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ABSTRACT

Microbiota dynamics arise from a plethora of interspecies interactions’3, including
resource competition*®, cross-feeding’®, and pH modulation®'. The individual
contributions of these mechanisms are challenging to untangle'"-'2, especially in natural
or complex laboratory environments where the landscape of resource competition is
unclear. Here, we developed a framework to estimate the extent of multi-species niche
overlaps by combining metabolomics data of individual species, growth measurements in
pairwise spent media, and mathematical models. When applied to an in vitro model
system of human gut commensals in complex media'®'4, our framework revealed that a
simple model of resource competition described most pairwise interactions. By grouping
metabolomic features depleted by the same set of species, we constructed a coarse-
grained consumer-resource model that predicted assembly compositions to reasonable
accuracy. Moreover, deviations from model predictions enabled us to identify and
incorporate into the model additional interactions, including pH-mediated effects and
cross-feeding, which improved model performance. In sum, our work provides an
experimental and theoretical framework to dissect microbial interactions in complex in

vitro environments.
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INTRODUCTION

Microbial communities are important for host health and environmental functions’-?, but
their complex dynamics remain difficult to predict and engineer®. A major challenge is that
community members affect each other through a plethora of interaction mechanisms,
including resource competition*®, metabolic cross-feeding”8, pH modulation®19, toxins™S,
and physical inhibition through secretion systems'. One approach to modeling the
complexity of microbial interactions is to summarize the overall effects of species on each
other using phenomenological interaction coefficients'":'":'8. While phenomenological
approaches can be predictive, they typically do not address the mechanistic origins of
interactions, and thus are difficult to generalize' 2%, A quantitative framework for
microbiota dynamics based on species traits and interaction mechanisms is sorely

needed311.20,

To this end, consumer-resource (CR) models describe community dynamics under the
basic mechanism of resource competition, which shapes community dynamics in diverse
contexts ranging from simple synthetic communities to the human gut microbiota?'-24,
Notably, it was recently shown that a CR model could predict the dynamics of bottom-up
assemblies of denitrifying bacteria®*. This feat was achieved by measuring the
denitrification rates of individual species in a chemically defined and electron-acceptor-
limited growth medium, thereby quantifying resource competition in a minimal
environment in which the limiting nutrients are known. However, it remains challenging to
quantify resource competition in chemically undefined and complex nutrient environments

such as the natural context of the gut microbiota?5-2".

Here, we sought to develop a trait-based modeling framework for microbiota dynamics in
complex environments using stool-derived, in vitro communities that we previously
established as an experimental model system for the gut microbiota of humanized mice,
with similar compositions and responses to antibiotic treatment as observed in vivo'34.
We focused on 15 phylogenetically diverse species of human gut commensals isolated
from the same parent in vitro community (Fig. 1a). We selected Brain Heart Infusion (BHI)

as the growth medium because passaging of mouse fecal samples in BHI produced in
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vitro communities that were most similar to their in vivo counterparts compared to other
commonly used media’™. When grown in BHI, these 15 species exhibited a broad range
of growth phenotypes and assembled after 48 h into a community whose composition
resembled that of the parent community?® (Extended Data Fig. 1, Supplementary Text),
indicating that this experimental setup may be informative of the in vivo context and is

suitable for testing predictive models.

By assaying growth in media spent by the growth of other species, we show that a CR
model can describe most pairwise species interactions. We then develop a novel
approach that exploits the large number of unannotated metabolomic features in complex
media to predict biomass yield in spent media, thereby enabling an estimation of the multi-
species landscape of resource competition. Combining data from the metabolomics and
spent-media experiments, we construct a CR model that predict assembly compositions
to reasonable accuracy. Furthermore, we demonstrate a rational process to improve
model predictions by identifying and incorporating additional interaction mechanisms,
including cross-feeding and pH-mediated interactions. In sum, our findings establish a
baseline model based on resource competition to predict community dynamics in complex
nutrient environments, providing a framework to dissect microbial interactions and a step

toward predictive models for natural microbiotas.
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RESULTS

Most pairwise interactions can be described by a resource competition model

To characterize interspecies interactions in our model in vitro community (Fig. 1a), we
measured the growth of each of the 15 species in isolation and in pairwise co-culture with
each other species in BHI (Methods, Fig. 1b). In agreement with previous in vitro studies
involving species from wide-ranging microbiotas?®, the 15 species typically inhibited the
growth of one another in the sense that the null interaction score, the difference between
the biomass yield (as measured by optical density) of the co-culture and the sum of the

two individual yields, was negative in *89% of species pairs (93/105; Fig. 1c).

Since resource competition is a common form of interspecies inhibition, we sought to
quantify its extent by measuring the growth of each species in the spent medium of each
other species (Methods). Spent media exclude physical effects that would emerge due
to the direct presence of a species, but maintain environmentally mediated interactions
like resource competition. To interpret the results, we considered a CR model in which
resources are completely consumed and converted to biomass by species growth30:3",
We coarse-grained the model by grouping metabolites that are consumed by the same
set of species into an effective resource. A community of two species is then described
by three effective resources: two specifically consumed by one of the two species, and
one shared by both species. Under this coarse-graining, species i grown individually will
consume its specific resource and the shared resource, leaving the other resource
specific to species j in the spent medium, while all three resources will be consumed in a
co-culture of i and j (Fig. 1b). Hence, if all species convert resources into yield with the
same efficiency, the model predicts a simple relation for the co-culture yield
Xivj=X+X,=X+X, ()

where X; is the yield of i in monoculture, X; ; is the yield of i in the spent medium of j, and
similarly for X; ;. Small values of resource competition residues r(i,j) = X;1; — (X; + X; ;)
and r(j,i) = X;; — (X; + X, ;) imply that Eq. 1 can describe the interactions between i
and j, and hence, suggest that resource competition shapes this interaction. By contrast,
large residues highlight deviations due to differences in metabolic efficiency or additional

interactions. Note that the two residues r(i,j) and r(j,i) for a pair of species can be
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asymmetric, potentially reflecting directionality of interactions as we demonstrate later.
Although Eq. 1 makes several assumptions about resource utilization, it nonetheless

provides a useful baseline to interpret interactions in spent media.

By contrast to the distribution of null interaction scores, the distribution of normalized
resource competition residues r(i,j)/X;.; and r(j,i)/X;,; was centered about zero
across the 210 ordered pairs (Fig. 1d,e). Simulations of random instances of the CR
model used to derive Eq. 1 produced distributions of normalized residues centered about
zero, as expected, and inclusion of empirical measurement noise for yield broadened the
distribution to have a maximum magnitude of 0.2 (Methods, Fig. 1d). Almost 75% of all
ordered pairs (155/210) had a residue with absolute value less than this maximum (Fig.
1d,e), indicating that their interactions were consistent with Eq. 1. If species utilize
resources with different efficiencies, then these efficiencies can be determined from yields
in monoculture and spent-media experiments similarly as in Eq. 1. The distribution of
efficiencies was narrowly centered around one (Extended Data Fig. 2a), in agreement
with Eq. 1 and its assumptions. Moreover, the model also predicts that the yield of species
i ina 1:1 mixture of the individual spent medium of j and k should be equal to the average
of the yields of i in each spent medium. This corollary was observed for the three-species
combinations that we experimentally tested (Fig. 1f). Taken together, these results
suggest that resource competition is an important driver of community dynamics in our

system.

