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Abstract

Dense subgraph discovery (DSD) is a key primitive in graph
mining that typically deals with extracting cliques and near-
cliques. In this paper, we revisit the optimal quasi-clique
(0QC) formulation for DSD and establish that it is NP-hard.
In addition, we reveal the hitherto unknown property that
OQC can be used to explore the entire spectrum of dens-
est subgraphs of all distinct sizes by appropriately varying a
single hyperparameter, thereby forging an intimate link with
the classic densest-k-subgraph problem (DkS). We corrobo-
rate these findings on real-world graphs by applying the sim-
ple greedy algorithm for OQC with improved hyperparam-
eter tuning, to quickly generate high-quality approximations
of the size-density frontier. Our findings indicate that OQC
not only extracts high quality (near)-cliques, but also large
and loosely-connected subgraphs that exhibit well defined lo-
cal community structure. The latter discovery is particularly
intriguing, since OQC is not explicitly geared towards com-
munity detection.

Introduction

Dense subgraph detection (DSD) is a key primitive in graph
mining that aims to extract highly interconnected subsets of
vertices from a graph. Applications of the problem range
from discovering regulatory motifs in genomic DNA, min-
ing trending topics in social media, finding functional mod-
ules in gene co-expression networks, and communities in
social networks — see (Cadena, Chen, and Vullikanti 2018;
Lanciano et al. 2023) and references therein. In recent years,
DSD has also found application in spotting fraudulent be-
havior in user-product graphs (Hooi et al. 2016) and finan-
cial transaction networks (Zhang et al. 2017; Li et al. 2020;
Chen and Tsourakakis 2022).

Directly maximizing subgraph density (defined as the
fraction of the maximum number of possible edges in a
subgraph) admits trivial solutions such as a single edge.
This motivates using alternative surrogates for density max-
imization. The classic Densest Subgraph (DSG) problem
(Goldberg 1984) aims to extract a dense vertex subset that
maximizes the average induced degree. DSG can be solved
exactly in polynomial-time via maximum-flow (Goldberg
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1984). In practice, a simple vertex peeling-based greedy ap-
proximation algorithm (Charikar 2000) is used, as it enjoys
linear-time complexity and provides a (.5-approximation
guarantee for DSG. Recently, “multi-pass” generalizations
of the greedy algorithm have been developed which exhibit
superior performance (Boob et al. 2020; Chekuri, Quanrud,
and Torres 2022). Another well-known formulation is the
core decomposition (Seidman 1983), which is tantamount to
maximizing the minimum induced degree - the resulting ver-
tex subset is known as the maxcore, which can be obtained
via a slight modification of the greedy peeling algorithm for
DSG. These approaches suffer from an inherent limitation
- there is no means of explicitly controlling the size of the
extracted subgraphs. Hence, one cannot rule out the possi-
bility that these extracted subgraphs will have low density.
Unfortunately, such cases can occur on real-world graphs.
For example, the peeling algorithm for DSG can output the
entire graph as the solution (Tsourakakis et al. 2013). Mean-
while, empirical studies have revealed that the maxcores typ-
ically do not form a dense quasi-clique (Shin, Eliassi-Rad,
and Faloutsos 2016).

If the density of DSG/maxcore proves to be unsatisfac-
tory, the Densest-k-Subgraph (DkS) problem (Feige, Peleg,
and Kortsarz 2001) can be employed - given a pre-specified
size parameter k, extract the densest size-k vertex subset
(i.e., the one which harbors the maximum number of in-
duced edges). By solving the problem for various &, we ob-
tain a collection of the densest subgraphs of distinct sizes,
from which a solution of desired density can be selected.
We designate the entire spectrum of such subgraphs (i.e., the
densest of each distinct size) the optimal size-density fron-
tier. Unfortunately, this extra flexibility comes at a price -
DEKS is NP-hard and is notoriously difficult to approximate
in the worst-case (Manurangsi 2017). Notwithstanding this
fact, practical algorithms which work well for this problem
on real graphs include (Papailiopoulos et al. 2014; Konar
and Sidiropoulos 2021). However, a limitation of these ap-
proaches is that they entail solving an optimization prob-
lem for each k, which can prove computationally expensive
when generating candidate solutions of various sizes. An al-
ternative is the recent Generalized Mean Densest Subgraph
(GMDSG) framework (Veldt, Benson, and Kleinberg 2021),
which employs a single parameter p for computing gener-
alized means of degree sequences of a subgraph. By vary-
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Figure 1: (Top panel): Size-density frontiers generated using
greedyOQC (blue) and DS (red) on the Facebook dataset.
(Left): Subgraphs in the range spanned by « € [0.33,0.99]
and (right): in the range « € [0.01, 0.33). Denser subgraphs
mined by greedyOQC correpsond to larger values of a.
(Bottom panel): Visualizing local communities in loosely-
knit subgraphs extracted by OQC via the block diagonal
structure of their adjacency matrices. (Left): Size = 574, den-
sity = 0.21. (Right): Size = 1297, density = 0.07.

