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Abstract—Search efficiency and serving efficiency are two ma-
jor axes in building feature interactions and expediting the model
development process in recommender systems. Searching for the
optimal feature interaction design on large-scale benchmarks
requires extensive cost due to the sequential workflow on the
large volume of data. In addition, fusing interactions of various
sources, orders, and mathematical operations introduces poten-
tial conflicts and additional redundancy toward recommender
models, leading to sub-optimal trade-offs in performance and
serving cost. This paper presents DistDNAS as a neat solution
to brew swift and efficient feature interaction design. DistDNAS
proposes a supernet incorporating interaction modules of varying
orders and types as a search space. To optimize search efficiency,
DistDNAS distributes the search and aggregates the choice of
optimal interaction modules on varying data dates, achieving
a speed-up of over 25× and reducing the search cost from
2 days to 2 hours. To optimize serving efficiency, DistDNAS
introduces a differentiable cost-aware loss to penalize the selec-
tion of redundant interaction modules, enhancing the efficiency
of discovered feature interactions in serving. We extensively
evaluate the best models crafted by DistDNAS on a 1TB Criteo
Terabyte dataset. Experimental evaluations demonstrate 0.001
AUC improvement and 60% FLOPs saving over current state-
of-the-art CTR models.

Index Terms—Recommender Systems, Neural Architecture
Search, AutoML, Click-Through Rate Prediction

I. INTRODUCTION

Recommender models vary in depth, width, interaction

types and selection of dense/sparse features. These versatile

feature interactions exhibit different levels of performance

in recommender systems. The design of interaction between

dense/sparse features is the key driver to optimizing the

recommender models. The advancement of feature interactions

incorporates improved prior knowledge into the recommender

systems, enhancing the underlying user-item relationships and

benefits personalization benchmarks such as Click-Through

Rate (CTR) prediction. In past practices, there have been sev-

eral advancements in feature interactions, such as collaborative

filtering [1]–[4]. With the rise of Deep Learning (DL), fac-

torization machines [5], [6], DotProduct [7], [8], deep cross-

ing [9], and self-attention [10]. The stack (e.g., DHEN [11])
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Fig. 1. Model AUC versus FLOPs on Criteo Terabyte. DistDNAS unlocks
0.001 AUC compared to state-of-the-art recommender models.

and the combination (e.g., Mixture of Experts [12], [13])

create versatile interaction types with varying orders, types,

and dense/sparse input sources.

The recent thriving of Automated Machine Learning (Au-

toML) democratized the design of feature interactions and

exceeded human performance in various domains, such as fea-

ture selection [14] and Neural Architecture Search [15]–[17].

Remarkably, NASRec [16] employs a supernet to represent

the search space for recommender models and achieves state-

of-the-art results on small-scale CTR benchmarks. However,

optimizing feature interactions through manual design/search

for large-scale CTR prediction has two challenges. First, de-

signing/searching for the optimal feature interactions requires

extensive wall-clock time, as the design/search sequentially

iterates high data volume in production to obtain a good

solution in feature interaction. This raises obstacles to ensuring

the freshness of feature interaction on the latest data, thus

potentially harming production quality and causing model

staleness. Thus, an efficient search methodology is needed

to explore the selection of the feature interaction and scale
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with the data volume growth. Second, fusing versatile feature