Metabolomic profiles capture the landscape of resource competition

To further interrogate resource competition, we obtained untargeted metabolomics data
via liquid chromatography coupled with tandem mass spectrometry (LC-MS) on the spent
medium of each species (Methods, Fig. 2a). Using an established pipeline designed to
probe gut bacterial metabolism3?33, we detected thousands of metabolomic peaks across
ionization modes and chromatography methods (“features” in BHI, a chemically
undefined medium. Although the vast majority of features could not be identified, the
hundreds of features that were annotated included carbohydrates, nucleotides, and short

peptides, collectively representing diverse metabolic pathways®:. Therefore, we
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hypothesized that the metabolomic profiles reflect the landscape of resource competition
(i.e., the extent of resource sharing among species as well as the approximate sizes of

individual and shared niches), and sought to predict species growth based on these data.

To connect metabolomic profiles and growth measurements, we would ideally be able to
relate the signal intensity of a metabolite as reported by LC-MS to its contribution to
biomass. However, one metabolite can generate multiple metabolomic features, the
conversions from feature intensity to metabolite concentration can differ across
metabolites, and conversions from metabolite concentration to biomass can differ across
species3334, In any case, these conversion factors are typically unknown. We reasoned
that these details might be secondary to the total number of metabolites consumed in the
limit of many involved metabolites, due to averaging over variations in these conversion
factors. Accordingly, we tested the hypothesis that biomass yield is proportional to the
number of features depleted (>100-fold depletion of signal intensity compared to fresh
medium; Methods, Fig. 2b). This logic also predicts that the yield of species i in the spent
medium of j should be proportional to the number of features depleted by i but not j.
Since this hypothesis does not depend on metabolite identity, it enabled the incorporation
of unannotated features. The resulting predictions were well correlated with experimental
measurements of biomass yield (Pearson’s correlation coefficient p = 0.78; Fig. 2c).
Predictions using only the annotated metabolites were similarly well correlated (p = 0.54;
Extended Data Fig. 2b). Analogous predictions for yields in co-cultures and in the spent
media of co-cultures were also well correlated with these data and followed the same
general trend as in the pairwise spent-media experiments (p = 0.65 and 0.74, respectively;
Fig. 2d,e). Notably, successful predictions of the latter scenario indicate that multi-
species interactions among the 3-species combinations tested were also captured. These
results demonstrate that metabolomic profiles can approximate the resource competition

landscape.

Resource competition approximately predicts community assembly
We next sought to use the metabolomics-based approximation of the resource

competition landscape to predict the assembly of multiple species. We randomly selected
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185 combinations of the 15 species while ensuring sampling among the various
taxonomic families and community sizes, assembled them, and passaged their mixtures
until they approximately reached an ecological steady state, defined as when subsequent
passages exhibited identical dynamics. In practice, we found previously using similar in
vitro communities that ecological steady state was approximately reached in five
passages'#. Finally, we obtained species relative abundances at ecological steady state
by 16S rRNA gene sequencing (Methods). No assemblies were discarded during
downstream analyses. We then constructed a coarse-grained CR model based on the
monoculture metabolomics data and pairwise spent-media experiments, and tested to

what extent it could predict assembly compositions (Fig. 3a).

Specifically, we considered the following model®’,

M
dX;
@ =% Rt
u=1
ay, c
E = _Y# Z RiﬂXi . (2)
i=1

Here, X; denotes the absolute abundance of species i, Y, the amount of coarse-grained
resource u, and R;, the consumption rate of resource u by species i. Resources are
assumed to be substitutable such that species growth continues until all resources are
depleted. The efficiency of resource conversion into biomass is assumed to be the same
for all species, and set to one such that resource amounts and species abundances are
measured in the same unit. Key to this model is coarse-graining, the grouping of
metabolites consumed by the same species into a coarse-grained resource (“resource
group”). The same coarse-graining was used to derive Eq. 1, which is a special case of
the dynamics explicitly described by Eq. 2. Coarse-graining ignores complexities in
nutrient utilization such as hierarchical resource preferences, but enables an estimation

of resource competition in complex nutrient environments.

To compare to experimental data, Eq. 2 was parametrized as described below and then

simulated under serial dilution in which each dilution cycle continued until stationary
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phase when all resources are depleted (dY,/dt = 0), after which a new cycle was initiated
by replenishing the resources to their initial levels Y,? and diluting all species abundances
by a constant factor. Serial dilution was repeated until species abundances reached an
ecological steady state in which further cycles produced virtually identical dynamics,
mimicking the experimental protocol (Methods). For one species and one resource, this
model described well the monoculture growth curves of the 15 species (Methods,
Extended Data Fig. 2c). In a community context, species abundances at steady state X;
were independent of the initial abundances as long as the same species were initially
present, consistent with previous studies involving similar formulations of CR
models3':3536, This independence was also observed experimentally for the following
scenario: when dropout communities consisting of 14 of the 15 species were assembled
and then mixed with the dropped-out species at ratios spanning five orders of magnitude,
the resulting steady-state community compositions were virtually indistinguishable
(Methods, Extended Data Fig. 3).

Since each coarse-grained resource group consists of many metabolites, the aggregate
amount in fresh medium Yu0 of group u along with its associated consumption rates R;,
are unknown. We decomposed the challenge of estimating these model parameters into
three steps (Methods, Fig. 3a). The first step is to choose the set of resource groups that
are incorporated into the model. Choosing this resource utilization structure is a core
challenge because it is combinatorially complex. There are 2'® = 32,768 species
combinations, and hence the same number of potential resource groups. Crucially, as we
have seen, metabolomics data can directly reveal niche overlaps among multiple species
(Fig. 2). The >15,000 features that were depleted in at least one spent medium grouped
into =1,000 resource groups (Extended Data Fig. 4a). Most features fell into large
groups, and the 100 groups with the most constituent features comprised 84% of all
features. Notably, each species was associated with a set of features that it uniquely
depleted, which collectively comprised 49% of all features (Extended Data Fig. 4b).
Taking into account the above properties, we restricted our analysis to the 15 species-

specific resource groups and the M groups with the most constituent features, reasoning
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that these groups should encode most of the information about the resource competition

landscape.

Given a set of resource groups, the second step is to estimate the 15+M unknown initial
resource amounts Y via a linear regression in which the known variables are the
experimentally determined yields in pairwise spent media (Extended Data Fig. 5a).
Within the model, yield in spent media is equal to the sum of Y} for u consumed by the
grown species but not the spent medium-generating species (Methods, Fig. 3A),
analogous to the logic of Eq. 1. With this approach, the problem reduces to choosing the
number M. To do so, we carried out the regression for each M, and chose the one that
minimized the Akaike Information Criterion (AIC) of the regression for the final model
(Extended Data Fig. 5b). Finally, consumption rates were inferred from the
experimentally determined growth rates in spent media, following a similar logic as for

resource levels (Methods).

The outcome was a set of resource levels and consumption rates for the 15 species (Fig.
3a). This CR model was numerically simulated to predict species abundances at
ecological steady state for each of the 185 assemblies tested (Extended Data Fig. 5c).

Model predictions were compared against experimental data using the absolute error of
loga(fold-change) per species, defined as ¥, |log,(x2@ /x| /N, where x; =
X/ 29’=1 X; is the relative abundance at steady state of species i (which for this calculation

was set to the detection threshold in our experiments, 10, if i was undetectable;
Methods). This error metric accounts for the compositional nature of relative abundance
data by weighting errors in high- and low-abundance species equally in terms of fold-

change®’, and can be interpreted intuitively as doublings per species.

