function that is
monotone non-decreasing in α, which suggests a simple bi-
section search procedure. The lower and upper limits of the
initial bisection interval can be set to be αl := 1/min

i∈[n]
{yri }

and αu := 1/(nmax
i∈[n]

{yri }) respectively, for which the value

of the lower interval is ϕ(αl) ≤ 1 − k < 0 and that of the
upper interval is ϕ(αu) = n−k > 0. For a prescribed exit tol-
erance ϵ > 0, the algorithm requires O(log[ϕ(αl)−ϕ(αu)/ϵ])
iterations to exit. Since each iteration of the bisection
algorithm incurs O(n) complexity, the overall complexity of
bisection is O(n · log(n/ϵ)). Putting everything together,
the final complexity of executing r iterations of MDA is
O((|∆|+ n · log(n/ϵ)) ·

√
log n/r).

A full description of MDA is provided in Algorithm 1.
Since the computed solution xL is not guaranteed to be
integral in general, we perform a simple post-processing
rounding step in order to obtain a binary indicator vector
corresponding to a candidate subgraph. This is accom-
plished by simply projecting xL onto the discrete sum-to-k
constraints, which is equivalent to identifying the support
of the k-largest entries in xL, and can be performed in
O(n log k) time using heaps.

6 EXPERIMENTS

In this section, we test the effectiveness of our proposed
method in exploring the triangle density-size trade-off
across a collection of real-world graphs. Our results indi-
cate that contrary to the worst-case scenario, real-world
instances of TDkS can be far from adversarial, with the
Lovász relaxation being effective at identifying high-quality,
sub-optimal solutions.
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TABLE 1: Summary of graph statistics: the number of vertices (n), the
number of edges (m), the number of triangles (|∆|), and network type.

Graph n m |∆| Network Type

PPI-HUMAN 21,557 342K 2.39M Biological
FACEBOOK-B 63,731 817K 3.51M Social

CAIDA 192K 609K 455K Router
WEB-STANFORD 281K 2.31M 11.33M Web graph

WEB-GOOGLE 875K 5.10M 13.39M Web graph
WIKI-TOPCATS 1.8M 28.51M 52.11M Hyperlinks

6.1 Baselines

To the best of our knowledge, we are unaware of any pre-
existing algorithms for the TDkS problem. Hence, we em-
ploy two state-of-the-art baselines for the (edge) densest-k-
subgraph DkS problem, and test their efficacy at discovering
triangle-dense subgraphs. These methods are described in
brief below.
Lovász Relaxation for DkS [20]: The same approach con-
sidered herein, but applied to the edge-density based for-
mulation, i.e., minimizing the Lovász extension for induced
edges over the convex hull of the sum-to-k constraints.
Utilizes a variant of the Alternating Direction Method of
Multipliers (ADMM) [41] to solve the relaxed problem. As
the solution is not guaranteed to be integral, a rounding
post-processing step is used to obtain the candidate sub-
graph.
Low-rank Binary Matrix Principal Component [19]: Em-
ploys a low-rank decomposition of the graph adjacency
matrix A, followed by solving the DkS problem with the
low-rank approximation in place of A. For the rank-1
approximation scenario, the resulting problem admits a
simple solution in O(n) time, whereas for constant ranks
(i.e., r = O(1)), the problem can be surprisingly solved in
polynomial-time O(nr+1). Furthermore, the resulting solu-
tion can be utilized to construct an instance-specific upper
bound on the optimal edge density for a given subgraph
size, which, while not attainable in general, can serve as a
useful performance benchmark. In practice, the algorithm is
run using ranks r ≤ 5, owing to its high complexity. In our
experiments, we ran the algorithm with rank-1 approxima-
tion for all our datasets to generate a candidate subgraph
and the edge-density upper bound, as even the rank-2 case
proved too expensive to compute.
Triangle density upper bound: We demonstrate that the
edge density upper bound for DkS obtained via the above
approach can also be converted into an upper bound on the
optimal triangle density for TDkS via the Kruskal-Katona
theorem, which asserts that for any unweighted, undirected
(sub)graph G, its edge density ρ2(G) and triangle density
ρ3(G) must obey the relationship ρ3(G) ≤ (ρ2(G))3/2.
Maximizing both sides of the above inequality w.r.t. all
subgraphs of a fixed size k then yields the following re-
lationship between the optimal triangle density of TDkS
ρ∗3(G, k) and the optimal edge density of DkS ρ∗2(G, k): we
must have ρ∗3(G, k) ≤ (ρ∗2(G, k))3/2. Hence, an upper bound
on ρ∗2(G, k) translates into an upper bound on ρ∗3(G, k) as
well. However, such a bound is not attainable in general for
every choice of k as it is more loose compared to the bound
on ρ∗2(G, k). In spite of this, we observed that on real-world
graphs the Lovász relaxation for TDkS can attain this upper

bound, or capture a significant fraction of it.
Since the first two baselines do not aim to directly de-

tect triangle dense subgraphs, for fair comparison, we also
compare the efficacy of our proposed methods for TDkS at
detecting edge-dense subgraphs against the above baselines.

