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A MULTIFIDELITY MACHINE LEARNING BASED
SEMI-LAGRANGIAN FINITE VOLUME SCHEME FOR LINEAR

TRANSPORT EQUATIONS AND THE NONLINEAR
VLASOV--POISSON SYSTEM\ast 

YONGSHENG CHEN\dagger , WEI GUO\ddagger , AND XINGHUI ZHONG\S 

Abstract. Machine-learning (ML) based discretization has been developed to simulate complex
partial differential equations (PDEs) with tremendous success across various fields. These learned
PDE solvers can effectively resolve the underlying solution structures of interest and achieve a level of
accuracy which often requires an order-of-magnitude finer grid for a conventional numerical method
using polynomial-based approximations. In a previous work [13], we introduced a learned finite vol-
ume discretization that further incorporates the semi-Lagrangian (SL) mechanism, enabling larger
CFL numbers for stability. However, the efficiency and effectiveness of such a methodology heav-
ily rely on the availability of abundant high-resolution training data, which can be prohibitively
expensive to obtain. To address this challenge, in this paper, we propose a novel multifidelity ML-
based SL method for transport equations. This method leverages a combination of a small amount of
high-fidelity data and sufficient but cheaper low-fidelity data. The approach is designed based on a
composite convolutional neural network architecture that explores the inherent correlation between
high-fidelity and low-fidelity data. The proposed method demonstrates the capability to achieve a
reasonable level of accuracy, particularly in scenarios where a single-fidelity model fails to generalize
effectively. We further extend the method to the nonlinear Vlasov--Poisson system by employing
high-order Runge--Kutta exponential integrators. A collection of numerical tests are provided to
validate the efficiency and accuracy of the proposed method.

Key words. semi-Lagrangian, machine learning, convolutional neural network, multifidelity,
Vlasov--Poisson system
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1. Introduction. The rapid development of machine learning (ML) has opened
new research avenues for approximating complex partial differential equations (PDEs),
and many successful ML-based PDE solvers are designed by leveraging the expres-
sive power of neural networks (NNs) and advancements of automatic differentiation
technology [38]. Among these developments, ML-based discretization has received
substantial research attention. This approach combines the strengths of ML tech-
niques and conventional numerical methods, leading to remarkable success across
diverse scientific and engineering applications [45, 54, 46, 59, 57]. Such equation-
specific ML-based discretization replaces the polynomial-based approximation with
NNs, yielding more flexible and accurate representations of the underlying PDEs
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1422 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

[46, 59]. With high-fidelity data, optimal numerical discretization can be learned
through the training process of NNs. This enables such ML-based discretization to
achieve accurate and stable numerical solutions even with much coarser grid resolu-
tions [3, 64, 31], reducing computational cost compared to traditional numerical meth-
ods that require a finer grid for comparable accuracy. Other approaches of ML-based
PDE solvers include the physics-informed neural networks (PINNs), which utilize the
physics-informed loss [61, 62, 41, 52, 51], neural operators [39, 34, 30, 35, 5, 58], auto-
regressive methods [3, 24, 27, 6, 14], etc. Compared to these methods, ML-based
discretization offers an additional advantage: the ability to enforce inherent physical
constraints, such as conservation of mass, momentum, and energy of the system, at
the discrete level. The integration of such inductive biases plays a pivotal role in
enhancing the generalization capabilities of the NN [3, 64, 31].

In our recent work [13], we proposed an autoregressive ML finite volume (FV)
method under the ML-based discretization framework. This method couples with the
semi-Lagrangian (SL) mechanism for solving linear transport equations. By incor-
porating a specific inductive bias into the NN, the method aims to learn the SL
discretization from the data, avoiding the need for costly upstream cells tracking.
The proposed method inherits all the advantages of the ML-based discretization ap-
proach. Additionally, it allows for a larger Courant--Friedrichs--Lewy (CFL) number
for stability compared to the Eulerian method-of-line approach, thereby enhancing
the efficiency. However, the success of this method heavily relies on the availabil-
ity of sufficient high-fidelity data, which can be prohibitively expensive to generate,
especially for complex PDE simulations. This is known as a primary challenge for
ML-based methods. While high-fidelity data is ideal for training the NN, it is often
difficult to acquire and scarce in quantity. On the other hand, the low-fidelity data
is easily obtainable but is insufficient for training ML models with satisfactory accu-
racy. Therefore, using a single-fidelity model is prone to generalization failure. To
address this limitation, it becomes necessary to leverage data with multiple fidelity
levels for multifidelity modeling. This approach can enhance both the accuracy and
generalization capability of the model [21, 47].

In the literature, multifidelity modeling with NNs can generally be categorized
into three approaches. The first approach focuses on learning the correlation between
the low-fidelity and high-fidelity data. For instance, it has been employed to approx-
imate the linear or nonlinear correlations between low-fidelity and high-fidelity solu-
tions for PINNs [37, 43, 53] and for operator learning using the DeepONet approach
[40, 19, 26]. Multifidelity Bayesian NNs [42], which integrate the Bayesian framework
and PINNs, provide an example of capturing the cross-correlation with uncertainty
quantification between the low- and high-fidelity data. Recently, the authors in [10]
proposed a convolutional NN (CNN) architecture to exploit the correlation among the
multifidelity data. More recently, the authors in [11] proposed a multifidelity PINN,
where the low- and high-fidelity solutions are projected onto the same feature space
using an encoder, and their projections are adjacent by constraining their relative
distance with the NN. The second approach in multifidelity learning involves utilizing
transfer learning [60]. In this approach, the NN is initially trained with low-fidelity
information and subsequently fine-tuned with high-fidelity information, aiming to im-
prove the overall accuracy of the model. Several related works on PDE solving tasks
with transfer learning can be found in [1, 2, 9, 12, 17, 18, 29, 55, 44, 36]. The third
approach involves learning low-fidelity and high-fidelity solutions using the same NN.
This approach can be achieved by using the low-fidelity solution as an intermediate
value of the network [25] or by imposing constraints on the solution with any available
high-fidelity data [4].
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1423

In this paper, we propose a novel multifidelity ML-based method for the ML-based
SL FV method solving transport equations, with the focus on scenarios where there is
an abundance of low-fidelity data and limited high-fidelity data. Our method belongs
to the first category and aims to take advantage of the accuracy of the high-fidelity
data and the accessibility of the low-fidelity data simultaneously. To achieve this, we
introduce a composite NN architecture that consists of two subnetworks: the low-
fidelity network and the high-fidelity network. The low-fidelity network shares the
same structure as the ML-based SL FV scheme presented in [13], and it is intended
to predict low-fidelity solutions. The high-fidelity network also has a similar struc-
ture but incorporates the output of the low-fidelity network as an additional input to
approximate the correlation between the low-fidelity and high-fidelity solutions. By
integrating the two networks, our method achieves improved stability and accuracy
compared to using networks trained solely on low-fidelity or high-fidelity data. It also
exhibits satisfactory generalization capabilities. Moreover, our method inherits the
advantages of the ML-based SL FV scheme [13], such as mass conservation, transla-
tional equivariance, avoiding the need to track upstream cells, the ability to allow for
large CFL numbers, and attaining an accuracy level that exceeds that of traditional
numerical algorithms with the same mesh resolution.