Averaged across all assemblies tested, the mean error achieved by the model was 1.33
doublings per species (Methods, Fig. 3b,c, Extended Data Fig. 5¢c-f). Model error was
only weakly correlated with the Shannon index (p = 0.18, p-value = 0.02; Extended Data

Fig. 5e), demonstrating that model performance was robust to assembly diversity.
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To evaluate the performance of this modeling approach, we tested several other
approaches for parametrizing Eq. 2, briefly summarized below (Methods). First, we
tested alternative methods to select the set of resource groups to include in the model,
including three hypothetical resource utilization structures: 1) the base model consisting
of the 15 species-specific groups, 2) the base model plus all pairwise niche overlaps, and
3) the base model plus all 15 all-but-one niche overlaps (Extended Data Fig. 6a). In
addition, we tested resource utilization structures selected via regularized regression
against all 1,000 resource groups detected by metabolomics (Extended Data Fig. 6b).
We tested a different approach to parametrize the resource amount Y for the same
resource utilization structure as before but based on metabolomic feature counts without
regression against growth data in spent media. As an additional benchmark, we
considered a null model in which the predictions of the CR model were shuffled with
respect to species identity (Extended Data Fig. 6c¢). Finally, we examined several
formulations of generalized Lotka-Volterra models with pairwise interspecies interactions
(Extended Data Fig. 6d,e, Supplementary Text). Our CR model combining data from
monoculture metabolomics and pairwise spent-media experiments predicted community
assembly significantly better than all other approaches and models tested (Mann-Whitney
U-test; Fig. 3b). This result was qualitatively robust when using the Bray-Curtis
dissimilarity metric to assess error (Extended Data Fig. 6f), and model performance was
similar when evaluated against estimates of absolute abundance obtained by multiplying
experimentally determined relative abundance by culture yield (Extended Data Fig. 6g).
Although these results do not rule out other models, they indicate that our CR model is a

reasonable baseline for predicting community assembly.

The modeling framework above addressed several challenges posed by complex nutrient
environments. First, the regressed resource levels Y, recapitulated yields in spent media
better than the number of metabolomic features alone (p = 0.91 versus 0.78; Fig. 3d),
while remaining well correlated with feature counts excepting two groups with atypically
large Y,? (p = 0.77 without these two outlier groups; Extended Data Fig. 7a). These
groups contained features that were identified as the highly exploitable carbon sources
glucose and trehalose, demonstrating that the incorporation of growth data fine-tuned the
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metabolomics-based competition landscape in a manner consistent with biological
expectations. Nonetheless, most incorporated groups did not contain any annotated
features (Extended Data Fig. 7b), highlighting the ability of coarse-graining to harness
information from the vast number of unannotated features. Second, coarse-graining
circumvented some of the uncertainty in LC-MS measurements, as the large numbers
involved made the resource utilization structure robust to noise in peak calling and

quantification (Extended Data Fig. 7c).

To further test our CR model, we collected a time course of metabolomics data throughout
a growth cycle of the full 15-species assembly and found that the model successfully
predicted the dynamics of most coarse-grained resources (Methods, Extended Data Fig.
8). Additionally, errors in model predictions of resource dynamics were reduced through
rational modification of the consumption rates, which simultaneously improved model
predictions of species abundances (Extended Data Fig. 8). In sum, the above findings
indicate that coarse-grained resource competition is a useful simplification of the complex

dynamics in our system.

Rational incorporation of additional interaction mechanisms improves model
predictions

While most pairs of species exhibited small resource competition residues, =25% of the
residues deviated substantially from Eq. 1 (Fig. 1d). Deviations from Eq. 1 can arise in
many ways. For example, if the growth of species i affects that of j by an amount A in
addition to the assumptions of resource competition underlying Eq. 1 and this effect
occurs similarly in spent medium and in co-culture, then the model would predict that
r(i,)) =Xip; — (Xi + X;;) = 0and r(j, ) = X;y; — (X; + X; ;) = A (Fig. 4a). If the effect of
i on j is specific to spent medium and does not occur in co-culture, the model would
instead predict r(i,j) = —A and r(j,i) = 0. A species involved in the latter scenario is
Blautia producta (Bp), whose spent medium almost completely inhibited the growth of all
other species, i.e., A < 0 (Fig. 4b). However, Bp grew more slowly than many other
species (Extended Data Fig. 5a), and thus, these other species were able to grow in co-

culture before the inhibitory effects of Bp occurred. In agreement, the residues r(Bp, j)
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were >0 for these other species j (Fig. 4¢), indicating that there is a surplus of growth in

co-culture relative to the inhibitory effects of Bp-spent medium.

We hypothesized that this inhibition could be mediated by pH. Bp-spent medium was
highly acidic with pH =5, while the spent media of other species and the full community
were mostly neutral (Extended Data Fig. 9a). Moreover, growth inhibition was largely
lifted in Bp-spent medium that was adjusted to neutral pH (Methods, Fig. 4b). Residues
computed from yields in pH-neutralized Bp-spent medium were less positive and closer
to zero (Fig. 4c), demonstrating that pH neutralization brought these species pairs into

closer agreement with Eq. 1 and its underlying CR model.

Within a model that accounts for only resource competition, growth inhibition can only be
due to niche overlap. Therefore, the outsized inhibition by Bp-spent medium caused the
regression to infer high levels for resources shared between Bp and other species but
zero for the Bp-specific resource group (Fig. 3a). As a result, Bp was often predicted to
go extinct, in disagreement with experimental data (Fig. 3c). Consequently, Bp was the
species with the worst predictions (Extended Data Fig. 5f). By contrast, when the
regression used yields from pH-neutralized Bp-spent medium, the Bp-specific resource
group was inferred to have a non-zero level, which improved model predictions for Bp
and overall (mean error = 1.31 doublings per species; Fig. 4d). These findings exemplify
that while mechanisms other than resource competition can confound model
parametrization, their effects can be disentangled and incorporated into the model in a

rational manner.

Metabolic cross-feeding is another potential interaction mechanism. Of all metabolomic
features in BHI that changed significantly in the spent medium of any of the species, <15%
were produced (>10-fold increase in signal intensity relative to fresh medium) by at least
one species. Of these produced features, <6% were consumed by at least one other
species (Fig. 2a). The low percentages of produced and potentially cross-feeding
metabolomic features detected suggest that cross-feeding interactions are uncommon in

our system. Indeed, substantial growth promotion by spent media was rare. Only a single



354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ordered pair of species out of 210 exhibited strong enough growth promotion such that
growth in spent medium surpassed that in fresh medium: the spent medium of
Escherichia fergusonii (Efe) substantially boosted the growth of Bacteroides
thetaiotaomicron (Bt), resulting in a positive residue, r(Bt, Efe) > 0 (Fig. 4e). This growth
promotion persisted in larger assemblies (Extended Data Fig. 9b-d), and was likely due
to the production of porphyrins, cofactors involved in iron metabolism that can stimulate

the growth of certain Bacteroidetes®.

To incorporate the beneficial effects of Efe on Bt, we modified the model by assuming
that whenever Efe and Bt were both present, the predicted absolute abundance of Bt
would be increased by a constant amount equal to the difference in yield between Bt
grown in Efe-spent and fresh medium. Remarkably, without any additional tuning of model
parameters, prediction errors decreased for all assemblies containing both Efe and Bt
(Fig. 4f). By contrast, when the same modification was applied to Bt even when Efe was
absent, prediction errors increased in some cases (Fig. 4f), implying that the enhanced
growth of Bt was Efe-dependent. These findings demonstrate that cross-feeding

interactions can also be incorporated into the model in a straightforward manner.