ing p, one can extract a family of dense subgraphs which
obey different notions of density, with DSG and maxcore
corresponding to the choices of p = 1 and p = —o0, re-
spectively. For p > 1, GMDSG can be solved optimally in
polynomial-time via maximum-flow, and is also amenable
to high-quality approximation via a generalized greedy peel-
ing algorithm. While being a useful generalization of DSG,
presently it is not known whether the solution of GMDSG
(for a given p) corresponds to the densest subgraph of that
size; i.e., whether it equals the solution of DS (in terms of
density) for a given k.

In this paper, our primary goal is to highlight an alter-
native means of mining subgraphs from the optimal size-
density frontier as opposed to employing DkS. To this end,
we revisit the optimal quasi-clique formulation (OQC) pro-
posed in (Tsourakakis et al. 2013). Similar to GMDSG,
the framework employs a single parameter « to quantify
subgraph density; in particular how unexpected the den-
sity of a subgraph is w.r.t. to a random subgraph model. In
(Tsourakakis et al. 2013), a greedy peeling algorithm was
developed for OQC and tested using @« = 1/3 to demon-
strate that it outperforms DSG on real-world graphs. How-
ever, the merits of such a parameter choice have not been
formally investigated. In fact, the precise role played by «
remains ill-understood. Loosely speaking, the OQC formu-
lation (2) can be viewed as a “regularized” counterpart of
DEkS, with « serving as a trade-off parameter between sub-
graph size and density. Building on this intuition, we provide
several important insights regarding the problem. Our con-
tributions can be summarized as follows.

1. Hardness: We prove that OQC is NP-hard for undi-

8609

rected, unweighted graphs, thereby settling a longstand-
ing conjecture regarding the complexity of the problem
originally posed in (Tsourakakis et al. 2013).

. Equivalence with DkS: We demonstrate that the densi-

ties of the maximizers of OQC obtained by continuous
variation of the parameter o equal those of the maximiz-
ers of DkS obtained by variation of the discrete size pa-
rameter k in DES. In other words, by varying their re-
spective parameters, both formulations generate the op-
timal size-density frontier in a graph '. In order to es-
tablish our result, we prove the existence of sub-intervals
of o where the maximizers of OQC are the densest sub-
graphs of a particular size-k. We remark that such an
equivalence between non-convex, combinatorial prob-
lems is surprising, since unlike establishing equivalences
between regularized and constrained variants of continu-
ous problems, we cannot appeal to strong duality (Boyd
and Vandenberghe 2004), or to penalty-based approaches
(Bertsekas 2014).

. Quickly exploring the size-density frontier: Since both

DKS and OQC are difficult problems to solve exactly,
in practice, there can be a difference in the quality of
the subgraphs extracted by them. An implication of our
results is that the greedy peeling algorithm for OQC
(Tsourakakis et al. 2013) is a natural baseline for bench-
marking the performance of DES methods. In addition
to its linear-time complexity, an attractive feature of this
peeling method is that the peeling order does not de-
pend on .. Hence, by running the method once to obtain
the order, different values of o can be used in a post-
processing step to select subgraphs of different densities
and sizes. This is in stark contrast to methods for DkS,
which have to be run for each distinct k. An illustra-
tive example of the performance of greedy peeling and
the convex relaxation algorithm (Konar and Sidiropoulos
2021) for DES on the Facebook dataset (obtained from
(?)) is provided in Figure 1. In the top panels, we dis-
play the size-density frontiers for OQC and DS for two
ranges of subgraph sizes. Notice how closely the curves
match, with the peeling method exhibiting slightly bet-
ter densities for subgraph sizes less than 110. Addition-
ally, we noted that increasing « beyond 1/3 generally im-
proves the density performance; e.g., with & = 1/3 we
obtain a subgraph of size 200 with density 0.78 whereas
for o = 0.99 we obtain a clique of size 69. It can also be
observed that the frontier generated by OQC is coarser
compared to DS - this is due to the nature of the peeling
algorithm (see Experiments for a more detailed discus-
sion).

