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Abstract
The first/initial phase (during May to June) of the Asian summer monsoon (ASM), primarily driven by land-sea thermal 
gradient, varies from year to year and enormously affects people’s livelihood and the economy of this region. Moreover, 
the first phase, associated with the sub-seasonal variability (days to weeks), witnesses many extreme hydroclimatic events. 
Therefore, it is crucial to understand the sources of predictability of the initial phase of the ASM. Here we identify a domi-
nant mode of variability in June rainfall over the entire Asian monsoon region. This mode is found to be linked with the 
spring (April, May) land surface temperature (LST) of the areas centred around the Western Third Pole (WTP). The Third 
Pole is the high elevation area centred on the Tibetan plateau. The WTP region is also home to many glaciers and steep 
mountains, including the second-highest peak in the world (i.e. Karakorum range). Consequently, spring LST has a strong 
inverse relationship with snow water equivalent (r = −0.65) over WTP, suggesting a seminal role of land surface processes 
in the first phase of ASM variability. The observed dominant modes and their teleconnections are also investigated in the 
30-years re-forecast by five global coupled climate models participating in the “Impact of Initialized Land Surface Tem-
perature and Snowpack on Sub-seasonal to Seasonal Prediction phase I” project (LS4P-I; Xue et al. (Geosc Model Devel 
14(7):4465–4494, 2021; Bul Amer Meteor Soc 103: E2756-E2767, 2022)). While most models faithfully reproduce the 
observed link of June rainfall over South Asia with the remote LST, all models fail to capture the same over east Asia. In 
general, models show a significant bias in simulating the LST and the dominant modes of rainfall variability. Our findings 
may improve the understanding of the Asian summer monsoon variability and predictability, which may help improve the 
dynamical sub-seasonal to seasonal forecast system.
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1  Introduction

The Asian summer monsoon (ASM) is one of the most 
prominent events in the Earth’s climate system, which 
brings a tremendous amount of moisture from thousands of 
kilometres across the Indian and Pacific Oceans and pro-
duces heavy rainfall over the south and east Asia, includ-
ing the surrounding oceanic regions. The seasonal migra-
tion of the solar insolation in association with land-sea 
distribution and elevated terrain of the Third Pole (TP; the 
high elevation area centred on the Tibetan plateau) makes 
the ASM unique among all other monsoons on the planet. 
About 60% of the global population lives in the Asian 
monsoon region, and summer monsoon rainfall enor-
mously contributes to their livelihood and culture. Mon-
soon rainfall also varies on the sub-seasonal to the decadal 
time scale (e.g. Yang and Lau 2006; Goswami 2012; Wang 
et al. 2018), which significantly affects agriculture and 
the economy (Rosenzweig and Binswanger 1993; Subash 
and Gangwar 2014). Therefore, a reliable prediction of the 
ASM has been a core objective of many global/regional 
forecasting agencies for many years. Despite long efforts, 
a reliable prediction of monsoon rainfall remained elusive 
(Shukla 2007).

The scientific basis for higher predictability of tropical 
climate compared to that of mid and high latitude was laid 
in the pioneering studies by Charney and Shukla (1981) 
and generalized by Shukla (1981), Shukla (1998). There-
fore, a large number of studies have explored the role 
of the slowly varying oceanic conditions (e.g. El Niño-
Southern Oscillation (ENSO), Pacific Decadal Oscillation 
(PDO), Atlantic Multidecadal Oscillation (AMO), Indian 
Ocean Dipole (IOD)) on the prediction and predictability 
of tropical weather and climate. However, relatively few 
studies link weather and climate with land surface condi-
tions as the predictor. Limited observation of land surface 
and sub-surface conditions is believed to be one of the 
reasons (e.g. Robock et al. 2000). Recent studies (e.g. Xue 
et al. 2018) have argued that land surface processes may 
have an equal contribution to weather and climate vari-
ability as in the case of sea surface temperature (SST). The 
nature of land-atmosphere feedback affecting monsoon 
rainfall could be local and remote. The remote land sur-
face conditions, such as the Eurasian snow cover anomaly 
in winter and spring, are known to affect seasonal South 
Asian (Blanford 1884; Dong and Valdes 1998; Bamzai 
and Shukla 1999; Kripalani and Kulkarni 1999; Saha et al. 
2013; Senan et al. 2016; Saha et al. 2017) and East Asian 
(e.g. Zhang et al. 2017) summer monsoon rainfall. Moreo-
ver, spring rainfall over Iran, Pakistan and Afghanistan is 
inversely related to the first phase of rain (June–July) over 
India (Rai et al. 2015). Spring land surface temperature 

(LST) in the TP and Rocky mountains is also found to be 
associated with rainfall in the following month of June 
over the downstream region (i.e. southeastern China and 
North America; Xue et al. 2012, 2016, 2018; Diallo et al. 
2019, 2022). Similarly, several studies involve the role 
of local feedback on the sub-seasonal monsoon rainfall, 
which significantly affect the monthly/seasonal monsoon 
rainfall anomaly (e.g. Saha et al. 2011, 2012; Asharaf and 
Ahrens 2013).

The extreme rainfall on the sub-seasonal time scale (day 
to few weeks) is challenging to forecast but essential for sav-
ing life and property. Moreover, sub-seasonal components 
being the building blocks of the monsoon, variability on the 
sub-seasonal scales caused by land surface processes (i.e. 
through remote or local feedback) may also contribute to the 
seasonal rainfall anomaly. Observational evidence suggests 
that sub-seasonal variability, which is so far considered as 
noise in the context of seasonal prediction, is predictable 
and has a significant contribution to the seasonal anomaly 
of Indian summer monsoon rainfall on inter-annual to multi-
decadal time scale (Saha et al. 2019, 2020, 2021). Therefore, 
improving the simulation of sub-seasonal rainfall statistics 
in a forecast system is also likely to improve seasonal fore-
casting skills. Since the predictability of monsoon rainfall 
remains relatively low, further understanding and improving 
land surface processes in a model along with correct initiali-
zation may improve the forecast skill on the sub-seasonal to 
seasonal (S2S) time scale.