6.2 Datasets, pre-processing and implementation
We used a collection of graph datasets (summarized in Table
1) from standard repositories [42], [43] to test the perfor-
mance of all methods. Each dataset is unweighted, and pre-
processed by symmetrizing any directed arcs, removing self-
loops, and extracting the largest connected component.

For TDkS, we used the well-known NODEITERATOR++
algorithm [44, Algorithm 2] to obtain a list of triangles in the
graph, which incurs a run-time complexity of O(m3/2). A
beneficial byproduct of this step is that we can eliminate all
vertices which do not participate in forming triangles from
belonging to a triangle-dense graph. Since this step does not
change the number of triangles in the graph, it does not
affect the input to TDkS. This, in turn, reduces the problem
dimension n and results in a substantial improvement in the
practical run-time of the Mirror Descent Algorithm. Note
that this step, however, does change the edge set of the
graph, and hence, the input to DkS. Consequently, the edge-
based baselines outlined in the previous section are applied
on the full graph.

All our experiments were performed in Matlab on a
Windows workstation equipped with 16GB RAM and an
Intel i7 processor. The Matlab code for the low-rank princi-
pal component approximation approach [19] was obtained
via personal communication with the respective authors.
Regarding our Mirror Descent algorithm for solving the
Lovász relaxation for TDkS, we employed a diminishing
step-size schedule (c/tmax)/

√
log n/r, where tmax denotes

the largest triangle “degree” in the graph, and c > 0 is a
constant that was empirically chosen for each dataset. The
maximum number of iterations applied was no more than
500 across all datasets.

6.3 Results and Discussion
The outcomes of our experiments on the considered datasets
are depicted in Figure 1. Our main findings are:
• With regard to subgraph triangle density (left column
in Figure 1), solving the Lovász relaxation for TDkS via
Mirror Descent followed by rounding consistently yields
the best results across all considered graphs. In fact, for
small subgraph sizes (≤ 100), it is the only method that
attains, or comes close to attaining the upper bound on
the optimal triangle density. Our results demonstrate that
although TDkS is NP–hard and difficult to approximate in
the worst-case, the Lovász relaxation can still prove to be
an effective tool for detecting triangle-dense subgraphs in
real-world graphs.
• Although the Mirror Descent algorithm aims to detect sub-
graphs with high triangle density, it turns in a commendable
performance in terms of edge density as well (right column
in Figure 1). In fact, for subgraph sizes ≤ 200, it outperforms
the dedicated edge-based formulations, often by a signifi-
cant margin and comes closest to attaining the edge density
upper bound. This can be viewed as a consequence of
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Fig. 1: Left column: Triangle density (on a log-scale) vs size. Right col-
umn: Edge density vs size. Red (Rank-1 least-squares matrix principal
component) and blue (ADMM) curves are methods for DkS while the
magenta curve (MD) is for TDkS. The black curve in the right column
depicts the edge density upper bound for DkS. This bound combined
with the Kruskal-Katona theorem also yields an upper bound on TDkS
(black curve in the left column).

the Kruskal-Katona theorem which formalizes the following
intuitive notion: if a subgraph has high triangle density, then
it must possess high edge density as well. Looking at Figure
1 (right column) confirms this observation.
• For large subgraph sizes, the edge density obtained by
Mirror Descent / TDkS is often second (although by a small
margin) to that obtained by applying the Lovász relaxation
for DkS. Empirically, we note that this occurs (i.e., the blue
curve “overtakes” the magenta curve) when the edge den-
sity falls below the 50% threshold. A possible explanation
is as follows. Turán’s theorem [45] implies that a graph can
exhibit an edge density at most 0.5 without harboring any
triangles. In other words, below this threshold, there do exist
graphs with edge density up to 50% while containing very
few triangles. Consequently, in the regime where the densest
subgraph of a given size has edge density upper bounded
by 0.5, employing a density measure based on edges may
prove to be more beneficial as opposed to using triangles, if
one cares more about edge density.
• In terms of timing, the approach of [19] is the fastest

as it simply requires computing the principal component
of the adjacency matrix. In contrast, the Lovász relaxation
schemes for both DkS and TDkS (blue and magenta curves
respectively) have to solved using iterative methods and
thus they consume more time. The complete results are
provided in Appendix I.

