

1 **Resource competition predicts assembly of *in vitro* gut bacterial communities**
2 Po-Yi Ho^{1,*,#}, Taylor H. Nguyen^{1,*}, Juan M. Sanchez², Brian C. DeFelice², Kerwyn Casey
3 Huang^{1,2,3,#}
4
5 ¹Department of Bioengineering, Stanford University, Stanford, CA, USA
6 ²Chan Zuckerberg Biohub, San Francisco, CA 94158
7 ³Department of Microbiology and Immunology, Stanford University School of Medicine,
8 Stanford, CA 94305, USA
9
10 *: These authors contributed equally to this work.
11 #: Correspondence: poyiho@stanford.edu and kchuang@stanford.edu

12 **ABSTRACT**

13 Microbiota dynamics arise from a plethora of interspecies interactions¹⁻³, including
14 resource competition⁴⁻⁶, cross-feeding^{7,8}, and pH modulation^{9,10}. The individual
15 contributions of these mechanisms are challenging to untangle^{11,12}, especially in natural
16 or complex laboratory environments where the landscape of resource competition is
17 unclear. Here, we developed a framework to estimate the extent of multi-species niche
18 overlaps by combining metabolomics data of individual species, growth measurements in
19 pairwise spent media, and mathematical models. When applied to an *in vitro* model
20 system of human gut commensals in complex media^{13,14}, our framework revealed that a
21 simple model of resource competition described most pairwise interactions. By grouping
22 metabolomic features depleted by the same set of species, we constructed a coarse-
23 grained consumer-resource model that predicted assembly compositions to reasonable
24 accuracy. Moreover, deviations from model predictions enabled us to identify and
25 incorporate into the model additional interactions, including pH-mediated effects and
26 cross-feeding, which improved model performance. In sum, our work provides an
27 experimental and theoretical framework to dissect microbial interactions in complex *in*
28 *vitro* environments.

29 **INTRODUCTION**

30 Microbial communities are important for host health and environmental functions^{1,2}, but
31 their complex dynamics remain difficult to predict and engineer³. A major challenge is that
32 community members affect each other through a plethora of interaction mechanisms,
33 including resource competition⁴⁻⁶, metabolic cross-feeding^{7,8}, pH modulation^{9,10}, toxins¹⁵,
34 and physical inhibition through secretion systems¹⁶. One approach to modeling the
35 complexity of microbial interactions is to summarize the overall effects of species on each
36 other using phenomenological interaction coefficients^{11,17,18}. While phenomenological
37 approaches can be predictive, they typically do not address the mechanistic origins of
38 interactions, and thus are difficult to generalize^{11,12,19}. A quantitative framework for
39 microbiota dynamics based on species traits and interaction mechanisms is sorely
40 needed^{3,11,20}.

41

42 To this end, consumer-resource (CR) models describe community dynamics under the
43 basic mechanism of resource competition, which shapes community dynamics in diverse
44 contexts ranging from simple synthetic communities to the human gut microbiota²¹⁻²⁴.
45 Notably, it was recently shown that a CR model could predict the dynamics of bottom-up
46 assemblies of denitrifying bacteria²⁴. This feat was achieved by measuring the
47 denitrification rates of individual species in a chemically defined and electron-acceptor-
48 limited growth medium, thereby quantifying resource competition in a minimal
49 environment in which the limiting nutrients are known. However, it remains challenging to
50 quantify resource competition in chemically undefined and complex nutrient environments
51 such as the natural context of the gut microbiota²⁵⁻²⁷.

52

53 Here, we sought to develop a trait-based modeling framework for microbiota dynamics in
54 complex environments using stool-derived, *in vitro* communities that we previously
55 established as an experimental model system for the gut microbiota of humanized mice,
56 with similar compositions and responses to antibiotic treatment as observed *in vivo*^{13,14}.
57 We focused on 15 phylogenetically diverse species of human gut commensals isolated
58 from the same parent *in vitro* community (**Fig. 1a**). We selected Brain Heart Infusion (BHI)
59 as the growth medium because passaging of mouse fecal samples in BHI produced *in*

60 *vitro* communities that were most similar to their *in vivo* counterparts compared to other
61 commonly used media¹⁴. When grown in BHI, these 15 species exhibited a broad range
62 of growth phenotypes and assembled after 48 h into a community whose composition
63 resembled that of the parent community²⁸ (**Extended Data Fig. 1, Supplementary Text**),
64 indicating that this experimental setup may be informative of the *in vivo* context and is
65 suitable for testing predictive models.

66

67 By assaying growth in media spent by the growth of other species, we show that a CR
68 model can describe most pairwise species interactions. We then develop a novel
69 approach that exploits the large number of unannotated metabolomic features in complex
70 media to predict biomass yield in spent media, thereby enabling an estimation of the multi-
71 species landscape of resource competition. Combining data from the metabolomics and
72 spent-media experiments, we construct a CR model that predict assembly compositions
73 to reasonable accuracy. Furthermore, we demonstrate a rational process to improve
74 model predictions by identifying and incorporating additional interaction mechanisms,
75 including cross-feeding and pH-mediated interactions. In sum, our findings establish a
76 baseline model based on resource competition to predict community dynamics in complex
77 nutrient environments, providing a framework to dissect microbial interactions and a step
78 toward predictive models for natural microbiotas.

79 **RESULTS**80 ***Most pairwise interactions can be described by a resource competition model***

81 To characterize interspecies interactions in our model *in vitro* community (**Fig. 1a**), we
82 measured the growth of each of the 15 species in isolation and in pairwise co-culture with
83 each other species in BHI (**Methods**, **Fig. 1b**). In agreement with previous *in vitro* studies
84 involving species from wide-ranging microbiotas²⁹, the 15 species typically inhibited the
85 growth of one another in the sense that the null interaction score, the difference between
86 the biomass yield (as measured by optical density) of the co-culture and the sum of the
87 two individual yields, was negative in ≈89% of species pairs (93/105; **Fig. 1c**).

88

89 Since resource competition is a common form of interspecies inhibition, we sought to
90 quantify its extent by measuring the growth of each species in the spent medium of each
91 other species (**Methods**). Spent media exclude physical effects that would emerge due
92 to the direct presence of a species, but maintain environmentally mediated interactions
93 like resource competition. To interpret the results, we considered a CR model in which
94 resources are completely consumed and converted to biomass by species growth^{30,31}.
95 We coarse-grained the model by grouping metabolites that are consumed by the same
96 set of species into an effective resource. A community of two species is then described
97 by three effective resources: two specifically consumed by one of the two species, and
98 one shared by both species. Under this coarse-graining, species *i* grown individually will
99 consume its specific resource and the shared resource, leaving the other resource
100 specific to species *j* in the spent medium, while all three resources will be consumed in a
101 co-culture of *i* and *j* (**Fig. 1b**). Hence, if all species convert resources into yield with the
102 same efficiency, the model predicts a simple relation for the co-culture yield

103
$$\bar{X}_{i+j} = \bar{X}_i + \bar{X}_{j,i} = \bar{X}_j + \bar{X}_{i,j}, \quad (1)$$

104 where \bar{X}_i is the yield of *i* in monoculture, $\bar{X}_{i,j}$ is the yield of *i* in the spent medium of *j*, and
105 similarly for $\bar{X}_{j,i}$. Small values of resource competition residues $r(i,j) = \bar{X}_{i+j} - (\bar{X}_i + \bar{X}_{j,i})$
106 and $r(j,i) = \bar{X}_{i+j} - (\bar{X}_j + \bar{X}_{i,j})$ imply that Eq. 1 can describe the interactions between *i*
107 and *j*, and hence, suggest that resource competition shapes this interaction. By contrast,
108 large residues highlight deviations due to differences in metabolic efficiency or additional
109 interactions. Note that the two residues $r(i,j)$ and $r(j,i)$ for a pair of species can be

110 asymmetric, potentially reflecting directionality of interactions as we demonstrate later.
111 Although Eq. 1 makes several assumptions about resource utilization, it nonetheless
112 provides a useful baseline to interpret interactions in spent media.

113
114 By contrast to the distribution of null interaction scores, the distribution of normalized
115 resource competition residues $r(i,j)/\bar{X}_{i+j}$ and $r(j,i)/\bar{X}_{i+j}$ was centered about zero
116 across the 210 ordered pairs (Fig. 1d,e). Simulations of random instances of the CR
117 model used to derive Eq. 1 produced distributions of normalized residues centered about
118 zero, as expected, and inclusion of empirical measurement noise for yield broadened the
119 distribution to have a maximum magnitude of ≈ 0.2 (Methods, Fig. 1d). Almost 75% of all
120 ordered pairs (155/210) had a residue with absolute value less than this maximum (Fig.
121 1d,e), indicating that their interactions were consistent with Eq. 1. If species utilize
122 resources with different efficiencies, then these efficiencies can be determined from yields
123 in monoculture and spent-media experiments similarly as in Eq. 1. The distribution of
124 efficiencies was narrowly centered around one (Extended Data Fig. 2a), in agreement
125 with Eq. 1 and its assumptions. Moreover, the model also predicts that the yield of species
126 i in a 1:1 mixture of the individual spent medium of j and k should be equal to the average
127 of the yields of i in each spent medium. This corollary was observed for the three-species
128 combinations that we experimentally tested (Fig. 1f). Taken together, these results
129 suggest that resource competition is an important driver of community dynamics in our
130 system.

131
132 ***Metabolomic profiles capture the landscape of resource competition***
133 To further interrogate resource competition, we obtained untargeted metabolomics data
134 via liquid chromatography coupled with tandem mass spectrometry (LC-MS) on the spent
135 medium of each species (Methods, Fig. 2a). Using an established pipeline designed to
136 probe gut bacterial metabolism^{32,33}, we detected thousands of metabolomic peaks across
137 ionization modes and chromatography methods (“features”) in BHI, a chemically
138 undefined medium. Although the vast majority of features could not be identified, the
139 hundreds of features that were annotated included carbohydrates, nucleotides, and short
140 peptides, collectively representing diverse metabolic pathways³³. Therefore, we

141 hypothesized that the metabolomic profiles reflect the landscape of resource competition
142 (i.e., the extent of resource sharing among species as well as the approximate sizes of
143 individual and shared niches), and sought to predict species growth based on these data.

144

145 To connect metabolomic profiles and growth measurements, we would ideally be able to
146 relate the signal intensity of a metabolite as reported by LC-MS to its contribution to
147 biomass. However, one metabolite can generate multiple metabolomic features, the
148 conversions from feature intensity to metabolite concentration can differ across
149 metabolites, and conversions from metabolite concentration to biomass can differ across
150 species^{33,34}. In any case, these conversion factors are typically unknown. We reasoned
151 that these details might be secondary to the total number of metabolites consumed in the
152 limit of many involved metabolites, due to averaging over variations in these conversion
153 factors. Accordingly, we tested the hypothesis that biomass yield is proportional to the
154 number of features depleted (>100-fold depletion of signal intensity compared to fresh
155 medium; **Methods, Fig. 2b**). This logic also predicts that the yield of species i in the spent
156 medium of j should be proportional to the number of features depleted by i but not j .
157 Since this hypothesis does not depend on metabolite identity, it enabled the incorporation
158 of unannotated features. The resulting predictions were well correlated with experimental
159 measurements of biomass yield (Pearson's correlation coefficient $\rho = 0.78$; **Fig. 2c**).
160 Predictions using only the annotated metabolites were similarly well correlated ($\rho = 0.54$;
161 **Extended Data Fig. 2b**). Analogous predictions for yields in co-cultures and in the spent
162 media of co-cultures were also well correlated with these data and followed the same
163 general trend as in the pairwise spent-media experiments ($\rho = 0.65$ and 0.74 , respectively;
164 **Fig. 2d,e**). Notably, successful predictions of the latter scenario indicate that multi-
165 species interactions among the 3-species combinations tested were also captured. These
166 results demonstrate that metabolomic profiles can approximate the resource competition
167 landscape.

168

169 **Resource competition approximately predicts community assembly**

170 We next sought to use the metabolomics-based approximation of the resource
171 competition landscape to predict the assembly of multiple species. We randomly selected

172 185 combinations of the 15 species while ensuring sampling among the various
173 taxonomic families and community sizes, assembled them, and passaged their mixtures
174 until they approximately reached an ecological steady state, defined as when subsequent
175 passages exhibited identical dynamics. In practice, we found previously using similar *in*
176 *vitro* communities that ecological steady state was approximately reached in five
177 passages¹⁴. Finally, we obtained species relative abundances at ecological steady state
178 by 16S rRNA gene sequencing (**Methods**). No assemblies were discarded during
179 downstream analyses. We then constructed a coarse-grained CR model based on the
180 monoculture metabolomics data and pairwise spent-media experiments, and tested to
181 what extent it could predict assembly compositions (**Fig. 3a**).
182

183 Specifically, we considered the following model³¹,

$$\frac{dX_i}{dt} = X_i \sum_{\mu=1}^M R_{i\mu} Y_\mu$$
$$\frac{dY_\mu}{dt} = -Y_\mu \sum_{i=1}^N R_{i\mu} X_i. \quad (2)$$

186 Here, X_i denotes the absolute abundance of species i , Y_μ the amount of coarse-grained
187 resource μ , and $R_{i\mu}$ the consumption rate of resource μ by species i . Resources are
188 assumed to be substitutable such that species growth continues until all resources are
189 depleted. The efficiency of resource conversion into biomass is assumed to be the same
190 for all species, and set to one such that resource amounts and species abundances are
191 measured in the same unit. Key to this model is coarse-graining, the grouping of
192 metabolites consumed by the same species into a coarse-grained resource (“resource
193 group”). The same coarse-graining was used to derive Eq. 1, which is a special case of
194 the dynamics explicitly described by Eq. 2. Coarse-graining ignores complexities in
195 nutrient utilization such as hierarchical resource preferences, but enables an estimation
196 of resource competition in complex nutrient environments.

197
198 To compare to experimental data, Eq. 2 was parametrized as described below and then
199 simulated under serial dilution in which each dilution cycle continued until stationary

200 phase when all resources are depleted ($dY_\mu/dt = 0$), after which a new cycle was initiated
201 by replenishing the resources to their initial levels Y_μ^0 and diluting all species abundances
202 by a constant factor. Serial dilution was repeated until species abundances reached an
203 ecological steady state in which further cycles produced virtually identical dynamics,
204 mimicking the experimental protocol (**Methods**). For one species and one resource, this
205 model described well the monoculture growth curves of the 15 species (**Methods**,
206 **Extended Data Fig. 2c**). In a community context, species abundances at steady state \bar{X}_i
207 were independent of the initial abundances as long as the same species were initially
208 present, consistent with previous studies involving similar formulations of CR
209 models^{31,35,36}. This independence was also observed experimentally for the following
210 scenario: when dropout communities consisting of 14 of the 15 species were assembled
211 and then mixed with the dropped-out species at ratios spanning five orders of magnitude,
212 the resulting steady-state community compositions were virtually indistinguishable
213 (**Methods, Extended Data Fig. 3**).

214
215 Since each coarse-grained resource group consists of many metabolites, the aggregate
216 amount in fresh medium Y_μ^0 of group μ along with its associated consumption rates $R_{i\mu}$
217 are unknown. We decomposed the challenge of estimating these model parameters into
218 three steps (**Methods, Fig. 3a**). The first step is to choose the set of resource groups that
219 are incorporated into the model. Choosing this resource utilization structure is a core
220 challenge because it is combinatorially complex. There are $2^{15} = 32,768$ species
221 combinations, and hence the same number of potential resource groups. Crucially, as we
222 have seen, metabolomics data can directly reveal niche overlaps among multiple species
223 (**Fig. 2**). The >15,000 features that were depleted in at least one spent medium grouped
224 into $\approx 1,000$ resource groups (**Extended Data Fig. 4a**). Most features fell into large
225 groups, and the 100 groups with the most constituent features comprised 84% of all
226 features. Notably, each species was associated with a set of features that it uniquely
227 depleted, which collectively comprised 49% of all features (**Extended Data Fig. 4b**).
228 Taking into account the above properties, we restricted our analysis to the 15 species-
229 specific resource groups and the M groups with the most constituent features, reasoning

230 that these groups should encode most of the information about the resource competition
231 landscape.

232

233 Given a set of resource groups, the second step is to estimate the $15+M$ unknown initial
234 resource amounts Y_μ^0 via a linear regression in which the known variables are the
235 experimentally determined yields in pairwise spent media (**Extended Data Fig. 5a**).
236 Within the model, yield in spent media is equal to the sum of Y_μ^0 for μ consumed by the
237 grown species but not the spent medium-generating species (**Methods, Fig. 3A**),
238 analogous to the logic of Eq. 1. With this approach, the problem reduces to choosing the
239 number M . To do so, we carried out the regression for each M , and chose the one that
240 minimized the Akaike Information Criterion (AIC) of the regression for the final model
241 (**Extended Data Fig. 5b**). Finally, consumption rates were inferred from the
242 experimentally determined growth rates in spent media, following a similar logic as for
243 resource levels (**Methods**).

