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Angle-resolved transport non-reciprocity 
and spontaneous symmetry breaking in 
twisted trilayer graphene

Naiyuan James Zhang    1, Jiang-Xiazi Lin    1, Dmitry V. Chichinadze    2, 
Yibang Wang1, Kenji Watanabe    3, Takashi Taniguchi    4, Liang Fu    5 & 
J. I. A. Li    1 

The identification and characterization of spontaneous symmetry breaking 
is central to our understanding of strongly correlated two-dimensional 
materials. In this work, we utilize the angle-resolved measurements of 
transport non-reciprocity to investigate spontaneous symmetry breaking 
in twisted trilayer graphene. By analysing the angular dependence of 
non-reciprocity in both longitudinal and transverse channels, we are able to 
identify the symmetry axis associated with the underlying electronic order. We 
report that a hysteretic rotation in the mirror axis can be induced by thermal 
cycles and a large current bias, supporting the spontaneous breaking of 
rotational symmetry. Moreover, the onset of non-reciprocity with decreasing 
temperature coincides with the emergence of orbital ferromagnetism. 
Combined with the angular dependence of the superconducting diode 
effect, our findings uncover a direct link between rotational and time-reversal 
symmetry breaking. These symmetry requirements point towards 
exchange-driven instabilities in momentum space as a possible origin for 
transport non-reciprocity in twisted trilayer graphene.

Electronic nematicity describes the Coulomb-driven phenomenon with 
reduced in-plane rotational symmetry compared with the underlying 
crystal lattice1–3. For instance, orthorhombic anisotropy emerges as 
the Fermi surface undergoes a quadruple distortion to save Coulomb 
energy. Such a Coulomb-driven phenomenon has been widely observed 
in a series of strongly correlated two-dimensional systems, such as 
strontium ruthenate, cuprate materials4–7 and magic-angle twisted 
bilayer and trilayer graphene8–13. Orthorhombic anisotropy features 
two mirror axes that are orthogonal to each other (Fig. 1a). As a result, 
the symmetry associated with a two-fold in-plane rotation, C2, is pre-
served. Further lifting C2 symmetry promises to unlock a new dimen-
sion of rich physical constructions beyond orthorhombic anisotropy. 
It is recently proposed that an exchange interaction amongst trigo-
nally warped Fermi pockets enables novel instabilities in momentum 

space. For instance, the electronic state in multilayer graphene could 
acquire a non-zero net momentum as charge carriers spontaneously 
condense into one of the Fermi pockets14–17. Unlike orthorhombic ani-
sotropy, the momentum-space instability simultaneously breaks C2 
and time-reversal symmetry T.

Rotational symmetry breaking can be identified on the basis of 
angle-resolved transport measurements4,5, which conventionally 
focuses on the linear and reciprocal components of the transport 
response, such as the longitudinal and transverse resistances R∥ and R⊥, 
respectively, in the limit of a small current bias. The angular depend-
ence of R∥ and R⊥ is constrained by the underlying symmetry axes. A 
Fermi surface with quadruple distortion preserves C2 symmetry, which 
gives rise to two orthogonal mirror axes (Fig. 1a, black arrows). As a func-
tion of ϕ, the longitudinal (transverse) transport response is expected 
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non-reciprocity in the longitudinal (transverse) channels as η∥ (η⊥), 
which is simply defined as the difference in R∥ (R⊥) between the forward- 
and reverse-current bias. The angular dependence of non-reciprocity 
shares the same symmetry constraint as the linear transport response. 
Consequently, η∥ (η⊥) is expected to be maximized (zero) when cur-
rent flows along the mirror line. Owing to C2 symmetry breaking, the 
electronic order can have either one or three mirror axes (Fig. 1b–c). 
An electronic state with a single mirror axis (Fig. 1b) enables an angular 
period of 2π and a phase shift of π/2 between η∥ and η⊥ (Fig. 1e). Along 
the same vein, a state with three mirror axes (Fig. 1c) is identifiable by 

to be symmetric (anti-symmetric) around a mirror axis. This symmetry 
constraint not only gives rise to a period of π in the angular oscillation 
of R∥ and R⊥ but also accounts for a phase shift of π/4 between the 
longitudinal and transverse channels. Together, the angular depend-
ence can be expressed as R∥ = Acos(2ϕ – α) and R⊥ = Asin(2ϕ – α). Here 
α defines the orientation of the mirror axes, whereas the phase shift of 
π/4 is captured by the cosine and sine functions.

Beyond orthorhombic anisotropy, the nature of electronic 
orders with C2 symmetry breaking is directly linked to the nonlin-
ear and non-reciprocal transport responses. For simplicity, we label 
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Fig. 1 | Symmetry analysis of the angle-resolved transport response. a–c, 
Schematic of the Fermi surface contour with different angular symmetries. The 
black arrows mark the azimuth direction of the mirror axis. d–f, Expected angular 
dependence in the transport response when the underlying electronic state is 
described by two (d), one (e) and three (f) mirror axes. The left (right) panels 
show the same angular dependence in the Cartesian (polar) coordinate. Panel d 

plots the angular dependence of longitudinal and transverse resistances R∥ and 
R⊥, respectively, which are measured with a small d.c. current bias. Panels e and 
f show the angular dependence of transport non-reciprocity. g, Schematic of 
the sunflower-shaped sample and the setup of angle-resolved measurement of 
transport non-reciprocity.
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a period of 2π/3 in angular oscillation, along with a phase shift of π/6 
between η∥ and η⊥ (Fig. 1f).