interactions introduces potential conflicts and redundancy in

recommender models. For example, we observe that loss

divergence issues can be directly attributed to a complex

interaction module (e.g., xDeepInt) with alternative feature

interaction modules (e.g., CrossNet, DLRM) when training on

a large dataset. This creates a sub-optimality of performance-

efficiency trade-offs in service. As the relationship between

model size and model performance in recommender systems

has not been exploited yet, it is uncertain whether fusing

multiple orders and types of feature interactions into a single

architecture can benefit recommender models or whether it

is possible to harvest the improvement from different feature

interactions fully.
In this paper, we address the above challenges and present

an efficient AutoML system, Distributed Differentiable Neural

Architecture Search (DistDNAS), to craft efficient feature

interactions in a few hours. DistDNAS follows the setting

of the supernet-based approach in NASRec [16] and applies

Differentiable Neural Architecture Search [18] (DNAS) to

learn the structure of a feature interaction. In DistDNAS, a

feature interaction is built with multiple choice blocks. Each

choice block represents a linear combination of feature inter-

action modules (e.g., Linear, CrossNet [9], etc.). DistDNAS

presents two robust techniques to improve design and model

efficiency during feature interaction search. For search effi-

ciency, DistDNAS distributes DNAS on each training day and

averages the learned weighting to derive the best combinatorial

choice of interaction modules. Without ad-hoc optimizations

such as embedding table sharding and communication between

multiple devices, DistDNAS exhibits better scalability with a

large volume of training data, achieving ∼ 25× speedup on

1TB Criteo Terabyte benchmark and reducing the search cost

from 2 days to 2 hours. For serving efficiency, DistDNAS

calculates the cost importance of each interaction module and

incorporates a differentiable cost-aware regularization loss to

penalize cost-expensive interaction modules. As cost-aware

regularization loss removes unnecessary interaction modules

within the supernet, DistDNAS alleviates potential conflict and

harvests performance improvement.
We evaluate DistDNAS on the 1TB Criteo Terabyte dataset

using AUC, LogLoss, and Normalized Entropy (NE) [19] as

evaluation metrics. DistDNAS removes redundant interaction

modules without human intervention and discovers efficient

feature interactions, unlocking 0.001 higher AUC and/or 60%

fewer FLOPs in the discovered models. The optimization in

AUC and FLOPs brings state-of-the-art models, see Figure 1.

We summarize our contributions as follows.

• We analyze the search and serving efficiency challenges

when designing feature interactions on large-scale CTR

recommender benchmarks.

• We propose DistDNAS, an AutoML system, to tackle the

efficiency challenge in feature interaction design. DistD-

NAS distributes the search over multiple data splits and

averages the learned architecture on each data split for

search efficiency. In addition, DistDNAS incorporates a

cost-aware regularization into the search to enhance the

serving efficiency of discovered feature interactions.

• Our empirical evaluations demonstrate that DistDNAS sig-

nificantly pushes the Pareto frontier of state-of-the-art CTR

models.

II. RELATED WORK

Feature Interactions in Recommender Systems. The feature

interactions within recommender systems such as CTR predic-

tion have been thoroughly investigated in various approaches,

such as Logistic Regression [20], and Gradient-Boosting Deci-

sion Trees [19]. Recent approaches apply deep learning based

interaction [21] to enhance end-to-end modeling experience

by innovating Wide & Deep Neural Networks [7], Deep

Crossing [22], Factorization Machines [5], [6], DotProduct [8]

and gating mechanism [9], [22], ensemble of feature inter-

actions [11], feature-wise multiplications [23], and sparsifi-

cations [24]. In addition, these works do not fully consider

the impact of fusing different types of feature interactions,

such as the potential redundancy, conflict, and performance

enhancement induced by a variety of feature interactions.

DistDNAS constructs a supernet to explore different orders

and types of interaction modules and distributes differentiable

search to advance search efficiency.

Cost-aware Neural Architecture Search. Neural Architec-

ture Search (NAS) automates the design of Deep Neural

Network (DNN) in various applications: the popularity of

NAS is consistently growing in brewing Computer Vision [18],

[25]–[27], Natural Language Processing [28], [29], and Rec-

ommender Systems [15]–[17], [30]. Tremendous efforts are

made to advance the performance of discovered architectures

to brew a state-of-the-art model. Despite the improvement in

search/evaluation algorithms, existing NAS algorithms over-

look the opportunity to harvest performance improvements

by addressing potential conflict and redundancy in feature

interaction modules. DistDNAS regularizes the cost of the

searched feature interactions and prunes unnecessary inter-

action modules as building blocks, yielding better FLOPs-

LogLoss trade-offs on CTR benchmarks.