244

245 The outcome was a set of resource levels and consumption rates for the 15 species (**Fig.**
246 **3a**). This CR model was numerically simulated to predict species abundances at
247 ecological steady state for each of the 185 assemblies tested (**Extended Data Fig. 5c**).
248 Model predictions were compared against experimental data using the absolute error of
249 $\log_2(\text{fold-change})$ per species, defined as $\sum_{i=1}^N |\log_2(x_i^{\text{actual}}/x_i^{\text{predicted}})|/N$, where $x_i =$
250 $\bar{X}_i/\sum_{j=1}^N \bar{X}_j$ is the relative abundance at steady state of species i (which for this calculation
251 was set to the detection threshold in our experiments, 10^{-4} , if i was undetectable;
252 **Methods**). This error metric accounts for the compositional nature of relative abundance
253 data by weighting errors in high- and low-abundance species equally in terms of fold-
254 change³⁷, and can be interpreted intuitively as doublings per species.

255

256 Averaged across all assemblies tested, the mean error achieved by the model was 1.33
257 doublings per species (**Methods, Fig. 3b,c, Extended Data Fig. 5c-f**). Model error was
258 only weakly correlated with the Shannon index ($\rho = 0.18$, p -value = 0.02; **Extended Data**
259 **Fig. 5e**), demonstrating that model performance was robust to assembly diversity.

260

261 To evaluate the performance of this modeling approach, we tested several other
262 approaches for parametrizing Eq. 2, briefly summarized below (**Methods**). First, we
263 tested alternative methods to select the set of resource groups to include in the model,
264 including three hypothetical resource utilization structures: 1) the base model consisting
265 of the 15 species-specific groups, 2) the base model plus all pairwise niche overlaps, and
266 3) the base model plus all 15 all-but-one niche overlaps (**Extended Data Fig. 6a**). In
267 addition, we tested resource utilization structures selected via regularized regression
268 against all $\approx 1,000$ resource groups detected by metabolomics (**Extended Data Fig. 6b**).
269 We tested a different approach to parametrize the resource amount Y_μ^0 for the same
270 resource utilization structure as before but based on metabolomic feature counts without
271 regression against growth data in spent media. As an additional benchmark, we
272 considered a null model in which the predictions of the CR model were shuffled with
273 respect to species identity (**Extended Data Fig. 6c**). Finally, we examined several
274 formulations of generalized Lotka-Volterra models with pairwise interspecies interactions
275 (**Extended Data Fig. 6d,e, Supplementary Text**). Our CR model combining data from
276 monoculture metabolomics and pairwise spent-media experiments predicted community
277 assembly significantly better than all other approaches and models tested (Mann-Whitney
278 U-test; **Fig. 3b**). This result was qualitatively robust when using the Bray-Curtis
279 dissimilarity metric to assess error (**Extended Data Fig. 6f**), and model performance was
280 similar when evaluated against estimates of absolute abundance obtained by multiplying
281 experimentally determined relative abundance by culture yield (**Extended Data Fig. 6g**).
282 Although these results do not rule out other models, they indicate that our CR model is a
283 reasonable baseline for predicting community assembly.

284
285 The modeling framework above addressed several challenges posed by complex nutrient
286 environments. First, the regressed resource levels Y_μ^0 recapitulated yields in spent media
287 better than the number of metabolomic features alone ($\rho = 0.91$ versus 0.78; **Fig. 3d**),
288 while remaining well correlated with feature counts excepting two groups with atypically
289 large Y_μ^0 ($\rho = 0.77$ without these two outlier groups; **Extended Data Fig. 7a**). These
290 groups contained features that were identified as the highly exploitable carbon sources
291 glucose and trehalose, demonstrating that the incorporation of growth data fine-tuned the

292 metabolomics-based competition landscape in a manner consistent with biological
293 expectations. Nonetheless, most incorporated groups did not contain any annotated
294 features (**Extended Data Fig. 7b**), highlighting the ability of coarse-graining to harness
295 information from the vast number of unannotated features. Second, coarse-graining
296 circumvented some of the uncertainty in LC-MS measurements, as the large numbers
297 involved made the resource utilization structure robust to noise in peak calling and
298 quantification (**Extended Data Fig. 7c**).

299

300 To further test our CR model, we collected a time course of metabolomics data throughout
301 a growth cycle of the full 15-species assembly and found that the model successfully
302 predicted the dynamics of most coarse-grained resources (**Methods, Extended Data Fig.**
303 **8**). Additionally, errors in model predictions of resource dynamics were reduced through
304 rational modification of the consumption rates, which simultaneously improved model
305 predictions of species abundances (**Extended Data Fig. 8**). In sum, the above findings
306 indicate that coarse-grained resource competition is a useful simplification of the complex
307 dynamics in our system.

308

309 ***Rational incorporation of additional interaction mechanisms improves model***
310 ***predictions***

311 While most pairs of species exhibited small resource competition residues, $\approx 25\%$ of the
312 residues deviated substantially from Eq. 1 (**Fig. 1d**). Deviations from Eq. 1 can arise in
313 many ways. For example, if the growth of species i affects that of j by an amount Δ in
314 addition to the assumptions of resource competition underlying Eq. 1 and this effect
315 occurs similarly in spent medium and in co-culture, then the model would predict that
316 $r(i, j) = \bar{X}_{i+j} - (\bar{X}_i + \bar{X}_{j,i}) = 0$ and $r(j, i) = \bar{X}_{i+j} - (\bar{X}_j + \bar{X}_{i,j}) = \Delta$ (**Fig. 4a**). If the effect of
317 i on j is specific to spent medium and does not occur in co-culture, the model would
318 instead predict $r(i, j) = -\Delta$ and $r(j, i) = 0$. A species involved in the latter scenario is
319 *Blautia producta* (*Bp*), whose spent medium almost completely inhibited the growth of all
320 other species, i.e., $\Delta < 0$ (**Fig. 4b**). However, *Bp* grew more slowly than many other
321 species (**Extended Data Fig. 5a**), and thus, these other species were able to grow in co-
322 culture before the inhibitory effects of *Bp* occurred. In agreement, the residues $r(Bp, j)$

323 were >0 for these other species j (**Fig. 4c**), indicating that there is a surplus of growth in
324 co-culture relative to the inhibitory effects of *Bp*-spent medium.

325

326 We hypothesized that this inhibition could be mediated by pH. *Bp*-spent medium was
327 highly acidic with pH ≈ 5 , while the spent media of other species and the full community
328 were mostly neutral (**Extended Data Fig. 9a**). Moreover, growth inhibition was largely
329 lifted in *Bp*-spent medium that was adjusted to neutral pH (**Methods, Fig. 4b**). Residues
330 computed from yields in pH-neutralized *Bp*-spent medium were less positive and closer
331 to zero (**Fig. 4c**), demonstrating that pH neutralization brought these species pairs into
332 closer agreement with Eq. 1 and its underlying CR model.

333

334 Within a model that accounts for only resource competition, growth inhibition can only be
335 due to niche overlap. Therefore, the outsized inhibition by *Bp*-spent medium caused the
336 regression to infer high levels for resources shared between *Bp* and other species but
337 zero for the *Bp*-specific resource group (**Fig. 3a**). As a result, *Bp* was often predicted to
338 go extinct, in disagreement with experimental data (**Fig. 3c**). Consequently, *Bp* was the
339 species with the worst predictions (**Extended Data Fig. 5f**). By contrast, when the
340 regression used yields from pH-neutralized *Bp*-spent medium, the *Bp*-specific resource
341 group was inferred to have a non-zero level, which improved model predictions for *Bp*
342 and overall (mean error = 1.31 doublings per species; **Fig. 4d**). These findings exemplify
343 that while mechanisms other than resource competition can confound model
344 parametrization, their effects can be disentangled and incorporated into the model in a
345 rational manner.

346

347 Metabolic cross-feeding is another potential interaction mechanism. Of all metabolomic
348 features in BHI that changed significantly in the spent medium of any of the species, $<15\%$
349 were produced (>10 -fold increase in signal intensity relative to fresh medium) by at least
350 one species. Of these produced features, $<5\%$ were consumed by at least one other
351 species (**Fig. 2a**). The low percentages of produced and potentially cross-feeding
352 metabolomic features detected suggest that cross-feeding interactions are uncommon in
353 our system. Indeed, substantial growth promotion by spent media was rare. Only a single

354 ordered pair of species out of 210 exhibited strong enough growth promotion such that
355 growth in spent medium surpassed that in fresh medium: the spent medium of
356 *Escherichia fergusonii* (*Efe*) substantially boosted the growth of *Bacteroides*
357 *thetaiotaomicron* (*Bt*), resulting in a positive residue, $r(Bt, Efe) > 0$ (**Fig. 4e**). This growth
358 promotion persisted in larger assemblies (**Extended Data Fig. 9b-d**), and was likely due
359 to the production of porphyrins, cofactors involved in iron metabolism that can stimulate
360 the growth of certain Bacteroidetes³⁸.

361

362 To incorporate the beneficial effects of *Efe* on *Bt*, we modified the model by assuming
363 that whenever *Efe* and *Bt* were both present, the predicted absolute abundance of *Bt*
364 would be increased by a constant amount equal to the difference in yield between *Bt*
365 grown in *Efe*-spent and fresh medium. Remarkably, without any additional tuning of model
366 parameters, prediction errors decreased for all assemblies containing both *Efe* and *Bt*
367 (**Fig. 4f**). By contrast, when the same modification was applied to *Bt* even when *Efe* was
368 absent, prediction errors increased in some cases (**Fig. 4f**), implying that the enhanced
369 growth of *Bt* was *Efe*-dependent. These findings demonstrate that cross-feeding
370 interactions can also be incorporated into the model in a straightforward manner.

371

372 In addition to yield, lag time is another growth characteristic often affected by microbial
373 interactions³⁹. In our system, lag times in spent media and in the full community
374 (estimated from the time course experiment) were correlated with, albeit somewhat longer
375 than those in monoculture (**Extended Data Fig. 9e,f**). Incorporation of monoculture lag
376 times into the model slightly improved predictions on average (mean error = 1.31
377 doublings per species; **Methods**), suggesting that a better understanding of lag times in
378 community contexts could improve model predictions even further.

379

380 More generally, the above findings illustrate how deviations from model predictions can
381 detect additional microbial interactions. When applied to another complex medium,
382 mGAM, our approach revealed a set of interactions between several *Bacteroides* and
383 *Clostridia* species that were not apparent in BHI (**Extended Data Fig. 10**,
384 **Supplementary Text**), consistent with growing evidence that microbial interactions can

385 depend on the environment³. Nonetheless, the distribution of resource competition
386 residues, the approximate proportionality between yield and feature count, and the overall
387 performance of the CR model were qualitatively similar in mGAM as in BHI (**Extended**
388 **Data Fig. 10, Supplementary Text**). Although an exhaustive investigation into the vast
389 space of microbial interactions is outside the scope of this study, our results establish a
390 rationally expandable and generalizable framework to dissect microbial ecology in
391 complex environments.

392 **DISCUSSION**

393 Microbiome research is rapidly building toward high-throughput experimentation, and
394 numerous experimental model systems with defined species compositions have recently
395 been developed for natural microbiotas^{40,41}. Motivated by the natural context, these
396 systems typically use chemically undefined, complex media in which predictive, trait-
397 based models are lacking. Here, we addressed this gap by developing a combined
398 experimental and modeling framework. Rather than using relative abundance data to infer
399 effective interspecies interactions, our framework builds a coarse-grained consumer-
400 resource model for a system of N species using N monoculture metabolomics
401 experiments and growth data in N^2 pairwise spent-media experiments. The resulting
402 model can be applied to interrogate any of the 2^N possible species combinations. The
403 model makes predictions by quantifying the resource competition landscape among all
404 species, which also encodes higher-order resource competition among more than two
405 species. For the *in vitro* gut bacterial communities investigated here, the model predicted
406 assembly compositions to a mean error of ≈ 1.3 doublings per species.

407

408 Prediction error tended to be larger for assemblies with intermediate richness (**Extended**
409 **Data Fig. 5e**), which can contain a relatively large number of species that interact by
410 mechanisms other than resource competition due to random sampling, thereby increasing
411 their prediction error. By contrast, assemblies with high richness will always be dominated
412 by effective resource competition regardless of sampling since most species pairs have
413 near-zero residues.

414

415 To obtain this level of accuracy, metabolomic feature counts were required to identify the
416 set of resource groups to model. This coarse-graining process is a combinatorially
417 complex problem and could be improved in future work. The resource level associated
418 with each group must be refined using data from pairwise spent-media experiments.
419 Although pairwise experiments are required, growth assays are more accessible and
420 have higher throughput than sequencing of pairwise co-cultures, and can be feasibly
421 applied to systems with hundreds of species. Building on this baseline model, cross-
422 feeding and pH-mediated interactions could be incorporated to further improve

423 predictions. Future work should be able to build upon these findings to disentangle and
424 quantify other interaction mechanisms, such as toxins and secretion systems.

425

426 Key to approximating the resource competition landscape was the proportionality
427 between the number of metabolomic features and biomass yield. This surprising finding
428 revealed that each of the 15 species had access to its own niche, which together
429 comprised approximately half of all features and mechanistically explained the
430 widespread coexistence of these species in various assemblies. Resources shared
431 among multiple species comprised the remaining half of metabolomic features, as well as
432 half of the total resource level in the model. Correspondingly, ignoring the shared
433 resources led to $\approx 40\%$ more error in model predictions (**Fig. 3c**). Elucidating the
434 conditions under which this proportionality holds may lead to better understanding of
435 microbial interactions in complex nutrient environments. However, chemically undefined
436 complex media cannot easily be separated into components, limiting direct tests of the
437 effects of individual metabolites. For example, it remains unclear what constitutes the bulk
438 of biomass precursors in BHI. Since peptone is an ingredient, a substantial fraction likely
439 consists of short peptides, which shaped the resource competition landscape in our
440 system (**Extended Data Fig. 7b**). The effects of vitamins, lipids, and other metabolite
441 classes that we did not identify remain to be elucidated in future work.

442

443 Another limitation is that strain choice can potentially affect interactions, especially
444 strongly negative interactions among mutually excluding strains that can result in complex
445 behaviors such as multi-stability. Although systematic studies of this question are lacking,
446 we found in another study that assembling type strains of the 15 species used here led
447 to approximately the same community composition⁴². Moreover, robustness to variability
448 in initial abundance was recently observed for the assembly in mice of >100 gut
449 commensal strains from different donors⁴¹, suggesting that such robustness is not
450 exclusive to strains from the same microbiota nor to *in vitro* conditions.

451

452 Despite the above limitations, we envision that our framework can be applied to generate
453 predictions for *in vitro* scenarios such as nutrient perturbation, resistance to invasion, and

454 community coalescence, which will facilitate understanding of their *in vivo* analogs of
455 dietary change, pathogen infection, and fecal microbiota transplantation, respectively. For
456 example, inulin simultaneously affects community composition and decreases burden
457 from *C. difficile* infection in mouse models⁴³. This decrease was linked to short chain fatty
458 acids, metabolites associated with microbial metabolism of complex carbohydrates
459 whose production by *Bacteroides* species has been implicated in colonization resistance
460 against *Salmonella*⁴⁴. Such interplay among diet, community composition, and
461 colonization resistance can be further clarified by measuring resource competition
462 landscapes in media supplemented with complex carbohydrates. In this way, the
463 framework presented here provides a foundation for developing and deploying predictive
464 models for natural microbiotas.

465 **METHODS**

466 Bacterial culturing

467 Isolates were obtained via plating of *in vitro* communities, derived from culturing fecal
468 samples from humanized mice, on agar plates made with various complex media and
469 frozen as glycerol stocks, as previously described^{14,28}. Frozen stocks were streaked onto
470 BHI-blood agar plates (5% defibrinated horse blood in 1.5% w/v agar). Resulting colonies
471 were inoculated into 3 mL of Brain Heart Infusion (BHI) (BD #2237500) or modified Gifu
472 Anaerobic Medium (mGAM) (HyServe #05433) in test tubes. All culturing was performed
473 at 37 °C without shaking in an anaerobic chamber (Coy). To minimize potential
474 physiological changes from freeze-thaw cycles and changes in growth medium, cultures
475 were diluted 1:200 every 48 h for 3 passages before growth or metabolomics
476 measurements. After the first passage, subsequent passages were performed in 96-well
477 polystyrene plates (Greiner Bio-One #655161) filled with 200 µL of growth medium.