In this work, we investigate the angular dependence of transport 
non-reciprocity in mirror-symmetric twisted trilayer graphene (tTLG), 
which sheds new light on the nature of spontaneous symmetry breaking 
in a moiré flat band. To perform angle-resolved transport measurements, 
we shape tTLG samples into the sunflower geometry (Fig. 1g). By using 
different contact pairs as the source and drain, the sunflower geometry 
allows us to flow current is 16 azimuth directions in the range of 0 < ϕ < 2π 
(Extended Data Fig. 1 shows different measurement configurations). This 
provides the necessary resolution to identify angular oscillations with 
a period of 2π and 2π/3. When current flows along the azimuth direc-
tion ϕ, voltage responses V∥(ϕ) and V⊥(ϕ) are measured between the 
contact leads that are aligned parallel and perpendicular to the current 
flow direction, respectively (Fig. 1g). The longitudinal and transverse 
resistances are extracted as R∥(ϕ) = V∥(ϕ)/Id.c. and R⊥(ϕ) = V⊥(ϕ)/Id.c., 
whereas non-reciprocity is defined as η∥(ϕ) = R∥(ϕ) − R∥(ϕ + π) and 
η⊥(ϕ) = R⊥(ϕ) − R⊥(ϕ + π), respectively.

The presence of transport non-reciprocity is demonstrated by the 
current–voltage (I–V) characteristics (Fig. 2a), where the voltage 
response at large current deviates from the linear component (black 
dashed line). The non-reciprocity, extracted by subtracting the linear 
component, exhibits a quadratic current dependence (Extended Data 
Fig. 4). In the presence of an a.c. current bias with frequency ω, the 
non-reciprocal response is proportional to sin2(ωt), which has the same 
frequency modulation as sin(2ωt). As such, η can be conveniently 
probed as the amplitude of the a.c. response at the second-harmonic 
frequency 2ω. Figure 2b plots the second-harmonic voltage response 
V2ω
∥ , which exhibits a quadratic dependence on the a.c. current bias. A 

rotation of 180° in the measurement configuration induces a sign 
reversal in V2ω

∥ . Since the sample geometry respects the rotation, the 
sign reversal offers a strong indication of two-fold rotational symmetry 
breaking. We note that non-reciprocity extracted from the d.c. I–V 
curve is equivalent to the second-harmonic nonlinear response 
(Extended Data Fig. 5).

Figure 2c–g plots the angular dependence of non-reciprocity meas-
ured at different moiré band fillings. At ν = 1.14, both V2ω

∥  and V2ω
⟂  are 

captured by cosine functions with a period of 2π. Figure 2c also displays 
a relative phase shift of π/2 across two channels. This is consistent with 
the presence of one mirror axis (Fig. 2c, green solid line). In comparison, 
the angular dependence shown in Fig. 2d,f exhibits a more complex 
functional form, which reveals a unique connection between the lon-
gitudinal and transverse channels. Figure 2e,g plots the polar-coordinate 
plot of the best angular fit for the data in Fig. 2d,f (left), which is a linear 
combination of the one-fold (middle) and three-fold (right) compo-
nents. The green and blue solid lines in this figure mark the phases of 
the longitudinal and transverse channels. Between these two channels, 
the one-fold components display a phase shift of π/2, whereas the 
phases of the three-fold components are offset by π/6.

The unique connection between the longitudinal and transverse 
channels provides a strong constraint for identifying the functional 
form for the angular dependence of non-reciprocity. Both channels 
of non-reciprocity can be simultaneously captured by a rather simple 
expression:

V 2ω
∥ (ϕ) = V1 cos(ϕ − β) + V3 cos(3(ϕ − β)),

V 2ω
⟂ (ϕ) = V1 sin(ϕ − β) + V3 sin(3(ϕ − β)).
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Fig. 2 | Transport non-reciprocity in tTLG. a, I–V characteristics measured with 
a d.c. current bias. The black dashed line represents the linear component of the 
transport response. b, Second-harmonic nonlinear transport response V2ω

∥  as a 
function of Ia.c., measured with current flowing along ϕ = 135° (blue) and ϕ = 315° 
(red). c, Angular dependence of V2ω