III. DIFFERENTIABLE FEATURE INTERACTION SPACE

Supernet is a natural fusion that incorporates feature in-

teraction modules. DistDNAS emphasizes search on feature

interaction modules and simplifies the search space from NAS-

Rec [16]. A supernet in DistDNAS contains multiple choice

blocks, with a fixed connection between them and a fully en-

abled dense-to-sparse/sparse-to-dense merger within all choice

blocks. Unlike NASRec [16], which solely selects the optimal

interaction module within each choice block, DistDNAS can

choose an arbitrary number of interaction modules within each

choice block and use differentiable bi-level optimization [18]

to determine the best selection. This allows flexibility in fusing

varying feature interactions and obtaining the best combination

with enhanced search efficiency. We present the details of

feature interaction modules as follows.
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Fig. 2. Feature interaction search space for each choice block in DistDNAS. Here, a dashed line denotes a searchable feature interaction in DistDNAS, and
⊗ denotes the mixing of different feature interaction modules.

A. Feature Interaction Modules

Feature interaction modules connect dense 2D inputs with

sparse 3D inputs to learn valuable representations on user

modeling. In a recommender system, a dense input is a 2D

tensor generated from either raw dense features or dense inter-

action modules, such as a fully connected layer. A sparse input

is a 3D tensor of sparse embeddings generated either by raw

sparse/categorical features or by sparse interaction modules,

such as a self-attention layer. We define a dense input as

Xd ∈ R
B×dimd and a sparse input Xs ∈ R

B×Ns×dims . Here,

B denotes the batch size, dimd/dims denotes the dimension of

the dense/sparse input, and Ns denotes the number of inputs

in the sparse input.

We collect a set of simple feature interaction modules

from the existing literature, as demonstrated in Figure 2. A

dense interaction module produces a dense output given input

features, and a sparse interaction module produces a sparse

output given input features. These interaction modules can

cover a set of state-of-the-art CTR models, such as DLRM [8],

DeepFM [22], xDeepInt [31], DCN-v2 [9], and AutoInt [10].

• Identity/Identity3D is a dense/sparse interaction module

that carries an identity transformation on dense/sparse input.

• Linear/Linear3D is a dense/sparse interaction module that

applies on 2D/3D dense inputs.

• DotProduct [7], [8] is a dense interaction module that com-

putes pairwise inner products of dense and sparse inputs.

• CrossNet [9]/PIN [31] is a dense interaction module with

gate inputs from various sources.

• Transformer [32] is a sparse interaction module that utilizes

the multihead attention mechanism to learn the weighting of

different sparse inputs. The queries, keys, and values of a

Transformer layer are identical.

• Embedded Fully-Connected (EmbedFC) is a sparse in-

teraction module that applies a linear operation along the

sparse (middle) dimension.

• Pooling by Multihead Attention (PMA) [33] is a sparse

interaction module that forms attention between seed vectors

and sparse features.

If the dimensions of inputs do not match, a proper linear

projection (e.g., linear) will be applied within all dense/sparse

interaction modules. The feature interaction search space con-

tains versatile dense/sparse interaction modules.

B. Differentiable Supernet

In DistDNAS, a differentiable supernet contains N choice

blocks with a rich collection of feature interactions. Each

choice block employs a set of dense/sparse interactions op(i) =

{op(i)d , op
(i)
s } to take dense/sparse inputs X

(i)
d /X

(i)
s and learn

useful representations. Each choice block contains |opd| = 5
dense feature interactions and |ops| = 5 sparse feature interac-

tions. Each choice block receives input from previous choice

blocks and produces a dense output Y
(i)
d and a sparse output

Y
(i)
s . In block-wise feature aggregation, each choice block

concatenates the dense/sparse output from the previous 2/1

choice blocks as dense/sparse block input. For dense inputs in

previous blocks, the concatenation occurs in the last feature

dimension. For sparse inputs in previous blocks, concatenation

occurs in the middle dimension to aggregate different sparse

inputs. We present the mixing of different feature interaction

modules in the following context.