In addition to yield, lag time is another growth characteristic often affected by microbial
interactions®. In our system, lag times in spent media and in the full community
(estimated from the time course experiment) were correlated with, albeit somewhat longer
than those in monoculture (Extended Data Fig. 9e,f). Incorporation of monoculture lag
times into the model slightly improved predictions on average (mean error = 1.31
doublings per species; Methods), suggesting that a better understanding of lag times in

community contexts could improve model predictions even further.

More generally, the above findings illustrate how deviations from model predictions can
detect additional microbial interactions. When applied to another complex medium,
mGAM, our approach revealed a set of interactions between several Bacteroides and
Clostridia species that were not apparent in BHI (Extended Data Fig. 10,
Supplementary Text), consistent with growing evidence that microbial interactions can
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depend on the environment®. Nonetheless, the distribution of resource competition
residues, the approximate proportionality between yield and feature count, and the overall
performance of the CR model were qualitatively similar in mGAM as in BHI (Extended
Data Fig. 10, Supplementary Text). Although an exhaustive investigation into the vast
space of microbial interactions is outside the scope of this study, our results establish a
rationally expandable and generalizable framework to dissect microbial ecology in

complex environments.
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DISCUSSION

Microbiome research is rapidly building toward high-throughput experimentation, and
numerous experimental model systems with defined species compositions have recently
been developed for natural microbiotas*®4'. Motivated by the natural context, these
systems typically use chemically undefined, complex media in which predictive, trait-
based models are lacking. Here, we addressed this gap by developing a combined
experimental and modeling framework. Rather than using relative abundance data to infer
effective interspecies interactions, our framework builds a coarse-grained consumer-
resource model for a system of N species using N monoculture metabolomics
experiments and growth data in N? pairwise spent-media experiments. The resulting
model can be applied to interrogate any of the 2" possible species combinations. The
model makes predictions by quantifying the resource competition landscape among all
species, which also encodes higher-order resource competition among more than two
species. For the in vitro gut bacterial communities investigated here, the model predicted

assembly compositions to a mean error of ~1.3 doublings per species.

Prediction error tended to be larger for assemblies with intermediate richness (Extended
Data Fig. 5e), which can contain a relatively large number of species that interact by
mechanisms other than resource competition due to random sampling, thereby increasing
their prediction error. By contrast, assemblies with high richness will always be dominated
by effective resource competition regardless of sampling since most species pairs have

near-zero residues.

To obtain this level of accuracy, metabolomic feature counts were required to identify the
set of resource groups to model. This coarse-graining process is a combinatorially
complex problem and could be improved in future work. The resource level associated
with each group must be refined using data from pairwise spent-media experiments.
Although pairwise experiments are required, growth assays are more accessible and
have higher throughput than sequencing of pairwise co-cultures, and can be feasibly
applied to systems with hundreds of species. Building on this baseline model, cross-
feeding and pH-mediated interactions could be incorporated to further improve
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predictions. Future work should be able to build upon these findings to disentangle and

quantify other interaction mechanisms, such as toxins and secretion systems.

Key to approximating the resource competition landscape was the proportionality
between the number of metabolomic features and biomass yield. This surprising finding
revealed that each of the 15 species had access to its own niche, which together
comprised approximately half of all features and mechanistically explained the
widespread coexistence of these species in various assemblies. Resources shared
among multiple species comprised the remaining half of metabolomic features, as well as
half of the total resource level in the model. Correspondingly, ignoring the shared
resources led to =40% more error in model predictions (Fig. 3c). Elucidating the
conditions under which this proportionality holds may lead to better understanding of
microbial interactions in complex nutrient environments. However, chemically undefined
complex media cannot easily be separated into components, limiting direct tests of the
effects of individual metabolites. For example, it remains unclear what constitutes the bulk
of biomass precursors in BHI. Since peptone is an ingredient, a substantial fraction likely
consists of short peptides, which shaped the resource competition landscape in our
system (Extended Data Fig. 7b). The effects of vitamins, lipids, and other metabolite

classes that we did not identify remain to be elucidated in future work.

Another limitation is that strain choice can potentially affect interactions, especially
strongly negative interactions among mutually excluding strains that can result in complex
behaviors such as multi-stability. Although systematic studies of this question are lacking,
we found in another study that assembling type strains of the 15 species used here led
to approximately the same community composition*?. Moreover, robustness to variability
in initial abundance was recently observed for the assembly in mice of >100 gut
commensal strains from different donors*', suggesting that such robustness is not

exclusive to strains from the same microbiota nor to in vitro conditions.

Despite the above limitations, we envision that our framework can be applied to generate

predictions for in vitro scenarios such as nutrient perturbation, resistance to invasion, and
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community coalescence, which will facilitate understanding of their in vivo analogs of
dietary change, pathogen infection, and fecal microbiota transplantation, respectively. For
example, inulin simultaneously affects community composition and decreases burden
from C. difficile infection in mouse models*3. This decrease was linked to short chain fatty
acids, metabolites associated with microbial metabolism of complex carbohydrates
whose production by Bacteroides species has been implicated in colonization resistance
against Salmonella**. Such interplay among diet, community composition, and
colonization resistance can be further clarified by measuring resource competition
landscapes in media supplemented with complex carbohydrates. In this way, the
framework presented here provides a foundation for developing and deploying predictive

models for natural microbiotas.
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METHODS

Bacterial culturing

Isolates were obtained via plating of in vitro communities, derived from culturing fecal
samples from humanized mice, on agar plates made with various complex media and
frozen as glycerol stocks, as previously described'#28, Frozen stocks were streaked onto
BHI-blood agar plates (5% defibrinated horse blood in 1.5% w/v agar). Resulting colonies
were inoculated into 3 mL of Brain Heart Infusion (BHI) (BD #2237500) or modified Gifu
Anaerobic Medium (mMGAM) (HyServe #05433) in test tubes. All culturing was performed
at 37 °C without shaking in an anaerobic chamber (Coy). To minimize potential
physiological changes from freeze-thaw cycles and changes in growth medium, cultures
were diluted 1:200 every 48 h for 3 passages before growth or metabolomics
measurements. After the first passage, subsequent passages were performed in 96-well

polystyrene plates (Greiner Bio-One #655161) filled with 200 yL of growth medium.

Bacterial growth measurements

Biomass yield over time was obtained via optical density at 600 nm (OD) as measured by
an Epoch 2 plate reader (Biotek). All measurements were performed in clear, flat-
bottomed 96-well plates (Greiner Bio-One #655161). Each well was filled with 200 pL of
growth medium and inoculated with 1 pL of stationary phase culture immediately before
measurement. Plates were sealed with transparent seals (Excel Scientific #STR-SEAL-
PLT), with small =0.5 mm holes cut above each well to allow gas exchange. Holes were
cut using a laser cutter with the sterile casing in place, minimizing contact that might result
in contamination. Any contamination would be straightforwardly detected in assembly
experiments involving known isolates, and we found no contamination for any such

experiments in this study. Measurements were taken with continuous shaking at 37 °C.