7 CASE STUDY – SINGLE DOCUMENT KEYWORD
EXTRACTION

Overview: We consider an application of TDkS to the real-
world problem of unsupervised single document keyword
extraction. For this purpose, we adopt the popular Graph-
of-Words (GoW) model of [46]. In this model, a given text
document is represented as an undirected graph, where ver-
tices correspond to unique words occurring in the document
and an edge connects a pair of vertices if the words they
represent co-occur within a window of pre-specified length
L which is slid from the start to the end of the document,
spanning across sentences. For example, the choice L = 2
corresponds to connecting pairs of words appearing in bi-
grams, whereas L = 3 connects triplets of words forming
tri-grams via triangles. In this context, extracting a dense
subgraph from a GoW-representation of a text document
corresponds to determining a highly cohesive subset of
keywords, which can form an informative summary of a
document’s content.
Prior Work: Such an approach has been adopted previously
in [5] to extract summaries of trending news stories from
streams of Twitter data, based on a GoW model with
window length L = 2. Later work [6] considered GoW
representations of general window length L ≥ 2, and
proposed the following two-step approach. First, a k-core
decomposition [47] is performed on the graph followed by
a k-truss 5 decomposition [48] refinement step in order to ex-
tract informative keywords. We point out that such density
based approaches to keyword extraction, which quantify
importance of keywords based on how frequently they

5. A k-truss is a subgraph where every edge participates in at least
k − 2 triangles.
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co-occur with other groups of words (i.e., cohesiveness),
are different from random-walk based approaches such as
TextRank [46], which assign importance to words based on
eigen-vector centrality. It is known that the former approach
based on density generally outperforms the latter on real-
world data [6], [49].
Limitations: That being said, the majority of density based
approaches to keyword extraction still suffer from two
main limitations: (i) they do not feature a natural means
of explicitly controlling the size of the extracted summary,
and (ii), few methods can effectively deal with higher-
order word co-occurrences (corresponding to GoW models
with L ≥ 3). This is important as they model tighter
notions of cohesiveness amongst words in contrast to pair-
wise co-occurrences. Hence, using higher-order word co-
occurrences for keyword-extraction has the potential to
yield more cohesive text summaries compared to using their
pair-wise counterpart. An exception to the second limitation
is the method of [6], which employs k-truss decomposi-
tion as a proxy for detecting a triangle-dense subgraph.
However, the authors of [6] noted that their approach was
effective in extracting informative summaries from real text
data only for GoW models constructed from higher-order n-
grams (with window length L at least 4, 5). This observation
was attributed to the fact that the number of triangles
in the constructed graph increases with L, which in turn
facilitates the detection of a dense k-truss. However, this
method cannot effectively extract cohesive summaries from
tri-grams.

We argue that TDkS is well positioned to address these
shortcomings. Since our problem allows pre-specification
of the desired subgraph size, given a GoW representation
of a document, it enables direct control of the size of the
extracted summary. Additionally, the objective function of
TDkS is directly geared towards maximizing the weighted
sum of induced triangles in the subgraph, which we intu-
itively expect will allow our formulation to extract mean-
ingful summaries from simple GoW representations con-
structed using tri-grams alone (with window length L = 3).
Experiments: In order to provide empirical corroboration of
our hypothesis, we applied TDkS to the problem of generat-
ing high-level descriptions of recently released Hollywood
movies based on publicly available text reviews submitted
by movie critics. We used the popular review aggregator
website https://www.metacritic.com/ to obtain reviews for
the following movies, which are briefly described below.

• John Wick 3: Parabellum 6 - an action movie in the
John Wick franchise directed by Chad Stahelski and
starring Keanu Reeves as the titular character.

• Baby Driver 7 - a heist movie directed by Edgar
Wright.

• Arrival 8 - a science fiction movie that doubles as
a drama; directed by Denis Villeneuve and starring
Amy Adams in the lead role.

• Hereditary 9 - a horror movie centered around the

6. https://www.metacritic.com/movie/
john-wick-chapter-3---parabellum

7. https://www.metacritic.com/movie/baby-driver
8. https://www.metacritic.com/movie/arrival
9. https://www.metacritic.com/movie/hereditary

evil that befalls a family; written and directed by
Ari Aster (in his directorial debut) and starring Toni
Collette in the lead role.