478

479 Bacterial growth measurements

480 Biomass yield over time was obtained via optical density at 600 nm (OD) as measured by
481 an Epoch 2 plate reader (Biotek). All measurements were performed in clear, flat-
482 bottomed 96-well plates (Greiner Bio-One #655161). Each well was filled with 200 µL of
483 growth medium and inoculated with 1 µL of stationary phase culture immediately before
484 measurement. Plates were sealed with transparent seals (Excel Scientific #STR-SEAL-
485 PLT), with small ≈0.5 mm holes cut above each well to allow gas exchange. Holes were
486 cut using a laser cutter with the sterile casing in place, minimizing contact that might result
487 in contamination. Any contamination would be straightforwardly detected in assembly
488 experiments involving known isolates, and we found no contamination for any such
489 experiments in this study. Measurements were taken with continuous shaking at 37 °C.

490

491 Growth in spent media

492 Spent media were obtained by centrifuging saturated cultures at 4,000 × *g* for 5 min and
493 filtering the supernatant with 0.22-µm polyethersulfone filters (Millex-GP #SLGP033RS)
494 or 96-well 0.22-µm filter plates (Pall #8019). To investigate pH-mediated effects, *Bp*-spent
495 medium was adjusted to a pH of 7.35 with NaOH, and filtered again to sterilize.

496

497 pH measurements via BCECF

498 pH measurements were obtained during plate reader measurements via the dual-
499 excitation, ratiometric pH indicator 2',7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein
500 BCECF (Invitrogen #B1151). BCECF dissolved in DMSO (Fisher BioReagents #BP231)
501 was diluted 1,000-fold into growth media to a final concentration of 1 mg/mL. Growth
502 curves were obtained as described above, and in addition to absorbance, fluorescence
503 was measured using monochromators at excitation/emission combinations 440 nm/535
504 nm and 490 nm/535 nm. pH values were obtained by calculating the ratio of the signals
505 excited at 490 nm over 440 nm after subtracting background fluorescence, and calibrated
506 to fresh medium set to various pH values.

507

508 Liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics

509 Spent media were collected as described above and immediately stored at -80 °C.
510 Samples were thawed only once, immediately before LC-MS/MS. Thawed samples were
511 kept on ice, each sample was homogenized by pipetting prior to dispensing. Two 20-µL
512 aliquots of supernatant were removed from each sample well and dispensed into two
513 shallow 96-well polypropylene plates, maintained on ice. Additionally, 5 µL were removed
514 from each sample and combined into a homogenous pool; this pool was dispensed in 20-
515 µL aliquots and prepared in parallel with samples. These pooled samples were used for
516 in-run quality control, injected at predefined intervals over the course of analysis to ensure
517 consistent instrument performance over time. Samples were analyzed using two
518 complementary chromatography methods: reversed phase (C18) and hydrophilic
519 interaction chromatography (HILIC). All samples were analyzed by positive and negative
520 mode electrospray ionization (ESI+, ESI-). Sample analysis order was randomized to
521 minimize potential bias in data acquisition. Procedural blanks were prepared by extracting
522 20 µL of water in place of bacterial supernatant. Procedural blanks were inserted
523 throughout the run as additional quality control.

524

525 *HILIC analysis:* Metabolites were extracted by adding 80 µL of extraction mixture
526 containing a solution of acetonitrile and methanol (1:1), including 5% water and stable

527 isotope-labeled internal standards, maintained at -20 °C. The extraction mixture was
528 homogenized by pipetting, and the plate(s) was sealed and equilibrated in the -20 °C
529 freezer for 1 h to ensure precipitation of any remaining protein. Plates were then placed
530 in a centrifuge maintained at -9 °C and spun at 6,000 rcf for 5 min. Supernatant was
531 removed and placed in a new 96-well plate for HILIC analysis. Internal standards were
532 used to ensure complete injection of the sample and chromatographic integrity throughout
533 the analysis. Two microliters of prepared sample were injected in each analysis.

534

535 Chromatographic separation parameters³² and mass spectral parameters³³ were as
536 described previously, with minor modifications. Briefly, spectra were collected using a
537 Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer in both positive
538 and negative mode ionization (separate injections, sequentially). Full MS-ddMS2 data
539 was collected, an inclusion list was used to prioritize MS2 selection of metabolites from
540 an in-house library. Additional scan bandwidth allowed for MS2 collection in a data-
541 dependent manner. Mass range was 60-900 *m/z*, resolution was 60k (MS1) and 15k
542 (MS2), centroid data was collected, loop count was 4, and the isolation window was 1.2
543 Da.

544

545 *C18 analysis:* Metabolites for C18 analysis were prepared similarly to HILIC analysis, with
546 slight modification. Briefly, the extraction solution for C18 analysis was -20 °C MeOH
547 containing internal standards. Subsequent steps matched the HILC procedure described
548 above. In addition to the HILIC protocol, C18-analyzed samples were dried using a
549 Labconco Centrivap at room temperature. Once dried, samples were stored at -20 °C
550 until analysis, when analyzed samples were reconstituted in 20% acetonitrile in water and
551 placed in the autosampler maintained at 4 °C.

552

553 Two microliters of prepared sample were injected onto an Agilent SB-C18 column (100
554 mm length × 3.0 mm inner diameter; 1.8-µm particle size) with a Phenomenex
555 KrudKatcher Ultra filter frit attached to the column inlet. The column was maintained at
556 40 °C coupled to an Thermo Vanquish UPLC. The mobile phases were prepared with
557 0.1% formic acid in LC-MS grade water for mobile phase A or 100% LC-MS grade

558 acetonitrile for mobile phase B. Gradient elution was performed from 3% (B) at 0–0.43
559 min to 97% (B) at 9 min, isocratic until 11 min, returning to 3% (B) at 11.5 min and
560 maintained isocratically until 14 min. Column flow was maintained at 0.4 mL/min. Spectra
561 were collected using a Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass
562 spectrometer in both positive and negative mode ionization (separate injections). Full MS-
563 ddMS2 data were collected, an inclusion list was used to prioritize MS2 selection of
564 metabolites from an in-house library. Additional scan bandwidth allowed for MS2
565 collection in a data-dependent manner. Mass range was 60–900 *m/z*, resolution was 60k
566 (MS1) and 15k (MS2), centroid data was collected, loop count was 4, and the isolation
567 window was 1.0 Da.

568

569 Data was processed using MS-DIAL v. 4.60^{45,46}. MS1 tolerance was set to 0.01 Da, MS2
570 tolerance set to 0.015 Da, and minimum peak height was set to 100k. Alignment retention
571 time tolerance was set to 0.05 min, and mass tolerance was set to 0.015 Da. Annotations
572 were based on in-house libraries of standards analyzed using these chromatographic
573 methods. The freely available MassBank of North America MS2 repository
574 (<https://mona.fiehnlab.ucdavis.edu/>) was used for annotations of metabolites not found in
575 our library. All annotations were MS2-based. Aligned peaks were retained for further
576 analyses only if they were present in at least two of three replicates and were >5-fold
577 higher than the water blank average in at least one sample.

578

579 Assembly experiments

580 Communities were assembled from stationary phase cultures of isolates mixed at equal
581 volume, and 1 μ L of the mixture was inoculated into 200 μ L of growth medium. Plates
582 were sealed and incubated at 37 °C without shaking. The assemblies were diluted 1:200
583 into fresh medium every 48 h for 5 passages to approximately reach an ecological steady
584 state, defined as when subsequent passages exhibited identical dynamics. Using *in vitro*
585 communities similar to the ones in this study, we previously found that ecological steady
586 state was reached in approximately five passages¹⁴. The 15 single-species “dropout”
587 assemblies with 14 of the 15 members were serially diluted for only 3 passages. In “refill”
588 experiments, the inoculum for each dropout was mixed 1:1, 1:10, 1:100, 1:1,000, or

589 1:10,000 with a monoculture of the species that was left out and passaged 3 times. The
590 final passage for assembly experiments was grown in a plate reader for OD
591 measurements, after which the plate was stored at -80 °C until DNA extraction for 16S
592 rRNA gene sequencing was performed.

593

594 Time course experiment

595 The full community of 15 species was assembled and passaged via serial dilution until
596 ecological steady state. Using one culture of the full community in stationary phase, 72
597 replicate cultures were inoculated into fresh media. At each of 24 time points throughout
598 the next growth cycle (at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32,
599 36, 40, 44, and 48 h), 3 replicate samples were collected. Cells were pelleted by
600 centrifuging at $4,000 \times g$ for 5 min, separated from supernatants, and stored for
601 sequencing. Supernatants were stored for metabolomics. The result was a time course
602 of sequencing and metabolomics data representing the dynamics of the full community.

603

604 Summary of experiments

605 Several sets of experiments involved combinations of species, which are summarized
606 here for clarity. The following growth measurements were carried out: 1) all monoculture,
607 pairwise spent-media, and pairwise co-culture experiments; 2) a subset of 3-species
608 combinations for which a species was grown in the mixture of the individual spent media
609 of two other species; 3) a subset of 3-species combinations for which a species was
610 grown in the spent medium of the co-culture of two other species. For the 3-species
611 combinations, the species used for growth measurements were chosen based on
612 exhibiting high yield in monoculture to ensure a broad range of growth behaviors, and the
613 other two species were randomly selected; these combinations are listed in the
614 corresponding figure legends. In addition, 185 combinations of a subset of the 15 species,
615 randomly selected while ensuring sampling across community sizes and taxonomic
616 families, were assembled as described above. The full list of assemblies is shown in
617 **Extended Data Fig. 5c,d.**

618

619 16S rRNA gene sequencing and analyses

620 Amplicon sequencing data were obtained and processed as previously described^{14,47}:
621 DNA was extracted from 50 mL of culture using the DNeasy UltraClean 96 Microbial Kit
622 (Qiagen #10196-4). The bacterial 16S rRNA V4 region was amplified with Earth
623 Microbiome Project-recommended 515F/806R primer pairs using the 5PRIME
624 HotMasterMix (Quantabio #2200410) with the following thermocycler program: 94 °C for
625 3 min, 35 cycles of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], followed by 72 °C
626 for 10 min. PCR products were cleaned with the UltraClean 96 PCR Cleanup kit (Qiagen
627 #12596-4) and pooled using the same volume for each sample. Pooled libraries were
628 concentrated by ethanol precipitation and purified by gel extraction of the corresponding
629 library size using the NucleoSpin Gel and PCR Clean-up Mini kit (Macherey-Nagel).
630 Libraries were prepared using the MiSeq Reagent Kit v3 with 300-bp paired-end reads
631 and sequenced on a MiSeq (Illumina). Demultiplexed fastq files for each sample were
632 processed using DADA2 (46) with the following parameters for the “filterAndTrim” function:
633 [truncLenF = 240, truncLenR = 160, maxEE = c(2,2), truncQ = 2, maxN = 0]. Default
634 parameters were used for the “learnErrors” and “dada” functions. Taxonomic assignment
635 was performed with the “assignTaxonomy” function using the Greengenes Database
636 (gg_13_8_train_set_97.fa).

637

638 Relative abundances were determined to a minimum threshold of 10^{-4} , reflecting the
639 typical depth of sequencing, and the relative abundance of undetected species was set
640 to 10^{-4} for visualization and for calculating the error between model predictions and
641 experimental data. The three *Enterococcus* species were indistinguishable by the
642 amplicon protocol used here. When more than one was present, their relative
643 abundances were summed and visualized as *Eh* if *Eh* was present, else as *Efs*.

644

645 Analyses of growth curves

646 OD measurements were calibrated to be proportional to cell density by linear interpolation
647 to data obtained in a previous study⁴⁸. The minimum point of each growth curve was
648 subtracted as a proxy for the background absorbance. To extract the final yield \bar{X} and
649 growth rate λ , each growth curve was fit to Eq. 2, modified to incorporate a lag time τ ,
650 with one species and one resource. Prior to the time τ , the species does not consume

651 resources nor grow, which was implemented by multiplying X by the step function
652 $\theta(t - \tau)$, where $\theta(t) = 1$ for $t \geq 0$ and 0 otherwise. The culture yield over time $X(t)$
653 becomes

654
$$X(t) = \bar{X} [1 + (\bar{X}/X_0 - 1) \exp(-\lambda(t - \tau))]^{-1},$$

655 where $\lambda = RY(t = 0)$ is the growth rate, $X_0 = X(t = 0)$ is the initial abundance, and $\bar{X} =$
656 $X(t = 48 \text{ h})$ is the yield at 48 h (defined as such to match our experimental protocol). The
657 growth rate λ and lag time τ were determined by exhaustive grid search minimizing the
658 mean squared error between predicted and measured $X(t)$. Unless otherwise stated, lag
659 time was not included in simulations of community dynamics.

660

661 Analyses of metabolomics data

662 Metabolomic features that passed pre-processing were defined as depleted or produced
663 if they decreased by >100-fold or increased by >10-fold, respectively, compared to fresh
664 medium, and if the difference was significant ($p < 0.05$) by a two-sample t -test. An ion
665 intensity of 0 was set to 1 for the purpose of calculating fold changes. Coarse-grained
666 resource groups were obtained by grouping metabolomic features that shared the same
667 set of depleting species.

668

669 Residues in randomly generated coarse-grained CR models

670 To determine the typical distribution of resource competition residues in coarse-grained
671 CR models, 100 resource groups were randomly selected out of all possible groupings of
672 15 species. Each group was assigned a random initial level from a uniform distribution
673 from 0 to 1. Simulated yields of monoculture and pairwise spent-media experiments were
674 then calculated directly by summing the levels of the consumed resource groups. The
675 resulting yields were modified with empirical measurement noise before calculating the
676 resource competition residues.

677

678 Simulations of the coarse-grained CR model

679 To mimic our experimental protocol, Eq. 2 was simulated under a serial dilution scheme
680 in which each dilution cycle continued until stationary phase when all resources are
681 depleted ($dY_\mu/dt = 0$ for all μ), after which a new cycle was initiated by replenishing the

682 resources to their initial levels Y_μ^0 and diluting all species abundances by a factor D , which
683 was set to 200 in simulations to mimic our experimental protocol. In simulations, the first
684 cycle was initialized with equal abundances of each species, and dilutions were repeated
685 until an ecological steady state was reached in which further cycles produced identical
686 dynamics up to a small numerical threshold. At ecological steady state, species
687 abundances in stationary phase are linear combinations of the resource levels since all
688 resources have been converted to biomass, and are independent of the initial
689 abundances given the same set of initially present species^{31,35,36}. Note that X_i in Eq. 2
690 denotes absolute abundances, and all simulations were carried out using absolute
691 abundances. To compare against experimental data, simulation results were converted
692 to relative abundances and those $<10^{-4}$ were considered undetectable and removed in
693 downstream calculations.

694

695 Parametrization of the coarse-grained CR model

696 The parameters of the CR model in Eq. 2 are the resource levels in fresh medium Y_μ^0 and
697 resource consumption rates $R_{i\mu}$, which were inferred as briefly described in the text. In
698 greater detail, given a resource utilization structure defined by a set of coarse-grained
699 resource groups, the corresponding resource levels were inferred from the experimentally
700 determined yield $\bar{X}_{i,j}$ of species i in the spent medium of j , which the model predicts to
701 be $\bar{X}_{i,j} = \sum_{\mu \in S_i \setminus S_j} Y_\mu^0$. Here, S_i is the set of resources consumed by species i , and “\”
702 denotes the difference between sets. In other words, the sum is over resources μ
703 consumed by i but not j such that $R_{i\mu} > 0$ but $R_{j\mu} = 0$. Since the resource utilization
704 structure is given, which elements of $R_{i\mu}$ are non-zero is known (although their values are
705 not yet known). Each of the 15^2 experiments in monoculture and pairwise spent media
706 represented one equation in the non-negative least squares regression. The M resource
707 groups with the most constituent features to incorporate into the model was determined
708 by minimizing the AIC assuming that residuals from the regression are normally
709 distributed with zero mean and variance equal to the observed sample variance. This
710 minimization was carried out to a maximum of 50 groups to avoid overfitting (**Extended**
711 **Data Fig. 5b**). Including more groups did not improve model predictions. Resources μ

712 inferred to have near-zero Y_μ^0 ($<10^{-4}$) were removed from the model. The consumption
713 rates $R_{i\mu}$ were similarly inferred from the experimentally determined growth rates, which
714 the model predicts to have a maximum value of $\lambda_{i,j}^{\max} = \sum_{\mu \in S_i \setminus S_j} R_{i\mu} Y_\mu^0$ for species i grown
715 in the spent medium of species j . Given limitations in the accuracy of growth rate
716 measurements in cultures with low yield, we further simplified the problem and assumed
717 that $R_{i\mu} = R_i^*$ for all resources μ , i.e., species i consumes all resources that it uses at the
718 same rate, and hence, $R_i^* = \lambda_i / \sum_{\mu \in S_i} Y_\mu^0$.