. Large and sparse quasi-cliques can also be interest-

ing: DSD is mostly concerned with extracting cliques
and near-cliques, which reside in the high density region
of the optimal size-density frontier. Thus, the task of min-
ing larger, less cohesive subgraphs is apriori not well
motivated. Unexpectedly, it turns out that in real-world
graphs, quasi-cliques with density as low as 7% can ex-
hibit well-defined, non-trivial local community structure.

'Such a property is currently not known for GMDSG.
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This is illustrated in the bottom panel of Figure 1 - as
« is decreased, the peeling algorithm “zooms-out” to re-
veal sparsely connected subgraphs which harbor loosely
interconnected communities of smaller dense subgraphs.
This discovery is surprising, since the objective function
of OQC does not explicitly promote community structure.
Our results on other real-world graph reveals a similar
pattern (see Experiments).

The Optimal Quasi-clique Problem

Consider an undirected, unweighted graph G := (V,£) onn
vertices with m edges. Given a subset of vertices S C V, let
e(S) denote the number of edges in the subgraph Gs induced
by S. The density of S is defined as p(S) := e(S)/(l‘g‘).
The optimal quasi-clique (OQC) formulation proposed in
(Tsourakakis et al. 2013) aims at finding the subgraph that
maximizes the following objective function

falS) = e(S) — a<‘§|>_

The first term encourages the subgraph induced by S to
have a large number of edges while the second term pe-
nalizes large subgraph sizes. The regularization parameter
a € (0,1) plays a balancing act in trading off subgraph den-
sity for size. The objective function admits the following in-
terpretation - the second term can be viewed as the number
of edges that appear in expectation in a random Erdos-Renyi
graph defined on the vertex subset S, where a € (0,1) de-
notes the probability of an edge connecting a pair of vertices.
Thus, f,(S) assigns a greater reward to subgraphs Gs which
exhibit a large surplus of edges with respect to the random
subgraph model. Overall, OQC aims to solve the following
optimization problem

ey

max fu(S)

SCv

@)

The choice of the parameter « affects the size and density of
the extracted solution. Intuitively, selecting a small value of
« allows large, non-dense subgraphs to exhibit a large edge
surplus. As the value of « is increased, dense subgraphs of
smaller size are favored. In (Tsourakakis et al. 2013), it was
recommended to set v = 1/3.

Hardness

Regarding the computational complexity of problem (2), lit-
tle is known - it has long been suspected to be NP-hard
(Tsourakakis et al. 2013), but a formal proof has remained
elusive thus far. We point out that a generalization of the
OQC problem studied in (Cadena, Vullikanti, and Aggar-
wal 2016), where the edges of G are allowed to have ar-
bitrary weights, has been shown to be NP-hard. An analo-
gous result for undirected graphs, where each edge has unit
weight, however, is not presently known. Our first major
contribution settles the matter by furnishing a proof of NP—
hardness via a reduction from the decision version of the
MAXCLIQUE problem, which is known to be NP—complete
(Karp 1972). Given G and a positive integer k > 3, the deci-
sion variant of the MAXCLIQUE problem asks whether the
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maximum clique size is at least k. We demonstrate that for
every choice of k, there exists a sub-interval of a € (0,1)
for which there is a one-to-one correspondence between the
solutions of problem (2) and MAXCLIQUE. Hence, OQC is
at least as hard as solving an arbitrary decision instance of
MAXCLIQUE. Our reduction utilizes the following key re-
sult in extremal graph theory.

Fact 1 (Turan’s theorem (Turan 1941)). Every graph on n
vertices that does not contain a k-clique, can have at most
the following number of edges.

1 n?