In addition to our proposed multifidelity ML-based SL FV method for solving
linear transport equations, we also propose to extend this method for simulating
the nonlinear Vlasov--Poisson (VP) system. The VP system presents an additional
challenge for accurate tracking of its characteristic equations due to the inherent
nonlinearity. To overcome this challenge, we combine the high-order Runge--Kutta
(RK) exponential integrators (RKEI), introduced in [8, 7]. By employing the RKEI,
the VP system can be decomposed into a sequence of linearized transport equations
with frozen coefficients [7, 63]. This decomposition allows us to apply the multifidelity
model, resulting in a nonlinear data-driven multifidelity SL FV scheme for the VP
system.

The rest of the paper is organized as follows. In section 2, we review the ML-based
SL FV scheme proposed in [13]. Section 3 is devoted to presenting our multifidelity
data-driven SL FV scheme. In particular, we lay out the details for linear transport
equations in section 3.1 and discuss its extension to the nonlinear VP system by
coupling with the RKEI method in section 3.2. In section 4, numerical results are
provided to demonstrate the performance of our multifidelity method. The conclusion
and future work are discussed in section 5.

2. ML-based SL FV scheme. In this section, we provide a brief overview of
the ML-based SL method for solving linear transport equations developed in [13].
The methodology will serve as a building block of the proposed multifidelity solver
discussed in section 3.

Consider the following one-dimensional (1D) transport equation

ut + (a(x, t)u)x = 0, x\in \Omega ,(2.1)

where a(x, t) denotes the velocity field. Here, the domain \Omega is a bounded interval.
Periodic boundary conditions are imposed for simplicity, but the proposed method is
also capable of handling other types of boundary conditions, as shown in section 4. \Omega is
uniformly partitioned into N cells, where each cell is represented by Ii = [xi - 1

2
, xi+ 1

2
],

and the mesh size is denoted by h= xi+ 1
2
 - xi - 1

2
. In an SL FV scheme, the solution

is represented by the cell-averaged values Um
i at time tm in the cell Ii. The scheme

then advances \{ Um
i \} using characteristic information. Specifically, the scheme traces

the characteristics backward in time from time step tm+1 to tm by
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1424 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG\left\{   
dx(t)

dt
= a(x(t), t),

x(tm+1) = xi+ 1
2
, i= 1, . . . ,N,

(2.2)

to obtain the endpoints of the upstream cell, denoted by \~xm
i+ 1

2

= x(tm), as shown in

Figure 2.1. The advantage of integrating characteristic information in the algorithm
design is that it allows for a larger CFL number and achieves higher accuracy and
efficiency. Then \{ Um+1

i \} can be updated based on the fact that the exact solution
u(x, t) satisfies \int 

Ii

u
\bigl( 
x, tm+1

\bigr) 
dx=

\int \~xm

i+1
2

\~xm

i - 1
2

u (x, tm)dx, i= 1, . . . ,N,

and the right-hand side can be approximated by integrating the polynomials in [\~xm
i - 1

2

,

\~xm
i+ 1

2

] reconstructed under the standard FV framework. With the normalized shift

defined by

\xi mi+ 1
2
=

\~xm
i+ 1

2

 - xi+ 1
2

h
, i= 1, . . . ,N,

the SL FV schemes can be rewritten as the following formulation:

Um+1
i =

\sum 
\ell \in \scrS m

i

dmi,\ell U
m
\ell ,(2.3)

where \scrS m
i denotes the stencil used for updating Um+1

i , and \{ dmi,\ell \} are the associated
coefficients fully determined by \{ Um

i \} and \{ \xi mi \} . For example, by employing quadratic
polynomial reconstruction and assuming \xi m

i\pm 1
2

\in [ - 1,0], Um+1
i is given by

Um+1
i =

\biggl( 
1

6
\xi mi - 1

2
 - 1

6

\Bigl( 
\xi mi - 1

2

\Bigr) 3
\biggr) 
Um
i - 2

+

\biggl( 
 - 5

6
\xi mi - 1

2
+

1

2

\Bigl( 
\xi mi - 1

2

\Bigr) 2

+
1

3

\Bigl( 
\xi mi - 1

2

\Bigr) 3

 - 1

6
\xi mi+ 1

2
+

1

6

\Bigl( 
\xi mi+ 1

2

\Bigr) 3
\biggr) 
Um
i - 1

+

\biggl( 
1 - 1

3
\xi mi - 1

2
 - 1

2

\Bigl( 
\xi mi - 1

2

\Bigr) 2

 - 1

6

\Bigl( 
\xi mi - 1

2

\Bigr) 3

+
5

6
\xi mi+ 1

2
 - 1

2

\Bigl( 
\xi mi+ 1

2

\Bigr) 2

 - 1

3

\Bigl( 
\xi mi+ 1

2

\Bigr) 3
\biggr) 
Um
i

+

\biggl( 
1

3
\xi mi+ 1

2
+

1

2

\Bigl( 
\xi mi+ 1

2

\Bigr) 2

+
1

6

\Bigl( 
\xi mi+ 1

2

\Bigr) 3
\biggr) 
Um
i+1,

tm

tm+1

xi - 1
2

xi+ 1
2

\~xm
i - 1

2

\~xm
i+ 1

2

\xi m
i - 1

2

\cdot h \xi m
i+ 1

2

\cdot h

Fig. 2.1. Schematic illustration of the 1D SL FV scheme.
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1425

which is third-order accurate. If nonlinear reconstruction is utilized, the coefficients
may also depend on \{ Um

i \} . More details can be found in [49]. Moreover, the scheme
(2.3) is provably mass conservative when\sum 

i

dmi,\ell = 1 \forall \ell (2.4)

(see, e.g., [32, 20, 13]).
It is worth emphasizing that in general the computation of \{ dmi,\ell \} requires expen-

sive tracking of the geometries for upstream cells. This procedure not only demands
sophisticated implementation but also significantly dominates the overall computa-
tional cost, especially in high dimensions [32, 20]. To address this challenge, we pro-
posed an ML-based SL FV scheme in [13], for which the discretization coefficients
\{ dmi,\ell \} are learned from the data, drawing inspiration from related works [3, 64, 31].
In particular, the proposed scheme incorporates the normalized shifts \{ \xi mi \} as an
inductive bias and uses the NN f\bfitW to infer the discretization coefficients:

\bfitd m = f\bfitW (\bfitU m,\bfitxi m),(2.5)

where \bfitU m, \bfitxi m, and \bfitd m denote the collection of \{ Um
i \} , \{ \xi m

i - 1
2

\} , and \{ dmi,\ell \} , respec-
tively. The NN f\bfitW takes \bfitU m and \bfitxi m as two-channel inputs and is constructed as a
stack of convolutional layers with trainable parameters \bfitW and nonlinear activation
functions, such as ReLU. In addition, periodic padding is applied to incorporate peri-
odic boundary conditions. A constraint layer is incorporated to enforce (2.4), ensuring
exact mass conservation. Once \bfitd m is obtained, the solution \bfitU m+1 is updated with
(2.3). The scheme is schematically illustrated in Figure 2.2. Note that CNNs rely on
a shared-weight architecture of the convolution filters to capture the characteristics of
the solution structures, necessitating a uniform mesh discretization. In addition, the
ML-based scheme has limitations for the mesh refinement as opposed to the standard
FV methods. However, thanks to the underlying CNN architecture, the scheme is
able to be generalized to larger computational domains by keeping the same mesh
size.