719

720 Comparison with hypothetical resource utilization structures

721 To evaluate the relevance of metabolomics-derived resource groups, three hypothetical
722 structures of resource consumption were used to predict assembly compositions: a “base”
723 structure that included only the 15 species-specific groups, and on top of this base
724 structure, either every group shared between species pairs, or every group shared across
725 all but one species (**Extended Data Fig. 4a**). For each of these structures, a set of
726 resource levels and consumption rates was inferred from pairwise spent-media
727 experiments following the procedure described above.

728

729 Comparison with resource utilization structures selected via regularized regression

730 In addition to using resource groups with the most constituent features to determine the
731 resource utilization structure, we tested another approach via LASSO. The LASSO
732 analysis used all detected resource groups to construct the regression problem from
733 pairwise spent-media experiments. Hence, for the same 15^2 known variables as in the
734 original regression problem, there were as many unknowns as the number of detected
735 groups, $\approx 1,000$. A regularization parameter penalized against having many resources
736 with non-zero values of Y_μ^0 . The regularization parameter was varied across a broad
737 range, which resulted in a minimum of 1 and a maximum of 45 resources with non-zero
738 Y_μ^0 . Each value of the regularization parameter led to a set of inferred resource levels and
739 consumption rates (**Extended Data Fig. 6b**). LASSO performance was defined as the
740 mean error of the best-performing set (**Fig. 3b**).

741

742 Comparison with model based on the number of metabolomic features alone

743 To estimate resource levels Y_μ^0 , one option is to set Y_μ^0 proportional to the number of
744 metabolomic features in resource group μ , without fine-tuning via regression against
745 yields in spent media. To test the performance of this parametrization, the resource
746 utilization structure was kept the same as in **Fig. 3a**, the proportionality constant between
747 feature count and resource level Y_μ^0 was set to the best fit value from the pairwise spent-
748 media experiments (**Fig. 2c**), and resource consumption rates were determined in the
749 manner described above.

750 **REFERENCES**

751 1 Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and
752 disease. *Nature Reviews Genetics* **13**, 260-270 (2012).
<https://doi.org:10.1038/nrg3182>

753 2 Singh, B. K., Trivedi, P., Egidi, E., MacDonald, C. A. & Delgado-Baquerizo, M.
754 Crop microbiome and sustainable agriculture. *Nature Reviews Microbiology* **18**,
755 601-602 (2020). <https://doi.org:10.1038/s41579-020-00446-y>

756 3 Widder, S. *et al.* Challenges in microbial ecology: building predictive
757 understanding of community function and dynamics. *The ISME Journal* **10**, 2557-
758 2568 (2016). <https://doi.org:10.1038/ismej.2016.45>

759 4 Niehaus, L. *et al.* Microbial coexistence through chemical-mediated interactions.
760 *Nature Communications* **10**, 2052 (2019). [https://doi.org:10.1038/s41467-019-
762 10062-x](https://doi.org:10.1038/s41467-019-
761 10062-x)

763 5 Hammarlund, S. P., Gedeon, T., Carlson, R. P. & Harcombe, W. R. Limitation by
764 a shared mutualist promotes coexistence of multiple competing partners. *Nature
765 Communications* **12**, 619 (2021). <https://doi.org:10.1038/s41467-021-20922-0>

766 6 Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in
767 bacterial communities reflect the network structure of microbial metabolism.
768 *Nature Ecology & Evolution* **5**, 1424-1434 (2021). [https://doi.org:10.1038/s41559-
021-01535-8](https://doi.org:10.1038/s41559-
769 021-01535-8)

770 7 Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-feeding
771 modulates antibiotic tolerance in bacterial communities. *The ISME Journal* **12**,
772 2723-2735 (2018). <https://doi.org:10.1038/s41396-018-0212-z>

773 8 Amarnath, K. *et al.* Stress-induced cross-feeding of internal metabolites provides
774 a dynamic mechanism of microbial cooperation. *bioRxiv*,
775 2021.2006.2024.449802 (2021). <https://doi.org:10.1101/2021.06.24.449802>

776 9 Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive
777 bacterial interactions. *PLoS biology* **16**, e2004248 (2018).

778 10 Aranda-Díaz, A. *et al.* Bacterial interspecies interactions modulate pH-mediated
779 antibiotic tolerance. *eLife* **9**, e51493 (2020).

780 11 Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nature*
781 *Reviews Microbiology* **10**, 538-550 (2012). <https://doi.org:10.1038/nrmicro2832>

782 12 Momeni, B., Xie, L. & Shou, W. Lotka-Volterra pairwise modeling fails to capture
783 diverse pairwise microbial interactions. *eLife* **6**, e25051 (2017).

784 13 Ng, K. M. *et al.* Recovery of the gut microbiota after antibiotics depends on host
785 diet, community context, and environmental reservoirs. *Cell host & microbe* **26**,
786 650-665 (2019).

787 14 Aranda-Díaz, A. *et al.* Establishment and characterization of stable, diverse,
788 fecal-derived in vitro microbial communities that model the intestinal microbiota.
789 *Cell Host & Microbe* (2022).
<https://doi.org:https://doi.org/10.1016/j.chom.2021.12.008>

790 15 Wexler, A. G. *et al.* Human symbionts inject and neutralize antibacterial toxins to
791 persist in the gut. *Proceedings of the National Academy of Sciences* **113**, 3639-
792 3644 (2016). <https://doi.org:10.1073/pnas.1525637113>

793 16 Verster, A. J. *et al.* The Landscape of Type VI Secretion across Human Gut
794 Microbiomes Reveals Its Role in Community Composition. *Cell Host & Microbe*
795 **22**, 411-419.e414 (2017). <https://doi.org:10.1016/j.chom.2017.08.010>

796 17 Venturelli, O. S. *et al.* Deciphering microbial interactions in synthetic human gut
797 microbiome communities. *Molecular Systems Biology* **14**, e8157 (2018).
798 <https://doi.org:https://doi.org/10.15252/msb.20178157>

799 18 Hu, J., Amor, D. R., Barbier, M., Bunin, G. & Gore, J. Emergent phases of
800 ecological diversity and dynamics mapped in microcosms. *Science* **378**, 85-89
801 (2022). <https://doi.org:10.1126/science.abm7841>

802 19 Fisher, C. K. & Mehta, P. Identifying Keystone Species in the Human Gut
803 Microbiome from Metagenomic Timeseries Using Sparse Linear Regression.
804 *PLOS ONE* **9**, e102451 (2014).

805 20 Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light
806 of traits: A phylogenetic perspective. *Science* **350**, aac9323 (2015).
807 <https://doi.org:10.1126/science.aac9323>

808 21 Chesson, P. MacArthur's consumer-resource model. *Theoretical Population
809 Biology* **37**, 26-38 (1990).

811 22 Hart, S. F. M. *et al.* Uncovering and resolving challenges of quantitative modeling
812 in a simplified community of interacting cells. *PLOS Biology* **17**, e3000135
813 (2019).

814 23 Patnode, M. L. *et al.* Interspecies Competition Impacts Targeted Manipulation of
815 Human Gut Bacteria by Fiber-Derived Glycans. *Cell* **179**, 59-73.e13 (2019).
816 <https://doi.org:10.1016/j.cell.2019.08.011>

817 24 Gowda, K., Ping, D., Mani, M. & Kuehn, S. Genomic structure predicts metabolite
818 dynamics in microbial communities. *Cell* **185**, 530-546.e525 (2022).
819 <https://doi.org:https://doi.org/10.1016/j.cell.2021.12.036>

820 25 Biggs, M. B. *et al.* Systems-level metabolism of the altered Schaedler flora, a
821 complete gut microbiota. *The ISME Journal* **11**, 426-438 (2017).
822 <https://doi.org:10.1038/ismej.2016.130>

823 26 Medlock, G. L. *et al.* Inferring Metabolic Mechanisms of Interaction within a
824 Defined Gut Microbiota. *Cell Systems* **7**, 245-257.e247 (2018).
825 <https://doi.org:https://doi.org/10.1016/j.cels.2018.08.003>

826 27 Weiss, A. S. *et al.* In vitro interaction network of a synthetic gut bacterial
827 community. *The ISME Journal* (2021). <https://doi.org:10.1038/s41396-021-01153-z>

828 28 Aranda-Diaz, A. *et al.* Assembly of gut-derived bacterial communities follows "early-bird" resource utilization dynamics. *bioRxiv*, 2023.2001. 2013.523996
829 (2023).

830 29 Foster, Kevin R. & Bell, T. Competition, Not Cooperation, Dominates Interactions
831 among Culturable Microbial Species. *Current Biology* **22**, 1845-1850 (2012).
832 <https://doi.org:https://doi.org/10.1016/j.cub.2012.08.005>

833 30 Erez, A., Lopez, J. G., Weiner, B. G., Meir, Y. & Wingreen, N. S. Nutrient levels
834 and trade-offs control diversity in a serial dilution ecosystem. *eLife* **9**, e57790
835 (2020).

836 31 Ho, P.-Y., Good, B. H. & Huang, K. C. Competition for fluctuating resources
837 reproduces statistics of species abundance over time across wide-ranging
838 microbiotas. *eLife* **11**, e75168
839
840 31 Ho, P.-Y., Good, B. H. & Huang, K. C. Competition for fluctuating resources
841 reproduces statistics of species abundance over time across wide-ranging
842 microbiotas. *eLife* **11**, e75168 (2022). <https://doi.org:10.7554/eLife.75168>

842 32 Showalter, M. R. *et al.* Obesogenic diets alter metabolism in mice. *PLOS ONE*
843 13, e0190632 (2018).

844 33 Han, S. *et al.* A metabolomics pipeline for the mechanistic interrogation of the gut
845 microbiome. *Nature* **595**, 415-420 (2021). <https://doi.org/10.1038/s41586-021-03707-9>

846 34 Alseekh, S. *et al.* Mass spectrometry-based metabolomics: a guide for
847 annotation, quantification and best reporting practices. *Nature Methods* **18**, 747-
848 756 (2021). <https://doi.org/10.1038/s41592-021-01197-1>

849 35 Xiao, Y. *et al.* Mapping the ecological networks of microbial communities. *Nature*
850 *Communications* **8**, 2042 (2017). <https://doi.org/10.1038/s41467-017-02090-2>

851 36 Cui, W., Marsland, R. & Mehta, P. Diverse communities behave like typical
852 random ecosystems. *Physical Review E* **104**, 034416 (2021).
853 <https://doi.org/10.1103/PhysRevE.104.034416>

854 37 Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome
855 Datasets Are Compositional: And This Is Not Optional. *Frontiers in Microbiology*
856 **8** (2017).

857 38 Halpern, D. & Gruss, A. A sensitive bacterial-growth-based test reveals how
858 intestinal Bacteroides meet their porphyrin requirement. *BMC Microbiology* **15**,
859 282 (2015). <https://doi.org/10.1186/s12866-015-0616-0>

860 39 Bloxham, B., Lee, H. & Gore, J. Diauxic lags explain unexpected coexistence in
861 multi-resource environments. *Molecular Systems Biology* **18**, e10630 (2022).
862 <https://doi.org/https://doi.org/10.15252/msb.202110630>

863 40 Bai, Y. *et al.* Functional overlap of the *Arabidopsis* leaf and root microbiota.
864 *Nature* **528**, 364-369 (2015). <https://doi.org/10.1038/nature16192>

865 41 Cheng, A. G. *et al.* Design, construction, and *in vivo* augmentation of a complex
866 gut microbiome. *Cell* **185**, 3617-3636.e3619 (2022).
867 <https://doi.org/https://doi.org/10.1016/j.cell.2022.08.003>

868 42 Aranda-Díaz, A. *et al.* High-throughput cultivation of stable, diverse, fecal-derived
869 microbial communities to model the intestinal microbiota. *BioRxiv*, 2020.2007.
870 2006.190181 (2020).

871

872 43 Hryckowian, A. J. *et al.* Microbiota-accessible carbohydrates suppress
873 Clostridium difficile infection in a murine model. *Nature Microbiology* **3**, 662-669
874 (2018). <https://doi.org:10.1038/s41564-018-0150-6>

875 44 Jacobson, A. *et al.* A Gut Commensal-Produced Metabolite Mediates
876 Colonization Resistance to Salmonella Infection. *Cell Host & Microbe* **24**, 296-
877 307.e297 (2018). <https://doi.org:https://doi.org/10.1016/j.chom.2018.07.002>

878 45 Tsugawa, H. *et al.* MS-DIAL: data-independent MS/MS deconvolution for
879 comprehensive metabolome analysis. *Nature Methods* **12**, 523-526 (2015).
880 <https://doi.org:10.1038/nmeth.3393>

881 46 Tsugawa, H. *et al.* A lipidome atlas in MS-DIAL 4. *Nature Biotechnology* **38**,
882 1159-1163 (2020). <https://doi.org:10.1038/s41587-020-0531-2>

883 47 Celis, A. I. *et al.* *iScience* **25** (2022). <https://doi.org:10.1016/j.isci.2022.103907>

884 48 Atolia, E. *et al.* Environmental and Physiological Factors Affecting High-
885 Throughput Measurements of Bacterial Growth. *mBio* **11**, e01378-01320 (2020).
886 <https://doi.org:10.1128/mBio.01378-20>

887

888 **ACKNOWLEDGMENTS**

889 We thank members of the Huang lab for helpful discussions, and Jonas Cremer, Ben
890 Good, Karna Gowda, Mikhail Tikhonov, Ned Wingreen, and Katherine Xue for critical
891 readings of the manuscript. We thank Biohub team member Wasim Sandhu for metabolite
892 extraction and LC-MS/MS data acquisition. This work was funded by a Stanford School
893 of Medicine Dean's Postdoctoral Fellowship (to P.H.), an NIH Postdoctoral Fellowship
894 F32 GM143859 (to P.H.), an NSF Graduate Research Fellowship (to T.H.N.), NSF
895 Awards EF-2125383 and IOS-2032985 (to K.C.H.), and NIH Awards R01 AI147023 and
896 RM1 GM135102 (to K.C.H.). K.C.H. is a Chan Zuckerberg Biohub Investigator.

897

898 **Author contributions:** Conceptualization: PH, KCH. Methodology: PH, THN, BCD, KCH.
899 Investigation: PH, THN, JMS, BCD. Visualization: PH, THN, KCH. Funding acquisition:
900 PH, THN, KCH. Supervision: PH, BCD, KCH. Writing – original draft: PH, THN, KCH.
901 Writing – review & editing: PH, THN, BCD, KCH.

902

903 **Competing interests:** The authors declare that they have no competing interests.

904

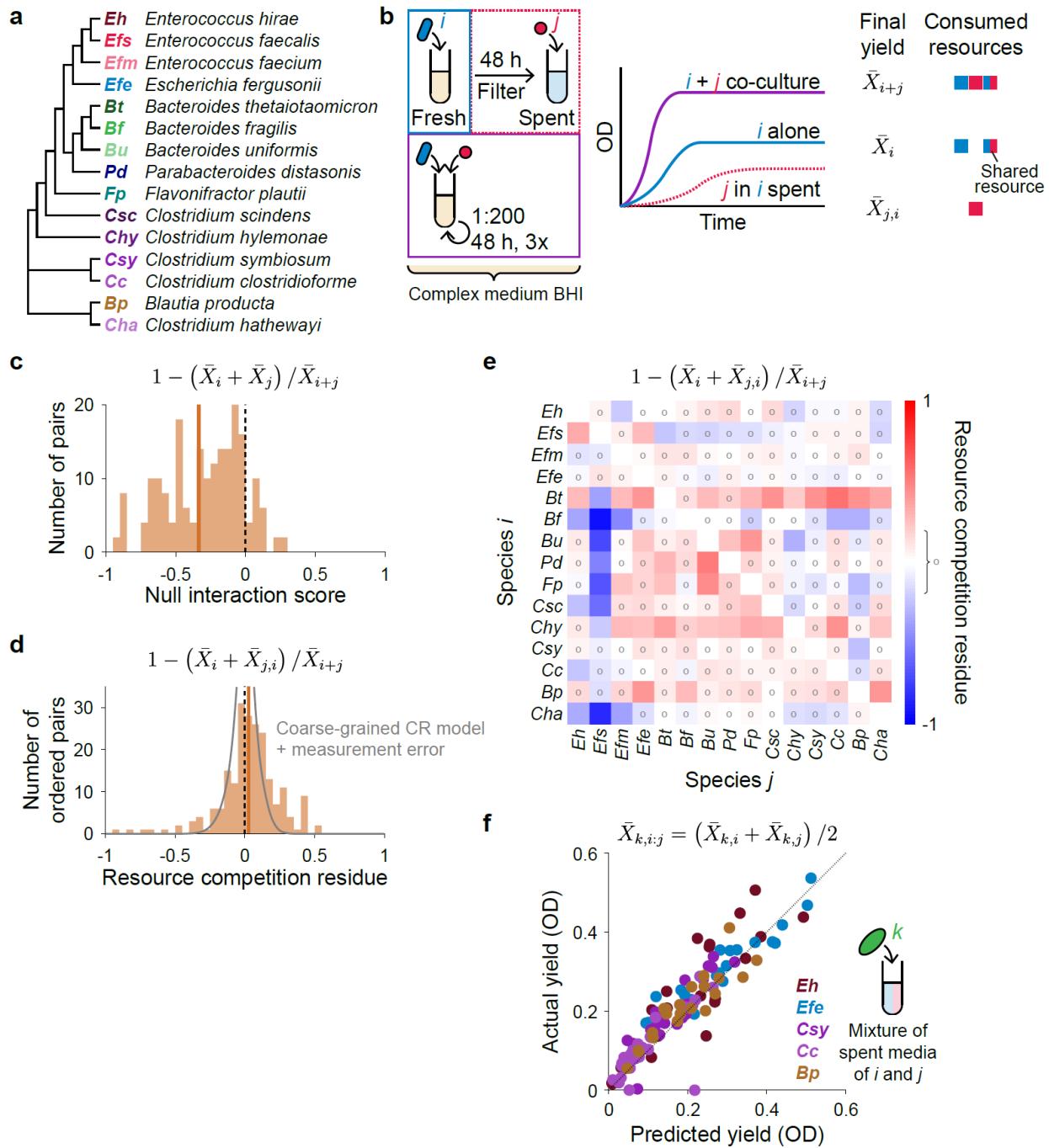
905 **Data availability:** All data are available at the Zenodo repository
906 (10.5281/zenodo.7535703). Metabolomics data are available in the NIH Metabolomics
907 Workbench under ST002832, ST002833, and ST002834. Sequencing data are available
908 under ENA study PRJEB72096.