World Weather Research Program (WWRP) and World 
Climate Research Program (WCRP) together aim to bring 
weather and climate research communities to leverage their 
expertise for improving predictions on S2S timescales 
(WMO 2013). Motivated by the studies that, spring LST 
in the high altitude regions of TP and Rocky mountains 
is associated with rainfall on the following month of June 
over southeastern China and North America, the Global 
Energy and Water Exchanges (GEWEX)/Global Atmos-
pheric System Study (GASS) has launched a new initiative 
called “Impact of Initialized Land Surface Temperature and 
Snowpack on Sub-seasonal to Seasonal Prediction phase I” 
(LS4P-I; Xue et al. 2021). This study suggests that surface 
and sub-surface land temperatures of the TP region may 
have a global impact (Xue et al. 2022).

The elevated heating from the Tibetan plateau (e.g. Yanai 
and Wu 2006) and sharp edges of the Himalayas (Boos and 
Kuang 2010) are crucial for the mean Asian monsoon. The 
transition from spring to summer monsoon season witnesses 
dramatic changes in the land surface and atmospheric condi-
tion, which vary significantly from year to year. It is plausi-
ble that variability in the pre-monsoon land-surface condi-
tions over these regions may alter the surface energy balance 
and consequently the tropospheric heating, which in turn 
affects the ASM in its first phase. The first phase of monsoon 
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potentially can affect the seasonal (JJAS or MJJAS average) 
anomaly (e.g. Saha et al. 2011)). Therefore, understanding 
of the variability in the initial phase (i.e. June) has direct 
implications on the seasonal prediction and predictability of 
the Asian summer monsoon. Here we show the existence of 
a dominant mode of variability in the Asian monsoon rain-
fall during June or May-June. The possible link of this mode 
with antecedent land surface conditions in the observations 
is presented. We also use 30 years of re-forecast from five 
global coupled model outputs participating in the LS4P-I 
project to validate the observed relationship. The manuscript 
is organized as follows: section 2 describes the observed data 
used and methodology adopted for data analysis. Results 
are described in section 3 and 4. A summary of this study is 
given in section 5.

2 � Data and methods

Gridded surface temperature and precipitation data from 
Climatic Research Unit Time Series (CRU TS; 0.5◦ × 0.5◦ ; 
monthly) for 1901–2019 is used (Harris et al. 2020). The 
monthly indices of ENSO, PDO, AMO and IOD is obtained 
from the site https://​psl.​noaa.​gov/​data/​clima​teind​ices/​list/. 
Indian summer monsoon onset date over Kerala based on 
India Meteorological Department’s (IMD’s) subjective 
(1901–2005) and objective (1971–2019) criteria are taken 
from Preenu et al. (2017), PAI et al. (2020). The objective 
criteria of IMD are based on the daily rainfall of 14 stations 
over Kerala and the neighbouring area, along with wind field 
and outgoing longwave radiation over the southeast Ara-
bian Sea. While objective criteria emphasize on the sharp 
increase in rainfall over Kerala along with the setting up 
of large-scale monsoon flow and extension of westerlies up 
to 600 hPa. IMD declares monsoon onset dates operation-
ally in a subjective manner considering the sharp increase 
in rainfall, its sustenance and associated changes in the 
atmospheric circulation features. Monthly gridded snow 
water equivalent (SWE) data for the period 1950–2019 
from ERA-land reanalysis is utilized (Muñoz Sabater et al. 
2021). Monthly winds, specific humidity and geopotential 
height data in the vertical pressure levels (1901–2015) are 
from 20th Century Reanalysis V3 by the NOAA/OAR/ESRL 
PSL, Boulder, Colorado, USA, from their Web site at https://​
psl.​noaa.​gov/​data/​gridd​ed/​data.​20thC_​ReanV3.​html. The 
daily pressure level atmospheric temperature is from ERA5 
reanalysis (1997–2020; Hersbach et al. 2020). CPC Global 
Unified Gauge-Based Analysis of Daily Precipitation data 
and daily land surface temperature for the years 1979–2020 
provided by the NOAA PSL, Boulder, Colorado, USA, from 
their website at https://​psl.​noaa.​gov/​data/​gridd​ed/​data.​cpc.​
globa​ltemp.​html. Monthly rainfall (land and Ocean) from 
GPCP (Adler et al. 2003) for 1979–2020 is also used.

The empirical orthogonal function (EOF) analysis is 
used to decompose June (and May-June averaged) rainfall 
over the Asian monsoon region (climatological mean rain-
fall ≥ 1mmday−1 ). The Asian monsoon region defined with 
this criteria also closely matches several previous studies, 
where the global monsoon domain is determined based on 
the annual range of precipitation (see Wang et al. 2012; Saha 
et al. 2016). The standard regression and correlation analysis 
are done to find the relationship between the two parameters, 
while the Fourier harmonic analysis is used to calculate the 
smooth annual cycle (sum of mean and first three harmonics) 
of rainfall and temperature time series.

The ensemble-averaged hindcast (8–10 ensemble mem-
bers) of June rainfall and May 2 m temperature for the period 
1981–2010 is used from five Earth System Model (ESM; 
Table 2) participated in the LS4P-I project (Xue et al. 2021, 
2022). About 40 groups worldwide (ESMs, regional climate 
models, and data groups) have participated in this project. 
The primary objective was to establish the observed effects 
of TP surface and sub-surface temperature anomaly in May 
on the June rainfall over Asia in the multi-model frame-
work. Among the participants, five modeling centres pro-
vided monthly 2 m temperature and rainfall for May and 
June, respectively, for 30 years (1981–2010). The Chinese 
Meteorological Administration (CMA) provides 2 m air tem-
perature, collected from a large number of stations in the 
Tibetan plateau, which is considered one of the best data 
in this region (Han et al. 2019; Diallo et al. 2022). There-
fore, for comparison of the model’s 2 m air temperature, we 
merged CMA data over China with CRU data for the rest 
of the region (both with 0.5◦ resolution; i.e. CMA data over 
China for 1981–2010 and CRU data elsewhere).