• Mad Max: Fury Road 10 - an action movie set in a
wasteland that serves as a soft reboot of the Mad
Max franchise; directed by George Miller.

• Joker 11 - an origin story about a popular comic
book villain, The Joker; directed by Todd Phillips and
starring Joaquin Phoenix in the lead role.

For each movie, we collected all the available reviews sub-
mitted by movie critics into a single text document. On
average, a movie had 45 reviews, each of which represents
a summary/opinion of a critic. We performed a simple pre-
processing step on each text document where we filtered out
short, commonly ocurring words using the list of stopwords
provided in Python’s Natural Language Processing Toolkit
(NLTK) 12. The resulting text document comprised, on aver-
age, 740 unique words used to describe a movie by multiple
critics. Then, from each document, we enumerated all tri-
grams and bi-grams in order to construct two different GoW
representations. In the first model, triplets of vertices are
connected by a triangle if their corresponding words co-
occur together in a tri-gram; each triangle has a weight
denoting the co-occurrence probability of the word triplet in
the text document. We apply the Mirror Descent algorithm
developed for the Lovász relaxation of TDkS in order to
detect a triangle-dense subgraph of a pre-specified size k.
Note that the vertices comprising such a subgraph corre-
spond to words which frequently co-occur together in sub-
sentences of length 3. As a baseline, we construct a second
GoW model, where a pair of vertices are connected by an
edge if their respective words co-occur in a bi-gram, with
each edge being weighted by the pair-wise co-occurrence
probability of the word pair. We then apply the ADMM
algorithm developed in [20] for the Lovász relaxation of DkS
to extract a dense subgraph of size-k based on pair-wise
cohesiveness. For a fixed summary size k, we expect the
summary generated using TDkS to be more cohesive and
informative as compared to DkS, since the former approach
exploits higher-order co-ocurrences in text.
Results and Discussion: The outcomes of our experiments
are depicted in Tables 4 and 5, which display the 30-word
summaries generated for each movie using TDkS and DkS
respectively. At a high level, it is evident that the movie
summaries generated from the tri-gram based GoW model
using TDkS are substantially more cohesive and descriptive
compared to that obtained from the bi-gram GoW model
using DkS. A minor drawback, however, is that the depth
of coverage obtained from the tri-gram model sometimes
comes at the expense of breadth. For example, from Table
5 it can be seen that the summary of each movie contains
the name of the director, but this is true for 4/6 movies in
Table 4. The similarities and differences in the two kinds of
summaries for each movie are elucidated below.

• John Wick 3: Parabellum - both summaries extract
the name of the movie and the fact that it belongs

10. https://www.metacritic.com/movie/mad-max-fury-road
11. https://www.metacritic.com/movie/joker
12. https://www.nltk.org/
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in a franchise. However, the TDkS summary ad-
ditionally identifies that the movie is the third in
the franchise. While the DkS summary contains the
dircetor, it does not contain the full name of the
movie’s main star Keanu Reeves, who is present in
the TDkS summary. The DkS summary reveals the
movie’s content as being violent and also mentions
the choreography, although few additional details
are present. In contrast, the TDkS summary reveals
that the critics found the level of violence excessive,
but enjoyed the choreography of the fight scenes.

• Baby Driver - the twin summaries contain the
movie’s name and that of the director. The TDkS
summary reveals that the critics enjoyed the story
and pacing of the movie (tale, perfect, enjoy, fun,
fast, furious, inventive), and also the fact that the
movie plot simultaneously combines elements of ac-
tion, romance and musicals (heist, romance, love,
musicals). The soundtrack of the movie is also men-
tioned (jukebox). In contrast, the DkS summary is
sparser in details regarding the plot, and beyond the
action elements does not pick up on the other aspects
of the movie’s plot. The soundtrack is also mentioned
(music, beat), and the fact the movie was released in
the summer.

• Arrival - common to both summaries are the names
of the movie, director and the lead actress. However,
the TDkS summary identifies the genre of the film
as being both science fiction and a drama – the DkS
summary does not pick up the latter. This serves as
key context for description of the movie’s content
which was praised by the critics for the weight of
its intellectual themes, as well as the moving story.
In contrast, the DkS summary, while picking up on
some of the emotional themes in the story, misses out
this key intellectual aspect.