Unlike the traditional SL FV schemes, this ML-based scheme unitizes a set
of fixed centered stencils. For example, we can choose the 5-cell stencil \scrS m

i =
\{ i  - 2, i  - 1, i, i + 1, i + 2\} to update the solution Um+1

i . In this case, \bfitd m, \bfitU m,
and \bfitxi m are 2D tensors of dimensions N \times 5, N \times 1, and N \times 1, respectively. In this
way, this approach offers the benefits of simplifying algorithm development and con-
veniently satisfying the mass conservation constraint, though it compromises the un-
conditional stability of a traditional SL FV scheme, which relies on local stencils for
reconstruction. Numerical evidence demonstrates that the ML-based SL FV scheme

Fig. 2.2. Illustration of the proposed ML-based SL FV method in [13].
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1426 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

can maintain stability for CFL numbers up to 1.8. In addition, the scheme features the
translational equivariance, which is highly desirable for data efficiency and improved
generalization capability.

The method can be easily adapted for 2D linear transport problems with slight
modification. We consider the 2D linear transport equation with variable coefficients

ut +\nabla \cdot (\bfitv (x, y, t)u) = 0, (x, y)\in \Omega ,(2.6)

where \bfitv denotes the velocity field \bfitv (x, y, t) = (a(x, y, t), b(x, y, t)). The computational
domain \Omega is a bounded rectangle, and periodic boundary conditions are imposed in
both x and y directions. The associated characteristic system writes\left\{       

dx(t)

dt
= a(x(t), y(t), t),

dy(t)

dt
= b(x(t), y(t), t).

(2.7)

Assume \Omega is partitioned uniformly with a collection of rectangular cells, i.e., \Omega =\bigcup 
i,j Iij , where Iij = [xi - 1

2
, xi+ 1

2
]\times [yj - 1

2
, yj+ 1

2
]. Denote by hx = xi+ 1

2
 - xi - 1

2
and by

hy = yj+ 1
2
 - yj - 1

2
the mesh sizes in x and y directions, respectively. Similarly to the

1D case, a 2D SL FV scheme needs to evolve (2.7) backward in time from tm+1 to tm

to obtain the upstream cell \~Iij of Iij , as shown in Figure 2.3. Denote the upstream
point of each grid point (xi - 1

2
, yj - 1

2
) as (\~xi - 1

2 ,j - 
1
2
, \~yi - 1

2 ,j - 
1
2
). Then we define

\xi i - 1
2 ,j - 

1
2
=

\~xi - 1
2 ,j - 

1
2
 - xi - 1

2

hx
, \eta i - 1

2 ,j - 
1
2
=

\~yi - 1
2 ,j - 

1
2
 - yj - 1

2

hy

as the normalized shifts of (xi - 1
2
, yj - 1

2
) in the x and y directions, respectively. The

traditional 2D SL FV scheme is then formulated with the following identity:\int \int 
Iij

u(x, y, tm+1)dxdy=

\int \int 
\~Iij

u(x, y, tm)dxdy.(2.8)

Denote by Um
ij the cell average of the numerical solution in the cell Iij at time step

t = tm. Similarly to the 1D case, to update the numerical solution, a polynomial is
reconstructed over each cell using the cell averages of itself and the neighbors, and the
integral on the right-hand side of (2.8) is computed in a subcell-by-subcell fashion.
The scheme can be written as

Um+1
ij =

\sum 
\ell \in \scrS m

ij

dmij,\ell U
m
\ell ,(2.9)

Iij

\~Iij

Fig. 2.3. Schematic illustration of the 2D SL FV scheme.
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1427

where \scrS m
ij denotes the stencil employed to update Um+1

ij . Again, the coefficients
\{ dmij,\ell \} are determined by the solution averages \{ Um

ij \} together with normalized shifts
\{ \xi m

i - 1
2 ,j - 

1
2

\} , \{ \eta m
i - 1

2 ,j - 
1
2

\} . In addition, as with the 1D case, the scheme (2.9) is mass

conservative if \sum 
(i,j)\in \scrE m

\ell 

dmij,\ell = 1 \forall l,(2.10)

where \scrE m
\ell = \{ (i, j) : \ell \in \scrS m

ij \} . Motivated by the traditional SL FV scheme, in [13] we
proposed a 2D ML-based SL FV scheme as follows:

\bfitd m = f\bfitW (\bfitU m,\bfitxi m,\bfiteta m),(2.11)

where the tensors\bfitU m,\bfitxi m,\bfiteta m are formed by collecting \{ Um
ij \} , \{ \xi mi - 1

2 ,j - 
1
2

\} , \{ \eta m
i - 1

2 ,j - 
1
2

\} ,
respectively. f\bfitW takes a 3-channel input and outputs the coefficient tensor \bfitd m, which
is used to update the solution. The NN f\bfitW is constructed by stacking a series of 2D
convolutional layers, combined with a constraint layer to enforce the condition (2.10)
for exact mass conservation. It is important to note that, similarly to the 1D case,
we employ a set of squared fixed stencils. In particular, if a fixed 5\times 5-cell stencil and
an N \times N cell grid are used, the dimensions of \bfitd m,\bfitU m,\bfitxi m, and \bfiteta m are tensors of
size N \times N \times 5\times 5, N \times N \times 1, N \times N \times 1, and N \times N \times 1, respectively. Again, due
to the use of fixed stencils, the proposed ML-based SL formulation is constrained by
the CFL condition.

The rationale behind the ML-based PDE discretization approach lies in the obser-
vation that the solution manifold often exhibits low-dimensional structures, including
recurrent patterns and coherent structures. By leveraging high-resolution training
data, the underlying NN effectively learns an optimal discretization that can achieve
significantly higher accuracy compared with a traditional polynomial-based method.
However, similarly to other ML-based discretization schemes, the effectiveness of this
method heavily relies on the availability of abundant high-resolution training data. In
particular, to generate the training data, we sample a set of initial conditions from a
prescribed distribution. From each sampled initial condition, we employ an accurate
and reliable FV method, such as an SL WENO method or Eulerian WENO method,
to generate solution trajectories on a high-resolution mesh. It is crucial to adequately
resolve the solution structures of interest during this process. Subsequently, we obtain
the training data by downsampling these solution trajectories to a mesh with reduced
resolution by an order of magnitude. It is worth noting that acquiring such training
data can often be prohibitively expensive, especially for complex problems such as
plasma simulations. Moreover, the scarcity of high-resolution data can significantly
limit the performance of the scheme and impede its ability to generalize effectively.

3. Multifidelity data-driven SL FV scheme. In this section, we present
a novel data-driven multifidelity SL FV scheme aimed at reducing the reliance on
high-resolution data for the ML-based SL FV method introduced in section 2, while
maintaining a reasonable level of accuracy. We begin by introducing the scheme for
transport equations in section 3.1 and subsequently extend the scheme to the nonlinear
VP system in section 3.2.

3.1. Transport equations. In this subsection, we lay out the details of the
multifidelity approach for linear transport equation (2.1) with the goal of enhancing
the accuracy and efficiency of the ML-based SL FV method while minimizing the
reliance on high-resolution data.
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1428 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

The training dataset for our multifidelity approach is composed of both high-
fidelity and low-fidelity data. In particular, it includes a set of NL low-fidelity tra-
jectories \{ \{ \bfitU (i),m

L \} TL
m=0\} 

NL
i=1 and NH high-fidelity trajectories \{ \{ \bfitU (j),n

H \} TH
n=0\} 

NH
j=1, with

NL typically being greater than NH . Here, \bfitU 
(i),m
L represents the solution data in the

ith low-fidelity trajectory at time step tm, and \bfitU 
(j),n
H represents the solution data

in the jth high-fidelity trajectory at time step tn. The high-fidelity data comprises
coarsened high-resolution numerical solution trajectories, which are accurate but com-
putationally expensive and scarce. On the other hand, the low-fidelity data consists of
numerical solution trajectories computed by a numerical scheme on a low-resolution
mesh. These low-fidelity trajectories are less accurate but more affordable compared
to the high-fidelity ones. In addition, both the high-fidelity and low-fidelity solution
trajectories are generated by independently sampling initial conditions from a pre-
scribed distribution, and all trajectories share the same time steps and spatial mesh
size. The key assumption behind the multifidelity architecture is that there exists a
correlation between data of different fidelity levels. In particular, given two consec-
utive solutions \{ \bfitU m