Continuous Relaxation of Feature Interactions. Within a

single choice block in the differentiable supernet, we depict

the mixing of candidate feature interaction modules in Figure

2. We parameterize the weighting of each dense/sparse/dense-

sparse interaction using architecture weights. In choice block

i, we use α(i) = {α(i)
1 , α

(i)
2 , ..., α

(i)
|opd|} to represent the

weighting of a dense interaction module and parameterize

the selection of dense interaction modules with architecture

weight A = {α(1), α(2), ..., α(N)}. Similarly, we parameterize

the selection of sparse interaction modules with architecture

weight B = {β(1), β(2), ..., β(N)}. We employ the Gumbel

Softmax [34] trick to allow a smoother sampling from cate-

gorical distribution on dense/sparse inputs as follows:

Y
(i)
d =

|opd|∑
j=1

exp(
logα

(i)
j +gj

λ )∑|opd|
k exp(

logα
(i)
k +gk
λ )

opj(X
i
d, X

i−1
d ), (1)

Y (i)
s =

|ops|∑
j=1

exp (
log β

(i)
j +gj

λ )∑|ops|
k exp( log βk

(i)+gk
λ )

opj(X
i
s, X

i−1
s ). (2)

Here, gj and gk are sampled from the Gumbel distribution,

and λ is the temperature. As a result, a candidate architecture

C can be represented as a tuple of dense/sparse feature inter-

action: C = (A,B). Within DistDNAS, our goal is to perform

a differentiable search and obtain the optimal architecture

C∗ that contains the weighting of dense/sparse interaction

modules.
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Fig. 3. Overview of DistDNAS methodology. Here, dashed lines denote searchable interaction modules, and the size of interaction modules indicates the cost
penalty applied to each interaction module for serving efficiency.

Discretization. Discretization converts the weighting in the

optimal architecture to standalone models to serve CTR ap-

plications. Past DNAS practices [18] typically select the top

k modules for each choice block, brewing a building cell

containing a fixed number of modules in all parts of the

network. In recommender models, we discretize each choice

block by a fixed threshold θ to determine useful interaction

modules. For example, in the choice block i, we discretize the

weight α(i) to obtain the discretized dense interaction module

α̂(i) as follows:

α̂
(i)
j =

{
1, if α̂

(i)
j ≥ θ,

0, otherwise.

We typically set threshold θ = 1/|op| (i.e., 0.2 for dense/sparse

module search) for each choice block, or use a slightly larger

value (e.g., 0.25) to remove more redundancy. There are a

few advantages of adopting threshold-based discretization in

recommender models. First, using a threshold θ is a clearer

criterion to distinguish important/unimportant interaction mod-

ules within each choice block. Second, since a recommender

model contains multiple choice blocks with different hierar-

chies, levels, and dense/sparse input sources, there is a need

for varying numbers of dense/sparse interactions to maximize

the representation capacity within each module.

IV. TOWARDS EFFICIENCY IN DNAS

Search efficiency and serving efficiency are two major con-

siderations in deploying DNAS algorithms in large-scale CTR

datasets. In this section, we first revisit DNAS and address

the efficiency bottleneck via a distributed search mechanism.

Then, we propose our solution to reduce the service cost of

feature interaction via a cost-aware regularization approach.

Figure 3 provides the core methodology of DistDNAS.

A. Revisiting DNAS on Recommender Systems

A Click-Through Rate (CTR) prediction task usually con-

tains multiple days of training data. In recommender systems,

we typically use a few days of data (i.e., day 1 to day T )

as the training source and evaluate the trained model based

on its CTR prediction over subsequent days. DNAS carries

bilevel optimization to find the optimal candidate architecture

C∗ = (A∗, B∗) as follows:

(A∗,B∗) = argmin
A,B

LogLossx∼D[x;w∗(A,B),A,B]. (3)

Here, BCE denotes binary cross-entropy, D = (D1, ..., DT )
indicates the training data from day 1 to day T , w indicates

the weight parameters within the DNN architecture, and t
indicates a certain day of data. The previous DNAS workflow

must iterate over T days of data, with a significant search cost.

More specifically, the large search cost originates from the

following considerations in search efficiency and scalability:

• Sequentially iterating over T days of data requires T times

the search cost of DNAS on a single day of data. This creates

challenges for model freshness in production environments

where T can be extremely large.

• Deploying the search over multiple devices may suffer from

poor scalability due to communication. For example, the

forward/backward process must shift from model to data

parallelism when offloading tensors from embedding table

shards to feature interaction modules.