∥  and V2ω
⟂  measured at ν = 1.14. d,e, Angular 

dependence of V2ω
∥  and V2ω

⟂  at ν = 2.15 in the Cartesian (d) and polar (e) axis. f,g, 

Angular dependence of V2ω
∥  and V2ω

⟂  at ν = −2.4 in the Cartesian (f) and polar (g) 
axis. The left panel in e and g displays the best angular fit based on equation (1), 
which is a linear combination of one-fold (middle) and three-fold (right) 
components. The green solid line marks the direction of the mirror axis. 
Measurements in c–g are performed at Ia.c. = 100 nA. All the measurements are 
performed at T = 20 mK and B = 0.
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Here β defines the azimuth orientation of the mirror axis. Also, V1 (V3) 
denotes the amplitude of the one-fold (three-fold) component of the 
angular oscillation, whereas the phase shift between the longitudinal 
and transverse channels is naturally captured by the cosine and sine 
functions. Equation (1) resembles a Fourier expansion around a mirror 
axis, where the longitudinal (transverse) non-reciprocity is expressed 
by the linear combination of cos(Nϕ) (sin(Nϕ)). Although an expansion 
allows any odd integer values of N, only N = 1 and 3 are observed in our 
measurement. Extended Data Fig. 9 shows non-reciprocity measured 
with a higher angular resolution, which confirms the dominating role 
of the N = 1 and 3 components.

The quality of the angular fit can be gauged on the basis of the 
relative root mean squared error (RRMSE) (Extended Data Figs. 6 and 
7). RRMSE exhibits sharp minima around the optimal fitting parameter, 
suggesting that V1, V3 and β are uniquely determined. RRMSE of the 
best fit is around 0.05 for the angular dependence shown in Fig. 2. This 
is a strong indication that equation (1) offers a good description for 
the angular dependence of non-reciprocity. The sunflower geometry 
also enables measurement and analysis schemes beyond the simple 
angle-resolved transport. These schemes offer direct assessment for 
the uniformity of the sample. Theoretically, the potential distribution 
across the circumference of the sample is solely determined by the 
conductivity matrix18. This distribution can be mapped through the 
linear transport response from an extensive series of measurement 
configurations (Extended Data Fig. 8)13. By fitting the potential distribu-
tion, a single conductivity matrix is extracted with an RRMSE of 0.017. 

The excellent fit quality points towards a uniform transport response 
across the entire sample, which indicates that the impact from moiré 
disorder and inhomogeneity is negligible.

Next, we will examine the linear transport response of tTLG. 
As shown in Fig. 3a,b, the tTLG sample exhibits a series of hallmark 
signatures of a moiré flat band. For instance, resistance peaks in 
R∥ are observed near νtTLG = −2, +1, +2 and +3 (Fig. 3a), which coin-
cides with resets in the Hall density nHall (Fig. 3b). This is consistent 
with previous observations from magic-angle twisted bilayer and 
trilayer graphene, where valley and spin degeneracies are spontane-
ously lifted near integer band filling, giving rise to a cascade of Fermi 
surface reconstructions19–23. As shown in Fig. 3a (inset), the tTLG is 
proximitized with a WSe2 crystal. Supplementary Fig. 7 investigates 
the influence of the proximity effect through a comparison with 
another tTLG sample without the WSe2 crystal. In both samples, Fermi 
surface reconstruction, evidenced by the resistance peak and Hall 
density reset, occurs at the same band fillings. Superconductivity in 
both samples emerges near half-filling of electron- and hole-doped 
bands. Moreover, the band filling–temperature (ν–T) maps from both 
samples reveal the same resistance oscillation at high temperature. 
Combined, these observations suggest that the nature of isospin 
degeneracy lifting is unaffected by the proximity effect. The orbital 
ferromagnetic order, however, is only observed in the tTLG sample 
with the proximity effect. This is consistent with previous observa-
tions of proximity-induced anomalous Hall effect in magic-angle 
twisted bilayer graphene24.
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tungsten diselenide (WSe2) crystal. c, Mirror-axis orientation β as a function of 
moiré band filling. d, Polar-coordinate plots of the angular dependence of 
transport non-reciprocity measured from plateaus I, III, IV and V in a. e,f, Angular 
dependence of V2ω

∥  and V2ω
⟂  measured at ν = 2.0, which is on plateau II before (e) 

and after (f) a thermal cycle. Measurements in c–f are performed at T = 20 mK, 
B = 0 and Ia.c. = 100 nA.
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Beyond the sequence of Fermi surface reconstructions, 
angle-resolved non-reciprocity measurement reveals a new type of cas-
cade phenomenon. Figure 3c,d shows the angular dependence of V2ω

∥  
and V2ω

⟂  in the density regime of 1.2 < νtTLG < 2.8. The orientation of the 
mirror axis, marked by the green solid line in this figure, is determined 
by the best angular fit based on equation (1). As a function of band filling, 
β exhibits a series of plateaus (Fig. 3c, black solid line), which point 
towards a cascade of rotations in the mirror axis. The values of β between 
adjacent plateaus, marked as I through V, are offset by integer multiples 
of π/3. This defines six characteristic directions, highlighting a possible 
link to the crystallographic axes of the underlying moiré lattice.