-1/ 2

T(n, k) == (1 7 3)

In other words, if the number of edges in a n-vertex graph
exceeds 7(n, k), then it must contain a k-clique. We adopt
the following approach: if a graph contains a k-clique, then
it is a subset of a subgraph of size at least k with “suffi-
ciently” large edge density. That is, if we are able to locate
an induced subgraph Gs such that the number of edges in-
duced e(S) exceeds the threshold 7(|S|, k), then that sub-
graph must harbor a k-clique. Since such a k-clique in Gs is
also a k-clique in G, it then follows that an affirmative an-
swer to the instance of MAXCLIQUE has been determined.
The task of detecting such a subgraph and tying it to the so-
Iution of the OQC problem (2) is formalized in the following
result.

Theorem 1. The optimal quasi-clique problem on undi-
rected graphs (2) is NP-hard.

Proof. We briefly sketch the outline. Given a decision in-
stance of MAXCLIQUE, we utilize Turan’s theorem to deter-
mine the smallest constant o € (0, 1) for which a subgraph
Gs induced by S C V obeys the inequality

(a1 )

For such a choice of «, if it additionally holds that the edge-
surplus f,(S) > 0, then we have the implication e(S) >
7(|S|, k). This in turn implies that Gs harbors a k-clique. It
turns out that a sufficient choice of « is

1
(k—1)*

S|

5 @

=1 (5)

&95

We can show that solving (2) with @« = a4, and examining
whether the size of the solution is greater than or equal to, or
smaller than k, corresponds to solving any decision instance
of MAXCLIQUE. 0

Remark 1. When testing for the presence of a k-clique, the
above result remains unchanged if the threshold o = ay, is
replaced by any value of « in the sub-interval [ay, 1). This
is because for a fixed value of k, «y, is the smallest constant
that satisfies the inequality (4). Clearly, any value of o which
exceeds this threshold is also a valid choice.
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Unveiling the Role of o

As mentioned previously, the choice of « plays a key role in
determining the quality of the subgraph extracted by OQC
(in terms of size and density). However, the question of
which subgraphs of G correspond to maximizers of OQC
for a given value of a € (0, 1) has not been formally inves-
tigated. This is the main object of our study.

Given a parameter k € [K] := {2,--- ,n}, we denote the
optimal (i.e., maximum) density across all size-k subgraphs
as py = lréla)i p(S). The collection of pairs {(k, p;) } e[k

then corresponds to the optimal size-density frontier of G;
i.e., each frontier point denotes the maximum subgraph den-
sity of a given size. Regarding the relationship among the
optimal density values {pj }rc|x], the following result is
known (Kawase and Miyauchi 2018, Lemma 1).

Lemma 1. For any graph G, the optimal size-k subgraph
density pj, is a monotonically non-increasing function of the
size; i.e., it always holds that

(©)

Let w denote the size of the maximum clique in G, and C,,
be a subset of vertices that constitute a maximum clique.
The result implies that for every size £ < w, the maximum
density p;, = 1. This is because a fixed size subgraph attains
a density of 1 (the maximum possible value) if and only if
it is a clique, and the maximum clique contains all cliques
of smaller size. For sizes k& > w, the optimal density p}
is bounded away from 1, i.e., the densest subgraphs in this
range of sizes are quasi-cliques. Furthermore, by virtue of
Lemma 1, the density pj, of these optimal quasi-cliques is a
monotone non-increasing function of size k.

Our second major contribution establishes that solving
OQC with varying « is equivalent to mining subgraphs
which correspond to different points on the optimal size-
density frontier. To be precise, we show that for every unique
density value in the set {pj, } r.c[x]. there exists a sub-interval
of a € (0,1) for which the solution of OQC corresponds
to the largest subgraph of that density value. For example,
our result implies that there is a range of « for which the
maximizers of problem (2) are the maximum cliques, which
correspond to the largest subgraphs in G with density 1. As
expected, our results show that large values of o enable OQC
to mine maximum cliques and optimal near-cliques lying on
the optimal size-density frontier, with smaller values extract-
ing larger subgraphs of lower density on this frontier.

Pk = Pry1,V k€ [K].