Growth in spent media

Spent media were obtained by centrifuging saturated cultures at 4,000 x g for 5 min and
filtering the supernatant with 0.22-um polyethersulfone filters (Millex-GP #SLGP033RS)
or 96-well 0.22-um filter plates (Pall #8019). To investigate pH-mediated effects, Bp-spent

medium was adjusted to a pH of 7.35 with NaOH, and filtered again to sterilize.
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pH measurements via BCECF

pH measurements were obtained during plate reader measurements via the dual-
excitation, ratiometric pH indicator 2’,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein
BCECEF (Invitrogen #B1151). BCECF dissolved in DMSO (Fisher BioReagents #BP231)
was diluted 1,000-fold into growth media to a final concentration of 1 mg/mL. Growth
curves were obtained as described above, and in addition to absorbance, fluorescence
was measured using monochromators at excitation/emission combinations 440 nm/535
nm and 490 nm/535 nm. pH values were obtained by calculating the ratio of the signals
excited at 490 nm over 440 nm after subtracting background fluorescence, and calibrated

to fresh medium set to various pH values.

Liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics

Spent media were collected as described above and immediately stored at -80 °C.
Samples were thawed only once, immediately before LC-MS/MS. Thawed samples were
kept on ice, each sample was homogenized by pipetting prior to dispensing. Two 20-pL
aliquots of supernatant were removed from each sample well and dispensed into two
shallow 96-well polypropylene plates, maintained on ice. Additionally, 5 yL were removed
from each sample and combined into a homogenous pool; this pool was dispensed in 20-
ML aliquots and prepared in parallel with samples. These pooled samples were used for
in-run quality control, injected at predefined intervals over the course of analysis to ensure
consistent instrument performance over time. Samples were analyzed using two
complementary chromatography methods: reversed phase (C18) and hydrophilic
interaction chromatography (HILIC). All samples were analyzed by positive and negative
mode electrospray ionization (ESI+, ESI-). Sample analysis order was randomized to
minimize potential bias in data acquisition. Procedural blanks were prepared by extracting
20 uL of water in place of bacterial supernatant. Procedural blanks were inserted

throughout the run as additional quality control.

HILIC analysis: Metabolites were extracted by adding 80 pL of extraction mixture
containing a solution of acetonitrile and methanol (1:1), including 5% water and stabile
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isotope-labeled internal standards, maintained at -20 °C. The extraction mixture was
homogenized by pipetting, and the plate(s) was sealed and equilibrated in the -20 °C
freezer for 1 h to ensure precipitation of any remaining protein. Plates were then placed
in a centrifuge maintained at -9 °C and spun at 6,000 rcf for 5 min. Supernatant was
removed and placed in a new 96-well plate for HILIC analysis. Internal standards were
used to ensure complete injection of the sample and chromatographic integrity throughout
the analysis. Two microliters of prepared sample were injected in each analysis.

Chromatographic separation parameters®?> and mass spectral parameters®® were as
described previously, with minor modifications. Briefly, spectra were collected using a
Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer in both positive
and negative mode ionization (separate injections, sequentially). Full MS-ddMS2 data
was collected, an inclusion list was used to prioritize MS2 selection of metabolites from
an in-house library. Additional scan bandwidth allowed for MS2 collection in a data-
dependent manner. Mass range was 60-900 m/z, resolution was 60k (MS1) and 15k
(MS2), centroid data was collected, loop count was 4, and the isolation window was 1.2
Da.

C18 analysis: Metabolites for C18 analysis were prepared similarly to HILIC analysis, with
slight modification. Briefly, the extraction solution for C18 analysis was -20 °C MeOH
containing internal standards. Subsequent steps matched the HILC procedure described
above. In addition to the HILIC protocol, C18-analyzed samples were dried using a
Labconco Centrivap at room temperature. Once dried, samples were stored at -20 °C
until analysis, when analyzed samples were reconstituted in 20% acetonitrile in water and

placed in the autosampler maintained at 4 °C.

Two microliters of prepared sample were injected onto an Agilent SB-C18 column (100
mm length x 3.0 mm inner diameter; 1.8-um particle size) with a Phenomenex
KrudKatcher Ultra filter frit attached to the column inlet. The column was maintained at
40 °C coupled to an Thermo Vanquish UPLC. The mobile phases were prepared with
0.1% formic acid in LC-MS grade water for mobile phase A or 100% LC-MS grade
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acetonitrile for mobile phase B. Gradient elution was performed from 3% (B) at 0-0.43
min to 97% (B) at 9 min, isocratic until 11 min, returning to 3% (B) at 11.5 min and
maintained isocratically until 14 min. Column flow was maintained at 0.4 mL/min. Spectra
were collected using a Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass
spectrometer in both positive and negative mode ionization (separate injections). Full MS-
ddMS2 data were collected, an inclusion list was used to prioritize MS2 selection of
metabolites from an in-house library. Additional scan bandwidth allowed for MS2
collection in a data-dependent manner. Mass range was 60-900 m/z, resolution was 60k
(MS1) and 15k (MS2), centroid data was collected, loop count was 4, and the isolation

window was 1.0 Da.

Data was processed using MS-DIAL v. 4.60%%46, MS1 tolerance was set to 0.01 Da, MS2
tolerance set to 0.015 Da, and minimum peak height was set to 100k. Alignment retention
time tolerance was set to 0.05 min, and mass tolerance was set to 0.015 Da. Annotations
were based on in-house libraries of standards analyzed using these chromatographic
methods. The freely available MassBank of North America MS2 repository
(https://mona.fiehnlab.ucdavis.edu/) was used for annotations of metabolites not found in
our library. All annotations were MS2-based. Aligned peaks were retained for further
analyses only if they were present in at least two of three replicates and were >5-fold

higher than the water blank average in at least one sample.

Assembly experiments

Communities were assembled from stationary phase cultures of isolates mixed at equal
volume, and 1 pL of the mixture was inoculated into 200 pL of growth medium. Plates
were sealed and incubated at 37 °C without shaking. The assemblies were diluted 1:200
into fresh medium every 48 h for 5 passages to approximately reach an ecological steady
state, defined as when subsequent passages exhibited identical dynamics. Using in vitro
communities similar to the ones in this study, we previously found that ecological steady
state was reached in approximately five passages'®. The 15 single-species “dropout”
assemblies with 14 of the 15 members were serially diluted for only 3 passages. In “refill”
experiments, the inoculum for each dropout was mixed 1:1, 1:10, 1:100, 1:1,000, or
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1:10,000 with a monoculture of the species that was left out and passaged 3 times. The
final passage for assembly experiments was grown in a plate reader for OD
measurements, after which the plate was stored at -80 °C until DNA extraction for 16S

rRNA gene sequencing was performed.

Time course experiment

The full community of 15 species was assembled and passaged via serial dilution until
ecological steady state. Using one culture of the full community in stationary phase, 72
replicate cultures were inoculated into fresh media. At each of 24 time points throughout
the next growth cycle (at 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32,
36, 40, 44, and 48 h), 3 replicate samples were collected. Cells were pelleted by
centrifuging at 4,000 x g for 5 min, separated from supernatants, and stored for
sequencing. Supernatants were stored for metabolomics. The result was a time course

of sequencing and metabolomics data representing the dynamics of the full community.