• Hereditary - both summaries highlight the movie’s
name, the genre being horror, and the fact that the
first-time director was also the writer. The TDkS
summary additionally reveals that the critics praised
the direction (excels, smugly, promising) and found
the movie impressive, and even designated it as a
masterpiece. They also commented on the fact that
the movie is more in the vein of old school horror
movies - we note that these details are missing from
the DkS summary. However, the latter summary
does mention the performance of the lead actress,
Toni Collette.

• Mad Max: Fury Road - while having the movie’s and
director’s name in common with the DkS summary,
the triangle-based summary contains substantially
more information about the content - the fact the
reviewers praised the style and energy of the action
sequences (delivers, effective, loco), and concurred
that the movie marked a successful return to the
Mad Max universe, and even surpassed previous
installments.

• Joker - the TDkS summary reveals that the movie
is a re-imagining of a comic book character (the DkS
summary adds the detail that it is a DC comic), and is
anchored by a powerful performance from the actor

TABLE 2: Top-30 words which most frequently co-occur in trigrams
obtained from movie review text data; detected using the Lovasz
relaxation for TDkS (with k = 30). Key terms are highlighted in bold.

John Wick 3 Baby Driver Arrival Hereditary Mad Max: Fury Road Joker

movies movie movie movie films movie
john movies film film mad joker
wick baby arrival hereditary max comic

3 driver makes also fury book
parabellum almost villeneuve director road character

still feels take writer made reimagined
starring edgar almost ari director movies
keanu wright science aster george one
reeves literalizes fiction first miller anchored
may like sci time also performance

another always fi feature action joaquin
one watching drama debut sequences phoenix

chapter tale used us scenes oscar
series perfect adams buy delivers worthy
third enjoy head gives effective allows

anything fun like excels loco would
action fast moving smugly style study
fight furious thoughtful promising orgy depressing

scenes inventive great impressively stands engrossing
gratuitously nothing intimate masterpiece return masterful

violent much poignant horror revived iconic
choreographed going intellectual agitating universe well

gorgeously musical intelligent unnerving wasteland made
grander romance beguiling old surpassed great
baring heist leaves school previous fine
fluid jukebox questions makes interested almost
story love truly making indebted created
closer plays best family stone downside
draw sorts something takes cold killer

parabolically mashed conundrum much warrior work

TABLE 3: Top-30 words which most frequently co-occur in bigrams
obtained from movie review text data; detected using the Lovasz
relaxation for DkS (with k = 30). Key terms are highlighted in bold.

John Wick 3 Baby Driver Arrival Hereditary Mad Max: Fury Road Joker

film film film film movie film
movies movie movie movie film movie
movie movies arrival hereditary mad joker
john baby much see max comic
wick driver less director fury book

3 director denis writer road character
parabellum edgar villeneuve ari movies dc

though wright like aster films much
get something science first george work
first also fiction time miller performance
like much sci mind never joaquin

director story fi debut much phoenix
chad fun one feature things arthur

stahelski nothing adams every us villain
reeves even performance gets mayhem todd
chapter heist moving toni action phillips
series action emotional collette chase study

franchise crime human performance makes one
action work great takes also bad
still us story even get social

violence one best long work last
violent high life genre feels well

good filmmaking truly horror first point
far love made family even also

point part open supernatural muscle go
scenes like time atmosphere new enough
two beat ideas dread like anything

choreographed music first much post specific
set car makes new story like

new summer questions one one movies

Joaquin Phoenix, which is described as being Oscar
worthy (Joaquin Phoenix indeed won the Oscar for
Best Male Actor for his portrayal of the Joker). The
critics also described the movie as being depressing,
but at the same time also offered praise (engrossing,
masterful, iconic, well, made, great, fine). Praise
was not uniform, however - downsides are men-
tioned, but more specific details are not captured.
By comparison, the DkS summary is spartan in its
descriptive quality - the main addition being the
director’s name.

8 CONCLUSIONS

We considered the triangle-densest-k-subgraph problem
(TDkS) which aims to compute the size k subgraph with
the largest number of induced triangles. Unfortunately, not

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3444608

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 02,2025 at 14:12:46 UTC from IEEE Xplore.  Restrictions apply. 