909

910 **Code availability:** All code are available at the Zenodo repository
911 (10.5281/zenodo.7535703).

912

913 **Supplementary Information:** Supplementary Text

FIGURES

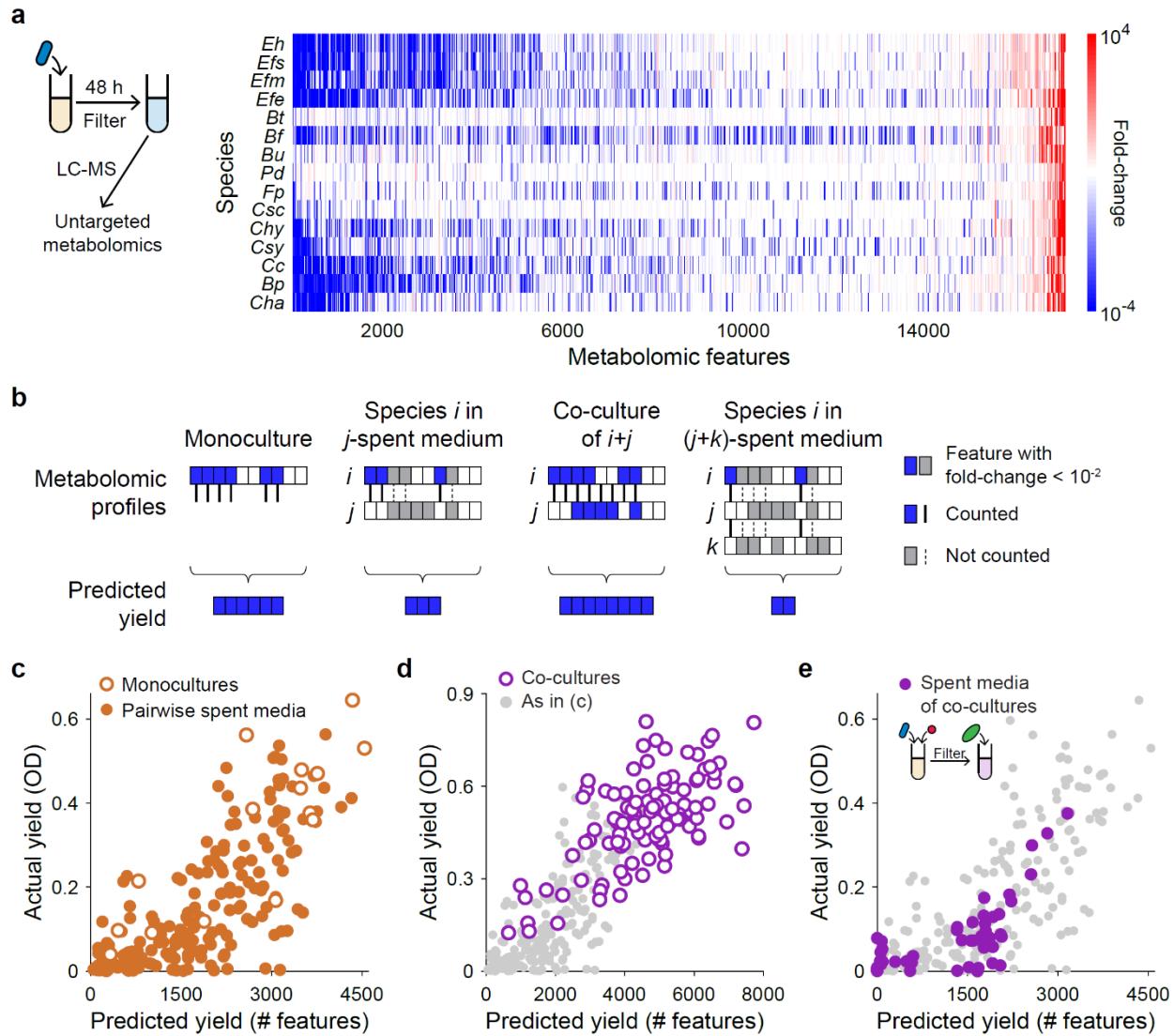
916 **Figure 1: Coarse-grained resource competition can describe most pairwise
917 interactions in an *in vitro* model system of 15 human gut commensals.**

918 a) Phylogenetic tree of the 15 species studied here, which collectively represent an
919 experimental model system for the gut microbiota of humanized mice¹⁴ (**Extended
920 Data Fig. 1, Supplementary Text**).

921 b) Schematic of growth experiments in pairwise spent media and predictions of the
922 coarse-grained CR model. Growth curves of optical density (OD) over time were
923 obtained for each species grown in monoculture, in co-culture with every other
924 species, and in the spent media of every other species, all in the complex medium
925 BHI (**Methods**). In the coarse-grained CR model, the final yield is determined by
926 the amount of coarse-grained resources, resulting in Eq. 1.

927 c) The null interaction score, the difference between the yield \bar{X}_{i+j} of the co-culture
928 of species i and j and the sum of the individual yields \bar{X}_i and \bar{X}_j , was negative for
929 most species pairs. Shown in (c-f) are mean yields across replicates. Solid vertical
930 line denotes the mean across all pairs.

931 d) The distribution of normalized resource competition residues was centered about
932 zero. Shown in gray are results for numerical simulations of randomly generated
933 coarse-grained CR models with empirical error in yield measurements (**Methods**).
934 e) Most normalized resource competition residues were close to zero. Circles “o”
935 denote residues with absolute value <0.2 , the approximate maximum value of
936 residues in simulations of randomly generated coarse-grained CR models in (d).
937 f) Yield in 1:1 mixtures of spent media was predicted by the average of the yield in
938 each spent medium individually. For feasibility, only a subset of all 3-species
939 combinations was tested. Five species, denoted by colors, were grown in every
940 pairwise mixture of the spent media from *Eh*, *Efe*, *Csy*, *Bt*, *Bp*, *Csc*, *Efs* or fresh
941 BHI (**Methods**).



943 **Figure 2: Metabolomic profiles can approximately predict yield in monoculture, co-**
 944 **culture, and spent media.**

945 a) Schematic of metabolomics experiments and the resulting profile of fold change in
 946 LC-MS signal intensity relative to fresh BHI for each species. Shown are mean
 947 values across three replicates for all metabolomic features, including unannotated
 948 ones, that changed significantly in the spent medium of any of the species
 949 (**Methods**).

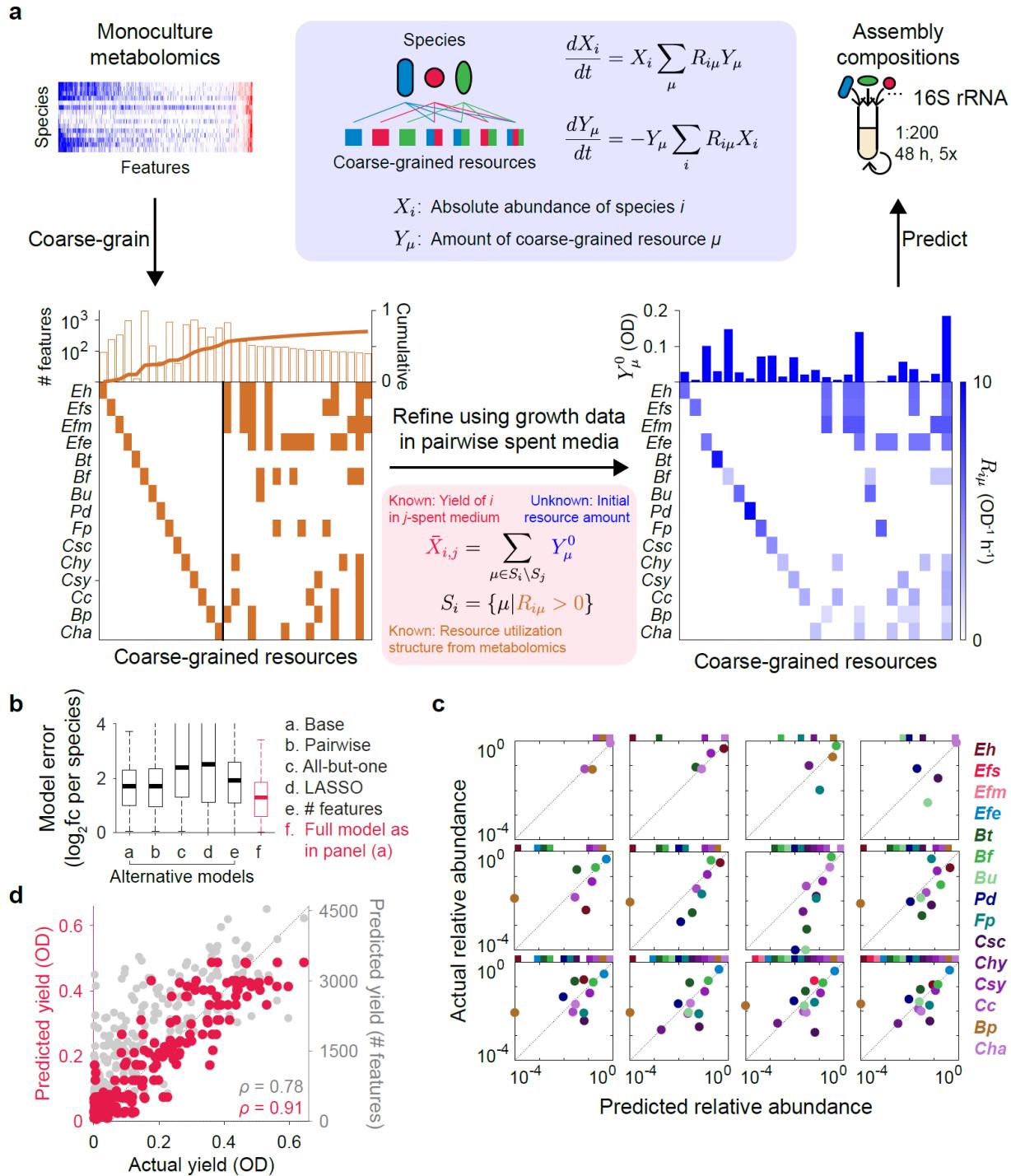
950 b) Schematic of rule used to predict yield from metabolomic profiles. The predicted
 951 yield of a species in monoculture was defined as the number of metabolomic
 952 features (rectangles) that was depleted in the spent medium of that species (blue,
 953 solid lines). The predicted yield of species i in the spent medium of j was defined

954 as the number of features depleted by i but not j (gray, dashed lines), and
955 analogously for co-cultures of i and j , as well as i growing in the co-culture of j
956 and k .

957 c) Feature count was correlated with biomass yield in monocultures and pairwise
958 spent-media experiments (Pearson's correlation coefficient $\rho = 0.83, 0.76$, and
959 0.78 for monocultures, pairwise spent-media experiments, and together,
960 respectively). Shown in (c-e) are mean yields across replicates.

961 d) The same trend was also observed for pairwise co-cultures ($\rho = 0.65$). All pairwise
962 co-cultures are shown. Monocultures and pairwise spent-media experiments, as
963 in (c), are shown in gray in (d,e) as a visual guide.

964 e) The same trend was also observed for yield in the spent medium of co-cultures (ρ
965 $= 0.74$). For feasibility, only a subset of all 3-species combinations was tested. Two
966 species (*Eh* and *Efe*) were grown in the spent media of all pairwise co-cultures of
967 *Eh*, *Efe*, *Csy*, *Bt*, *Cc*, *Bp*, *Csc*, and *Efs* (**Methods**).



968

969 **Figure 3: A consumer-resource model based on monoculture metabolomics and**
 970 **growth in spent media predicts community assembly.**

971 a) Schematic for predicting community assembly using a coarse-grained CR model
 972 (**Methods**). Metabolomic features were grouped into a coarse-grained resource if
 973 they were depleted by the same set of species. The resulting resource utilization

974 structure (orange, left) was combined with growth data in pairwise spent media to
975 infer resource levels and consumption rates via linear regression (blue, right).
976 Coarse-grained resources with initial amount inferred to be $<10^{-4}$ were removed
977 from the model and not displayed. Shown are the species-specific resources and
978 the 18 coarse-grained resources with the most constituent features, which together
979 accounted for 71% of all features and minimized the AIC for the regression. The
980 resulting CR model was used to predict the composition of 185 random assemblies
981 and compared against experimentally determined relative abundances (**Methods**).

982 b) The CR model based on metabolomics and pairwise spent-media experiments
983 achieved the lowest mean error out of all models considered. Model error for an
984 assembly was defined as the magnitude of $\log_2(\text{fold-change})$ ("fc") between actual
985 and predicted relative abundance averaged across species in the assembly.
986 Shown are box plots denoting the mean error (thick central mark), the 25th and 75th
987 percentiles (box), and the extremes (dashed lines) across all assemblies tested for
988 the best model (red) and alternative models (black), which include 1) models with
989 hypothetical resource utilization structures: the base model consisting of the
990 species-specific resource groups, the base model plus all pairwise niche overlaps,
991 and the base model plus all 15 all-but-one niche overlaps; 2) a regularized
992 regression approach to determine the resource utilization structure; and 3) an
993 approach to approximate resource levels based on feature counts only without
994 using pairwise spent-media experiments (**Methods**). The model in (a) was
995 significantly better than all other models by the Mann-Whitney U-test.

996 c) Assembly predictions approximately matched experimental data. Each panel
997 shows one assembly. Twelve examples with varying community size were
998 randomly chosen from the 185 combinations tested. Shown are mean relative
999 abundances across replicates. Colored squares along the top of each panel are
1000 placed at the same relative location, and indicate species that were present in the
1001 inoculum of that assembly. The relative abundances of undetected species were
1002 set to 10^{-4} for visualization.

1003 d) Regressed resource levels Y_μ^0 (red) recapitulated yield in pairwise spent media
1004 better than feature counts alone (gray) ($\rho = 0.91$ vs 0.78 , respectively).