3 � Results

3.1 � Mean and variability of rainfall

The ASM can be divided into two major components: the 
South Asian (or Indian) and East Asian summer monsoon 
systems. While these two systems are largely independent, 
there is evidence of mutual interactions (e.g. Wu 2017). The 
summer monsoon onset begins in early May (June) in East 
(South) Asia with dramatic changes in the land and atmos-
pheric conditions (e.g. extreme dry to very wet and humid 
conditions).

The climatological mean (1901–2019) rainfall during 
May and June is shown in Fig. 1. The East Asian regions 
and Bangladesh receives more than 100 mm of rain dur-
ing May alone. The rainfall band extends further towards 
north and west in June, covering South Asia. As the peo-
ple of the Asian monsoon region are heavily dependent on 

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
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agriculture, the initial phase of monsoon rainfall is crucial 
for crop sowing. However, the interannual standard devia-
tion of the monthly mean is relatively high over a major 
part of the monsoon zone (more than 30% of its long term 
mean; Fig. 1c,d). Moreover, the variability is more substan-
tial over central India ( ∼40–50%). On the other hand, the 
interannual standard deviation of all India averaged June-
to-September rainfall is about 10% of its long term mean 
(e.g. Krishnamurthy and Shukla 2000; Saha et al. 2021). 
The mean monsoon onset date in Kerala (a southern state in 
India) is 1st June, with an interannual standard deviation of 
about seven days based on combined objectively and subjec-
tively defined dates by IMD in the last 119 years. In the case 
of the South China Sea (SCS), the mean monsoon onset date 
varies between 14and24th May and the interannual standard 
deviation is about ten days based on various studies (Mao 
and Chan 2004; Yihui and Chan 2005; Luo and Lin 2017). In 
fact, large-scale East Asian summer monsoon is character-
ized by two-stage onset: first over SCS between 16–20 May 
and another between 14–19 June over Yangtze and Huai 
River basin, also known as mei-yu (Wang and LinHo 2004). 
And over the Indochina peninsula, monsoon onset occurs 
between April and May (e.g. Qian and Lee 2000). Although 
the onset date varies regionally, the Asian monsoon is a 
large-scale phenomenon related to land-ocean thermal con-
trast and processes such as large-scale convection, ocean 
dynamics, vegetation feedback etc. While the land-ocean 

temperature gradient drives the monsoon winds/circulation 
in the very beginning, the convection initiation fueled by the 
moisture-laden wind increases the tropospheric heating and 
maintain the monsoon circulation. Therefore, the initiation 
of rainfall over a major part of the Asian monsoon region 
is essential for understanding the dynamical aspects of the 
initial phase of ASM. It is evident from the monthly mean 
rainfall that the monsoon covers a large part of East Asia 
during May. Still, it is the month of June when it covers 
almost the entire Asian monsoon region (including South 
Asia). Therefore, from the perspective of the large-scale 
monsoon system, the month of June or May-June average 
may be considered the initial/first phase of the ASM.

Since the ASM is initially driven by land-sea contrast 
due to the seasonal migration of the Sun, the year-to-year 
changes in land surface conditions may also introduce a 
mode of variability in the first phase of rainfall. In order 
to find out the existence of any such common mode, 
EOF analysis is carried out on June rainfall of 119 years 
(1901–2019; Fig. 2). The first EOF mode (explains 12% 
of total variance) shows a dipole mode between north and 
south regions divided by the Yangtze River in China, a 
very familiar structure of rainfall variation to Xue et al. 
(2018). On the other hand, the entire Indian sub-conti-
nent and Indochina peninsula vary in the same phase. 
The second and third EOFs explain 7.2% and 6.2% vari-
ance, respectively and have a slightly complex structure. 

Fig. 1   Climatological mean 
(1901–2019) monthly rainfall 
(in mm month-1 ) during a May 
and b June from CRU. The 
interannual standard deviation 
of monthly rainfall with respect 
of mean (in %) during c May 
and d June. Areas with rainfall 
mm day-1 is masked out. Height 
of 1.5 km topography shown by 
thin black contour
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Furthermore, EOF1 is well separated from other EOFs 
(Figure S01) based on North’s significance test (North 
et al. 1982). Except for the second principal component 
(PC), which shows a declining trend, PC1 and PC3 do not 
have a significant trend. Therefore EOF1 appears to be a 
major natural mode of variability unaffected by long term 
climate change in the last century.

In general, precipitation variability over land and neigh-
bouring oceans is partially interlinked (or synchronized) 
owing to the influence of common predictors. Oceanic 
processes control a large part of rainfall variability on 
the planet, including land regions (e.g. ENSO, IOD), and 
a large part of the oceans in the Asian monsoon region 
also gets intense rainfall. Therefore, a larger weight from 
the oceanic regions is expected in the dominant mode 
of EOF of rainfall. Nevertheless, the second EOF using 
GPCP rainfall (land and ocean; 1979–2019) over the 
same domain mimics the first EOF pattern obtained from 
long-term data over land only (Figure S01). Furthermore, 
the first two EOFs are well separated (based on North’s 
significance test). When PC1 from land-only precipita-
tion is correlated with GPCP rainfall of June, the correla-
tion pattern matches with the EOF2 of GPCP rainfall and 
EOF1 of CRU rainfall (Figure S01b). We also note that 
except sub-tropical west Pacific region, the Arabian Sea 
and Bay of Bengal regions do not show strong variability. 
Furthermore, EOF1 of May to June averaged precipitation 
also show a similar structure (Figure S3 a,b), suggesting a 
robust dominant mode in the first phase of the ASM.