12

only is the problem NP–hard, but it is also difficult to ap-
proximate in polynomial-time, in the worst-case sense. With
the aim of computing high-quality, sub-optimal solutions on
real-world instances, we exploited the fact that the cost func-
tion of TDkS is submodular to construct a convex relaxation
of the problem based on the Lovász extension of submod-
ular functions. As we derived an analytical functional form
for the extension, this enabled us to devise a Mirror Descent
algorithm for efficiently solving the problem at scale. Our
results on real-world graphs showcased that our approach
can effectively exploit triangle motifs to attain state-of-the-
art performance, and can provide a more effective means of
exploring the density-size trade-off compared to baselines
that only use edges for density maximization. Additionally,
we utilized the problem of document summarization to
showcase that TDkS can generate more informative word
summaries compared to DkS.
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APPENDIX A: PROOF OF THEOREM 2
Our starting point is the Kruskal-Katona Theorem [1], [2],
which states that for any graph G of size k, its edge-
density ρ2(G, k) and triangle-density ρ3(G, k) must obey the
relationship

ρ2(G, k) ≥ ρ3(G, k)2/3. (1)

As an immediate consequence of this result, we obtain the
following relationship between the optimal values of TDkS
and DkS, for a fixed input.

ρ2(M∗, k) ≥ ρ3(S∗, k)2/3, (2)

where the size-k vertex subsets M∗ and S∗ represent op-
timal solutions of DkS and TDkS respectively. Combining
the above result with the statement of Fact 2, we obtain the
following relationship

ρ2(M∗, k) ≥ ρ2(M, k) ≥ O

(
1

α(n)

)
ρ3(S∗, k)2/3, (3)

which must hold for any joint instance of TDkS and DkS,
and for any polynomial-time approximation algorithm for
DkS, which produces a subgraph M of size k as output.

We are now ready to establish the proof of our main
result, which relies on an argument based on contradiction.
Assume that there exists a polynomial-time approximation
algorithm A for TDkS which outputs a size-k subgraph S
whose triangle density ρ3(S, k) is guaranteed to be no worse
than a fraction O(1/(α(n))3/2−ϵ) of the optimal triangle
density ρ3(S∗, k), for some ϵ > 0. In other words, the
triangle density achieved by the output of the algorithm A
obeys the relationship

ρ3(S∗, k) ≥ ρ3(S, k) ≥
C1

(α(n))3/2−ϵ
· ρ3(S∗, k) (4)

for every instance of TDkS (here C1 > 0 is a universal
constant).

Let ρ2(S, k) denote the edge density of the subgraph
induced by S . Applying the Kruskal-Katona theorem and
the second inequality in (4), we obtain the following lower
bound on ρ2(S, k).

ρ2(S, k) ≥ ρ3(S, k)2/3 ≥ C2

(α(n))1−δ
· ρ3(S∗, k)2/3, (5)

where C2 := C
2/3
1 > 0 and δ := 2ϵ

3 > 0. Furthermore, we
point out that ρ2(S, k) cannot exceed the optimal edge den-
sity ρ2(M∗, k) for the same problem instance. Combining
this fact with (5), we obtain

ρ2(M∗, k) ≥ ρ2(S, k) ≥
C2

(α(n))1−δ
· ρ3(S∗, k)2/3, (6)

which is a clear contradiction of (3).

APPENDIX B: PROOF OF THEOREM 3
Recall that F (S) can be linearly decomposed over the set of
triangles ∆ as follows

F (S) =
∑

(u,v,w)∈∆

Fuvw(S). (7)

Since submodularity is preserved under addition and re-
striction, in order to establish the desired result, it suffices to
show that each component function Fuvw(S) is submodular.
To this end, note that by construction, the domain of Fuvw is
the power-set of the reduced ground set comprising vertices
{u, v, w}. In order to demonstrate that Fuvw is submodular,
we invoke the following fact about submodular functions - a
function is submodular if and only if all its projections onto
2 variables are submodular [3]. Considering the discrete
polynomial form of Fuvw

fuvw(xu, xv, xw) = −wtxuxvxw,

the above test for submodularity is tantamount to fixing
any one of the variables and testing whether the func-
tion is submodular in the remaining pair of free variables,
for all such possible configurations. Since the function is
symmetric with respect to (w.r.t.) its arguments, it follows
without loss of generality that we can fix xu and check
whether the projection of fuvw onto (xv, xw) is submodular.
This in turn simplifies to testing whether gt(xv, xw) :=
f(1, xv, xw) = −wtxvxw is submodular (note that the case
xu = 0 is trivial). Recalling the definition of submodularity
for functions of two variables, we note that the condition

gt(1, 0) + gt(0, 1) ≥ gt(0, 0) + gt(1, 1)