Extracting the Maximum Clique

We provide sufficient conditions on « such that the optimal
solution of problem (2) coincides with the set of maximum
cliques in G. First, we establish the following warm-up re-
sult. Consider a vertex subset S of size at most w with den-
sity p(S) € [0, 1]. Then, for any choice of & € (0,1) in the
edge-surplus function (1), the following statement is true.
Lemma 2. For any subgraph of size |S| < w, it always
holds that

fa(S) < fa(Cu). ©)
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Since the maximum clique size w is unique, the inequality
(7) is satisfied with equality if and only if S constitutes a
maximum clique in G. We conclude from the above result
that all subgraphs of G which lie in the “shadow” of the max-
imum clique, i.e., which are dominated in size and density
by C,, are always sub-optimal for (2), irrespective of the
choice of @ € (0,1). Consequently, if S} denotes the op-
timal solution of (2), for every value of o € (0,1), it must
hold that | S| > w and

fal85) = fa(Cu). ®)

Going forward, we are interested in determining for what
range of values of « are the above pair of inequalities sat-
isfied with equality, which implies that the optimal solution
of (2) coincides with the maximum clique. We expect the
required value of « to be large in order for the edge-surplus
attained by the maximum cliques in G to dominate that of all
other subgraphs. Let p7,, ; denote the density of the densest
quasi-clique larger than w. Define the threshold

&= pgp1 — (1= piqa) - co, ©)

where ¢ := w(w —1)/(n —w)(n 4+ w + 1). Then, we have
the following result.

Theorem 2. For all « € (&, 1), the maximizers of OQC are
the maximum cliques in G.

Remark 2. We point out that extracting a maximum clique
C., corresponds to extracting all points on the optimal size-
density frontier {(k, 1)} <., since C,, contains all cliques of
smaller sizes.

Extracting Optimal Quasi-Cliques Larger than the
Maximum Clique

Define the set [L] := {1,--- ,n — w}. For a fixed parameter

¢ € [L], let Q; denote the set of all quasi-cliques in G of

size w + £. Let Q; € Q denote an optimal quasi-clique

of size w + / that attains the maximum density p,  ,; i.e.,

we have Q) € arg lsr‘naﬁ , p(S). Next, we show that a can
=w

be selected such that the maximizers of OQC correspond
to optimal quasi-cliques { Q] }¢¢[z). Note that such optimal
quasi-cliques correspond to the points (w + ¢,p7,,) on
the optimal size-density frontier. Our analysis requires the
following assumption.

Assumption 1: Every optimal density value in the range
{P% 1} eern) is unique.

In other words, the optimal density values are not repeated
for subgraph sizes larger than w. While reasonable, this
condition does not hold without loss of generality (e.g., in
a 4-cycle, p5 = pj). Nevertheless, its primary utility is to
keep derivations simple; it can be relaxed at the expense of
more cumbersome technical arguments.

Warm-up: We first consider the case of ¢ = 1, which cor-
responds to extracting Q7F. The extension to the general case
will be described afterwards. In order for Q7 to be the unique
maximizer of (2), « should satisfy each of the following con-
ditions.
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c fa(9F) > fa(©Q1),Y Q1 € Qi \ Qf. This reflects
the fact that Q7 is required to have the maximum edge-
surplus amongst all quasi-cliques Q; of size w + 1.
fa(9F) > fa(Qr),Y Qp € Q4 \ Q. This ensures that
the edge-surplus attained by Q7 dominates that of the
quasi-cliques of size larger than w + 1.

fa(QF) > fa(Cy). That is, the edge surplus of QF must
exceed that of the maximum clique C,. Recall the as-
sertion of Lemma 2, which states that for any choice
of @ € (0,1), we have f,(Cy,) > fu(S), for all sub-
graphs of size |S| < w. Hence, satisfying the condition

fa(Q7) > fa(Cy) also guarantees that f,(QF) > fo(S)
is satisfied, for all subgraphs & smaller than w.

Define the thresholds

(10a)
(10b)

LB(1) := pl10 — (piy1 — Pita) - C15
UB(1) :=ply1 — (1 = ply1)(w—1)/2

where c; is a constant dependent on n, w. We can show that
the above thresholds define an open sub-interval where «
satisfies the above three conditions. This leads to the follow-
ing result.

Theorem 3. For all o« € (LB(1, UB(1)), the maximizers of
0QC correspond to optimal quasi-cliques Q.

The general case: Next, we consider the extraction of op-
timal quasi-cliques of sizes £ € {2,---,n — w}. Again,
the following three conditions must be met for Q} to be the
unique maximizer of (2).