According to the angular dependence of non-reciprocity (Fig. 3d), 
the underlying electronic order features a single mirror axis, which is 
indicative of broken three-fold rotational symmetry C3. The fact that 
the mirror axis rotates with varying moiré band fillings stipulates that 

C3 breaking cannot be accounted for by the influence of hetero-strain 
alone. In addition, we show that a hysteretic rotation in the mirror axis 
can be induced by thermally cycling the sample or the application of 
a large current bias. Figure 3e,f compares the angular dependence of 
non-reciprocity measured at the same moiré filling from two consecu-
tive cool-down cycles. The best angular fit with equation (1) reveals a 
prominent rotation in the mirror axis before (Fig. 3e) and after (Fig. 3f) 
the thermal cycle. Similarly, the application of a large current bias also 
enables a prominent rotation in the mirror axis (Extended Data Fig. 2b). 
Such hysteretic transition is associated with a hysteresis loop in the 
second-harmonic nonlinear response as the current bias is swept back 
and forth (Extended Data Fig. 2c). These hysteretic transitions point 
towards nearly degenerate electronic orders with different mirror-axis 
orientations. The degeneracy is lifted by the process of spontaneous 
rotational symmetry breaking.
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∥  and V2ω
⟂  

according to equation (1). e,f, Schematic of the Fermi surface occupation across 
valley K and K′ in the presence of valley polarization with three mirror axes (e) and 

momentum polarization with one mirror axis (f). The spin degree of freedom is 
omitted. g, Schematic of the current–temperature (I–T) phase diagram at the 
optimal doping of the superconducting phase. The blue dashed line marks the 
SC–normal state transition. The angular dependence of non-reciprocity is shown 
for the superconducting (ηIc(ϕ)) and normal phases (η∥(ϕ)). Supplementary Fig. 
13 provides more details on the non-reciprocity in superconducting transport. 
h,i, Angular dependence of non-reciprocity (η∥ (top) and η⊥ (bottom)), measured 
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optimal density of the superconducting phase, that is, ν = −2.3.
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The foremost question is the microscopic origin underlying the 
rotational symmetry breaking. To address this question, we first con-
sider the requirements of C2 symmetry breaking in association with 
time-reversal symmetry T. There are two possible scenarios (Supple-
mentary Information provides a detailed discussion): (1) C2 is broken 
and T is preserved. This scenario can be enabled by Berry curvature 
dipole and skew scattering25–28; (2) C2 and T breaking occur simultane-
ously. Owing to the influence of trigonal warping in tTLG29,30, C2 and T 
breaking are naturally realized by the presence of valley polarization, 
which describes an imbalanced charge carrier occupation of the Fermi 
surface across different corners of the Brillouin zone31–35. In the pres-
ence of sublattice polarization, valley polarization is directly linked 
to an orbital ferromagnetic order, which is identifiable through the 
hysteretic transitions of the anomalous Hall effect24,36,37.

Given the hysteretic rotation in the mirror axis and the evolution 
with moiré band filling, the angular dependence of non-reciprocity 
probably cannot be accounted for by the Berry curvature dipole or skew 
scattering. Therefore, we examine the potential role of valley polari-
zation and orbital ferromagnetism. In the tTLG sample, orbital ferro-
magnetic order is observed near integer fillings of the electron-doped 
band. Figure 4a,b plots the transport response measured at ν = 0.89 
as a function of magnetic field B and d.c. current bias Id.c.. As B and Id.c. 
are swept back and forth, hysteretic transitions are observed in both 
R∥ (top) and R⊥ (bottom) in this figure. This is in excellent agreement 
with the anomalous Hall effect observed in other multilayer graphene 
heterostructures24,37–39. Owing to the presence of a Dirac-like band, the 
tTLG sample is always metallic, even when the moiré flat band develops 
an energy gap with the emergence of orbital ferromagnetism. The 
metallic sample gives rise to a B-dependent background in the Hall 
resistance, making it challenging to observe the magnetic hysteresis 
loop. However, the I-induced hysteresis is clearly detectable in both R∥ 
and R⊥, since the Hall resistance background is unaffected by the cur-
rent bias. Both magnetic and current-induced hysteresis exhibit a sharp 
onset with decreasing temperature (Fig. 4c and Supplementary Fig. 
12), which defines the emergence of the orbital ferromagnetic order.

The area of the hysteresis loop, AB
⟂ and AI

⟂, offers a gauge for the 
strength of the orbital ferromagnetic order. With decreasing tempera-
ture, the sharp onset in AB

⟂ and AI
⟂ (Fig. 4d, top) coincides with the onset 

of transport non-reciprocity, which is shown as the temperature 
dependence of V1 and V3 (Fig. 4d, bottom), extracted from the angular 
oscillation of non-reciprocity. The temperature dependence points 
towards a direct link between transport non-reciprocity, valley polari-
zation and orbital ferromagnetism.

It should be noted that valley polarization breaks C2 and T, but it 
preserves their product, namely, C2T. Since the realization of an orbital 
ferromagnetic order requires C2T breaking, valley polarization in tTLG 
is distinct from orbital ferromagnetism. We propose that C2T breaking 
is not a necessary ingredient for transport non-reciprocity. This is fur-
ther supported by the fact that non-reciprocity is universally observed 
across the moiré band (Supplementary Fig. 14), even in the absence of 
the anomalous Hall effect. The strength of non-reciprocity, reflected 
by the angular oscillation amplitude V1, exhibits density modulation 
with the cascade of Fermi surface reconstructions (Supplementary 
Fig. 14a). This highlights the direct link between non-reciprocity and 
a valley-imbalanced charge carrier occupation.