L ,\bfitU m+1
L \} and \{ \bfitU m

H ,\bfitU m+1
H \} with \bfitU m

L =\bfitU m
H , we assume that the

relation between \bfitU m+1
L and \bfitU m+1

H is given by

\bfitU m+1
H = g(\bfitU m

H ,\bfitxi m,\bfitU m+1
L ),(3.1)

where the function g takes the previous high-fidelity solution \bfitU m
H , the normalized

shifts \bfitxi m, and the low-fidelity prediction \bfitU m+1
L as inputs and generates the high-

fidelity solution \bfitU m+1
H with enhanced accuracy. While it is feasible to train a single-

fidelity model using abundant high-fidelity data, where the model directly takes \bfitU m
H

and \bfitxi m as inputs and computes the approximation \bfitU m+1
H with high accuracy, in sce-

narios with limited availability of high-fidelity data, it is more effective to incorporate
\bfitU m+1

L and explore the inherent correlation with (3.1). Despite the low accuracy of the
low-fidelity data \bfitU m+1

L , it can still provide valuable information and greatly accelerate
the training process of the high-fidelity component in the model. By leveraging the
inherent correlation between data of different fidelity levels, our multifidelity approach
allows us to improve the accuracy of high-fidelity predictions even when high-fidelity
data is limited. Moreover, by combining both high-fidelity and low-fidelity data in
our training data set, we can benefit from the accuracy of the high-fidelity data and
the accessibility of the low-fidelity data simultaneously. It enables us to develop a
robust model that generalizes well across different fidelity levels and maximizes the
utility of available data resources, leading to more efficient and accurate solutions in
practice.

Our multifidelity data-driven SL FV scheme employs a composite architecture,
drawing inspiration from previous works under various frameworks such as Gaussian
process regression [50, 48], PINNs [43], and DeepONets [26]. Figure 3.1 provides a
schematic diagram illustrating this architecture. It consists of two key components:
the low-fidelity network, denoted as fL, and the high-fidelity network, denoted as gH .
The low-fidelity network fL follows the same structure as the ML-based SL FV scheme
described in section 2, which takes a two-channel input (\bfitU m,\bfitxi m) and predicts the so-
lution at the next time level, capturing the underlying trends in the data. Motivated
by (3.1), the high-fidelity network gH shares a similar structure to fL, but it takes a
three-channel input (\bfitU m

H ,\bfitxi m,\bfitU m+1
H,t ), where \bfitU m+1

H,t represents the intermediate solu-
tion computed by fL using the input (\bfitU m

H ,\bfitxi m). The objective of gH is to approximate
the correlation and generate an enhanced solution \bfitU m+1

H with an improved accuracy
compared to \bfitU m+1

H,t . By integrating both low-fidelity and high-fidelity components,
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1429

Fig. 3.1. Illustration of the multifidelity architecture.

our multifidelity architecture leverages the underlying trends captured by fL and in-
corporates the correlation approximation from gH . This integration aims to enhance
the accuracy of the solution beyond what each component can achieve individually.
The composite architecture effectively combines the strengths of both components,
leading to improved accuracy and reliability in our data-driven SL FV scheme.

The training procedure for our multifidelity data-driven SL FV scheme involves
the simultaneous training of the low-fidelity network fL and the high-fidelity network
gH . The two networks, fL and gH , are trained by minimizing the one-step loss given
by

\scrL MF (fL, gH) = \lambda 1\scrL LF + \lambda 2\scrL HF ,(3.2)

where \lambda 1 and \lambda 2 are hyperparameters that balance low-fidelity loss \scrL LF and high-
fidelity loss \scrL HF . The low-fidelity loss is defined as

\scrL LF (fL) =
1

NL

1

TL

NL\sum 
i=1

TL - 1\sum 
m=0

\bigm| \bigm| \bigm| fL(\bfitU (i),m
L ,\bfitxi m) - \bfitU 

(i),m+1
L

\bigm| \bigm| \bigm| 2 ,(3.3)

where fL(\bfitU 
(i),m
L ,\bfitxi m) represents the prediction of the low-fidelity network fL for the

next time step given the two-channel input (\bfitU 
(i),m
L , \bfitxi m). The high-fidelity loss is

defined as

\scrL HF (gH) =
1

NH

1

TH

NH\sum 
j=1

TH - 1\sum 
n=0

\bigm| \bigm| \bigm| gH \Bigl( 
\bfitU 

(j),n
H ,\bfitxi n,\bfitU 

(j),n+1
H,t

\Bigr) 
 - \bfitU 

(j),n+1
H

\bigm| \bigm| \bigm| 2 ,(3.4)

where \bfitU 
(j),n+1
H,t = fL(\bfitU 

(j),n
H ,\bfitxi n) represents the intermediate solution computed by the

low-fidelity network fL using the two-channel input (\bfitU 
(j),n
H ,\bfitxi n), and gH(\bfitU 

(j),n
H ,\bfitxi n,

\bfitU 
(j),n+1
H,t ) represents the prediction of the high-fidelity network gH for the next time

step given the three-channel input (\bfitU 
(j),n
H ,\bfitxi n,\bfitU 

(j),n+1
H,t ). During training, the objec-

tive is to minimize the multifidelity loss by adjusting the parameters of both networks.
The hyperparameters \lambda 1 and \lambda 2 control the relative importance of the low-fidelity and
high-fidelity losses in the overall loss function. Although it is possible to first train
the network fL using the ML-based SL FV method discussed in section 2 and subse-
quently train the network gH with fixed fL by (3.2), simultaneous training of the NNs
with multitask learning offers several benefits, including improved data efficiency and
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1430 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

accelerated learning, as highlighted in [16]. It is worth noting that one-step training,
as described above, may suffer slightly weaker generalization. On the other hand, un-
rolling the training over multiple time steps can improve the accuracy and stability at
the cost of increased training difficulty, as discussed in [6]. In the conducted numerical
experiments, one-step training is used for linear cases, while training is unrolled for
16 time steps when dealing with the nonlinear VP system.

For the implementation of the trained multifidelity SL FV scheme in the test-
ing phase, the solutions are updated in time as follows: Starting from the solution
\bfitU m at time level m, where \bfitU 0 is initialized as the cell averages of the given initial
condition, the characteristic equation (2.2) is solved to obtain the normalized shifts
\bfitxi m. Next, using the trained low-fidelity network fL, the intermediate solution \bfitU m+1

t

is computed by taking the two-channel inputs (\bfitU m,\bfitxi m), i.e., \bfitU m+1
t = fL(\bfitU 

m,\bfitxi m).
Finally, the solution \bfitU m+1 with enhanced accuracy is generated by feeding \bfitU m, \bfitxi m,
and \bfitU m+1

t as inputs to the trained high-fidelity network gH , resulting in \bfitU m+1 =
gH(\bfitU m,\bfitxi m,\bfitU m+1

t ). It is numerically observed that the intermediate solution \bfitU m+1
t

achieves a higher level of accuracy compared to \bfitU m+1
L , which is obtained by the

single-fidelity SL FV method trained solely with low-fidelity data. This difference
in accuracy validates the effectiveness of the multifidelity approach and the acceler-
ated learning process for the high-fidelity network gH , which benefits from the more
accurate intermediate solution as part of its inputs.