• Within our implementation on Criteo Terabyte, the through-

put on multiple NVIDIA A5000 GPUs is lower than the

throughput on a single GPU during the search, as demon-

strated in the Queries-Per-Second (QPS) analysis in Figure

4. Thus, realizing good scalability in the growth of comput-

ing devices in DNAS is challenging.

The above considerations point to a distributed version of

DNAS, where we partition the training data, launch a DNAS

procedure on each day of training data, and average the

results to derive the final architecture. We hereby propose a

DistDNAS search with the following bilevel optimization.

(A∗,B∗)(t) = argmin
A,B

LogLossx∼Dt
[x;w∗(A,B),A,B],

(4)

such that

w∗(A,B)(t) = argmin
w

LogLossx∼Dt [x;w(A,B),A,B].

(5)

Here, t ∈ {1, 2, .., , T} indicates a certain day of training

data. DistDNAS aggregates the learned weights on each day

to retrieve the final architecture coefficients with a simple

averaging aggregator as follows:

(A∗,B∗)(∗) =
T∑

t=1

1

T
(A∗,B∗)(t) (6)

The simple averaging scheme incorporates the statistics from

each day of data to obtain the learned architecture weights.

In addition, DistDNAS can be asynchronously paralleled on

different computing devices, accelerating search scalability
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Fig. 4. QPS comparison between DistDNAS and DNAS.

and reducing the total wall-clock run-time in recommender

systems. Figure 4 compares DistDNAS versus DNAS on 1-8

NVIDIA A5000 GPUs, with 4K batch size. Due to communi-

cation savings with 1-GPU training, DistDNAS benefits from

significantly lower search costs.

B. Cost-aware Regularization

Serving the cost of feature interactions, e.g., FLoating-

point OPerations (FLOPs), is critical in recommender systems.

A lower servicing cost indicates a shorter response time to

process a user query request. As a result, optimizing the cost

of recommender models is as important as optimizing their

performance in the production environment.

In DNAS, we measure the cost by combining training

FLOPs and inference latency. The cost of a feature interaction

in discovery is dependent on the weights of the learned

architecture C∗ = (A∗, B∗). An intuition to optimize the

feature interaction module is rewarding cost-efficient opera-

tors (e.g., Linear, Identity) while penalizing cost-inefficient

operators (e.g., Transformer, CrossNet) during differentiable

search. Motivated by this, we introduce a differentiable cost

regularizer to penalize large models in discovery. The cost

regularizer adds an additional regularization term R to the

loss function during DNAS to induce cost-effective feature

interactions in discovery.

We use j to represent an index of a feature interaction

module in C, for example, the index of a dense interaction

module. We first sample a few pairs of architecture and cost

0

0.02

0.04

Choice 0 Choice 1-6

Dense Interaction Module

Identity Linear-2D DotProduct CrossNet PIN

0

0.05

0.1

Choice 0 Choice 1-6

Sparse Interaction Module

Transformer EmbedFC Linear-3D Identity PMA
Fig. 5. Normalized cost importance in a 7-block supernet.

metrics from the DistDNAS search space and create a cost

mapping cost : C → R to model the relationship between

feature interactions and FLOPs. Then, we use the permutation

importance [35] to obtain the importance of offline cost

sj in the cost mapping cost, illustrating the offline FLOPs

importance of an interaction module i. Finally, we formulate

a cost-aware loss and incorporate it to regularize all interaction

modules: R(A,B) = γ
∑

opj∈(A,B) sj . Here, γ is an adjustable

coefficient to control the strength of cost-aware regularization.

With cost-aware regularization, the final architecture of DNAS

with cost-aware loss searched on a single day t can be

formulated as follows.

(A∗,B∗)(t) = argmin
A,B

LogLossx∼Dt [x;w
∗(A,B),A,B]+R(A,B),

(7)

such that

w∗(A,B)(t) = argmin
w

LogLossx∼Dt [x;w(A,B),A,B]+R(A,B).