Figure 4e shows the schematic of valley-imbalanced Fermi sur-
face occupation, which includes scenarios with three Fermi pockets 
(panels (i) and (ii)) or one large Fermi surface per valley (panels (iii) and 
(iv)). A valley imbalance could also arise from a partial polarization, 
where carriers occupy both valleys (panels (ii) and (iv)). Regardless of 
the details, a valley-imbalanced Fermi surface occupation has three 
mirror axes (Fig. 4e, black dashed lines). The angular dependence of 
non-reciprocity with non-zero V1, therefore, requires an additional 
ingredient of C3 symmetry breaking. This symmetry requirement is 
naturally satisfied by the exchange-driven instability in momentum 

space, which breaks C3 by inducing charge carrier condensation into a 
subset of Fermi pockets15–17,40. Figure 4f shows a series of Fermi surface 
occupations with one mirror axis (black dashed line). Panel (i) displays 
a state with full momentum polarization, where all the carriers con-
dense into one Fermi pocket. Further, panel (iv) represents a partial 
momentum polarization, with one Fermi pocket being slightly larger 
compared with the other five. It should be noted that non-reciprocity 
diminishes for a valley-balanced carrier occupation. This allows valley 
and momentum polarizations to be detected through non-reciprocity 
with high sensitivity. As a result, the observed non-reciprocity could 
arise from an extremely subtle imbalance in carrier occupation across 
Fermi pockets and valleys. This allows the momentum-space instability 
to emerge as a perturbation to other types of electronic order, such as 
orthorhombic anisotropy, and still accounts for the observed angular 
dependence in non-reciprocity.

Next, we discuss the potential influence of certain scattering mech-
anisms, such as skew scattering and Berry curvature dipole25–28. Apart 
from hysteretic rotation in the mirror axis, we note that non-reciprocity 
in tTLG is observed only at T < 5 K (Fig. 4d and Supplementary Fig. 15), 
which is much lower compared with the typical onset temperature of 
scattering around hundreds of kelvins25–28. Nevertheless, the presence 
of scattering could indirectly influence transport non-reciprocity. The 
exact role of scattering will certainly attract future efforts aiming to 
better understand the microscopic origin of transport non-reciprocity.

Despite the lack of a microscopic understanding, it is instructive to 
examine the phenomenological behaviour of the superconducting diode 
effect. Non-reciprocity in superconducting transport is defined as an 
inequality in the critical supercurrent between forward- and 
reverse-current bias: ηIc (ϕ) = Ic(ϕ) − Ic(ϕ + π)  (refs. 41,42). To  
minimize the potential influence of the normal state at large current, we 
operationally define the critical current Ic as the current bias where the 
measured differential resistance becomes larger than the noise floor43 
(Supplementary Fig. 13, vertical arrows). At the optimal density of the 
superconducting phase, the angular dependence of ηIc  (Fig. 4g, 
bottom-left inset) is best fit by a cosine function with a period of 2π. This 
defines a single mirror axis, which indicates C3 symmetry breaking.

Figure 4h–i plots the angular dependence of non-reciprocity 
measured from the normal state at T > Tc (Fig. 4h) and I > Ic (Fig. 4i). The 
angular dependence points towards a single mirror axis that simultane-
ously breaks C2 and C3 symmetries. The similarity between the normal 
and superconducting phases raises the possibility that superconduc-
tivity inherits the broken symmetries of the normal state. Since the 
superconducting diode effect requires broken time-reversal symmetry 
T, transport non-reciprocity in the superconducting and normal phases 
suggests that C2, C3 and T are simultaneously broken, which is consist-
ent with symmetry requirements of the momentum-space instability.

In summary, the angle-resolved measurement of transport 
non-reciprocity offers an effective tool to identify broken symme-
tries that describe the electronic order in mirror-symmetric tTLG. The 
angular dependence of transport non-reciprocity reveals a symmetry 
axis, which points towards the momentum-space instability as a pos-
sible mechanistic explanation for the zero-field superconducting 
diode effect41.

Online content
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Methods
Hysteresis in the mirror-axis orientation
Apart from the thermal cycle, hysteretic rotation in the mirror axis can 
also be induced by a large current bias.

Extended Data Fig. 2 demonstrates the current-induced tunability 
in the angular dependence of non-reciprocity. Extended Data Fig. 2a 
plots the angular dependence of V2ω

⟂  measured at the same carrier 
density with different current biases. The angular dependence behaves 
like a cosine function with a period of 2π at a low current bias. It changes 
to a linear combination of cosϕ and cos3ϕ as the current bias is 
increased to I > 200 nA. At I = 400 nA, the angular dependence becomes 
largely three-fold symmetric, although the quality of angular fit 
becomes poorer at this large current.

The current-induced change in the angular dependence of 
non-reciprocity can be hysteretic, that is, the angular dependence 
of non-reciprocity, measured with a small current bias, is different 
before and after a large current bias. Extended Data Fig. 2b shows this 
hysteretic behaviour. Before (after) applying a large current bias at 
1 μA, the angular dependence measured at ν = −2.2 is highlighted by the 
orange (blue) box in this figure. In both cases, the angular dependence 
is a linear combination of cosϕ and cos3ϕ. However, the mirror axis 
(Extended Data Fig. 2b, green solid lines) exhibits a prominent rotation 
before and after the current bias.