is always satisfied since wt is non-negative. Hence, each
component function Fuvw(S) is submodular, from which
the claim follows.
Remark: We point out that when the graph is unweighted
and each triangle has unit weight, the above theorem recov-
ers the result of [4, Theorem 3] as a special case. Further-
more, as we now explain, the above line of reasoning can
be extended to establish a considerably more general result
regarding submodularity of the weighted sum of induced
higher-order cliques in a subgraph. Consider an undirected
graph on n vertices represented as G = (V , Ck, w), where V
denotes the vertex set, Ck denotes the set of all k-cliques in
the graph (with k ≥ 3), and each clique c ∈ Ck comprising k
vertices {i1, · · · , ik} ⊂ V is associated with a non-negative
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weight wc. Given a subset of vertices S ⊂ V , define the
function

h(x) :=
∑

(i1,i2,··· ,ik)∈Ck

wc

k∏
j=1

xij , (8)

where x is the binary indicator vector of S . Note that for
a given subset of vertices S ⊂ V , h returns the weighted
sum of k-cliques induced by S . Then, we have the following
result.

Corollary 1. −h is a submodular function.

Proof. See Appendix C.

APPENDIX C: PROOF OF COROLLARY 1
It suffices to show that each component function

hc(xi1 , · · · , xik) := −wc

k∏
j=1

xij (9)

corresponding to a given clique c ∈ Ck is submodular. To
do so, we employ the same sequence of observations as in
the previous result. Namely, that each function is defined on
a reduced ground set comprising vertices {i1, · · · , ik} and
is symmetric w.r.t. to its arguments. Hence, w.l.o.g., we can
fix the first k − 2 variables (xi1 , · · · , xik−2

) to one and test
whether the projection of the function

hc(1, · · · , 1︸ ︷︷ ︸
k − 2

, xik−1
, xik) = −wcxik−1

xik (10)

onto the pair of variables (xik−1
, xik) is submodular. Since

wc is non-negative, as shown previously, this is indeed the
case.

APPENDIX D: PROOF OF LEMMA 3
From the definitions of Fuvw and the base polytope of a sub-
modular function, we obtain the following characterization
of BFuvw

.

BFuvw
=

{
y ∈ Rn : yu ≤ 0, yv ≤ 0, yw ≤ 0,

yu + yv ≤ 0, yv + yw ≤ 0, yu + yw ≤ 0,

yu + yv + yw ≤ −wt, yu + yv + yw = −wt

}
.

(11)

Observe that the first three inequalities imply the next three,
whereas the final inequality is made redundant by the
lone equality. The result then follows after eliminating all
redundant inequalities.

APPENDIX E: PROOF OF THEOREM 4
Let fuvw denote the Lovász extension of Fuvw. Invoking the
result of Lemma 3, we obtain

fuvw(x) = max
y∈BFuvw

yTx = −wt min{xu, xv, xw}. (12)

The result then follows since fL =
∑

(u,v,w)∈∆ fuvw.

APPENDIX F: PROOF OF THEOREM 5

Our starting point is the result of Lemma 3, which states
that the base polytope BFuvw

is the probability simplex
appropriately scaled and reflected about the origin. While
every vector lying in this set can be expressed as the convex
combination of the three extreme points of the scaled sim-
plex, it possesses only two degrees of freedom (due to the
summation constraint). Hence, it follows that BFuvw

can be
equivalently expressed as

BFuvw
=

{
αt ≥ 0, βt ≥ 0,

αt + βt ≤ 1 : −wt(αteu + βtev + (1− αt − βt)ew)

}
,

=

{
αt ≥ 0, βt ≥ 0,

αt + βt ≤ 1 : −wt(αt(eu − ew) + βt(ev − ew) + ew)

}
.

(13)
Define the variables γt := 1 − 3αt and δt := 1 − 3βt. By
construction, these variables obey the relationships

γt ≤ 1, δt ≤ 1, γt + δt ≥ −1. (14)

On performing a change of variables, we can express BFuvw

as

BFuvw
= −wt

[
(1− γt)(eu − ew) + (1− δt)(ev − ew)

3
+ ew

]
,

= −wt

[
(eu + ev + ew)

3
− γt(eu − ew) + δt(ev − ew)

3

]
.