Summary of experiments

Several sets of experiments involved combinations of species, which are summarized
here for clarity. The following growth measurements were carried out: 1) all monoculture,
pairwise spent-media, and pairwise co-culture experiments; 2) a subset of 3-species
combinations for which a species was grown in the mixture of the individual spent media
of two other species; 3) a subset of 3-species combinations for which a species was
grown in the spent medium of the co-culture of two other species. For the 3-species
combinations, the species used for growth measurements were chosen based on
exhibiting high yield in monoculture to ensure a broad range of growth behaviors, and the
other two species were randomly selected; these combinations are listed in the
corresponding figure legends. In addition, 185 combinations of a subset of the 15 species,
randomly selected while ensuring sampling across community sizes and taxonomic
families, were assembled as described above. The full list of assemblies is shown in
Extended Data Fig. 5c,d.

16S rRNA gene sequencing and analyses




620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

Amplicon sequencing data were obtained and processed as previously described'#4’:
DNA was extracted from 50 mL of culture using the DNeasy UltraClean 96 Microbial Kit
(Qiagen #10196-4). The bacterial 16S rRNA V4 region was amplified with Earth
Microbiome Project-recommended 515F/806R primer pairs using the 5PRIME
HotMasterMix (Quantabio #2200410) with the following thermocycler program: 94 °C for
3 min, 35 cycles of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], followed by 72 °C
for 10 min. PCR products were cleaned with the UltraClean 96 PCR Cleanup kit (Qiagen
#12596-4) and pooled using the same volume for each sample. Pooled libraries were
concentrated by ethanol precipitation and purified by gel extraction of the corresponding
library size using the NucleoSpin Gel and PCR Clean-up Mini kit (Macherey-Nagel).
Libraries were prepared using the MiSeq Reagent Kit v3 with 300-bp paired-end reads
and sequenced on a MiSeq (lllumina). Demultiplexed fastq files for each sample were
processed using DADAZ2 (46) with the following parameters for the “filterAndTrim” function:
[truncLenF = 240, truncLenR = 160, maxEE = c¢(2,2), truncQ = 2, maxN = 0]. Default
parameters were used for the “learnErrors” and “dada” functions. Taxonomic assignment
was performed with the “assignTaxonomy” function using the Greengenes Database
(gg_13_8_train_set 97.fa).

Relative abundances were determined to a minimum threshold of 104, reflecting the
typical depth of sequencing, and the relative abundance of undetected species was set
to 10 for visualization and for calculating the error between model predictions and
experimental data. The three Enterococcus species were indistinguishable by the
amplicon protocol used here. When more than one was present, their relative

abundances were summed and visualized as Eh if Eh was present, else as Efs.

Analyses of growth curves

OD measurements were calibrated to be proportional to cell density by linear interpolation
to data obtained in a previous study*®. The minimum point of each growth curve was
subtracted as a proxy for the background absorbance. To extract the final yield X and
growth rate A, each growth curve was fit to Eq. 2, modified to incorporate a lag time t,

with one species and one resource. Prior to the time 7, the species does not consume
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resources nor grow, which was implemented by multiplying X by the step function
0(t —1), where (t) = 1 for t > 0 and 0 otherwise. The culture yield over time X(t)
becomes
X(t) = X[1+ (X/X, — Dexp(-At —1)] ",

where 1 = RY(t = 0) is the growth rate, X, = X(t = 0) is the initial abundance, and X =
X(t =48 h) is the yield at 48 h (defined as such to match our experimental protocol). The
growth rate 4 and lag time 7 were determined by exhaustive grid search minimizing the
mean squared error between predicted and measured X (t). Unless otherwise stated, lag

time was not included in simulations of community dynamics.

Analyses of metabolomics data

Metabolomic features that passed pre-processing were defined as depleted or produced
if they decreased by >100-fold or increased by >10-fold, respectively, compared to fresh
medium, and if the difference was significant (p<0.05) by a two-sample t-test. An ion
intensity of 0 was set to 1 for the purpose of calculating fold changes. Coarse-grained
resource groups were obtained by grouping metabolomic features that shared the same

set of depleting species.

Residues in randomly generated coarse-grained CR models

To determine the typical distribution of resource competition residues in coarse-grained
CR models, 100 resource groups were randomly selected out of all possible groupings of
15 species. Each group was assigned a random initial level from a uniform distribution
from 0 to 1. Simulated yields of monoculture and pairwise spent-media experiments were
then calculated directly by summing the levels of the consumed resource groups. The
resulting yields were modified with empirical measurement noise before calculating the

resource competition residues.

Simulations of the coarse-grained CR model

To mimic our experimental protocol, Eq. 2 was simulated under a serial dilution scheme
in which each dilution cycle continued until stationary phase when all resources are

depleted (dY, /dt = 0 for all ), after which a new cycle was initiated by replenishing the
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resources to their initial levels ¥,) and diluting all species abundances by a factor D, which
was set to 200 in simulations to mimic our experimental protocol. In simulations, the first
cycle was initialized with equal abundances of each species, and dilutions were repeated
until an ecological steady state was reached in which further cycles produced identical
dynamics up to a small numerical threshold. At ecological steady state, species
abundances in stationary phase are linear combinations of the resource levels since all
resources have been converted to biomass, and are independent of the initial
abundances given the same set of initially present species'353¢_ Note that X; in Eq. 2
denotes absolute abundances, and all simulations were carried out using absolute
abundances. To compare against experimental data, simulation results were converted
to relative abundances and those <10 were considered undetectable and removed in

downstream calculations.

Parametrization of the coarse-grained CR model

The parameters of the CR model in Eq. 2 are the resource levels in fresh medium Yu0 and

resource consumption rates R;,,, which were inferred as briefly described in the text. In

ius
greater detail, given a resource utilization structure defined by a set of coarse-grained
resource groups, the corresponding resource levels were inferred from the experimentally

determined yield )?l-’j of species i in the spent medium of j, which the model predicts to
be X;; = Luesps; Y?. Here, S; is the set of resources consumed by species i, and “\”

denotes the difference between sets. In other words, the sum is over resources u
consumed by i but not j such that R;, > 0 but R;, = 0. Since the resource utilization
structure is given, which elements of R;, are non-zero is known (although their values are
not yet known). Each of the 152 experiments in monoculture and pairwise spent media
represented one equation in the non-negative least squares regression. The M resource
groups with the most constituent features to incorporate into the model was determined
by minimizing the AIC assuming that residuals from the regression are normally
distributed with zero mean and variance equal to the observed sample variance. This
minimization was carried out to a maximum of 50 groups to avoid overfitting (Extended

Data Fig. 5b). Including more groups did not improve model predictions. Resources u
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inferred to have near-zero Y, (<10#) were removed from the model. The consumption
rates R;, were similarly inferred from the experimentally determined growth rates, which
the model predicts to have a maximum value of A7 = Zuesi\sj R;,Y? for species i grown
in the spent medium of species j. Given limitations in the accuracy of growth rate

measurements in cultures with low yield, we further simplified the problem and assumed

that R;, = R; for all resources y, i.e., species i consumes all resources that it uses at the

same rate, and hence, R; = 1;/ Y es, Y,

Comparison with hypothetical resource utilization structures

To evaluate the relevance of metabolomics-derived resource groups, three hypothetical
structures of resource consumption were used to predict assembly compositions: a “base”
structure that included only the 15 species-specific groups, and on top of this base
structure, either every group shared between species pairs, or every group shared across
all but one species (Extended Data Fig. 4a). For each of these structures, a set of
resource levels and consumption rates was inferred from pairwise spent-media

experiments following the procedure described above.