4. fo(9F) > fu(Qr),V Qr € Q¢ \ Q. This condition is
the same as (1).

5. fa(9F) > [a(Qk),Y Ok € Q. k € K], == {£ +
1,--+,n — w}. This is a generalization of condition (2)
to ensure that the edge surplus of f,(Qj) dominates that
of all subgraphs of size larger than £.

6. fo(Q)) > fa(Q)),V Q; € Qj,5 € {1,---,£—1}.

This condition generalizes (3) and ensures that the edge
surplus of the optimal quasi-clique Qj of size w + £ ex-
ceeds that of all quasi-cliques of smaller sizes.

Define the thresholds

LB(¢) := PZ+(@+1) — (Poge — PZ+(£+1))657 (11a)
y . . w4+ (-2
UB(Y) == plyp — (Pw+(£—1) — Prgt) [(2 )}
(I1b)

where ¢, is a constant dependent on n, ¢, w. By an appropri-
ate generalization of the arguments underpinning Theorem
3, we can utilize the above thresholds to obtain the follow-
ing result.

Theorem 4. For all o € (LB(¢), UB(¥)), the maximizers of
OQC correspond to optimal quasi-cliques Q.

Overall, our results demonstrate that for any graph G, there
exists a choice of « such that the maximizers of OQC corre-
spond to the largest quasi-clique that attains a unique density
on the optimal size-density frontier.
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Relationship with Densest-4-Subgraph

In the previous section we demonstrated that there exists a
choice of o in OQC which enables extraction of subgraphs
comprising the optimal size-density frontier; i.e., subgraphs
of G corresponding to the pairs {(k, p},) } re[k]- An alternate
means of traversing this frontier is to employ the DENSEST-
k-SUBGRAPH (DkS) formulation. Given a size parameter
k € [K], DES aims to find maximizers of the optimization

problem ‘1391|ax p(S8). Clearly, any size-k maximizer of DkS
=k

corresponds to the point (k, p;) on the optimal size-density
frontier. Thus, by varying k, DkS can be used to sweep the
frontier comprising the pairs {(k, p;) }re[x]. This implies
that in terms of the optimal density value attainable for each
specific subgraph size, OQC and DES are equivalent.

A natural follow-up question to consider then is the rela-
tionship between the maximizers of the twin formulations.
Can the problems be viewed as being equivalent in this re-
spect as well? To this end, we define the following notation.
For a fixed value of o € (0,1), let S, denote the collection
of maximizers of OQC; i.e., a subgraph S € S, is a max-
imizer of OQC. Similarly, for a fixed size k € [K], let S}
denote the collection of maximizers of DkS.

Theorem 5. For every a € (0,1), there exists a value of
k € [K] such that S}, C S}. However, there exist maximizers
of DS which are not maximizers of OQC.

The second case corresponds to scenarios where the optimal
density value is repeated across successive subgraph sizes.
Hence, the two formulations are not entirely equivalent w.r.t
their maximizers. However, we can show that when such
an event occurs, the maximizers of OQC correspond to the
largest quasi-clique among all optimal quasi-cliques that at-
tain the same density value (across successive sizes). Addi-
tionally, we can also show that the largest such quasi-clique
contains all the quasi-cliques of smaller sizes (with the same
density).

Lemma 3. Let Qj and Qj,_ | be optimal quasi-cliques with
densities pj, = py. - Then, Q| harbors a size-k optimal
quasi-cligue with density py..

Note that the above result generalizes the fact that the maxi-
mum clique contains cliques of all sizes lesser than w.

Experiments

In principle, both OQC and DkS can be employed to mine
dense subgraphs of differing sizes from the optimal size-
density frontier {(k, pj) }re[x] of G. However, these prob-
lems are NP-hard in the worst-case. In light of this fact, we
resort to employing approximation algorithms for each for-
mulation, which are not guaranteed to find optimal solutions
in general. Thus, in practice, depending on the effectiveness
of the selected algorithm, the quality of the subgraphs ex-
tracted (in terms of size and density) using the two formula-
tions can be different. In this section, we conduct an empir-
ical comparison of the subgraphs extracted by approxima-
tion methods for D&S and OQC on real-world graphs and
provide guidelines regarding which formulation to use.