3.2 � Teleconnections

Several recent studies have pointed out a link between the 
initial LST of sub-tropical high altitudes regions, such as 
TP and Rocky mountain, on rainfall of remote areas (i.e. 
eastern China, great plain in the USA) on the following 
month (e.g. Xue et al. 2012, 2016, 2018; Diallo et al. 2019, 
2022). Similarly, remote antecedent land surface conditions 
are found to be associated with the initial phase of south 
ASM rainfall (Rai et al. 2015). Therefore, it is plausible that 
the dominant mode of the initial phase of the ASM is also 
associated with antecedent land surface conditions. Thus, 
correlation between the first PC and April, May 2 m tem-
perature is calculated. The correlations indeed show a strong 
association of the first dominant mode in June rainfall with 
the surface temperature of the areas centered around western 
TP (WTP) and part of north Sahara (Fig. 3a, b). We also 
note that a significant negative correlation during May is 
seen over the Indochina peninsula (ICP). A similar correla-
tion pattern is also found when PC1 of May-June averaged 
rainfall used (Figure S3 c, d), suggesting robustness in the 
consideration of the initial phase of ASM.

The WTP region is also known for steep terrain and is 
home to the world’s second-highest peak, the Karakorum 
Mountain range. This region also remains covered with 
large glaciers and snow. The correlation between monthly 
SWE from ERA5-Land and 2 m temperature from CRU 
TS averaged over WTP box during May is −0.65 (for the 
years 1950–2019; Fig. 3d). Furthermore, the mean and 

Fig. 2   First three EOFs and 
PCs of June rainfall from CRU 
(1901–2019). The percentage 
of total variance explained by 
individual EOFs are given in the 
sub-figure captions
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interannual standard deviation of SWE is 122.5 mm and 
8.8 mm, respectively. Therefore, year-to-year variability 
in snow/ice during spring may induce large variability in 
the surface energy fluxes due to strong snow-albedo feed-
back, which in turn may affect the atmospheric circulation. 
The variability in surface energy flux over the WTP region 
may also affect the initial build-up of the north–south 
tropospheric temperature gradient. The summer monsoon 
onset dates are known to be intimately connected with the 
north–south tropospheric temperature gradient (e.g. Gos-
wami and Xavier 2005). Therefore, we use the onset date 
over Kerala (southern tip of India) defined by the IMD and 
correlated with WTP averaged temperature. The scatter 
diagram between objectively (subjectively) defined onset 
date of IMD and WTP average 2 m temperature shows a 
s t rong  and  s ign i f i can t  i nve r se  r e l a t i onsh ip 
( rwtp

obj
= −0.45, r

wtp

sub
= −0.33 are significant ≥ 99% using 

two-tailed Student’s t-test; Fig. 3c). A significant link 
between PC1 and onset date over Kerala ( rpc

sub
= −0.25 sig-

nificant at ≥ 99% ) and WTP temperature ( rpcwtp = 0.39 sig-
nificant ≥ 99% ) further suggests that onset is also a part of 
the large-scale monsoon system, initially driven by land-
surface conditions (Figures 3e, f). Hence, it is very likely 

that an early (late) onset is linked with warmer (colder) 
tropospheric temperature in association with warm (cold) 
WTP surface.

Mountains (e.g. Himalayas) are known sources of sta-
tionary waves. Moreover, strong temperature anomaly over 
high mountain regions in the WTP may also trigger station-
ary eastward propagating Rossby wave train (e.g. Ringler 
and Cook 1999), affecting rainfall/surface conditions over 
remote areas. In order to examine the possibility that such 
a stationary wave exists, May WTP temperature and PC1 
of June rainfall are regressed with geopotential height at 
200 hPa from NOAA-CIRES-DOE 20th Century Reanaly-
sis (1901–2015). The regressed geopotential height shows 
a stationary wave pattern moving around the globe (Fig. 4). 
The regression pattern using PC1 of June rainfall is quite 
similar to that with WTP LST during May (Fig. 4a, c) It is 
also noted that the regressed values over WTP and north-
east of China are in opposite phases. This implies an anti-
phase relationship in rainfall variability between India and 
south of the Yangtze River, that is consistent with the pattern 
found in EOF1 of June (or May–June) rainfall (shown in 
Fig. 2). Moreover, the maxima of the regression values lie 
over WTP, with opposite phases around the Rocky Mountain 
region, suggesting a possibility of weather and climate in 

Fig. 3   Linkages of the initial phase of the monsoon variability with 
land surface parameters. PC1 is correlated (1901–2019) with surface 
air temperature (2 m) during a April and b May. The maximum and 
minimum correlation regions found in May are marked by the rec-
tangle that are defined as regions located around western Tibetan 
plateau (WTP) and Indochina peninsula (ICP) respectively. Cor-
relations significant at 5% (two-tailed Student’s t-test) are stippled. 

Scatter plot between WTP box averaged temperature and c monsoon 
onset date over Kerala based on IMD’s subjective (1901–2005; black 
dots), objective (1971–2019; red dots) criteria, d snow water equiva-
lent averaged over WTP box during May (ERA5-land; 1950–2019). 
Scatter plot between PC1 and e monsoon onset dates over Kerala, f 
temperature averaged over WTP box (correlations above 0.18 are sig-
nificant at above 95% level using two-tailed Student’s t-test)
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North America being affected (e.g. Xue et al. 2022). The 
associated wave pattern is also evident in the regression of 
geopotential height in June (Fig. 4b). The wave activity flux 
during positive and negative years (based on WTP May LST; 
shown in Fig. 7a further suggest eastward propagation of sta-
tionary wave (Figure S4). It is plausible that land anomalous 
surface conditions over WTP may trigger eastward station-
ary wave.

Elevated surface heating over the Tibetan plateau region 
is known to have a major impact on the Asian summer mon-
soon (Yanai et al. 1992). In the early spring, LST begins 
to rise and land surface heats up the overlying atmosphere 
and helps to increase the tropospheric temperature gradient 
(TTG). The north–south TTG drives the low-level winds and 
consequently initiates the low-level moisture convergence 
during the initial phase of the monsoon. Once convection 
begins, the latent heat release due to precipitation further 
increases the upper-level atmospheric temperature, enhanc-
ing the north–south TTG. Therefore, TTG is related to the 
strength of the monsoon rainfall, and some studies use the 
TTG index to identify the onset and withdrawal date of the 
Indian summer monsoon (e.g. Goswami and Xavier 2005; 
Xavier et al. 2007).