Comparison with resource utilization structures selected via reqularized regression

In addition to using resource groups with the most constituent features to determine the
resource utilization structure, we tested another approach via LASSO. The LASSO
analysis used all detected resource groups to construct the regression problem from
pairwise spent-media experiments. Hence, for the same 152 known variables as in the
original regression problem, there were as many unknowns as the number of detected
groups, =1,000. A regularization parameter penalized against having many resources
with non-zero values of Y. The regularization parameter was varied across a broad
range, which resulted in a minimum of 1 and a maximum of 45 resources with non-zero
Y. Each value of the regularization parameter led to a set of inferred resource levels and
consumption rates (Extended Data Fig. 6b). LASSO performance was defined as the
mean error of the best-performing set (Fig. 3b).
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Comparison with model based on the number of metabolomic features alone

To estimate resource levels YﬂO, one option is to set Y#0 proportional to the number of
metabolomic features in resource group u, without fine-tuning via regression against
yields in spent media. To test the performance of this parametrization, the resource
utilization structure was kept the same as in Fig. 3a, the proportionality constant between
feature count and resource level Y;? was set to the best fit value from the pairwise spent-
media experiments (Fig. 2c), and resource consumption rates were determined in the

manner described above.
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916 Figure 1: Coarse-grained resource competition can describe most pairwise
917 interactions in an in vitro model system of 15 human gut commensals.

918 a) Phylogenetic tree of the 15 species studied here, which collectively represent an
919 experimental model system for the gut microbiota of humanized mice' (Extended
920 Data Fig. 1, Supplementary Text).
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b)

d)

f)

Schematic of growth experiments in pairwise spent media and predictions of the
coarse-grained CR model. Growth curves of optical density (OD) over time were
obtained for each species grown in monoculture, in co-culture with every other
species, and in the spent media of every other species, all in the complex medium
BHI (Methods). In the coarse-grained CR model, the final yield is determined by
the amount of coarse-grained resources, resulting in Eq. 1.

The null interaction score, the difference between the yield )?Hj of the co-culture
of species i and j and the sum of the individual yields X; and X;, was negative for
most species pairs. Shown in (c-f) are mean yields across replicates. Solid vertical
line denotes the mean across all pairs.

The distribution of normalized resource competition residues was centered about
zero. Shown in gray are results for numerical simulations of randomly generated
coarse-grained CR models with empirical error in yield measurements (Methods).
Most normalized resource competition residues were close to zero. Circles “0”
denote residues with absolute value <0.2, the approximate maximum value of
residues in simulations of randomly generated coarse-grained CR models in (d).
Yield in 1:1 mixtures of spent media was predicted by the average of the yield in
each spent medium individually. For feasibility, only a subset of all 3-species
combinations was tested. Five species, denoted by colors, were grown in every
pairwise mixture of the spent media from Eh, Efe, Csy, Bt, Bp, Csc, Efs or fresh
BHI (Methods).
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942
943  Figure 2: Metabolomic profiles can approximately predict yield in monoculture, co-

944  culture, and spent media.

945 a) Schematic of metabolomics experiments and the resulting profile of fold change in
946 LC-MS signal intensity relative to fresh BHI for each species. Shown are mean
947 values across three replicates for all metabolomic features, including unannotated
948 ones, that changed significantly in the spent medium of any of the species
949 (Methods).

950 b) Schematic of rule used to predict yield from metabolomic profiles. The predicted
951 yield of a species in monoculture was defined as the number of metabolomic
952 features (rectangles) that was depleted in the spent medium of that species (blue,

953 solid lines). The predicted yield of species i in the spent medium of j was defined
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as the number of features depleted by i but not j (gray, dashed lines), and
analogously for co-cultures of i and j, as well as i growing in the co-culture of j
and k.

Feature count was correlated with biomass yield in monocultures and pairwise
spent-media experiments (Pearson’s correlation coefficient p = 0.83, 0.76, and
0.78 for monocultures, pairwise spent-media experiments, and together,

respectively). Shown in (c-e) are mean yields across replicates.

d) The same trend was also observed for pairwise co-cultures (p = 0.65). All pairwise

co-cultures are shown. Monocultures and pairwise spent-media experiments, as

in (c), are shown in gray in (d,e) as a visual guide.

e) The same trend was also observed for yield in the spent medium of co-cultures (p

=0.74). For feasibility, only a subset of all 3-species combinations was tested. Two
species (Eh and Efe) were grown in the spent media of all pairwise co-cultures of
Eh, Efe, Csy, Bt, Cc, Bp, Csc, and Efs (Methods).
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969 Figure 3: A consumer-resource model based on monoculture metabolomics and
970 growth in spent media predicts community assembly.

971 a) Schematic for predicting community assembly using a coarse-grained CR model
972 (Methods). Metabolomic features were grouped into a coarse-grained resource if

973 they were depleted by the same set of species. The resulting resource utilization
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b)

d)

structure (orange, left) was combined with growth data in pairwise spent media to
infer resource levels and consumption rates via linear regression (blue, right).
Coarse-grained resources with initial amount inferred to be <10* were removed
from the model and not displayed. Shown are the species-specific resources and
the 18 coarse-grained resources with the most constituent features, which together
accounted for 71% of all features and minimized the AIC for the regression. The
resulting CR model was used to predict the composition of 185 random assemblies
and compared against experimentally determined relative abundances (Methods).
The CR model based on metabolomics and pairwise spent-media experiments
achieved the lowest mean error out of all models considered. Model error for an
assembly was defined as the magnitude of logz(fold-change) (“fc”) between actual
and predicted relative abundance averaged across species in the assembly.
Shown are box plots denoting the mean error (thick central mark), the 25" and 75t
percentiles (box), and the extremes (dashed lines) across all assemblies tested for
the best model (red) and alternative models (black), which include 1) models with
hypothetical resource utilization structures: the base model consisting of the
species-specific resource groups, the base model plus all pairwise niche overlaps,
and the base model plus all 15 all-but-one niche overlaps; 2) a regularized
regression approach to determine the resource utilization structure; and 3) an
approach to approximate resource levels based on feature counts only without
using pairwise spent-media experiments (Methods). The model in (a) was
significantly better than all other models by the Mann-Whitney U-test.

Assembly predictions approximately matched experimental data. Each panel
shows one assembly. Twelve examples with varying community size were
randomly chosen from the 185 combinations tested. Shown are mean relative
abundances across replicates. Colored squares along the top of each panel are
placed at the same relative location, and indicate species that were present in the
inoculum of that assembly. The relative abundances of undetected species were
set to 10 for visualization.

Regressed resource levels Y (red) recapitulated yield in pairwise spent media

better than feature counts alone (gray) (p = 0.91 vs 0.78, respectively).
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Figure 4: Strategies for incorporating pH and metabolic cross-feeding interactions

into th

a)

b)

f)

e CR model.

Schematic for interpreting resource competition residues in the presence of
additional contributions to growth from interactions other than resource
competition as described by Eq. 1.

pH-mediated interactions involving Blautia producta (Bp). Shown are growth
curves in Bp-spent medium and Bp-spent medium with neutralized pH for the
subset of species that grew more quickly than Bp in monoculture.

Resource competition residues became less positive and closer to zero after
neutralizing the pH of Bp-spent medium (Methods).

Model predictions improved after parametrization based on growth data in pH-
neutralized Bp-spent medium. Shown are predictions for an example assembly as
in Fig. 3c.

Escherichia fergusonii (Efe) promoted Bacteroides thetaiotaomicron (Bt) growth.
Bt grew more quickly and to higher yield in Efe-spent medium, the only case of
growth promotion in spent medium out of all 210 ordered pairs.