3.2. The Vlasov--Poisson system. In this subsection, we extend the proposed
algorithm in section 3.1 for linear transport equations to the nonlinear VP system, to
address the challenges posed by its inherent nonlinearity.

The VP system is a fundamental model in plasma physics that describes inter-
actions between charged particles through self-consistent electric fields, modeled by
Poisson's equations in the nonrelativistic zero-magnetic field limit. The dimensionless
governing equations under a 1D in space and 1D in velocity (1D1V) setting is given
by

ft + vfx +E(x, t)fv = 0, (x, v)\in \Omega x \times \Omega v,(3.5)

Ex = \rho  - 1, \rho (x, t) =

\int 
\Omega v

f(x, v, t)dv,(3.6)

where f(x, v, t) is the probability distribution function of electrons at position x with
velocity v at time t, and \rho denotes the density. \Omega x denotes the physical domain, while
\Omega v represents the velocity domain. We consider periodic boundary conditions in the
x-direction and zero boundary conditions in the v-direction. It is worth mentioning
that in practice \Omega v is truncated to be finite and is taken large enough so that the
solution f \approx 0 at \partial \Omega v.

In addition, we assume a uniform background of fixed ions under a self-consistent
electrostatic field E.

Unlike the linear transport equation (2.1), the Vlasov equation (3.5) is a nonlinear
transport equation, which introduces additional challenges for accurately approximat-
ing its characteristic equations\left\{       

dx(t)

dt
= v(t),

dv(t)

dt
=E(x(t), t).

(3.7)

Consequently, designing an SL scheme becomes more complex for the VP system.
To address these challenges, the splitting approach has gained popularity in the
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literature [15, 56]. This approach decouples the VP system into several linear trans-
port equations, which are much easier to solve in the SL framework. However, it is
important to note that the inherent splitting error can potentially compromise the
overall accuracy of the solution. Recently, a nonsplitting SL methodology has been
introduced for the VP system, utilizing the commutator-free RKEI [8]. By employing
RKEI, the VP system is decomposed into a sequence of linearized transport equations
with frozen coefficients [7, 63], which can be effectively solved using the proposed mul-
tifidelity ML-based SL FV scheme. Our novel approach combines the advantages of
RKEI and multifidelity ML-based SL FV schemes, thereby avoiding the splitting er-
rors inherent in traditional splitting approaches and enabling efficient and accurate
solutions to the VP system.

To introduce the algorithm, we begin by considering a uniform partition of
the domain \Omega x \times \Omega v with Nx \times Nv cells, i.e., \Omega x \times \Omega v =

\bigcup 
ij Iij . The mesh sizes

in the x and v directions are represented by hx and hv, respectively. Let fm
ij denote

the numerical approximation of the cell average of f in the cell Iij at time level tm

and Em
i+ 1

2

be the numerical solution of E at the endpoint of the cell in the x direction.

The collections \{ Em
i - 1

2

\} and \{ fm
ij \} are denoted by \bfitE m and \bfitF m, respectively. Within

the FV framework, the electric field E(x) can be straightforwardly approximated from
Poisson's equation (3.6) as

Em
i+ 1

2
=Em

 - 1
2
+ hx

i\sum 
l=1

\left(  hv

Nv\sum 
j=1

fm
ij  - 1

\right)  , i= 1, . . . ,Nx.(3.8)

Here, Em
 - 1

2

is determined by the given boundary conditions. For instance, in case of

periodic boundary conditions, we have Em
 - 1

2

= 0.

Table 1
First-order RKEI.

0 0

1

Table 2
Second-order RKEI.

0
1
2

1
2

0

0 1

Our approach employs the RKEI technique to alleviate the difficulties associated
with accurately tracking the characteristics for the nonlinear VP system. The RKEI
method is represented by a Butcher tableau, which specifies the coefficients for the
integration steps. The accuracy of the method is determined by order conditions.
The simplest RKEI method is given by the Butcher tableau 1, which is first-order
accurate [8]. With this first-order RKEI, we can develop a ML-based SL FV scheme
for the VP system as follows.

(1) Compute \bfitE m using (3.8) based on the cell average approximations \bfitF m.
(2) Linearize the Vlasov equation with the fixed electric field \bfitE m and solve the

characteristic equations (3.7) to obtain the normalized shifts.
(3) Use the ML-based SL FV method, together with \bfitF m and the normalized

shifts, to predict \bfitF m+1.
The procedure can be summarized as

\bfitF m+1 =MLSL(\bfitE m,\Delta t)\bfitF m,(3.9)
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1432 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

whereMLSL(\bfitE m,\Delta t) denotes the ML-based SL FV evolution operator for the Vlasov
equation with the fixed electric field \bfitE m and time step \Delta t. However, the low-order
temporal accuracy of the first-order RKEI can limit its generalization capability.

In the following, we enhance the performance by employing a second-order RKEI
[8], represented by the Butcher tableau 2. The corresponding ML-based SL FV algo-
rithm for the VP system can be summarized as\left\{   \bfitF m,\ast =MLSL(\bfitE m,

1

2
\Delta t)\bfitF m,

\bfitF m+1 =MLSL(\bfitE m,\ast ,\Delta t)\bfitF m,
(3.10)

where \bfitE m and \bfitE m,\ast are determined via (3.8) by \bfitF m and \bfitF m,\ast , respectively. The
second-order scheme involves an intermediate stage \bfitF m,\ast and requires two applica-
tions of the ML-based SL FV evolution operator. It is numerically demonstrated
that this second-order method (3.10) exhibits improved generalization capabilities
and achieves a higher level of accuracy compared to the first counterpart (3.9). By
combining the proposed multifidelity framework with the ML-based SL approach, we
can effectively learn an optimal discretization for the VP system, while significantly
reducing the dependence on high-fidelity data. Moreover, all the desired properties of
the method for solving linear equations, such as mass conservation and translational
equivariance, are preserved for the nonlinear VP system. The learned multifidelity
model achieves a level of accuracy that surpasses traditional numerical algorithms
with comparable mesh resolution, leading to significant computational savings.

4. Numerical results. In this section, we carry out a series of numerical ex-
periments to demonstrate the performance of the proposed multifidelity ML-assisted
SL FV scheme for various benchmark 1D and 2D linear transport equations, as well
as 1D1V nonlinear VP systems. Note that the performance of the proposed scheme
is significantly influenced by the choice of hyperparameters for the NN structure.
Here, we present numerical results using the following default settings. For the linear
equations, we utilize 6 convolutional layers with 32 filters each, and a kernel size of
5 for both 1D and 2D cases. For the nonlinear VP systems, we employ 9 convo-
lutional layers with 32 filters each, using a kernel size of 5. In addition, to ensure
mass conservation, a constraint layer is added. Throughout the training process, we
employ the ReLU function as the activation function and use the Adam optimization
algorithm [38].

We are allowed to employ any accurate and stable FV schemes to generate both
high-fidelity and low-fidelity data. Specifically, for linear transport equations, we
adopt the Eulerian fifth-order FV WENO (WENO5) method [28], coupled with the
third-order strong-stability-preserving RK time integrator [23]. For nonlinear VP sys-
tems, we employ the conservative SL FV WENO5 scheme coupled with a fourth-order
RKEI [63]. The high-fidelity training data is obtained by coarsening high-resolution
solution trajectories into a low-resolution mesh. The low-fidelity training data is gen-
erated by directly running the transport scheme on the low-resolution mesh. In all
test examples, we primarily report the results of the proposed multifidelity learning
approach and compare these results with the single-fidelity model developed in sec-
tion 2 and the traditional WENO5 scheme. The plots presented below indicate the
performance of each approach: ``multifidelity"" refers to the proposed method, ``high-
fidelity"" denotes the single-fidelity ML-based SL FV model trained solely with high-
fidelity data, and ``low-fidelity"" denotes the single-fidelity ML-based SL FV model
trained solely with low-fidelity data.
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1433

4.1. Transport equations. In this subsection, we present numerical results for
simulating several 1D transport equations.