Lovasz Relaxation for DiS: We employ the recent con-
vex relaxation approach of (Konar and Sidiropoulos 2021)
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Dataset n m Network Type
FACEBOOK 4K 88K Social
Soc-GOOGLE 211K 1.14M Social
WEB-STANFORD 281K 2.31M Web graph
MATHSCINET 332K 820K  Co-authorship
CA-DBLP 540K  15M  Co-authorship
WEB-GOOGLE 875K 5.10M Web graph
PATENTS 3.7M 16.7M Citation graph

Table 1: Summary of graph statistics: the number of vertices
(n), the number of edges (m), and network type.

wherein the Lovasz extension of the supermodular objective
function of DES is maximized over the convex hull of the
sum-to-k constraints. The resulting problem is solved using
the Alternating Direction Method of Multipliers (ADMM)
(Condat 2013). As the solution is not guaranteed to be in-
tegral, a rounding post-processing step is used to obtain the
candidate subgraph of the desired size k.

Greedy peeling for OQC: We employ the greedy vertex-
peeling algorithm originally proposed in (Tsourakakis et al.
2013). Starting from the entire graph G, the algorithm re-
peatedly peels off the lowest degree vertex until no ver-
tices are left to remove. In the process, a sequence of
nested subgraphs is generated, and the one which attains the
largest edge surplus is returned as the solution. The algo-
rithm can be implemented efficiently in O(n + m) time. In
(Tsourakakis et al. 2013), the choice of v = 1/3 was recom-
mended to select the subgraph with the largest edge-surplus.
As our theoretical analysis reveals that increasing the value
of « is more suitable for detecting dense quasi-cliques, in
our experiments we employ larger values of . In practice,
given a graph G, it is difficult to determine the exact sub-
interval of « required to a extract quasi-clique of a desired
size since we do not know apriori all the parameters required
for constructing the requisite sub-interval of «, including for
what range of subgraph sizes are the optimal density values
repeated. Consequently, we resort to using empirically cho-
sen values of a.. Note that fine-tuning the selection of o can
be accomplished in a post-processing step independently of
the algorithm; i.e., the algorithm has to be executed once in
order to obtain a ranking of the vertices based on the itera-
tion index where they were eliminated (this procedure does
not depend on the value of o). Thereafter, different values of
« can be tested to extract the best solution relative to the cor-
responding edge-surplus function. In this manner, the algo-
rithm can be employed to quickly generate an approximation
of the optimal size-density curve of G. This is an advantage
enjoyed by the algorithm over its DS counterpart, which
needs to be run for each desired value of subgraph size k.
Datasets, pre-processing and implementation: We used a
collection of datasets (summarized in Table ??) obtained
from standard repositories (Leskovec and Krevl 2014) to
test the performance of all methods. Each dataset is pre-
processed by symmetrizing any directed arcs, removing self-
loops, and extracting the largest connected component. All
our experiments were performed in Matlab on a Macbook
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equipped with 16GB RAM and an M2 processor. The code
for the ADMM algorithm for solving DS was the same em-
ployed in (Konar and Sidiropoulos 2021).

Performance on Real-world graphs: After running the
GREEDYOQC algorithm on a dataset, we perform a grid
search on « in the range [0.01,0.99], in increments of
0.01. Each value of « defines a different edge-surplus func-
tion, using which the subgraph with the largest edge sur-
plus amongst the family of nested subgraphs generated by
GREEDYOQC is selected. The smallest and largest size sub-
graphs obtained by this procedure are then set to be the lower
and upper limits on k£ in the ADMM algorithm for DS re-
spectively. The size-density frontiers generated by these two
different methods on the aforementioned datasets is depicted
in Figure 2. We make the following general observations.

1. There exist “gaps” in the size-density frontier generated
by GREEDYOQC. This is because for each choice of
«a, the solution is always restricted to be chosen from
the same family of n nested subgraphs generated by the
peeling process. We empirically confirmed that this can
result in the same subgraph in the family attaining the
largest edge-surplus for successive values of . Owing
to these “resolution limits”, the subgraphs extracted can
correspond to a coarse approximation of the optimal size-
density frontier in terms of the range of subgraph sizes
spanned. The results also showcase that larger values of
« do indeed retrieve denser subgraphs; in particular the
originally recommended (Tsourakakis et al. 2013) choice
of @ = 1/3 can be sub-optimal in this regard.