(8)

As the feature interaction search space adopts a fixed

connectivity and dimension configuration during the search,

the cost importance of different interaction modules is unique

in the first choice block, and identical across all other choice

blocks. We demonstrate the normalized cost importance of

each interaction module in Figure 5. Among all interaction

modules, the DotProduct contributes to a significant amount

of FLOPs consumption by integrating dense and/or sparse

features. Except for Transformer, sparse interaction modules

contribute significantly fewer serving costs compared to their

dense counterparts. Thus, despite the strong empirical perfor-

mance of Transformer models, recommender models choose

Transformer sparingly to build an efficient feature interaction.

V. EXPERIMENTS

We thoroughly examine DistDNAS on Criteo Terabyte.

First, we introduce the experiment settings of DistDNAS,

which produce efficient feature interactions. Then, we compare

the performance of models crafted by DistDNAS versus a

series of metrics with strong hand-crafted/AutoML baselines.

A. Experiment Setup

We illustrate the key components of our experiment setup

and elaborate on the detailed configuration.

Training Dataset. Criteo Terabyte contains 4B training data

on 24 different days. Each data item contains 13 integer

features and 26 categorical features. Each day of data on

Criteo Terabyte contains ∼ 0.2B data. During the DistDNAS

search, we use data from day 1 to day 22 to learn architecture

the optimal architecture weights: C∗ = (A∗, B∗). During the

evaluation, we use the data from day 1 to day 23 as a training

dataset and use day 24 as a holdout testing dataset. We perform

inter-day data shuffling during training yet iterate over data

from day 1 to day 23 sequentially.

Data Preprocessing. We do not apply special preprocessing to

dense features except for normalization. We cap the maximum

embedding table size to 5M for sparse embedding tables and

use an embedding dimension of 16 to obtain each sparse

Authorized licensed use limited to: Duke University. Downloaded on July 18,2025 at 00:26:27 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
PERFORMANCE OF THE BEST DISCOVERED DISTDNAS MODEL ON 1TB CRITEO TERABYTE.

Model FLOPS(M) Params(M) NE (%) ↓ Relative NE (%) ↓ AUC ↑ LogLoss ↓
DLRM [8] 1.79 453.60 0.8462 0.0 0.8017 0.12432

DeepFM [5] 1.81 453.64 0.845 -0.14 0.8028 0.12413
xDeepFM [6] 6.03 454.14 0.846 -0.02 0.8023 0.12429
AutoInt [10] 2.16 453.80 0.8455 -0.08 0.8024 0.12421
DCN-v2 [9] 8.08 459.91 0.845 -0.14 0.8031 0.12413

xDeepInt [31] 8.08 459.91 0.8455 -0.08 0.8027 0.12421
NASRec-tiny [16] 0.57 452.47 0.8463 0.01 0.8014 0.12437
AutoCTR-tiny [15] 1.02 452.78 0.8460 -0.02 0.8017 0.12429

DistDNAS
1.97 453.62 0.8448 -0.17 0.8030 0.12410
3.11∗ 454.70 0.8444 -0.21 0.8032 0.12405

DistDNAS (M=2) 3.94 455.48 0.8448 -0.17 0.8033 0.12410
DistDNAS (M=3) 5.90 457.31 0.8440 -0.26 0.8035 0.12399
DistDNAS (M=4) 7.87 459.14 0.8438 -0.29 0.8039 0.12395

feature. Thus, each model contains ∼450M parameters in the

embedding table.

Optimization. We train all models from scratch without

inheriting knowledge from other sources, such as pre-trained

models or knowledge distillation. For sparse parameters, we

utilize Adagrad with a learning rate of 0.04. For dense param-

eters, we use Adam with a learning rate of 0.001. No weight

decay is performed. During training, we use a fixed batch size

of 8192 and a fixed learning rate after the initial warm-up.

Architecture Search. Our supernet contains N = 7 choice

blocks during the search. We choose γ=0.004 for cost-aware

regularization. During the search, we linearly warm up the

learning rate from 0 to maximum with 10K warm-up steps

and use a batch size of 8K to learn the architecture weights

while optimizing the DNAS supernet. During discretization,

we use θ=0.20 as the discretization threshold for DistDNAS

marked with ∗, and use θ = 0.25 to other feature interactions

created by DistDNAS, in Table I, As most baseline models

are larger, we naively stack M copies of feature interactions

in parallel to match the FLOPs of large models, such as DCN-

v2 [9] and xDeepInt [31].