Example 4.1. In this example, we consider the following advection equation with
a constant coefficient,

ut + ux = 0, x\in [0,1],(4.1)

and periodic conditions are imposed.

We generate 30 low-resolution solution trajectories with a 32-cell grid as
low-fidelity training data. Each trajectory comprises 54 sequential time steps. For
high-fidelity training data, we downsample 15 high-resolution solution trajectories
computed with a 256-cell grid by a factor of 8. Each trajectory consists of 15 sequen-
tial time steps. Moreover, all trajectories, both low- and high-fidelity, are initialized
as a square wave with the height randomly sampled from the interval [0.1, 1] and the
width randomly selected from [0.2, 0.4]. We use a CFL number of 1.8 for determining
the time step and a centered 5-cell stencil for updating the solution. During the mul-
tifidelity model training, the parameters \lambda 1 and \lambda 2 are set as 0.1 and 1, respectively.
To test, we randomly generate square functions with widths and heights within the
same range as initial conditions. For comparison, we generate a reference solution
following the same approach as the high-fidelity data creation.

Figure 4.1 displays three test samples obtained from forward integration at differ-
ent time instances, computed by the proposed multifidelity model, traditional WENO5
scheme, as well as by single-fidelity models trained solely with high-fidelity or low-
fidelity data. It is observed that the low-fidelity model exhibits significant smearing
near discontinuities due to the inherent low accuracy of the training data. Meanwhile,
the high-fidelity model generates highly inaccurate results due to the lack of sufficient
high-fidelity data. In addition, the WENO5 method exhibits significant smearing
near discontinuities, which deteriorates over time as a result of the accumulation of
numerical diffusion. In contrast, our proposed multifidelity approach demonstrates
superior shock resolution, with sharp shock transitions and no spurious oscillations.
Notably, even after a long-time simulation of 256 time steps, which is about 17 times
the number of time steps used for generating high-fidelity training data, our multifi-
delity method remains remarkably close to the reference solution. This validates the
high stability and accuracy of the learned discretization.

Figure 4.2 shows the intermediate solution of our multifidelity model for the three
test samples, obtained from the trained low-fidelity network fL of the proposed mul-
tifidelity method. It is observed that the intermediate solution is significantly more
accurate compared to the results obtained by the low-fidelity model alone. This indi-
cates that the simultaneous training of the multifidelity model is beneficial for accel-
erating the learning process of the high-fidelity component. Figure 4.3(a) illustrates
the training loss of the three models throughout their respective training epochs.

Example 4.2. In this example, we consider the advection equation (4.1) with a
more complicated solution profile consisting of triangle and square waves.

Similarly to the previous example, we generate 30 low-resolution solution trajec-
tories using a 32-cell grid as the low-fidelity training data. Each trajectory consists
of 54 sequential time steps. To create high-fidelity training data, we downsample 15
trajectories of high-resolution solutions computed with a 256-cell grid by a factor of 8.
Each trajectory contains 15 sequential time steps. For both low- and high-fidelity tra-
jectories, the initial conditions include one triangle centered at 0.25 and one square
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1434 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

Fig. 4.1. Three test samples for square waves in Example 4.1.

wave centered at 0.75. The heights and widths of these shapes are randomly sampled
from the ranges [0.2, 0.8] and [0.2, 0.3], respectively. We use a fixed stencil size of 3
and set the CFL number to 1.8. The parameters for training are chosen as \lambda 1 = 0.05
and \lambda 2 = 1. For testing, the initial conditions are randomly generated from the same
distribution used to create the training data.

In Figure 4.4, we plot two test samples at several time instances during forward
integration. It is observed that the proposed multifidelity solver generates numerical
results with significantly higher resolution of the underlying nonsmooth structures
compared to the low-fidelity model. Moreover, the high-fidelity model exhibits severe
spurious oscillations and eventually blows up. Figure 4.5 presents the intermediate
solution of our multifidelity method for the two test samples. Similarly to the previous
example, we observe that the intermediate solution of our multifidelity method is
much more accurate compared to the results obtained by the low-fidelity model. The
training loss for three different methods during their respective training is shown in
Figure 4.3(b).

Example 4.3. In this example, we consider the advection equation

ut + ux = 0, x\in [ - \pi ,\pi ](4.2)

with initial conditions given in the form of a finite Fourier series as follows:

u(x,0) = a0 +

Nc\sum 
n=1

(an cos(nx) + bn sin(nx)).(4.3)
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Fig. 4.2. The intermediate solutions of three test samples for square waves in Example 4.1.

(a) Example 4.1 (b) Example 4.2

Fig. 4.3. The training loss for three different methods in Examples 4.1 (left) and 4.2 (right).

We impose an inflow boundary condition at x= - \pi ,

u( - \pi , t) = a0 +

Nc\sum 
n=1

(an cos(n\pi + nt) - bn sin(n\pi + nt)),

and an outflow boundary condition at x= \pi .

To create the training data, we generate 30 low-resolution solution trajecto-
ries with a 32-cell grid as the low-fidelity training data. Each trajectory comprises
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Fig. 4.4. Numerical solutions of two test samples for advection of triangle and square waves
in Example 4.2. CFL= 1.8.

Fig. 4.5. The intermediate solutions of two test samples for advection of triangle and square
waves in Example 4.2. CFL= 1.8.

30 sequential time steps. To create the high-fidelity training data, we downsample 15
trajectories of high-resolution solutions computed with a 256-cell grid by a factor of
8. Each trajectory contains 10 sequential time steps. For both the low- and high-
fidelity trajectories, the initial conditions are randomly chosen with Nc = 5, a0 = 0,
and an, bn, (n \geq 1) from a uniform distribution over [ - 1, 1]. We set the stencil size
to be 5, and the CFL number is 0.6. We choose the loss weights as \lambda 1 = 0.1 and
\lambda 2 = 1. As a standard practice, the inflow-outflow boundary conditions are incorpo-
rated via ghost cells. In particular, at the inflow boundary, we create a few ghost cells
(6 cells) by extending the solutions using the given boundary condition. Similarly, at
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Fig. 4.6. Numerical solutions of one test sample for advection of finite Fourier series in
Example 4.3.

the outflow boundary, the solutions are extended into the ghost cells, with each cell
adopting the value of the rightmost cell in the computational domain.

In Figure 4.6, we present one test sample at several time instances during forward
integration. It can be observed that the solution by our multifidelity model is remark-
ably close to the reference solution for this example with inflow and outflow boundary
conditions, similarly to the scenario with periodic boundary conditions presented in
previous examples.

Example 4.4. In this example, we simulate the following 1D advection equation
with a variable coefficient

ut + (u sin(x+ t))x = 0, x\in [0,2\pi ],(4.4)

subject to periodic conditions. This example is more challenging than the previous
two examples. In addition to the pure shift, the solution profiles will gradually deform
over time and exhibit more complicated structures.