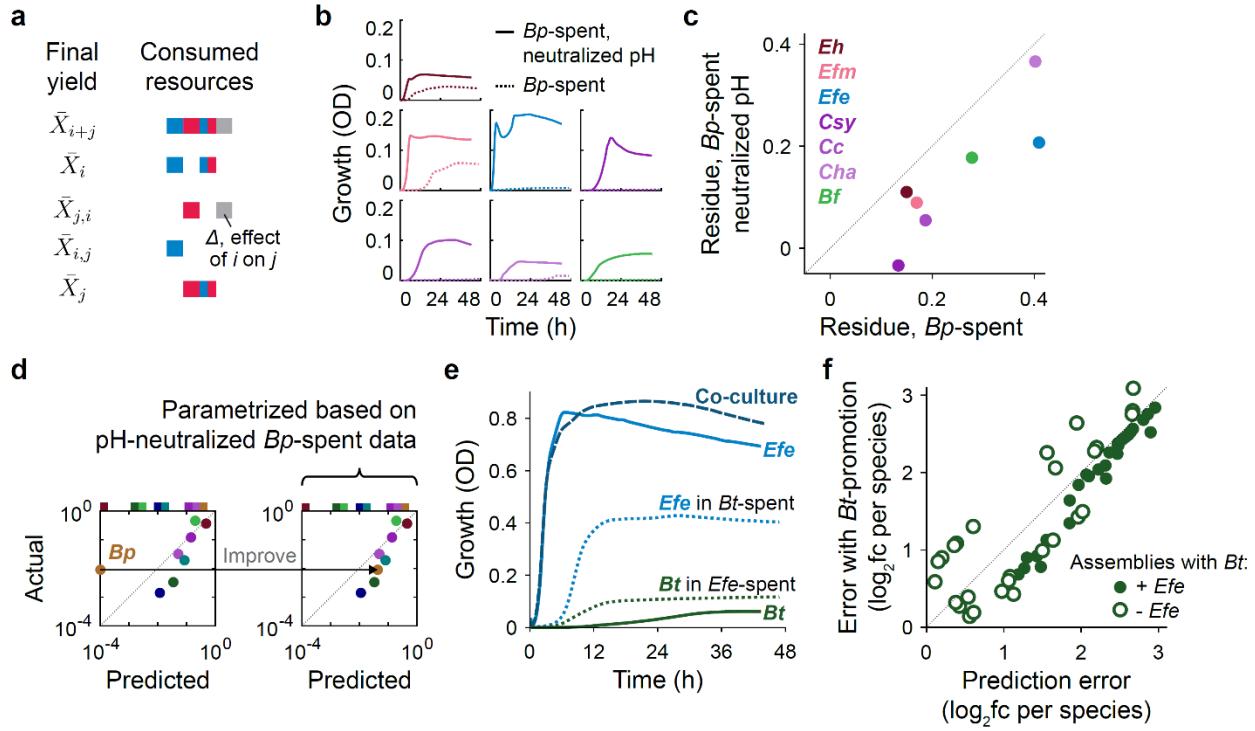
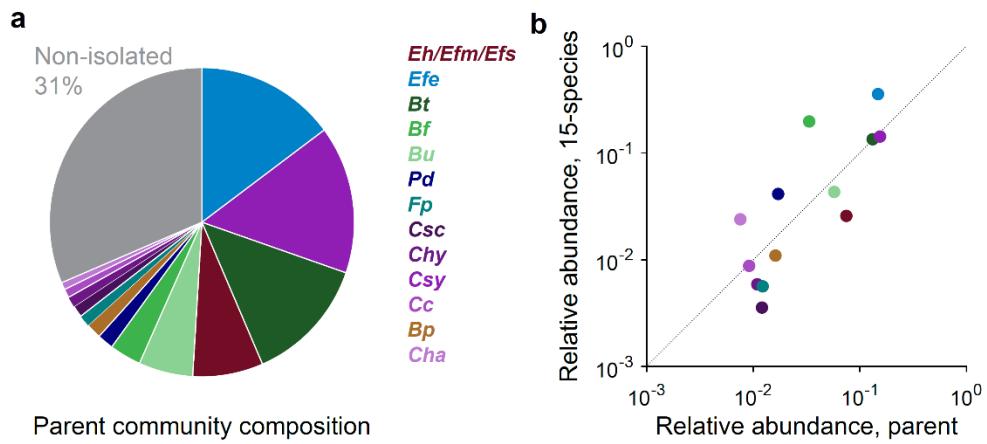


Figure 4: Strategies for incorporating pH and metabolic cross-feeding interactions into the CR model.

- Schematic for interpreting resource competition residues in the presence of additional contributions to growth from interactions other than resource competition as described by Eq. 1.
- pH-mediated interactions involving *Blautia producta* (*Bp*). Shown are growth curves in *Bp*-spent medium and *Bp*-spent medium with neutralized pH for the subset of species that grew more quickly than *Bp* in monoculture.
- Resource competition residues became less positive and closer to zero after neutralizing the pH of *Bp*-spent medium (**Methods**).
- Model predictions improved after parametrization based on growth data in pH-neutralized *Bp*-spent medium. Shown are predictions for an example assembly as in **Fig. 3c**.
- Escherichia fergusonii* (*Efe*) promoted *Bacteroides thetaiotaomicron* (*Bt*) growth. *Bt* grew more quickly and to higher yield in *Efe*-spent medium, the only case of growth promotion in spent medium out of all 210 ordered pairs.
- Errors of model predictions after incorporating the *Efe*-*Bt* interaction into the model. Shown are prediction errors for the CR model described in **Fig. 3a** and the same

1024 model with a fixed boost to the predicted abundance of *Bt* equal to the difference
1025 in yields between *Bt* in *Efe*-spent medium and in monoculture. Shown are all
1026 assemblies with *Bt*, including those that also contained *Efe* (filled) and those that
1027 did not contain *Efe* (empty). Assemblies with *Efe* were always better predicted
1028 when *Bt*-promotion was included, whereas predictions of assemblies without *Efe*
1029 were better or worse in an apparently random manner.

1030 **EXTENDED DATA FIGURES**

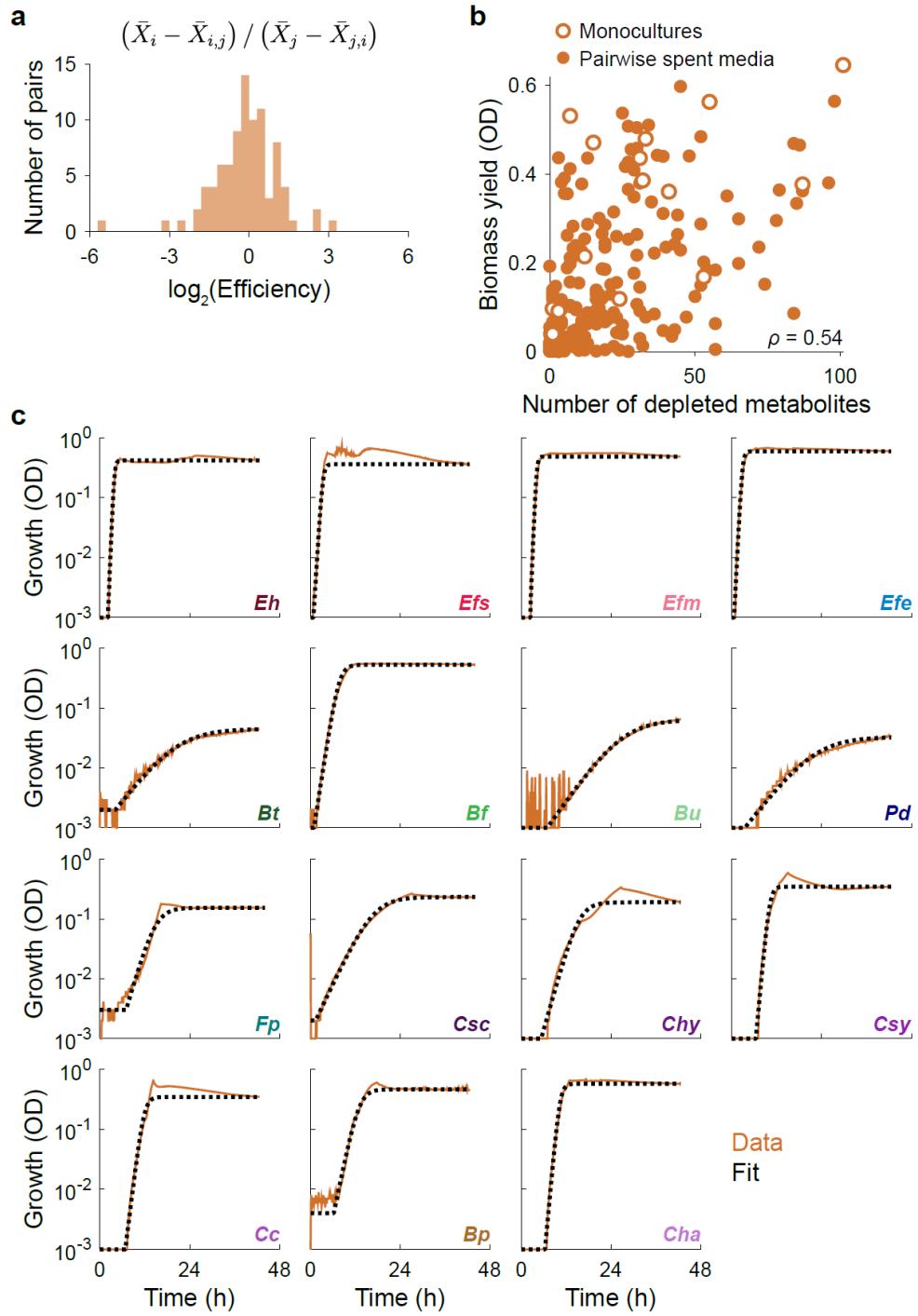


1031

1032 **Extended Data Figure 1: The 15 species studied here represent a tractable model**
1033 **system for humanized mice gut microbiota.**

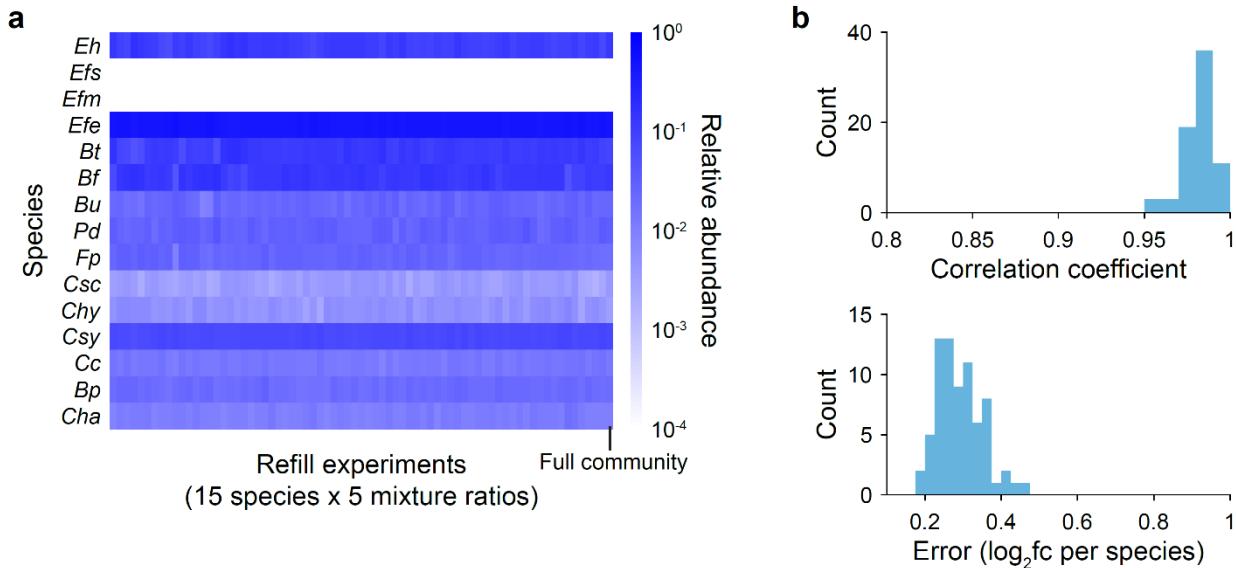
1034 a) The 15 isolates were obtained from the same parent community, which was
1035 derived by culturing a humanized mice fecal sample. Pie chart shows relative
1036 abundance of isolated (colored) and non-isolated (gray) species. The 15 isolates
1037 accounted for 69% of the composition of the parent community.

1038 b) The composition of the 15-species assembly was highly correlated with the
1039 composition of the parent community ($\rho = 0.80$).



1046 centered about zero with a narrow width, except for a few outliers for which
1047 differences between yields in monoculture and spent medium were small
1048 compared to measurement error.

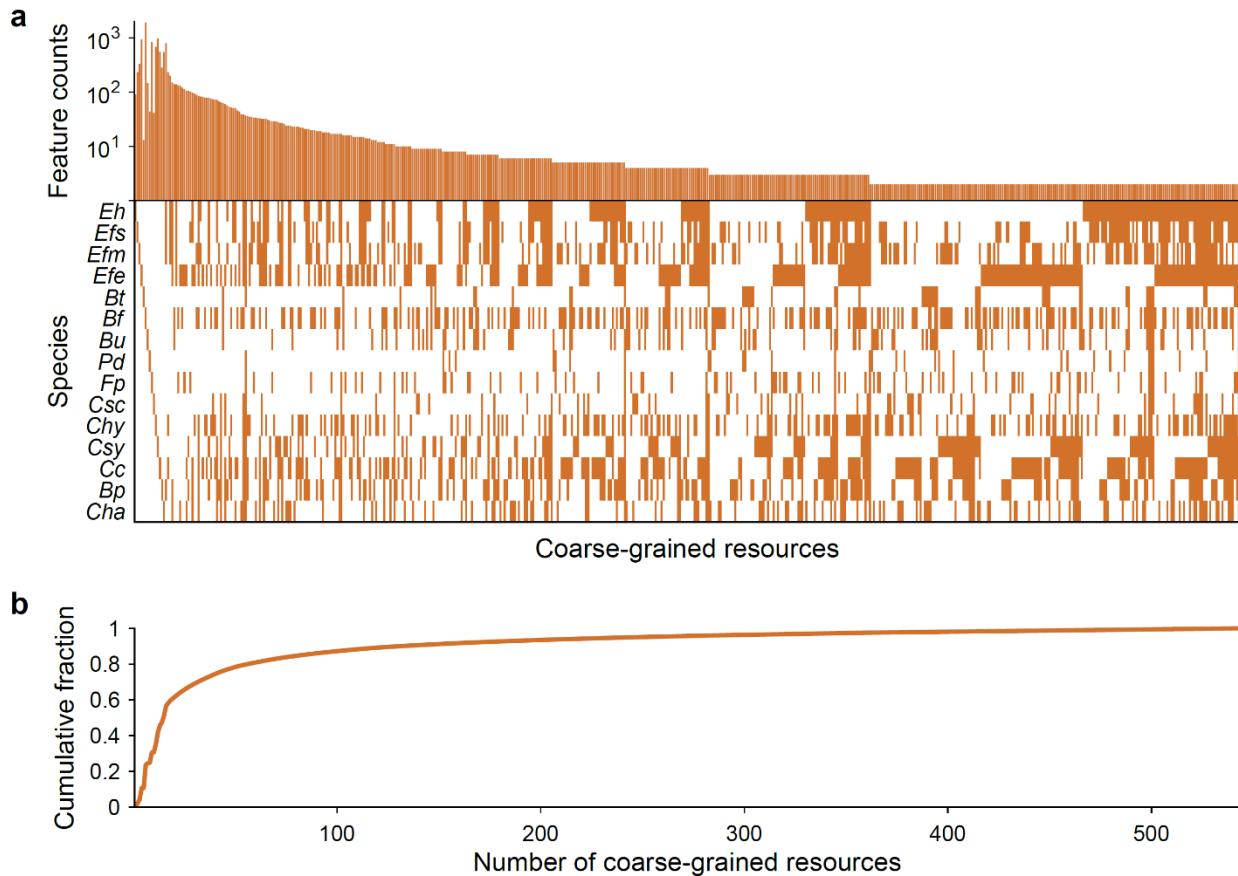
1049 b) The number of annotated features that were depleted was correlated with biomass
1050 yield in monocultures and pairwise spent-media experiments, analogous to **Fig.**
1051 **2c**. The correlation is not as strong as when unannotated features were also
1052 included, suggesting that unannotated features are informative for species growth.
1053 c) Monoculture growth curves (orange) were well fit by Eq. 2 for one species and one
1054 resource (black; **Methods**).



1055

1056 **Extended Data Figure 3: Assembly compositions were independent of initial**
 1057 **values.**

1058 a) Relative abundances at steady state in refill experiments. Each column represents
 1059 one experiment, in which a dropout assembly with 14 of the 15 species was mixed
 1060 with a monoculture of the dropped-out species at various ratios (1:1, 1:10, 1:100,
 1061 1:1,000, and 1:10,000). All 15 species \times 5 ratios were tested, and all are shown
 1062 except for 3 experiments with idiosyncratic sequencing errors. The compositions
 1063 were virtually indistinguishable from each other and from the full 15 member
 1064 community, which is shown in the last column.
 1065 b) Histogram of the correlation coefficient (top) and mean absolute error in \log_2 (fold-
 1066 change) (bottom) between the relative abundances in each refill experiment and
 1067 the full 15-species community.