The hysteretic rotation gives rise to a hysteresis loop in the 
second-harmonic nonlinear response R2ω

⟂  (Extended Data Fig. 2c), 
which is defined as V2ω

⟂ /I. The insets in Extended Data Fig. 2c show the 
schematic of the angular dependence measured before and after 
sweeping the current up and down.

Furthermore, we note that current-induced hysteresis usually 
occurs at a large current bias. Extended Data Fig. 3 shows the angular 
dependence of non-reciprocity η∥ measured with different d.c. current 
biases. Up to I = 100 nA, the angular dependence of non-reciprocity, 
along with its associated mirror-axis orientation, remains the same. As 
such, the angular dependence reported in this work is mostly carried 
out at I ≤ 100 nA, unless otherwise specified.

Non-reciprocity and nonlinearity
Transport non-reciprocity η can be extracted from the I–V curve meas-
ured with a d.c. current bias. As shown in Extended Data Fig. 4a, the I–V 
curve deviates from the linear response (black dashed line) at a large 
current bias. As a result of the deviation, longitudinal resistance R∥, 
defined as R∥ = V∥/I, is larger at the positive current bias compared with 
the negative bias (Extended Data Fig. 4a, red circles). Subtracting the lin-
ear component reveals the non-reciprocal response ΔV∥ − R0Id.c., where 
R0 denotes the slope of the I–V curve at Id.c. = 0. The non-reciprocal com-
ponent is shown to have a quadratic current dependence, namely, η ≈ I2 
(Extended Data Fig. 4b (black solid line) is a quadratic fit to the data).

Given the quadratic current dependence in η, non-reciprocity 
is proportional to sin2ωt in the presence of an a.c. current bias with 
frequency ω, which has the same frequency modulation as sin(2ωt). As 
such, η is equivalent to the nonlinear transport response measured at 
the second-harmonic frequency of an a.c. current bias.

Extended Data Fig. 5 compares the angular dependence of 
transport non-reciprocity with the nonlinear response at the 
second-harmonic frequency. The azimuth angle ϕ defines the direc-
tion of current flow across the sunflower-shaped sample. Different ϕ 
values are realized using the measurement configurations shown in 
Extended Data Fig. 1.

Extended Data Fig. 5b,d plots the angular dependence of η, which 
is extracted from the d.c. transport I–V curves with current flowing in 
different azimuth directions. The value of η along ϕ is defined as the 
difference in R between the current flowing in the azimuth direction 
of ϕ and ϕ + π:

η(ϕ) = R(ϕ) − R(ϕ + π). (1)

Here R is the transport response at a fixed d.c. current value of 
Id.c. = 100 nA. By definition, η displays a sign reversal between the 
forward- and reverse-current bias.

Extended Data Fig. 5a,c plots the angular dependence of the 
second-harmonic nonlinear transport response V2ω, which is measured 
at the same band fillings as those shown in Extended Data Fig. 5b,d.  
The value of V2ω along ϕ is simply defined as the voltage response at 
the second-harmonic frequency as an a.c. current is biased along the 
azimuth direction of ϕ. On the basis of this comparison, we make a 
few important observations: (1) the angular dependence of η shows 
excellent agreement with that of the second-harmonic nonlinear 
response V2ω; (2) the angular dependence can be captured by a linear 
combination of one-fold- and three-fold-symmetric components; (3) 
the one-fold-symmetric component of angular dependence is aligned 
along the corner of the Brillouin zone. The azimuth directions of all 
the six corners correspond to the plateau values shown in Fig. 3c. 
Combined, the angular dependence of transport non-reciprocity and 
second-harmonic nonlinear response offer further confirmation for 
the exchange-driven instability in valley and momentum space.

Mean-square error in angular fit
Extended Data Fig. 6 demonstrates the procedure for determining 
the best angular fit for transport non-reciprocity. In general, the best 
angular fit is obtained by minimizing the RRMSE, which is defined as

RRMSE = √
1
N
∑i(Vi − V 0

i )
2

√∑i(Vi)
2

, (2)

where Vi is the ith point of the measurement results and V0
i  is the value 

of the best fit at the corresponding azimuth direction. Also, N denotes 
the number of points. Furthermore, N = 32 for the angular fit for lon-
gitudinal and transverse responses, since there are 16 angles for each 
transport channel. Extended Data Fig. 6b,d shows the evolution of the 
RRMSE as one of the fit parameters deviates from the parameter of the 
best angular fit, whereas the other two fit parameters are fixed at the 
value of the best fit. According to equation (1), the fit parameters V1, V3 
and β create a three-dimensional phase space for identifying the best 
angular fit. For angular dependence (Extended Data Fig. 6a,c), RRMSE 
is around 5% for the best fit. This indicates that the angular dependence 
of non-reciprocity is well captured by equation (1).