Training. To ensure a fair comparison and better demonstrate

the strength of the discovered models, we employ no hyper-

parameter tuning for all models. We linearly warm up the

learning rate from 0 to maximum using the first 2 days of

training data. We use single-pass training to prevent overfitting

and iterate the whole training dataset only once.

Baselines. We select the popular hand-crafted design choice of

CTR models from the existing literature to serve as baselines,

i.e., DLRM [8], DeepFM [5], xDeepFM [6], AutoInt [10],

DCN-v2 [9] and xDeepInt [31]. We also incorporate the

best models from the NAS literature: AutoCTR [15] and

NASRec [16] to serve as baselines and use the best model

discovered for Criteo Kaggle. Without further specification,

all hand-crafted or AutoML baselines use dims = 16 as the

embedding dimension. All hand-crafted or AutoML baselines

use 512 or dimd = 256 units in the MLP layer, including

1 MLP layer in dense feature processing and 7 MLP layer

in aggregating high-level dense/sparse features. All AutoML

models use Ns = 16 for sparse interaction modules. This

ensures a fair comparison between hand-crafted and AutoML

models, as the widest part in hand-crafted/AutoML models

does not exceed 512. All hand-crafted feature interactions

(e.g., CrossNet) are stacked 7 times to match N = 7 blocks in

the AutoML supernet, as NASRec, AutoCTR, and proposed

DistDNAS employ N = 7 blocks for feature interaction. We

name the derived NAS baselines NASRec (tiny) and Au-
toCTR (tiny). We implement all baseline feature interactions

based on open-source code and/or paper demonstration.

B. Evaluation on Criteo Terabyte

We use DistDNAS to represent the performance of the best

models discovered by DistDNAS and compare performance

against a series of cost metrics such as FLOPs and parameters.

We use AUC, Normalized Entropy (NE) [19], and LogLoss as

evaluation metrics to measure model performance. We also

calculate the testing NE of each model relative to DLRM

and demonstrate relative performance. Note that relative NE

is equivalent to relative LogLoss on the same testing day of

data. Table I summarizes our evaluation of DistDNAS. Here,

M indicates the number of parallel stackings we apply on

DistDNAS to match the FLOPs of baseline models.

Upon transferring to large datasets, previous AutoML mod-

els [15], [16] searched on smaller datasets are less competitive

when applied to large-scale Criteo Terabyte. This is due

to sub-optimal architecture transferability from the source

dataset (i.e., Criteo Kaggle) to the target dataset (i.e., Criteo

Terabyte). Among all baseline models, DCN-v2 achieves state-

of-the-art performance on Criteo Terabyte with the lowest

LogLoss/NE and highest AUC. DistDNAS shows remarkable

model efficiency by establishing a new Pareto frontier on

AUC/NE versus FLOPs. With a discretization threshold of

0.25, DistDNAS outperforms tiny baseline models such as

DLRM and DeepFM and unlocks at least 0.02% AUC/NE

with on-par FLOPs complexity. With a discretization threshold

of 0.2, DistDNAS achieves better AUC/NE as state-of-the-art

DCN-v2 models, yet with a reduction of over 60% FLOPS.

By naively stacking more blocks in parallel, DistDNAS out-

performs DCN-v2 by 0.001 AUC and achieves state-of-the-art.

VI. DISCUSSION

In this section, we conduct ablation studies and analyze

various confounding factors within DistDNAS.
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Fig. 6. Comparison of learned architecture weights under distributed DNAS versus DistDNAS.

A. DistDNAS Search Strategy

We discuss the alternative choices to DistDNAS as follows.

SuperNet indicates a direct use of the DistDNAS supernet as

a feature interaction module. No search is performed.

Distributed DNAS applies the DistDNAS search process in

a distributed manner but does not involve cost-aware regular-

ization. Both distributed DNAS and DistDNAS take 2 hours

to complete on NVIDIA A5000 GPUs.