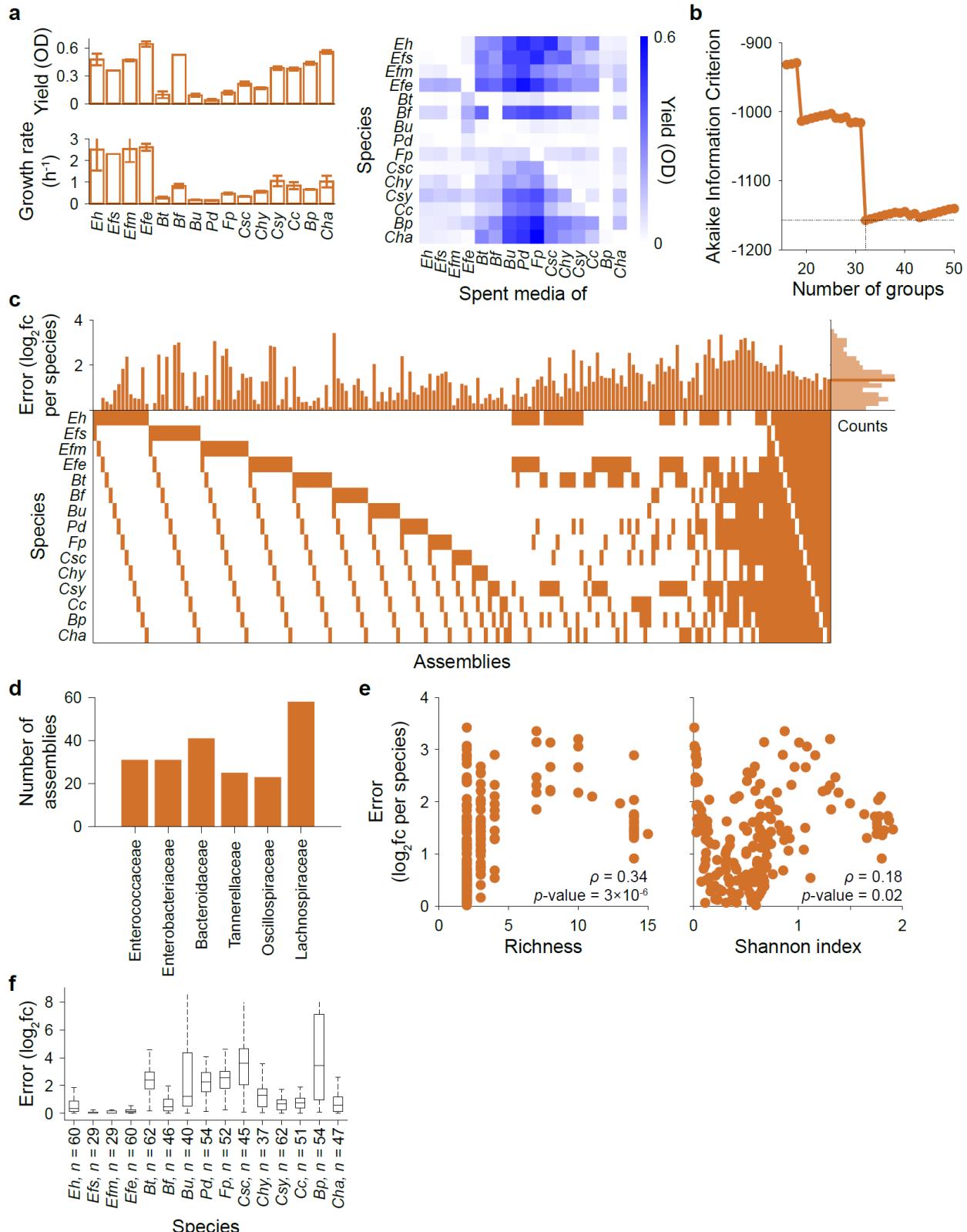


1068

1069 **Extended Data Figure 4: Metabolomics-derived coarse-grained resource groups.**

1070 a) The structure of metabolomics-derived coarse-grained resource groups. A
 1071 metabolomic feature was considered depleted if it decreased by >100-fold
 1072 compared to fresh medium, and features that shared the same set of depleting
 1073 species were grouped together into a coarse-grained resource group, shown as
 1074 one column in the matrix. The number of features in each resource group is shown
 1075 in the bar plot above each column. Only groups with more than one constituent
 1076 feature are shown.

1077 b) The cumulative fraction of the number of metabolomic features as a function of the
 1078 number of coarse-grained resource groups included, starting with the leftmost
 1079 column in (a).



1080

1081 **Extended Data Figure 5: Regression input, regression optimization, and prediction**
 1082 **errors.**

1083 a) Yield and growth rate in monocultures (left) and yield in pairwise spent media
1084 (right) were used to refine metabolomics-based resource utilization structures
1085 (**Methods**). Shown are mean values across replicates. Error bars denote the
1086 standard error of the mean.

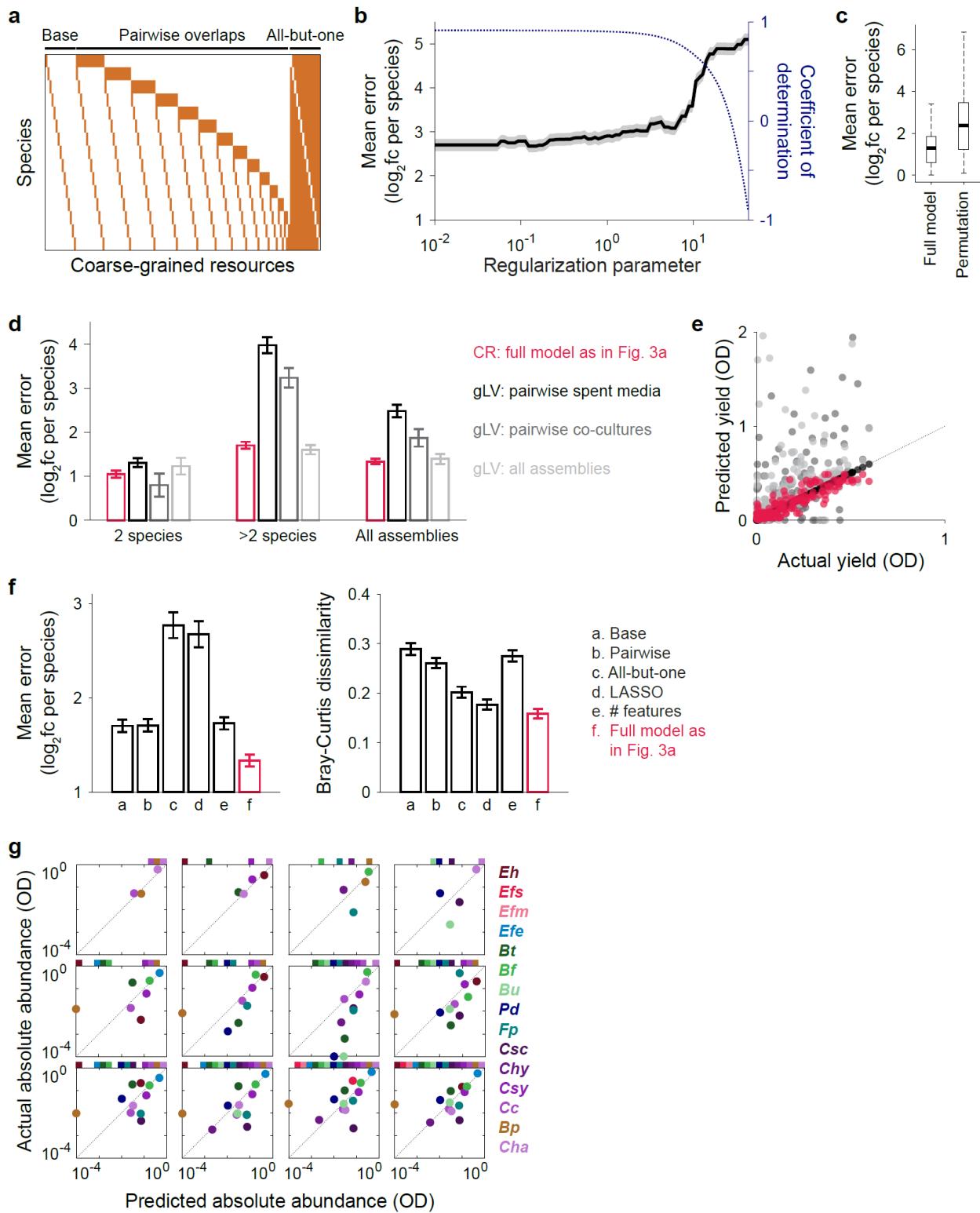
1087 b) Determination of resource utilization structure by minimization of the AIC
1088 (**Methods**). Minimization was carried out over the top M coarse-grained resource
1089 groups with the most constituent features. The AIC-minimizing set of resource
1090 groups is shown in **Fig. 3a**.

1091 c) Prediction error for each assembly for the coarse-grained CR model shown in **Fig.**
1092 **3a**. Shown are all 185 assemblies tested. Errors were calculated using mean
1093 relative abundances across replicates. Each column represents one assembly,
1094 and the matrix denotes the species that were initially present in each assembly. A
1095 histogram of prediction errors and the mean error (solid line) are also shown.

1096 d) The number of assemblies, out of the 64 assemblies containing 3 to 13 species,
1097 that contained at least one species from a given family is >30 for every family,
1098 indicating that the random combinations tested were taxonomically diverse.

1099 e) Error for each assembly was only weakly correlated with the initial richness (left)
1100 or the Shannon index (right) of the community, suggesting that model performance
1101 was not dependent on community diversity.

1102 f) Error for each species across all assemblies. The number of assemblies n
1103 containing each species is shown. Box plot denotes the median (central mark),
1104 25th and 75th percentiles (box), and extremes (dashed lines).



1105

1106 **Extended Data Figure 6: Other approaches to predict assembly composition**
 1107 **performed worse than the coarse-grained CR model based on metabolomics and**
 1108 **pairwise spent-media experiments.**

1109 a) Hypothetical resource utilization structures. The “base” structure was defined as
1110 the set of species-specific resource groups. On top of the base structure, pairwise
1111 niche overlaps consumed by only two species and all-but-one niche overlaps
1112 consumed by 14 of the 15 species were also tested. Model performance using
1113 these hypothetical structures are shown in **Fig. 3b**.

1114 b) Performance of utilization structures selected by regularized regression on all
1115 detected resource groups (**Methods**). Shown are mean errors and coefficients of
1116 determination for LASSO fits. Shading denotes standard error of the mean.

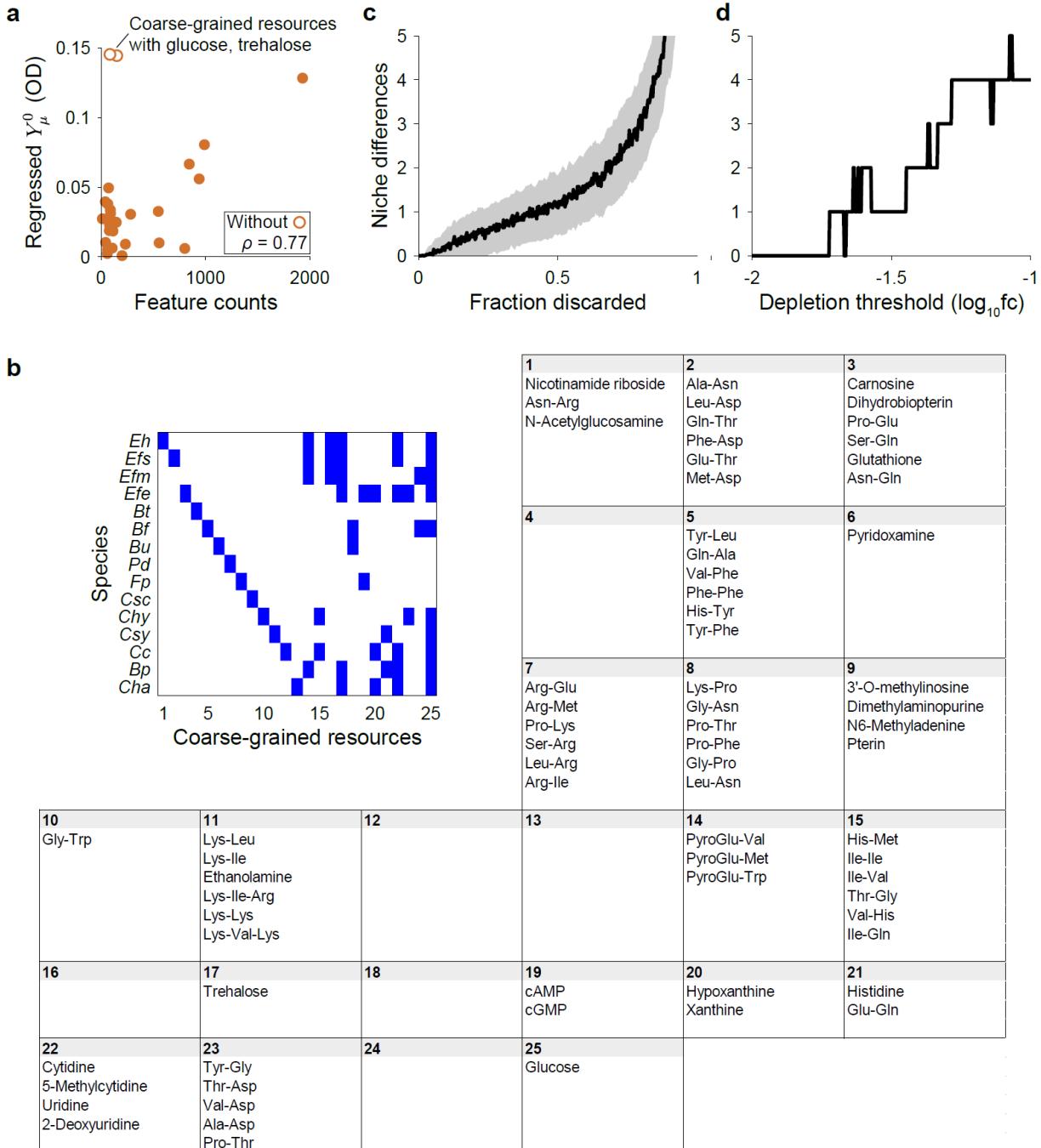
1117 c) Prediction error of the full model as in **Fig. 3a** (left) versus model predictions after
1118 randomly shuffling species identity (right).

1119 d) The CR model achieved comparable performance as a gLV model fitted to all
1120 assembly data. Shown are mean errors of model predictions for co-culture
1121 assemblies, assemblies of more than two species, and all assemblies. Error bars
1122 denote standard error of the mean. Colors denote different models
1123 (**Supplementary Text**): the CR model (orange); and gLV models parametrized
1124 using pairwise spent-media experiments (black), species abundances in pairwise
1125 co-cultures (dark gray), or species abundances in all assemblies (light gray).

1126 e) gLV models parametrized using assembly data failed to predict yield in pairwise
1127 spent-media experiments.

1128 f) The coarse-grained CR model was the best performing model for both the mean
1129 absolute error of $\log_2(\text{fold-change})$ and the commonly used Bray-Curtis
1130 dissimilarity metric, defined as $1 - \sum_{i=1}^N \min(x_i^{\text{actual}}, x_i^{\text{predicted}})$. Shown are the same
1131 models as in **Fig. 3b**.

1132 g) The model successfully predicted absolute abundances, obtained by multiplying
1133 relative abundances by culture yield in OD. Panels are representative assemblies,
1134 analogous to **Fig. 3c**.