Since the surface temperature of the WTP region shows 
a strong association with the monsoon rainfall, local 
land surface heating may have affected the tropospheric 

temperature and, consequently, the moisture fluxes. To 
investigate this, WTP averaged CRU surface temperature 
during May is correlated (regressed) with the tropospheric 
temperature (vertically integrated moisture fluxes) by 
employing NOAA’s 20th Century Reanalysis (1901–2015). 
Here, air temperature average of 600–200 hPa is consid-
ered as tropospheric temperature, and the vertical inte-
gration of moisture fluxes (qu, qv) is done from the sur-
face to 200 hPa. It turns out that surface temperature over 
WTP in May has a strong and significant correlation with 
the tropospheric temperature of the sub-tropical region 
( 15–50N; Fig. 5a, b) during May and June. Similarly, 
regressed moisture flux shows cyclonic circulation over 
India, ICP regions and anti-cyclonic circulation south of 
the Yangtze River, supporting the precipitation structure 
of the first EOF. While the regressed moisture flux pat-
tern and TTG are quite persistent from May to June (i.e. 
Fig. 5), the relationship during July becomes rather weak 
and insignificant (figure not shown). We also note that in 
the WTP region, the surface temperature is strongly cor-
related with the tropospheric temperature during May (i.e. 
simultaneous), but becomes weaker and rather widespread 
around west Asia during June (i.e. in one month lead). As 
PC1 of June rainfall is significantly correlated with May 
WTP LST, regression/correlation using PC1 also shows a 
similar structure (figure not shown).

Fig. 4   WTP averaged CRU 
LST of May is regressed with 
geopotential height at 200 hPa 
from NOAA-CIRES-DOE 
20th Century Reanalysis V3 
(1901–2015) during the month 
of a May and b June. c PC1 of 
June rainfall is regressed with 
geopotential height at 200 hPa 
during May. The thin black 
contour represents topography 
at 1.5 km height, regression 
significant at 90% are stippled
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While local surface sensible heating may trigger anoma-
lous ascending motion and heats up the troposphere, it is 
also possible that strong tropical/sub-tropical convection 
remotely may create anomalous dry and warm surface con-
ditions through large-scale subsidence Rodwell and Hoskins 
(1966). To verify the possibilities, simultaneous correlation 
(regression) between monthly WTP surface temperature and 
vertical levels of atmospheric temperature (vertical veloc-
ity; Omega) is calculated. As negative Omega represents 
ascending motion, in this analysis sign of Omega is reversed 
to represent positive (negative) regression value as ascend-
ing (descending) motion through arrow marks. Therefore, 
the upward (downward) direction of the regressed Omega 
anomaly suggests an ascending (descending) motion. A 
strong, significant and positive correlation with a maximum 
in the lower side of the atmosphere during Spring (March to 
May ) and late summer to early Autumn (August to October) 
is evident (Fig.  6). The maxima in the regressed upward 
Omega in the lower troposphere coincide with the correla-
tion maxima. Moreover, an increasing correlation since early 
spring in the lower part of the atmosphere and the upward 
direction of regressed Omega suggests possible heating of 
the atmosphere by land surface processes. While Omega 

decreases during June-July and again picks up in September 
in the lower levels, a stronger anomaly in the upper atmos-
pheric levels also suggests the role of large-scale remote 
influences through the upper troposphere. Furthermore, a dip 
in the correlation during June-July indicates a greater influ-
ence of the tropospheric latent heating owing to monsoon 
precipitation. On the other hand, the winter months show 
descending motion, but LST is still positively correlated 
with the overlying atmosphere, suggesting a strong land-
atmosphere coupling during winter too.

3.3 � Composite structures and plausible causes 
of WTP temperature anomaly

To corroborate the finding of a dominant mode in the 
Asian monsoon rainfall during June, composite analysis 
of precipitation during extreme WTP temperature years is 
done. Here, WTP averaged dtrended temperature anomaly 
≥∣ 0.5 ∣

◦ C during May is considered as the extreme year 
(red and blue bars in Fig. 7a; Table 1). We note that WTP 
temperature has a relatively weak association with Niño3.4 
temperature during May, which is also true for the extreme 
years (Fig. 7b). There is a total of 33 (31) years with posi-
tive (negative) extreme WTP temperature anomalies during 
the last 115 years (1901–2015) of observations. Therefore, 
first 31 years of anomaly used for composite analysis. Nei-
ther the correlation between WTP temperature and Niño3.4 
SST is strong (r = − 0.06), nor the one-to-one correspond-
ence between intense/extreme years of WTP temperature 
and Niño3.4 SST is good. The difference in composites of 
positive and negative extreme year’s June rainfall and May 
2 m temperature are shown in Fig. 7c, d. It is interesting 
to see that the spatial structure of composite difference is 

Fig. 5   Relationship of WTP surface temperature with large scale 
tropospheric temperature (average of 600–200 hPa) and vertically 
integrated moisture fluxes (surface to 200 hPa). WTP averaged sur-
face temperature during May is correlated (regressed) with tropo-
spheric temperature (moisture flux) of the month a May and b June. 
Correlations (shaded plot) above 0.18 are significant at above 95% 
level. Regressed moisture fluxes (vectors) significant at above 95% 
are marked by blue colors