To generate low-fidelity training data, we produce 90 solution trajectories on a 32-
cell grid, with each trajectory consisting of 12 sequential time steps. For high-fidelity
training data, we coarsen 90 solution trajectories over a 256-cell grid by a factor of 8,
with each trajectory consisting of 6 sequential time steps. As in the first example,
the initial condition is a step function with heights randomly sampled from the range
[0.1,1] and widths sampled from the range [2.5,3.5]. The center of each step function
is randomly selected from the entire domain of [0,2\pi ]. The stencil size is set to be 5,
and the CFL number is 0.5. We choose the loss weights as \lambda 1 = 0.5 and \lambda 2 = 1.

Figure 4.7 shows three test samples plotted at various time instances during the
forward integration. We run the trained models up to 20 time steps, which is greatly
beyond the range of the training data, to assess their generalization capability. Our
multifidelity model is able to accurately resolve such highly deformed solution struc-
tures that are not seen in the training data set. In contrast, both the high-fidelity
and low-fidelity solvers fail to generalize effectively and produce irrelevant results.

Example 4.5. In this example, we simulate the 2D deformational flow problem
proposed in [33], governed by the following transport equation,

ut + (a(x, y, t)u)x + (b(x, y, t)u)y = 0, (x, y)\in [0,1]2,(4.5)

with the velocity field being a periodic swirling flow,

a(x, y, t) = sin2(\pi x) sin(2\pi y) cos(\pi t/T ),

b(x, y, t) = - sin2(\pi y) sin(2\pi x) cos(\pi t/T ),
(4.6)
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Fig. 4.7. Numerical solutions of three test samples for the transport equation with a variable
coefficient in Example 4.4. CFL= 0.5.

where T is a constant. This is a widely recognized benchmark test for numerical
transport solvers. It exhibits a distinct dynamics, in which the solution profile deforms
over time as it follows the flow. The direction of the flow reverses at t= T/2, and the
solution returns to its initial state at t= T , completing a full cycle of the evolution.

We set T = 2 and let the initial condition be a cosine bell centered at [rx, ry]:

u(x, y) =
1

2
[1 + cos(\pi r)],

r(x, y) =min

\biggl[ 
1,6

\sqrt{} 
(x - rx)2 + (y - ry)2

\biggr] 
.

(4.7)

We generate 4 trajectories using a high-resolution mesh of 256\times 256 cells, which are
subsequently coarsened by a factor of 8 in each dimension to create the high-fidelity
training data on the mesh of 32\times 32 cells. Each trajectory contains a sequence of 214
time steps from t= 0 to t= T . To obtain the low-fidelity training data, we generate
18 trajectories on the mesh of 32\times 32 cells. Each trajectory also contains a sequence
of 214 time steps from t = 0 to t = T . The initial conditions for all trajectories are
given by (4.7), where rx and ry are randomly sampled from the range [0.25,0.75]. We
set the CFL number to 1.8 and use a stencil of size 5 \times 5. For the training setting,
the loss weights are chosen as \lambda 1 = 0.1 and \lambda 2 = 1.

Although the training data consists of solution trajectories featuring a single
bell, we demonstrate that the trained multifidelity model can generalize to simulate
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problems with an initial condition that contains two randomly placed bells centered
at [r1x, r1y] and [r2x, r2y]:

u(x, y) =
1

2
[1 + cos(\pi r1) + cos(\pi r2)],

r1(x, y) =min

\biggl[ 
1,6

\sqrt{} 
(x - r1x)2 + (y - r1y)2

\biggr] 
,

r2(x, y) =min

\biggl[ 
1,6

\sqrt{} 
(x - r2x)2 + (y - r2y)2

\biggr] 
.

(4.8)

In Figure 4.8, we show contour plots of numerical solutions to the initial condition (4.8)
with r1x = 0.3, r1y = 0.3, r2x = 0.8, r2y = 0.8, computed by the proposed multifidelity

Fig. 4.8. Contour plots of the numerical solutions for the 2D deformational flow at t = 0,1,2
in Example 4.5.
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Table 3
Run-time comparison of Example 4.5. Run-time (seconds) measure for one period from t = 0

to t= T on a GeForceRTX 4070 Ti GPU for the proposed multifidelity model and on a CPU for the
traditional Eulerian RK WENO5 method using Python.

Samples\setminus method Multifidelity(32\times 32) WENO5(32\times 32) WENO5(128\times 128)

Sample= 0 3.5734 1.3498 26.9169
Sample=1 3.4712 1.3766 27.0657

Sample=2 3.3923 1.3200 26.1897

Table 4
Mean square errors of Example 4.5.

Samples\setminus method Multifidelity(32\times 32) WENO5(32\times 32) WENO5(128\times 128)

Sample= 0 1.0249E-5 2.0531E-3 5.8772E-6

Sample=1 1.8541E-5 1.6618E-3 5.1721E-6

Sample=2 1.6547E-5 1.6547E-3 5.2394E-6

method, the high-fidelity model, and the low-fidelity model. The reference solution
is generated with the same approach used to create the high-fidelity data. It is ob-
served that the proposed method greatly surpasses single-fidelity models in capturing
deformations and accurately recovering the initial profile at t= T .

Furthermore, we demonstrate the efficiency of the proposed method by providing
the comparison of the error and run-time between the proposed multifidelity model
and the traditional Eulerian RK WENO5 method. In Table 3 we provide the run-time
for simulating three test samples up to t= T using the multifidelity model with a mesh
resoluton of 32 \times 32 cells and CFL number of 1.8, as well as the RK WENO5 with
mesh resolutions of 32\times 32 cells and 128\times 128 cells, both using the CFL number of 0.6.
Table 4 reports the corresponding mean square errors. The computational time of the
proposed multifidelity model is slightly higher than that of the RK WENO5 method
with the same mesh resolution of 32\times 32 cells. However, it is significantly lower than
the RK WENO5 over a finer mesh of 128 \times 128 cells. Meanwhile, the multifidelity
model achieves much smaller errors compared to the RK WENO5 method with the
same mesh size and only slightly larger errors than the RK WENO5 method using
the high-resolution mesh.

4.2. Nonlinear Vlasov--Possion system. In this subsection, we present the
numerical results for simulating the nonlinear 1D1V VP system. We demonstrate
the efficiency and accuracy of the proposed multifidelity SL FV method coupled with
the second-order RKEI by comparing it to single-fidelity models and the traditional SL
FV WENO5 scheme. Additionally, we numerically verify the advantage of the second-
order RKEI over the first-order scheme. The training data and reference solutions are
generated by the fourth-order conservative SL FV WENO scheme [63].

Example 4.6. In this example, we consider the Landau damping with the initial
condition

f(x, v, t= 0) =
1\surd 
2\pi 

(1 + \alpha cos(kx)) exp

\biggl( 
 - v2

2

\biggr) 
, x\in [0,L], v \in [ - Vc, Vc],(4.9)

where k= 0.5, L= 4\pi , and Vc = 2\pi .

We generate 6 solution trajectories with a 32\times 64 grid to obtain the low-fidelity
training data. The high-fidelity training data is generated by coarsening 2 high-
resolution solution trajectories on a 256 \times 512-cell grid by a factor of 8 in each
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A MULTIFIDELITY ML-BASED SL FV SCHEME 1441

Fig. 4.9. The training loss for three different methods in Example 4.6.

dimension. The initial conditions for both the low- and high-fidelity training data
sets are determined using (4.9), with \alpha randomly selected from a uniform distribution
in the range [0.05,0.45]. We set the stencil size to be 5 \times 5 and maintain a chosen
CFL number of 1.8. For the training setting, the loss weights are chosen as \lambda 1 = 0.1
and \lambda 2 = 1. For the purpose of comparison, the reference solution is generated with
the same approach used to create the high-fidelity data. The training loss for three
different methods during their respective training is shown in Figure 4.9.