Extended Data Fig. 7 examines the best fit for the angular dependence 
at ν = 2.15, where the best fit features a strong three-fold-symmetric com-
ponent. The RRMSE of the best fit is around 8%. Although slightly larger 
compared with Extended Data Fig. 6, an RRMSE below 10% is considered 
a good angular fit. That a predominantly three-fold-symmetric behaviour 
has slightly higher error is understandable, since the angular oscillation 
is approaching the resolution of the sunflower geometry. We note that 
the right panel of Extended Data Fig. 7b exhibits two extra local minima 
in RRMSE, which are located 2π/3 away from the optimal value of β. These 
two local minima provide a strong indication for the three-fold-symmetric 
component in the angular dependence of non-reciprocity.

Potential impact of moiré disorder, sample uniformity and 
ballistic transport
Extended Data Fig. 8a plots the angular dependence of the linear trans-
port response, namely, R∥ and R⊥. The angular dependence is in excellent 
agreement with the expected behaviour of orthorhombic anisotropy 
(Fig. 1d). The angular oscillation points towards two orthogonal mirror 
axes. The sample exhibits different conductivities as current flows along 
each mirror axis. The angular dependence shown in Extended Data Fig. 8a 
can be captured by a conductivity matrix. According to another work18, 
the knowledge of the conductivity matrix allows us to compute the poten-
tial distribution across the entire sample, as long as electrons diffusively 
move through the sample, that is, electron transport is non-ballistic.

http://www.nature.com/naturematerials


Nature Materials

Article https://doi.org/10.1038/s41563-024-01809-z

The geometry of the sunflower sample features eight electrical 
contacts (petals) attached to the circumference of a circular sample 
channel. The geometry allows more than 400 independent meas-
urement configurations: picking any two contacts as the source and 
drain, a voltage measurement can be performed across any two of the 
remaining contacts. Although 400 configurations appear redundant, 
they allow us to fully map the potential distribution across the circum-
ference of the sample. By fitting these measurements with a single 
conductivity matrix using the sunflower model, we can gain insights 
into the uniformity of transport response across the sample.

Extended Data Fig. 8b plots the results from a subset of all the inde-
pendent measurement configurations. Here the red circles denote the 
measured value, and the insets show the schematic of each measurement 
configuration. Also, the horizontal grey stripe is the expected value pre-
dicted by the sunflower model based on a single conductivity matrix18. 
The width of the grey stripe arises from the non-zero width of each electri-
cal contact, which gives rise to a range of possible electrical potentials.

Noticeably, the measurement configurations from the same row 
are associated with an in-plane rotation. In the absence of electronic 
anisotropy, we anticipate the same measurement results from differ-
ent configurations of the same row. That is, variations in the transport 
response across each row directly arises from the presence of electronic 
anisotropy. Different measurement configurations probe slightly differ-
ent parts of the sample. For example, configurations in the fourth row 
from the top probe the transport response close to the circumference 
of the sample. Results from all the measurement configurations are 
reasonably captured by a single conductivity matrix. The RRMSE of this 
fit is around 0.017, which points to an excellent agreement between the 
measurement and the model. The excellent fit provides a strong indica-
tion that the transport response is uniform across the entire sample.

As a by-product, the fit shown in Extended Data Fig. 8b suggests 
that electron transport through the sample is non-ballistic.

Extended Data Fig. 8c displays the angular dependence of trans-
port non-reciprocity measured at the same band filling. Here the green 
solid lines mark the orientation of the mirror axis. At this band fill-
ing, the mirror axis extracted from non-reciprocity is close to being 
aligned with the principle axis of the linear component of the transport 
response. In the ‘Nematicity and momentum polarization’ section in 
the Supplementary Information, we offer a more detailed discussion 
regarding the relationship between the mirror axis of non-reciprocity 
and the principle axis of linear transport.

Data availability
Data presented in this work are attached. Source data are provided 
with this paper. Additional data are available from the corresponding 
author upon request.
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Extended Data Fig. 1 | Measurement setup. (a-h) Schematic diagram showing 
the measurement configuration with current flowing is different azimuth 
directions ϕ across the ‘sunflower’ sample. For each ϕ, the longitudinal transport 
response is defined as the voltage difference across two contacts (each contact 
resembles a petal of the ‘sunflower’), which are aligned parallel to the direction 
of current flow. Panels (a) to (h) show measurement configurations for 8 azimuth 
directions. Along the same vein, the transverse response is measured across two 
contacts aligned perpendicular to the current flow direction, as shown in panel 

(i). We use V∥ (V⊥) to denote the voltage difference across two contacts that are 
parallel (perpendicular) to the current flow direction (Fig. 1a). Instead of applying 
current bias at the source contact and short to ground at the drain contact, we 
apply a positive current bias to the source contact, and a negative bias to the 
drain contact. This ensures that the center of the sample remains at zero electric 
potential, thus suppressing the potential influence of capacitive coupling and 
thermal-electric effects associated with the contact resistance.
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Extended Data Fig. 2 | Current-induced Hysteresis in nonreciprocity. (a) The 
angular dependence of nonreciprocity measured at the same moiré band filling 
ν = − 0.3 and different current bias. At a small current bias, the angular 
dependence is best described by a one-fold symmetric cosine function. With 
increasing current, the angular dependence starts to evolves into a mixture 
between one- and three-fold at I > 200 nA. Further increasing the current bias 
gives rise to angular dependence at I = 400 nA that is best captured by cos 3ϕ. (b) 
The angular dependence of nonreciprocity at ν = − 2.2 before (top panel) and 

after (bottom panel) the application of a large current bias. The large current bias 
induces a hysteretic rotation in the underlying mirror axis, which is marked by 
the green solid line in the polar coordinate plots. (c) R2ω