(15)
Since the polytope BF is the Minkowski sum of the poly-
topes BFuvw , we obtain the following expression

BF = −
∑

(u,v,w)∈∆

wt(eu + ev + ew)

+
∑

(u,v,w)∈∆

wt

{
γt(eu − ew) + δt(ev − ew)

}

= −t+
∑

(u,v,w)∈∆

wt

{
γt(eu − ew) + δt(ev − ew)

}
,

(16)
where for every triangle t ∈ (u, v, w) ∈ ∆, the variables
{γt, δt} obey (14). The second equality stems from the fact
that the contribution of each vertex u ∈ V to the first
summand is precisely tu. From the definition of the Lovász
extension, we obtain

fL(x) = −tTx

+
∑

(u,v,w)∈∆

wt max
γt≤1,δt≤1,
γt+δt≥−1

{
γt(eu − ew) + δt(ev − ew)

}
.

(17)
We focus on each maximization subproblem within the sum-
mand, which is a linear program in the variables {γt, δt}.
We now make the following observation regarding the
constraint set defined by (14).

conv((1, 1), (−2, 1), (1,−2)) ⇔
{
γt ≤ 1, δt ≤ 1,

γt + δt ≥ −1.
(18)
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With the convex-hull representation of the inequality con-
straints in hand, and exploiting the fact that the optimal
solution of a linear program is always attained at an extreme
point of its feasible set, we conclude that the solution of each
subproblem is given by

max{xu + xv − 2xw, xv + xw − 2xu, xu + xw − 2xv},

which concludes the proof.

APPENDIX G: PROOF OF LEMMA 4

Define the function

h(x) :=

{
DKL(x,y

r), 0 ≤ x ≤ 1,

+∞, otherwise.
(19)

Then, the MDA update at each step (i.e., problem (31)) can
be equivalently written as

xr+1 = arg min
1Tx=k

h(x). (20)

Let ν ∈ R denote the dual variable associated with the
equality constraint. Then, the Lagrangian of the above prob-
lem is

L(x, ν) :=

{∑n
i=1 xi(log(xi/y

r
i ) + ν − 1), 0 ≤ x ≤ 1,

+∞, otherwise.
(21)

Let (x∗, ν∗) denote a pair of primal-dual optimal solutions
for (20). Applying the Karush-Kuhn-Tucker (KKT) condi-
tions (which are necessary and sufficient for optimality in
this case) yields the conditions

x∗ = arg min
0≤x≤1

L(x, ν∗), 1Tx∗ = k. (22a)

Since the Lagrangian is linearly separable in x, the first
condition can be further simplified as

x∗
i = arg min

0≤xi≤1

{
xi(log(xi/y

r
i ) + ν∗ − 1)

}
, ∀ i ∈ [n]. (23)

Each sub-problem admits an analytical solution of the form

x∗
i = min{1, exp(−ν∗)yri }, ∀ i ∈ [n], (24)

which completes the proof.

APPENDIX H. TRANSITIVITY RESULTS

Figure 1 depicts the transitivity of the detected subgraphs
as a function of the size on representative datasets. From
Lemma 2, we know that for a fixed subgraph size, maximiz-
ing triangle density is a surrogate for maximizing transi-
tivity as well. Since we developed a dedicated algorithm
for TDkS, we expect it to perform better with regard to
transitivity compared to the edge-based baselines, which is
indeed the case.

Fig. 1: Subgraph transitivity versus size.

APPENDIX I. TIMING RESULTS

The timing results of the methods (in seconds) across differ-
ent datasets are presented in Figure 2. It can be seen that the
rank-1 principal component approximation approach of [5]
is consistently the fastest, as it simply requires computing
the top-eigenvector of the graph adjacency matrix once
followed by extracting the support of the top-k entries to
determine the candidate subgraph of size k. In contrast, the
Lovász relaxation schemes for both DkS and TDkS (blue and
magenta curves respectively) require more time in general
as they entail solving convex optimization problems via
iterative methods. For the larger datasets (bottom row of
Figure 2), we remark that the Mirror Descent algorithm for
TDkS is faster compared to the ADMM algorithm described
in [6] for DkS.

APPENDIX J. MIRROR DESCENT PARAMETERS

We run Algorithm 1 with the learning-rate βr =
(c/tmax)

√
log n/r, where the choice of constant c and the

number of total iterations is listed in Table 1 for each dataset.
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Fig. 2: Run-time of the methods across datasets. Red and
blue curves are methods for DkS while the magenta curve
is the MD algorithm for TDkS.

TABLE 1: Step-size constants (c) and number of iterations
(N )

Graph c N

PPI-HUMAN 40 500
FACEBOOK-B 100 500

CAIDA 5 400
WEB-STANFORD 1000 200

WEB-GOOGLE 100 200
WIKI-TOPCATS 1000 200
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