Fig. 6   Association of monthly WTP land surface temperature with 
the overlying atmospheric temperature and vertical velocity. Monthly 
WTP surface temperature is correlated (regressed) with the air tem-
perature and Omega in the vertical levels (1901–2015; CRU LST and 
NOAA’s 20C Reanalysis temperature, Omega). Correlations (shaded) 
significant at above 95% are stippled and arrows represents direction 
of regressed vertical velocity
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very similar to that of EOF1. Similarly, there is no such area 
other than WTP with high-temperature differences. The low-
level (850 hPa) composite difference in winds also suggests 
enhanced monsoon circulation in the south and east Asian 
regions. A strong cyclonic (weak anticyclonic) circulation 
anomaly is seen over the north of the Yangtze River and Bay 
of Bengal (south of the Yangtze river) during May, which 
also persists in the next month (i.e. June) in a pretty similar 
pattern. These indicate the role of local feedback processes 
(e.g. mountain, snow, glacier) in maintaining high surface 
temperature anomalies. It is plausible that global predic-
tors modulate the atmospheric conditions around the WTP 
regions, and thereafter, in the presence of high mountains, 
the local feedback, such as snow-albedo, may retain the sig-
nal for a while. Land surface with snow and without snow 
(snow albedo can be as high as 0.9) can make huge differ-
ence in the net surface energy fluxes, which can affect the 
troposphere through change in sensible heat flux. A strong 
correlation (r=−0.65) between WTP averaged temperature 
and SWE using 70 years of data suggests such a possibility. 
Furthermore, the mean and inter-annual variability of SWE 
during May is higher around the WTP region than in the 
eastern TP (Figure S6a, b). Nevertheless, PC1 is positively 
correlated with SWE over some part the eastern TP (Fig-
ure S6c), which implies that May LST of the eastern TP is 

inversely (directly) related to June precipitation of North 
(South) of the Yangtze river, is consistent with earlier stud-
ies. (e.g. Xue et al. 2018). The occurrence of snow/tem-
perature anomaly over TP may be a chaotic phenomenon 
or through the global predictors (evolves on inter-annul to 
multi-decadal time scale) in a predictable manner. In either 
case, the land surface may retain memory, which may affect 
the following monsoon rainfall.

At 0–3 months lead time, surface temperature (land and 
ocean) over the regions of major global predictors (i.e. 
AMO, PDO, IOD, Niño3.4, NAO) show significant corre-
lations with May WTP LST (Figure S5). Since, the south-
ern Indian ocean region also show a significant correlation, 
SST time series averaged over Indian Ocean Box (IOB) is 
also used as a predictor. Therefore, to explore the possibil-
ity of WTP temperature being associated with major global 
oceanic predictors, multiple regression of PC1 (June) and 
WTP (May) with six major predictors at lead/lag months is 
done (Fig. 8). Furthermore, PC1 is regressed with the lead/
lag months of WTP averaged temperature (black curves in 
Fig. 8a, b). Here all the regression coefficients presented 
are standardized. PC1 is strongly and significantly associ-
ated with the WTP averaged temperature only during April 
and May. On the other hand, WTP temperature in May has 
a strong association with IOB and AMO during all lead/

Fig. 7   A composite structure 
of monsoon rainfall during 
extreme WTP temperature 
years. a WTP average 2 m 
temperature anomaly and b 
Niño3.4 anomaly during May. 
WTP anomaly ≥ 0.5 ( ≤ −0.5 ) 
are marked by red(blue) color. 
Niño3.4 anomalies in sub-panel 
b are marked by corresponding 
colours in WTP. Composite 
difference (positive minus nega-
tive WTP anomaly for years 
WTP ≥∣ 0.50 ∣

◦ C ) in c rainfall 
(shaded; in mm) and 850 hPa 
winds (in m/s) during June, d 
2 m air temperature (shaded; in 
◦ C) and 850 hPa winds (in m/s) 
during May. The differences in 
rainfall and temperature signifi-
cant at 95% are stippled
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lag months. Moreover, significant regression values with 
Niño3.4 during lead/lag months also suggest a possible role 
of ENSO in modulating WTP land surface conditions during 
winter and Autumn. It is also important to note that, in gen-
eral, ENSO starts growing at the end of the summer season 
and peaks during winter, which may leave a signature in 
terms of snow/ice anomaly over the WTP region. The lead/
lag relationship with PDO is also evident, but the ampli-
tude is weak as compared to that of AMO and Niño3.4. As 
ENSO is known as the single largest predictor of the Asian 
summer monsoon, PC1 has the strongest association with 
Niño3.4 index, while the weaker association of the other 
Oceanic predictors suggests their indirect role (through a 
change in WTP land-surface conditions) on the initial phase 
of the Asian monsoon. The weaker role of WTP tempera-
ture (despite the strong association with AMO, IOB) in the 
following monsoon months (i.e. July to September) may be 
due to the much stronger convective feedback in maintaining 

a stronger tropospheric temperature gradient in association 
with global Oceanic predictors.

We recall a negative correlation between PC1 and 2 m 
temperature of May over the ICP region, resulting from cool-
ing (warming) of the surface due to increased (decreased) 
rainfall (Fig. 3b). Moreover, enhanced convection over the 
Bay of Bengal and ICP region during pre-monsoon (i.e. 
during May) may trigger stationary Rossby wave train 
(e.g. Joseph and Srinivasan 1999), and that can influence 
the WTP temperature anomaly. To estimate a precise lead/
lag time between convection and its response, we have used 
daily time series of precipitation and 2 m air temperature 
over ICP and WTP region respectively. A smooth annual 
cycle (sum of first three harmonics and mean) of daily WTP 
and ICP averaged temperature and rainfall respectively is 
constructed (Fig. 9). The daily tendency of precipitation and 
temperature is calculated using central difference scheme. 
The climatological mean and tendency suggest that WTP 
temperature begin to rise rapidly by more than a month 
ahead of rainfall increase over the ICP region (Fig. 9a, d). 
The peak of WTP temperature tendency, which happens in 
March, clearly leads the rainfall tendency over ICP by about 
one and half months (i.e. peak in the last week of April). 
Similarly, the maxima of the tendency of WTP averaged 
temperature in the vertical levels shows a tilt towards the 
following months (Fig. 9c), suggesting tropospheric heating 
by land surface. However, during the withdrawal phase of 
the monsoon, the cooling tendency maxima at around 300 
hPa is rapid owing to combined effects of the reduction in 
solar insolation (Sun moving towards southern hemisphere) 
and drop in heating due to decrease in rainfall. The daily 
anomaly of WTP averaged temperature is regressed with the 
daily ICP rainfall anomaly (January to May, i.e. 151 days; 