⟂ , defined as V2ω
⟂ /I, as a 

function of current bias. As the current bias is swept back and forth, R2ω
⟂  exhibits a 

hysteresis loop. The angular dependence of V2ω
⟂  in panel (b) is measured before 

and after this hysteresis loop at a fixed current bias of I = 100 nA. Inset shows the 
schematic angular dependence for the data shown in panel (b).
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Extended Data Fig. 3 | Angle dependence of η∥ measured at different DC current bias. Polar-coordinate plot of the angle dependence of η||, measured at B = 0, T = 20 
mK and ν = 0.2. With increasing DC current bias, a similar angular dependence that is predominantly one-fold symmetric is observed up to IDC = 100 nA, all pointing 
towards around 140∘.
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Extended Data Fig. 4 | Nonreciprocity and nonlinearity. (a) Current-voltage 
characteristic measured at ν = − 0.3 with DC current flowing along azimuth 
angle of ϕ = 0∘. The black dashed line is a linear fit to the portion of the IV curve 
near zero current bias. (b) The nonreciprocal component of the IV curve, which 

is extracted by subtracting the ohmic component of the transport response, 
η/2 = V∥ − IDCR0. R0 denotes the slope of the IV curve at IDC = 0 The solid line is a 
quadratic fit to the current dependence of η/2.
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Extended Data Fig. 5 | Second-harmonic nonlinear response and transport 

nonreciprocity. Angle dependence measurement of (a) V2ω
∥  and (b) η|| at ν = 0.25 

and (c) V2ω
∥  and (d) ηR at ν = 2.14. The remarkable match in the angle dependence 

between V2ω
∥  and (b) η|| at different densities illustrates their correspondence 

relation. V2ω
∥  are measured at IAC = 100 nA, ηR are measured at IDC = 100 nA. All 

measurements are performed at B = 0 and T = 20 mK.
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Extended Data Fig. 6 | Relative Root Mean Squared Error in the angular fit 
with large V1. (a) The angular dependence of nonreciprocity measured at ν = 1.2. 
(b) Relative root-mean-squared error (RRMSE), defined according to Eq. M2, as a 
function of V1 (left panel), V3 (middle panel), and β (right panel). (c) The angular 

dependence of nonreciprocity measured at ν = 2.0. (d) Relative root-mean-
squared error (RRMSE), defined according to Eq. M2, as a function of V1 (left 
panel), V3 (middle panel), and β (right panel).
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Extended Data Fig. 7 | Relative Root Mean Squared Error in the angular fit with large V3. (a) The angular dependence of nonreciprocity measured at ν = 2.15. (b) 
Relative root-mean-squared error (RRMSE), defined according to Eq. M2, as a function of V1 (left panel), V3 (middle panel), and β (right panel).
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Extended Data Fig. 8 | The ‘sunflower’ model beyond angular fit. (a) The 
angular dependence of longitudinal and transverse resistance, R∥ and R⊥, 
measured at ν = 2. (b) Measurements from different ‘sunflower’ configurations 
compared to the expected value extracted from a single conductivity matrix13,18. 

The RRMSE of the fit is 1.74%. (c) The angular dependence of longitudinal 
and transverse second-harmonic nonlinear transport response, 𝑉2𝜔

∥ and 𝑉2𝜔
⊥, 

measured with an AC current of 100 nA at ν = 2.
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Extended Data Fig. 9 | Angle-resolved nonreciprocity measurement with 
higher angular resolution. (a) Schematic diagram of the ‘sunflower’-shaped 
sample with 10 petals. The increased number of electrical contacts enables 
higher angular resolution in the nonreciprocity measurement. (b-d) Angle-
resolved nonreciprocity measured at different moiré band filling of the tTLG 
sample, which has a twist angle of θ = 1.34∘. The best angular fit for the angular 
dependence (black solid line) is captured by Eq. 1, which is extracted by 
minimizing the RRMSE of nonreciprocity from both longitudinal and transverse 
channels. With increased angular resolution, the best fit to the angular 

dependence of nonreciprocity in panel (b) features RRMSE of 0.3%, while other 
angular dependence shows RRMSE of less than 2%. Beyond the one-fold and 
three-fold components, the next lowest order angular component is described 
by cos(5ϕ) and sin(5ϕ). While an oscillatory period of 72∘ is well within the 
measurement resolution, such a component is not observed in our 
measurement. This is a strong indication that the angular components with N > 3 
has small oscillatory amplitude. All measurement performed at T = 20 mK, B = 0, 
and IAC = 50 nA.
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