One-shot DNAS kicks off DNAS and iteratively over the

entire search data set (that is, 22 days in Criteo Terabyte) to

obtain the best architecture. Running a one-shot DNAS takes

∼ 50 GPU hours on an NVIDIA A5000 GPU.

Fresh DNAS only uses the most recent data in the training

data set (that is, day 22 on Criteo Terabyte) and performs a

search to learn the best architecture. This serves as a strong

baseline due to the correlation between testing data set and

the most recent data.

DistDNAS applies all the techniques proposed in this paper,

including distributed search and cost-aware regularization. Fig-

ure 6 compares the learned architecture weights in Distributed

DNAS versus DistDNAS. DistDNAS is more likely to preserve

cost-efficient interaction modules like EmbedFC/Identity than

distributed DNAS without cost-aware regularization.

We perform each of the searches above and evaluate differ-

ent search strategies based on the following questions:

• (Search Convergence) Whether the search converges and

produces effective feature interactions?

• (Training Convergence) Does the discovered feature inter-

action converge on a large-scale Criteo Terabyte benchmark

with 24 days of training data?

• (Testing Quality) What is the quality of the interactions of

the features discovered?

Table II summarizes a study of different search strategies

for these questions. We have a few findings regarding the use

of distributed search and cost-aware regularization.

TABLE II
STUDY OF DIFFERENT DISTDNAS SEARCH STRATEGIES.

Strategy Searching Training Testing
Converge? Converge? FLOPs/NE

SuperNet N/A No N/A
One-shot DNAS No No N/A
Freshness DNAS Yes No N/A

Distributed DNAS Yes Yes 3.56M/0.8460
DistDNAS Yes Yes 3.11M/0.8444

AUC Relative NE (%)

Testing 
Day t

Fig. 7. Comparison of AUC and Relative NE under recurring training.

A standalone supernet cannot converge when trained on

Criteo Terabyte dataset, indicating that different feature in-

teractions may have conflicts with each other.

On a large-scale dataset such as Criteo Terabyte, dis-

tributing DNAS over multiple-day splits and aggregating the

learned weight architectures are critical to the convergence of

search and training. This is because in recommender systems,

there might be an abrupt change in different user behaviors

across/intra-days; thus, a standalone architecture learned on a

single day may not be suitable to capture the knowledge and fit

all user-item representations. Additionally, as NAS may overfit

the target dataset, a standalone feature interaction searched on

day X may not be able to learn day Y well and is likely to

collapse due to changes in user behavior.

We also compare distributed DNAS with DistDNAS to

demonstrate the importance of cost-aware regularization. Ex-

perimental evaluation demonstrates that FLOPS-regularization

enhances the performance of searched feature interaction,

removing the redundancy contained in the supernet. This ob-

servation provides another potential direction for recommender

models to compress unnecessary characteristics and derive

better recommender models, such as the usage of pruning.

B. Performance Analysis under Recurring Training Scenario

Recurring training [19] is a common practice in recom-

mender system applications. In recurring training, practitioners

must regularly update the model on the latest data to gain

fresh knowledge. Here, we simulate the scenario in recurring

training to evaluate top-performing feature interactions (i.e.,

DistDNAS and DCN-v2) on different training/evaluation splits

of Criteo Terabyte. We use day 1 to day t as training dates

and day t+1 as testing dates to report AUC and relative NE.

We demonstrate the evaluation of recurring training on

DistDNAS, DCN-v2, and DLRM (baseline) in Figure 7.

DistDNAS consistently outperforms the previous state-of-the-
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art DCN-v2 on all testing splits under recurring training. This

indicates that DistDNAS successfully injects the implicit pat-

terns contained within the large-scale dataset into the searched

feature interaction.

VII. CONCLUSION

In this article, we emphasize search efficiency and serving

efficiency in the design of feature interactions through a

differentiable supernet. We propose DistDNAS to explore the

differentiable supernet containing various dense and sparse

interaction modules. We distribute the search on different

days of training data to advance search scalability, reducing

end-to-end search cost from 2 days to 2 hours with a 25×
speed-up in scalability. In addition, DistDNAS incorporates

cost-aware regularization to remove potential conflicts and re-

dundancies within feature interaction modules, yielding better

performance and efficiency in searched architectures.
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