. Since the ADMM-based relaxation of DkS is designed
to output a subgraph of a distinct size, it does not exhibit
gaps in its generated size-density frontier. Thus, it offers
a more fine-grained approximation of the optimal size-
density frontier in terms of subgraph sizes compared to
GREEDYOQC. However, this comes at the cost of ex-
tra computational time as the algorithm has to be run for
each distinct value of k.

3. For subgraph sizes corresponding to the intersection of
the twin size-density frontiers, the two algorithms are
closely matched in general. However, for smaller sub-
graph sizes (< 100), the ADMM algorithm can perform
worse than GREEDYOQC, which attains high-quality so-
lutions in the range.

We conclude that GREEDYOQC can be use to quickly ob-
tain a high-quality approximation of the optimal size-density
frontier. However, since it is limited in its resolution (in
terms of the range of subgraph sizes spanned), ADMM-DES
can be employed over a smaller range of interest in order to
obtain a finer-grained approximation of the frontier.

Large and loose quasi-cliques matter too: In dense sub-
graph discovery, one is typically interested in exploring the
“high” (density) end of the optimal size-density frontier of
G, which is comprised of cliques and near-cliques. Given
that, scant attention has been paid to exploring the oppos-
ing “low” end of the frontier, consisting of large subgraphs
with low density. At first, it may seem that there is no ap-
parent reason for doing so, since the subgraphs compris-
ing this regime are not dense to begin with. However, since
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Figure 2: Size-density frontiers generated by GREEDYOQC
and ADMM-DES. For OQC, denser subgraphs correspond
to smaller values of a.

GREEDYOQC can be utilized to quickly explore any region
of the frontier (by appropriate selection of « in the post-
processing step), we analyzed the characteristics of the sub-
graphs comprising the low end. Our results indicate that sub-
graphs with density as low as 2 — 10% can be interesting in
their own right. Figure 3 depicts the sparsity pattern of the
adjacency matrices of these extracted subgraphs across var-
ious datasets. Although these subgraphs are too large and
sparse to be labelled dense (having only 5 — 10% density),
the block diagonal structure of their adjacency matrices re-
veals a striking property - the presence of local community
structure. Evidently, these subgraphs are composed of mul-
tiple components of non-trivial size which exhibit sparse ex-
ternal connectivity and high internal cohesion. In order to
reveal this community structure, we applied spectral cluster-
ing (Von Luxburg 2007) on the extracted subgraph.

It is well known that real-world graphs lack global com-
munity structure (Leskovec et al. 2009), and global partition-
ing methods such as normalized-cut (Shi and Malik 2000)2
typically fail to find well connected clusters. Hence, a body
of research has blossomed around local community detec-
tion (Spielman and Teng 2004; Andersen, Chung, and Lang
2006; Kloster and Gleich 2014; Orecchia and Zhu 2014;
Veldt, Gleich, and Mahoney 2016; Wang et al. 2017) which
use specialized techniques and algorithms tailored for de-
tecting local communities. In that context, our results are
surprising since (a): the edge-surplus function is a surrogate

2(of which spectral clustering can be viewed as a relaxation)
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Figure 3: Presence of local communities in low-density sub-
graphs identified using OQC, as visualized by the block-
diagonal structure of their respective adjacency matrices.

for maximizing the internal connectivity of a subgraph and
not explicitly geared towards promoting community struc-
ture, and (b): it is not obvious apriori that running the peel-
ing process simply based on removing the lowest degree ver-
tex will “chip” away at the global structure in the right places
to reveal local communities. It is striking that this indeed
happens consistently across various real-world graphs.

Conclusions

We revisited the OQC problem and revealed that the densi-
ties of its solutions obtained by continuous variation of « is
equivalent to that of the classic Densest-k-subgraph prob-
lem. This opened the door to utilizing the GREEDYOQC
algorithm for mining dense subgraphs comprising the opti-
mal size-density frontier. On real-world graphs, we demon-
strated that the algorithm quickly generates a high-quality
approximation of the frontier, to that generated by more
computationally intensive baselines of DES; albeit with pos-
sibly limited resolution. On turning the spotlight towards
large, loosely connected quasi-cliques, we made the surpris-
ing discovery that they harbor well defined local communi-
ties, even though the OQC formulation does not explicitly
promote community structure.
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