1135

1136 **Extended Data Figure 7: Biological basis and robustness of the metabolomics-based resource competition landscape.**

1138 a) Regressed resource levels were correlated with feature counts across coarse-grained resources. Two outliers (empty symbols) contained features identified as the simple sugars glucose and trehalose. Without these two outliers, correlations

1139

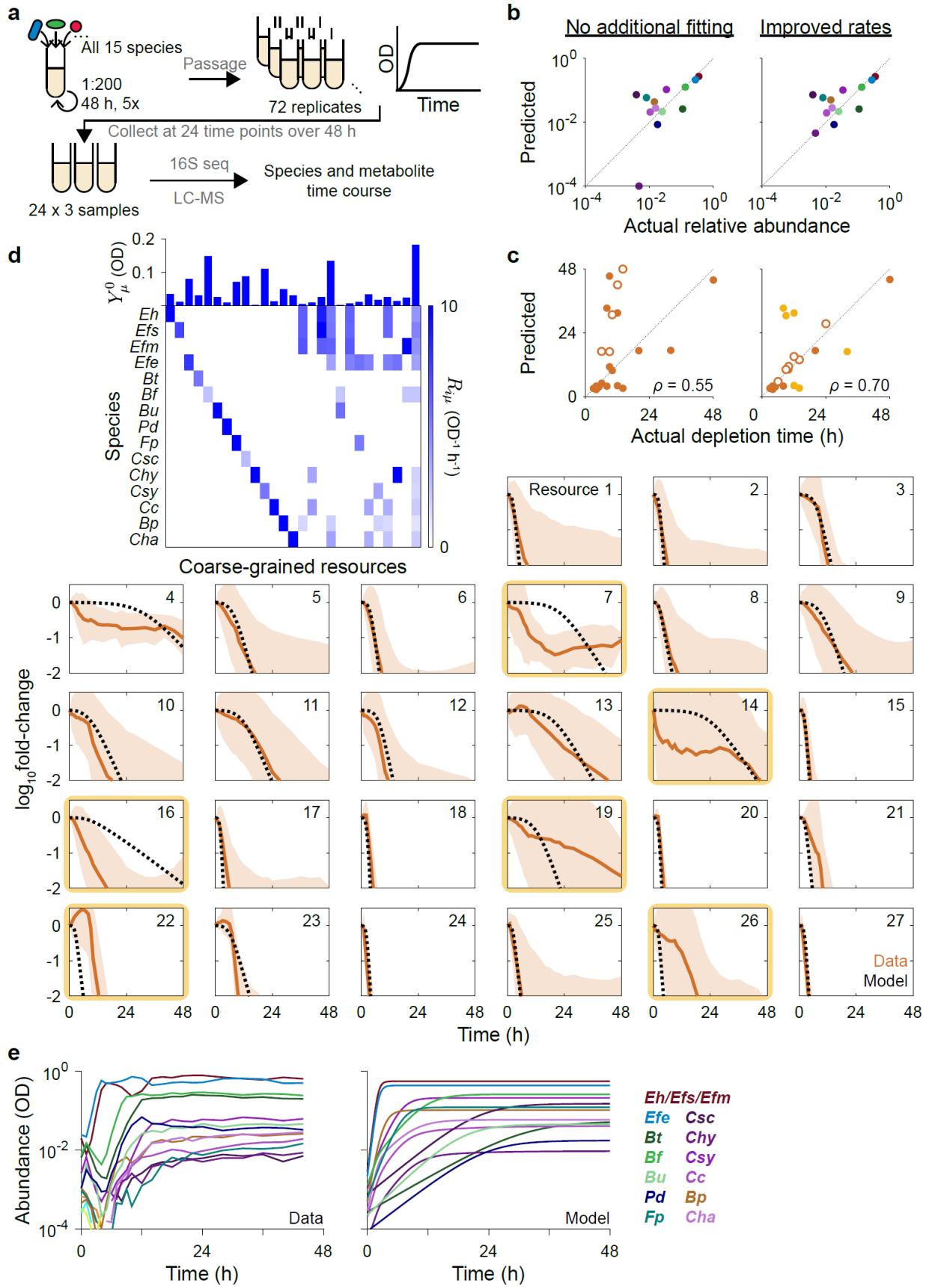
1140

1141 were high ($\rho = 0.77$), indicating that the regression refined metabolomics-based
1142 estimations.

1143 b) Annotated metabolomic features suggest that diverse peptide utilization
1144 capabilities shape the resource competition landscape. Examples of annotated
1145 metabolomic features within each coarse-grained resource group for the CR model
1146 shown in **Fig. 3a**. Resource groups with empty fields did not have any annotated
1147 features.

1148 c) Coarse-graining is robust to uncertainty in peak calling and quantitation. “Niche
1149 differences” denote the number of groups within the top 50 resource groups with
1150 the most constituent features that are different from the set used in the original
1151 analysis (**Extended Data Fig. 4**). Uncertainty in peak calling was simulated by
1152 discarding a random fraction of features. Up to half of the features could be
1153 discarded without affecting the identity of the resource groups with the most
1154 constituent features. Shading denotes the standard deviation of niche differences
1155 across random instances of feature removal.

1156 d) Uncertainty in quantitation was simulated by varying the threshold fold-change for
1157 classifying depletion. The depletion threshold could be varied over an order of
1158 magnitude without changing more than 5 of the 50 largest groups.



1160 **Extended Data Figure 8: The CR model captured metabolite depletion dynamics at**
1161 **a coarse-grained level.**

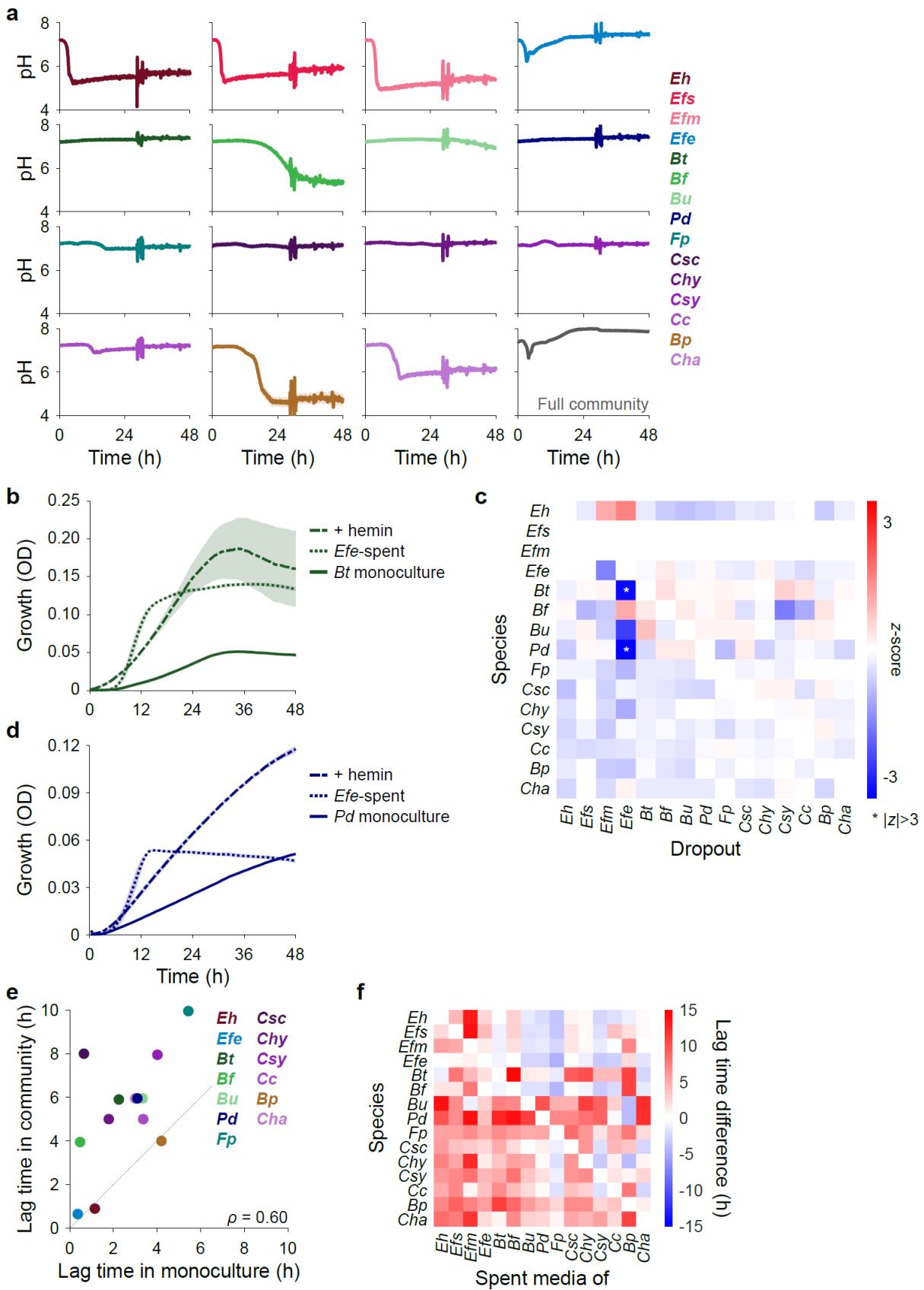
1162 a) Experiment schematic. The full 15-species community was assembled and
1163 passaged to reach ecological steady state. Replicate cultures were inoculated from
1164 the steady-state culture, and 3 replicates were collected at 24 time points
1165 throughout the next growth cycle. Sequencing and metabolomics data were
1166 obtained for all samples (**Methods**).

1167 b) The CR model predicted assembly compositions. The parametrization based on
1168 pH-neutralized *Bp*-spent medium experiments was used (**Fig. 4**). One species (*C.*
1169 *hylemonae*) was incorrectly predicted to be undetectable, which could be remedied
1170 by using metabolite depletion rates to improve the model as in (c).

1171 c) The CR model captured the depletion time of coarse-grained resources, defined
1172 as when the $\log_{10}(\text{fold-change})$ first decreases below -1. Without any modification,
1173 the model achieved a reasonable performance ($\rho = 0.55$, left). Several outliers
1174 were species-specific resource groups (empty symbols). The model was improved
1175 by adjusting the consumption rates of these outlier groups to match their depletion
1176 times ($\rho = 0.71$, right), which simultaneously improved predictions for species
1177 abundances as in (b). The remaining outliers are highlighted in yellow.

1178 d) Resource dynamics were captured at a coarse-grained level. Each panel shows
1179 the dynamics of a coarse-grained resource. The matrix shows the set of coarse-
1180 grained resources included in the model. (Parametrization using pH-neutralized
1181 *Bp*-spent medium experiments led to the incorporation of 2 additional resource
1182 groups with non-zero Y_μ^0 compared to the parametrization shown in **Fig. 3a**.) Solid
1183 lines show the mean $\log_{10}(\text{fold-change})$ across all metabolomic features in a group.
1184 Shading shows the standard deviation. Dotted lines show the predictions of the
1185 improved model. Outlier groups in (c) are highlighted.

1186 e) The model also captured species abundances over time in the full community.



1188 **Extended Data Figure 9: The model can be extended to incorporate pH, cross-**
1189 **feeding, and lag times.**

1190 a) The full community and most species, except for *Blautia producta* and a few other
1191 species, did not modify the pH. pH was obtained during growth measurements
1192 using BCECF for each species in monoculture and the full 15-species community
1193 (**Methods**). Shading denotes standard error of the mean.

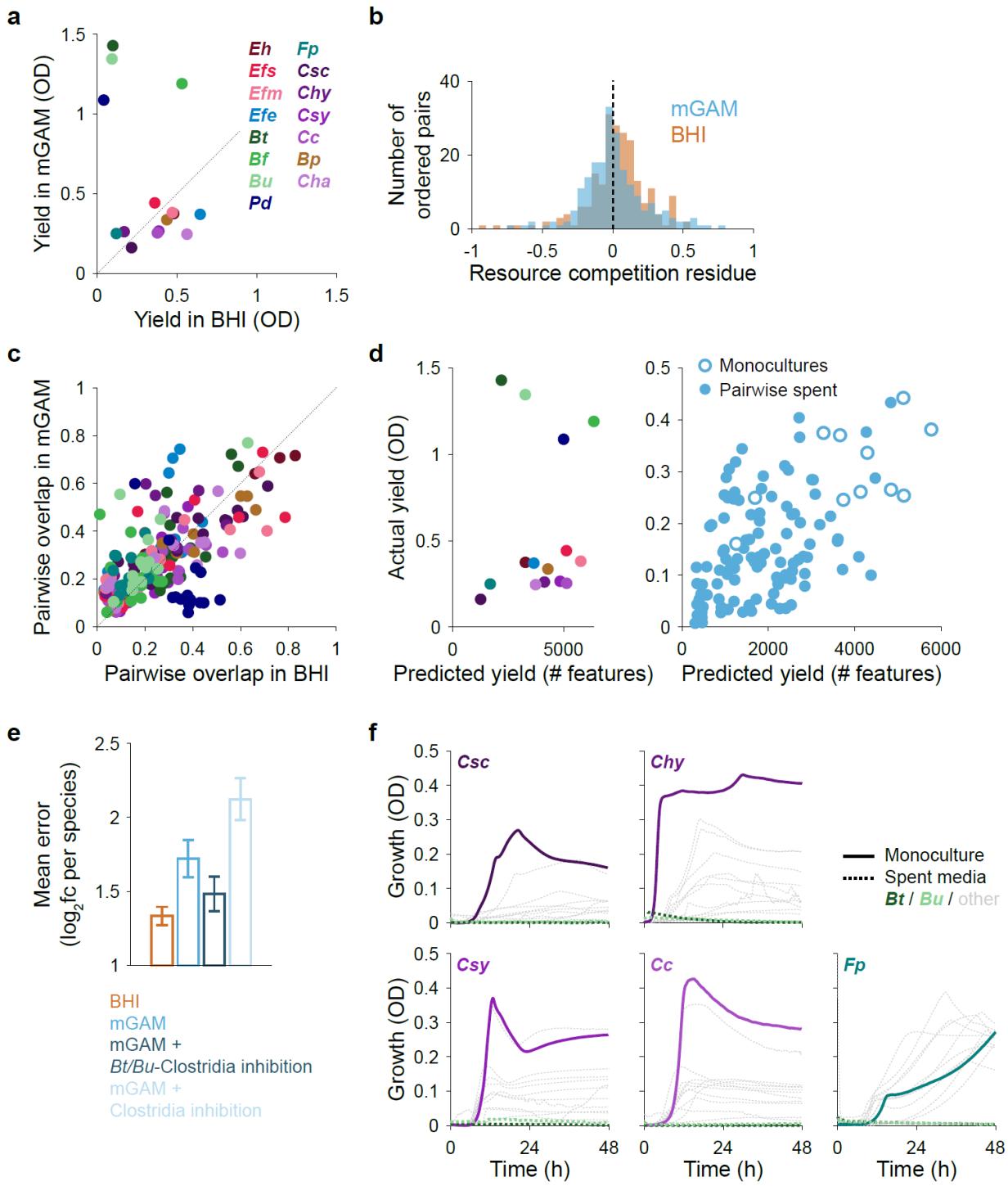
1194 b) Growth curves for *Bt* grown in fresh medium (solid line), in *Efe*-spent medium
1195 (dotted line), and in fresh BHI plus hemin (dash dotted line). Shown is the mean
1196 over replicates. Shading denotes standard error of the mean.

1197 c) Interactions persisted in a community context, and strong interactions in dropout
1198 assemblies were rare. Relative abundances in dropout assemblies are shown in
1199 terms of z-scores. Each column represents a dropout assembly of 14 of the 15
1200 species, with the denoted species left out of the community. Each row represents
1201 the z-scores of the denoted species, defined as $z_{ij} := (x_{ij} - \mu_i)/\sigma_i$, where x_{ij} is
1202 the \log_{10} (relative abundance) of species i in the dropout assembly in which
1203 species j was left out, and μ_i and σ_i are the mean and standard deviation,
1204 respectively, of the \log_{10} (relative abundance) of species i across all dropout
1205 assemblies. Asterisks denote z-scores with absolute value >3 .

1206 d) Same as (b) but for *Pd*.

1207 e) Lag times in monoculture and in the full 15-species community were correlated.
1208 For the full community, absolute abundances over time were obtained by
1209 multiplying relative abundances by culture OD over the time course of the full
1210 community. Lag times were extracted by fitting as for monocultures.

1211 f) The difference between the lag time of a species grown in the spent medium of
1212 another species and grown in fresh medium was typically positive.



1213

1214 **Extended Data Figure 10: Modeling framework was able to predict assembly**
 1215 **compositions and interrogate interactions in the complex medium mGAM.**

1216 a) Monoculture yields in mGAM differed from those in BHI, particularly for the
1217 Bacteroidetes, which exhibited substantially larger yields in mGAM. Shown are
1218 mean values across replicates.

1219 b) The distribution of resource competition residues in mGAM was centered about
1220 zero, as in BHI (**Fig. 1d**).

1221 c) Pairwise overlaps in metabolomic profiles in mGAM and BHI were correlated ($\rho =$
1222 0.66). The pairwise overlap between the ordered species pair (i, j) was defined as
1223 the number of metabolomic features depleted by both species divided by the
1224 number depleted by species i . Shown are all 210 ordered pairs, colored according
1225 to species i .

1226 d) Yield in monoculture (left) and pairwise spent-media experiments (right) was
1227 correlated with feature counts for experiments not involving the four Bacteroidetes
1228 ($\rho = 0.54$). Pairwise spent-media experiments involving the four Bacteroidetes are
1229 not shown.

1230 e) Incorporation of additional interactions significantly and specifically improved
1231 model performance in mGAM. Shown are mean errors for model predictions in BHI
1232 (orange) and mGAM (blue), parametrized using metabolomics and spent-media
1233 experiments in the corresponding media, as well as mean errors for the CR model
1234 in mGAM modified to incorporate *Bt/Bu*-Clostridia interactions (dark blue) or with
1235 ubiquitous Clostridia inhibition (light blue). Error bars denote the standard error of
1236 the mean.

1237 f) The 5 Clostridia species exhibited no detectable growth in *Bt*- or *Bu*-spent media.
1238 Each panel shows the growth curve of a species in monoculture (solid line) and in
1239 pairwise spent media (dotted lines). The color of the solid line denotes the species
1240 grown in each panel. The color of the dotted lines denotes the species that
1241 generated the spent media. Gray dotted lines show growth curves in all other spent
1242 media.