Fig. 8   Lead-lag relationship of WTP surface temperature and PC1 
with global predictors. PC1 of June rainfall is regressed with WTP 
averaged temperature during all the lead/lag months (black lines in 
a & b). The global oceanic modes of the predictors (AMO, PDO, 
IOD, Niño3.4, NAO, IOB) in all months (i.e. January to December) 

are regresses (i.e. multiple regression) with a WTP averaged tempera-
ture during May, and b PC1 of June rainfall. Open circles represent 
regressions significant at 95% level using two-tailed Student’s t-test 
(all regression coefficients are standardized)

Table 1   Positive ( ≥ 0.5 ◦
C ) and negative ( ≤ −0.5 ◦

C ) anomaly years 
based on dtrended WTP averaged land surface temperature anomaly 
(2m air temperature)

Positive years Negative years

1902 1906 1910 1911 1913 1903 1907 1919 1920 1924 1931
1915 1917 1918 1928 1936 1932 1934 1945 1955 1957 1958
1938 1941 1944 1946 1948 1959 1960 1963 1964 1966 1967
1950 1953 1956 1961 1970 1968 1969 1972 1979 1987 1989
1980 1990 2000 2001 2004 1991 1992 1993 1996 1997 2003
2006 2007 2008 2011 2012 2005
2013 2014 2015
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1979–2020, i.e. 42 years; a maximum sample size of about 
6342). The daily anomalies are based on the smooth annual 
cycle, i.e. deviation of smooth annual cycles from the cli-
matological mean annual cycle. It is noted that at the lead 
of WTP temperature by about 50 days, the regression coef-
ficient is positive and maximum (significant more than 99%; 
Fig. 9b). Therefore, it is apparent that local heating is pri-
marily responsible for the initial buildup of TTG anomaly, 
which in turn may have affected the pre-monsoon convection 
over the Bay of Bengal region.

4 � WTP temperature teleconnection 
simulated by LS4P‑I models

Now we use ensemble-averaged (8–10 ensembles) re-fore-
casted June rainfall and May surface temperature of 30 years 
(1981–2010) from five global coupled models (Table 2) 
available in LS4P-I to compare with the observed relation-
ship. It is very important for the global forecast systems to 
be able to replicate the observed correlation between WTP 
averaged temperature during May and the first phase of mon-
soon rainfall faithfully.

Figure 10a show the observed correlation between WTP 
temperature during May and June rainfall over Asian conti-
nent regions for the years 1901–2019, which mimics the first 
EOF pattern. For recent past 30 years (1981–2010), this rela-
tionship has also held everywhere, except the region north 
and south of the Yangtze River (Fig. 10b). All the models 

show very good association over India (except IITM-CFS, 
which has a weak negative correlation; Fig. 10c–h). Further-
more, all the models, except ECMWF-IFS, fail to reproduce 
the correct sign over the Indochina peninsula. And none of 
the models shows observed signs in the regions north and 
south of the Yangtze River. Therefore, the multi-model aver-
age relation is quite good over India but fails to capture the 
observed pattern over Indochina peninsula, north and south 
of the Yangtze River.

The EOF analysis of June rainfall further reveals that all 
models fail to capture the observed phase relationship in 
the north and south of the Yangtze River and the ICP region 
(Fig. 11). While all models are able to capture the phase 
relationship over the south Asian region, the explained vari-
ance of EOF1 is stronger in all models than the observations, 
except in the IITM-CFS. The first mode in IITM-CFS is 
quite good as compared to the observations (Fig. 11a, b), but 
the other modes are equally problematic (Figure not shown). 
Therefore, in general, models have difficulties simulating 
the dominant rainfall variabilities, particularly over east 
Asia and ICP regions, which could be detrimental for sub-
seasonal to seasonal prediction skill.

Now we examine the re-forecast skill of the models in 
2 m air temperature against observations (i.e. merged CMA 
and CRU data described in see Sect. 2). Skilful simulation 
of spring temperature is crucial for a model to be able to 
capture the dominant mode or the first phase of the ASM 
rainfall. Gridpoint correlation skills between observations 
and models are shown in Fig.  12. All the models have 

Fig. 9   Seasonal evolution of WTP and ICP averaged temperature 
and rainfall, respectively. a Smooth annual cycle of daily climato-
logical mean temperature (red; CPC) and rainfall (blue; GPCP) aver-
aged over WTP and ICP boxes, respectively (1997–2020). b Lead/lag 
regression of WTP temperature anomaly with ICP rainfall anomaly, 
where temperature leads the rainfall (regressed values are significant 

at above 99% level). c The mean vertical structure of the tendency 
of daily temperature averaged over WTP (ERA5; 1997–2020). d The 
average tendency of daily 2 m temperature (rainfall) over WTP (ICP) 
box. For the calculation of tendency/mean, the time series of the 
smooth annual cycle (first four harmonics) in each year is used
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serious difficulties in simulating the surface temperature of 
regions Northwest of the Mediterranean Sea. Over the WTP 
region, correlation skill varies between 0.24 to 0.85, while 
ECMWF-IFS shows the best skill all over the regions. We 
also note that using recent years data (1980–2015), Xue et al. 
(2018) have shown that a cold (warm) anomaly during May 
in eastern Tibet is associated with dry (wet) and wet (dry) 
rainfall anomaly during June over South and North of the 
Yangtze river respectively. Moreover, the EOF2 and EOF3 
(Fig. 2), which have prominent dipole/tripole structures in 
the East Asian region, have a weak relationship with the 
WTP temperature.

Overall, the performance of models are rather poor 
in simulating 2 m temperature and its relationship with 
following month’s precipitation. Even when models are 
initialized with obsetvations/reanalysis (soil and surface 
temperature), they quickly drift and are unable to retain 
the memory. The ILS4P group have collectively tried to 
understand the possible reasons. In fact, there are multiple 
reasons: a) bias in physical processes, b) soil properties 
(thermal and hydroulic) and relatively shallow depth of 
soil layer used in model, and c) uncertainty in the initial 
soil states (see Xue et al. 2021, 2022). Availability of reli-
able land snow and temperature (surface and sub-surface) 

Fig. 10   Observed correlations 
between WTP averaged tem-
perature during May and June 
rainfall in all grids for the year a 
1901–2019, b 1981–2010, with 
CMA over China and CRU else-
where. The same correlations 
for the year 1981–2010 were 
obtained from cIITM-CFS, d 
AFES-HU, e ECMWF-IFS, f 
NASA-GOES5, g E3SM, and h 
Multi-model average (five mod-
els). Correlations significant at 
5% are stippled
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for initialization is a major issue owing to sparse observa-
tions (e.g. Xue et al. 2018).