For testing, we set \alpha = 0.5, yielding the strong Landau damping, which lies out-
side the range of the training data. Figure 4.10 presents contour plots of the numerical
solutions computed by our multifidelity method with the second-order RKEI, high-
fidelity solver, low-fidelity solver, multifidelity scheme with the first-order RKEI, and
traditional SL FV WENO method, all implemented on the same mesh with 32 \times 64
cells. It can be observed that the proposed method with the second-order RKEI
captures the filamentation structure, while both the single-fidelity models generate
inaccurate results. In addition, the multifidelity scheme coupled with the first-order
RKEI fails to capture the fine-scale structures of interest. This limitation arises due to
the low-order accuracy in time, which restricts its ability to generalize effectively. The
traditional SL FV WENO scheme produces reasonable results but exhibits smeared
solution structures, primarily due to the low mesh resolution. In Figure 4.11, we plot
the time histories of the electric energy for each approach. Our method with the
second-order RKEI yields results that agree well with the reference solution, signifi-
cantly outperforming all other methods considered in the comparison.

Last, we apply the trained model to simulate the weak Landau damping with
\alpha = 0.05. In Figure 4.12, we present the time histories of the electric energy of
the solutions by our multifidelity solver as well as the SL FV WENO method for
comparison. For the SL FV WENO method based on the 32\times 64 grid, the recurrence
occurs around the theoretically predicted time TR = 64 (see [22]). Meanwhile, our
multifidelity solver with the same mesh resolution produces a result that is consistent
with the reference solution, and the recurrence effect is greatly mitigated.

Example 4.7. In this example, we simulate the symmetric two stream instability
with the initial condition

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1442 YONGSHENG CHEN, WEI GUO, AND XINGHUI ZHONG

Fig. 4.10. Contour plots of numerical solutions of the strong Landau damping at t = 40 in
Example 4.6 with \alpha = 0.5. ``Multifidelity"" denotes our multifidelity method coupled with the second-
order RKEI. ``First-order"" denotes our multifidelity method with the first-order RKEI.

Fig. 4.11. Time histories of the electric energy of the strong Landau damping in Example 4.6
with \alpha = 0.5.

f(x, v, t= 0) =
1\surd 
2\pi 

(1 + \alpha cos(kx))v2 exp

\biggl( 
 - v2

2

\biggr) 
, x\in [0,L], v \in [ - Vc, Vc],

(4.10)

where k= 0.5, L= 4\pi , and Vc = 2\pi .

We generate the low-fidelity training data by obtaining five solution trajectories
over a 32 \times 64 grid. To generate the high-fidelity training data, we coarsen two
high-resolution solution trajectories over a 256 \times 512-cell grid by a factor of 8 in
each dimension. The initial conditions are determined using (4.10), with \alpha randomly
sampled from a uniform distribution in the range [0.01,0.05]. We use a CFL number
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Fig. 4.12. Time histories of the electric energy of the weak Landau damping in Example 4.6
with \alpha = 0.05.

Fig. 4.13. Contour plots of the numerical solutions for the two stream instability at t = 53 in
Example 4.7 with \alpha = 0.01.

of 1.8 and set the stencil size to be 5\times 5. We choose the loss weights as \lambda 1 = 0.2 and
\lambda 2 = 1. The reference solution is generated with the same approach used to create
the high-fidelity data.

For testing, we report contour plots of the two stream instability with \alpha = 0.01 at
T = 53 in Figure 4.13 for the multifidelity method as well as the SL FVWENO scheme
for comparison. The proposed multifidelity method produces high-quality numerical
results that agree well with the reference solution, similarly to the previous example.
However, the SL FV WENO scheme fails to capture fine-scale structures of interest,
such as the roll-up at the center of the solution. We also present the absolute error
between the numerical solutions and the reference solution in Figure 4.14.

Example 4.8. In this example, we consider another two stream instability with
the following initial condition:

f(x, v, t= 0)

=
2

7
\surd 
2\pi 

(1 + 5v2)(1 + \alpha 1 cos(kx) + \alpha 2 cos(2kx) + \alpha 3 cos(3kx)) exp

\biggl( 
 - v2

2

\biggr) 
,

x\in [0,L], v \in [ - Vc, Vc],

(4.11)

where k= 0.5, L= 4\pi , and Vc = 2\pi .
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Fig. 4.14. The error of the numerical solutions for the two stream instability at t = 53 in
Example 4.7 with \alpha = 0.01.

This example is more challenging than the previous two examples, as the initial
condition is defined by perturbing the first three Fourier modes of a equilibrium with
magnitudes \alpha 1, \alpha 2, and \alpha 3, respectively. We generate the low-fidelity training data
by obtaining 6 solution trajectories on a 32\times 64 grid. For the high-fidelity data, we
downsample two high-resolution trajectories on a 256\times 512-cell grid by a factor of 8
in each dimension. The initial conditions for the training data sets are determined
using (4.11) with \alpha 1, \alpha 2, and \alpha 3 randomly selected from a uniform distribution in the
range [0.01,0.02]. For comparison, the reference solution is generated with the same
approach used to create the high-fidelity data. We use a CFL number of 1.8 and a
stencil size of 5\times 5. \lambda 1 and \lambda 2 in (3.2) are chosen as 0.1 and 1, respectively.

During testing, we consider the initial condition with \alpha 1 = 0.01, \alpha 2 = 0.01/1.2, \alpha 3 =
0.01/1.2, which is a widely used benchmark configuration in the literature. Note that
such a parameter choice is outside the range of the training data. In Figure 4.15,
we present contour plots of the numerical solutions computed by our multifidelity
method and the SL FV WENO scheme. It is observed that the results by our method
qualitatively agree with the reference solution, effectively capturing the underlying
fine-scale structures of interest. The SL FV WENO scheme, on the other hand, can
provide reasonable results but tends to smear out the small-scale structures in the
solution. This demonstrates that the proposed multifidelity model is capable of pro-
ducing results with reasonable accuracy, highlighting its generalization capabilities.
Figure 4.16 presents the errors between the numerical solutions and the reference
solution.

5. Conclusion. In this paper, we have proposed a novel multifidelity ML-based
SL FV scheme for solving transport equations. This method is specifically designed
for scenarios where there is an abundance of low-fidelity data and a limited amount
of high-fidelity data. By using a composite NN architecture, our method can effec-
tively approximate the inherent correlation between the high-fidelity and low-fidelity
data. Numerical experiments conducted in this study show that the proposed method
achieves improved stability and accuracy compared to networks trained solely on ei-
ther low-fidelity data or high-fidelity data. This indicates that the multifidelity ap-
proach enhances the performance and capabilities of the SL FV scheme for solving
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Fig. 4.15. Contour plots of the numerical solutions of the two stream instability at t = 53 in
Example 4.8 with \alpha 1 = 0.01, \alpha 2 = 0.01/1.2, \alpha 3 = 0.01/1.2.

Fig. 4.16. The error of the numerical solutions of the two stream instability at t = 53 in
Example 4.8 with \alpha = 0.01.

transport equations. Furthermore, we have extended this multifidelity method to the
simulation of nonlinear VP systems, coupled with the high-order RKEI. This exten-
sion allows for accurate and efficient simulations of complex physical phenomena for
this multifidelity approach. Future work includes exploring the possibility of apply-
ing the method to more complicated systems, further improving the generalization
capabilities of the method, investigating the use of graph NNs for accommodating
unstructured meshes, and addressing challenges related to adaptivity and complex
geometries, among other potential research directions.
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