5 � Discussion and conclusion

The people of the south and east Asian region eagerly wait 
for the arrival of the summer monsoon rainfall. Arrival of 
the summer monsoon, which rejuvenates the entire ecosys-
tem, is greeted and celebrated with joy in many parts of 
Asia. Nevertheless, the year-to-year variability in the ini-
tial phase of the Asian monsoon (May and June) is quite 
strong (Fig. 1c, d) compared to its seasonal counterpart. In 
south Asia, often, the weak (strong) initial phase of rainfall 
is associated with below (above) normal seasonal (June-to-
September) rainfall (Kothawale and Kulkarni 2014). There-
fore, the prediction of the initial phase of the Asian summer 
monsoon (ASM) rainfall has considerable societal and eco-
nomic benefits.

Employing EOF analysis on 119 years of June (and May-
June average) rainfall, we show that the first dominant mode 

explains 12% of the total variance and has a mono-pole 
structure over the Indian sub-continent, Indochina penin-
sula and a dipole structure between the regions north and 
south of the Yangtze River in China (Fig. 2). We found that 
PC1 is strongly correlated with the surface temperature of 
the western TP (WTP) region in May (by a maximum of 0.5 
(0.65), using 119 years of June (May-June) rainfall). This 
region is also home to the second height mountain peak in 
the world. A large part of this region remains covered with 
snow and glaciers. Hence, the surface temperature strongly 
correlates with snow water equivalent over WTP during 
May (r = 0.65). It is shown that surface warming tendency 
over WTP begins in the early spring season, affecting the 
tropospheric temperature and hence the large-scale mois-
ture fluxes in the following month of May and June over the 
Asian summer monsoon region.

While June rainfall over north (south) of the Yangtze 
River is inversely (directly) related to the May temperature 
of eastern TP (Xue et al. 2018), our results show opposite 
effects of western TP temperature in May on the June rainfall 
over the same region. It is quite well known that western 

Fig. 11   EOF1 in June rainfall 
(1981–2010) from a CRU 
observations, b IITM-CFS, c 
ECMWF-IFS, d AFES-HU, e 
NASA-GOES5 and f E3SM
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and eastern TP have different heating characteristics (e.g. Ye 
and Gao 1979). In the case of the western Plateau, sensi-
ble heating dominates during spring, while for the eastern 
Plateau, condensation heating dominates after the monsoon 

onset. And this east–west contrast is likely to be related to 
the marked difference in the surface properties (e.g. Shi and 
Smith 1992). Hence, the effects of eastern and western TP 
may have different effects on the regional monsoon.

Fig. 12   Correlations between 
observed and model-simulated 
2 m air temperature in May 
(1981–2010). a IITM-CFS, b 
AFES-HU, c ECMWF-IFS, d 
NASA-GOES5, e E3SM, and f 
Multi-model average (five mod-
els). Correlations significant at 
95% using two-tailed Student’s 
t-test are stippled (black dots)

Table 2   List of five Earth system models from LS4P-I used in this study

Model Institute name Atms. resolution Convection scheme PBL Land surface

AFES-HU Hokkaido University T79 ( ∼150 km) Emanuel Nonlocal MATSIRO
Nakamura et al. (2015) Japan 56 vertical levels Convection Boundary layer
ECMWF-IFS ECMWF Tco199 ( ∼ 25 km) Tietdke scheme McRad radiation HTESSEL
Johnson et al. (2019) United Kingdom 91 vertical levels With several Scheme

Improvements
E3SM Lawrence livermore 1◦ × 1◦ Shallow: CLUBB CLUBB ELMv0
Golaz et al. (2019) National laboratory, Deep: ZM

USA
IITM-CFS IITM, Pune T126 ( ∼111 km) Simplified Nonlocal NOAH
Saha et al. (2019) India 64 vertical levels Arakawa-Schubert Boundary layer

(SAS)
NASA-GOES5 NASA Goddard space T126 ( ∼111 km) KIM SAS (KSAS) Scale-aware YSU Revised
Molod et al. (2020) Flight Center, USA 42 vertical levels NOAH



2749A dominant mode in the first phase of the Asian summer monsoon rainfall: role of antecedent remote…

1 3

We have also used a re-forecast of 1981–2010 by five 
global models (8–10 ensemble average) to test their abil-
ity in simulating the observed relationship between May 
WTP temperature and June rainfall over the Asian monsoon 
region. Out of five models, four models are able to capture 
the observed relationship over south Asia, but all fails in 
the north and south of the Yangtze River. Moreover, over 
the Indochina peninsula, only ECMWF-IFS is closer to the 
observations. Apart from WTP regions, it is also equally 
important for models to reasonably simulate the spring sur-
face temperature of the surrounding regions (i.e. Sahara, 
mid and high latitude regions) of the core Asian monsoon 
zone. We show that all models, except ECMWF-IFS, have 
serious difficulty in simulating May 2 m temperature. This 
study highlight importance of spring surface temperature in 
association with land surface processes on the prediction of 
the first phase of the ASM. In order to be skilful in predict-
ing Asian monsoon rainfall, the model also should be skilful 
enough to capture antecedent land surface temperature. Land 
surface temperature of WTP region appears to be an impor-
tant source of the Asian summer monsoon predictability. 
It may be noted that most of the major rivers in south and 
east Asia originated from the TP. Moreover, the TP region 
has witnessed warming in the recent past decades, which 
is unprecedented in the past 2000 years, leading to strong 
cryospheric melt and intensification of the water cycle. (Yao 
et al. 2019). Therefore, the natural variability of the initial 
phase of the monsoon may be affected by climate change, 
which may also have serious implications for the predict-
ability of the monsoon in the future.
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