Errors of model predictions after incorporating the Efe-Bt interaction into the model.

Shown are prediction errors for the CR model described in Fig. 3a and the same
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model with a fixed boost to the predicted abundance of Bt equal to the difference
in yields between Bt in Efe-spent medium and in monoculture. Shown are all
assemblies with Bt, including those that also contained Efe (filled) and those that
did not contain Efe (empty). Assemblies with Efe were always better predicted
when Bt-promotion was included, whereas predictions of assemblies without Efe

were better or worse in an apparently random manner.
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EXTENDED DATA FIGURES
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Extended Data Figure 1: The 15 species studied here represent a tractable model
system for humanized mice gut microbiota.

a) The 15 isolates were obtained from the same parent community, which was
derived by culturing a humanized mice fecal sample. Pie chart shows relative
abundance of isolated (colored) and non-isolated (gray) species. The 15 isolates
accounted for 69% of the composition of the parent community.

b) The composition of the 15-species assembly was highly correlated with the

composition of the parent community (p = 0.80).
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Extended Data Figure 2: Model assumptions.
a) The 15 species converted resources to biomass with similar efficiencies. The
efficiency of species i for the conversion of the resource shared with species j was
defined as (X; — X;;)/(X; — X;;). If the efficiency equals one, then Eq. 1 is

satisfied. The distribution of logz(efficiency) across unique ordered pairs was
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b)

centered about zero with a narrow width, except for a few outliers for which
differences between yields in monoculture and spent medium were small
compared to measurement error.

The number of annotated features that were depleted was correlated with biomass
yield in monocultures and pairwise spent-media experiments, analogous to Fig.
2c. The correlation is not as strong as when unannotated features were also
included, suggesting that unannotated features are informative for species growth.
Monoculture growth curves (orange) were well fit by Eq. 2 for one species and one

resource (black; Methods).
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1056 Extended Data Figure 3: Assembly compositions were independent of initial
1057  values.

1058 a) Relative abundances at steady state in refill experiments. Each column represents
1059 one experiment, in which a dropout assembly with 14 of the 15 species was mixed
1060 with a monoculture of the dropped-out species at various ratios (1:1, 1:10, 1:100,
1061 1:1,000, and 1:10,000). All 15 species x 5 ratios were tested, and all are shown
1062 except for 3 experiments with idiosyncratic sequencing errors. The compositions
1063 were virtually indistinguishable from each other and from the full 15 member
1064 community, which is shown in the last column.

1065 b) Histogram of the correlation coefficient (top) and mean absolute error in logz(fold-
1066 change) (bottom) between the relative abundances in each refill experiment and

1067 the full 15-species community.
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Extended Data Figure 4: Metabolomics-derived coarse-grained resource groups.

a)

b)

The structure of metabolomics-derived coarse-grained resource groups. A
metabolomic feature was considered depleted if it decreased by >100-fold
compared to fresh medium, and features that shared the same set of depleting
species were grouped together into a coarse-grained resource group, shown as
one column in the matrix. The number of features in each resource group is shown
in the bar plot above each column. Only groups with more than one constituent
feature are shown.

The cumulative fraction of the number of metabolomic features as a function of the
number of coarse-grained resource groups included, starting with the leftmost

column in (a).
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Extended Data Figure 5: Regression input, regression optimization, and prediction

errors.
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a)
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f)

Yield and growth rate in monocultures (left) and yield in pairwise spent media
(right) were used to refine metabolomics-based resource utilization structures
(Methods). Shown are mean values across replicates. Error bars denote the
standard error of the mean.

Determination of resource utilization structure by minimization of the AIC
(Methods). Minimization was carried out over the top M coarse-grained resource
groups with the most constituent features. The AIC-minimizing set of resource
groups is shown in Fig. 3a.

Prediction error for each assembly for the coarse-grained CR model shown in Fig.
3a. Shown are all 185 assemblies tested. Errors were calculated using mean
relative abundances across replicates. Each column represents one assembly,
and the matrix denotes the species that were initially present in each assembly. A
histogram of prediction errors and the mean error (solid line) are also shown.

The number of assemblies, out of the 64 assemblies containing 3 to 13 species,
that contained at least one species from a given family is >30 for every family,
indicating that the random combinations tested were taxonomically diverse.

Error for each assembly was only weakly correlated with the initial richness (left)
or the Shannon index (right) of the community, suggesting that model performance
was not dependent on community diversity.

Error for each species across all assemblies. The number of assemblies n
containing each species is shown. Box plot denotes the median (central mark),
25! and 75™ percentiles (box), and extremes (dashed lines).
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1106 Extended Data Figure 6: Other approaches to predict assembly composition
1107  performed worse than the coarse-grained CR model based on metabolomics and

1108  pairwise spent-media experiments.
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9)

Hypothetical resource utilization structures. The “base” structure was defined as
the set of species-specific resource groups. On top of the base structure, pairwise
niche overlaps consumed by only two species and all-but-one niche overlaps
consumed by 14 of the 15 species were also tested. Model performance using
these hypothetical structures are shown in Fig. 3b.

Performance of utilization structures selected by regularized regression on all
detected resource groups (Methods). Shown are mean errors and coefficients of
determination for LASSO fits. Shading denotes standard error of the mean.
Prediction error of the full model as in Fig. 3a (left) versus model predictions after
randomly shuffling species identity (right).

The CR model achieved comparable performance as a gLV model fitted to all
assembly data. Shown are mean errors of model predictions for co-culture
assemblies, assemblies of more than two species, and all assemblies. Error bars
denote standard error of the mean. Colors denote different models
(Supplementary Text): the CR model (orange); and gLV models parametrized
using pairwise spent-media experiments (black), species abundances in pairwise
co-cultures (dark gray), or species abundances in all assemblies (light gray).

gLV models parametrized using assembly data failed to predict yield in pairwise
spent-media experiments.

The coarse-grained CR model was the best performing model for both the mean

absolute error of logz(fold-change) and the commonly used Bray-Curtis

predieted) 'Shown are the same

dissimilarity metric, defined as 1 — ¥, min(x2", x
models as in Fig. 3b.

The model successfully predicted absolute abundances, obtained by multiplying
relative abundances by culture yield in OD. Panels are representative assemblies,

analogous to Fig. 3c.
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1135
1136  Extended Data Figure 7: Biological basis and robustness of the metabolomics-

1137  based resource competition landscape.

1138 a) Regressed resource levels were correlated with feature counts across coarse-
1139 grained resources. Two outliers (empty symbols) contained features identified as
1140 the simple sugars glucose and trehalose. Without these two outliers, correlations



1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

b)

d)

were high (p = 0.77), indicating that the regression refined metabolomics-based
estimations.

Annotated metabolomic features suggest that diverse peptide utilization
capabilities shape the resource competition landscape. Examples of annotated
metabolomic features within each coarse-grained resource group for the CR model
shown in Fig. 3a. Resource groups with empty fields did not have any annotated
features.

Coarse-graining is robust to uncertainty in peak calling and quantitation. “Niche
differences” denote the number of groups within the top 50 resource groups with
the most constituent features that are different from the set used in the original
analysis (Extended Data Fig. 4). Uncertainty in peak calling was simulated by
discarding a random fraction of features. Up to half of the features could be
discarded without affecting the identity of the resource groups with the most
constituent features. Shading denotes the standard deviation of niche differences
across random instances of feature removal.

Uncertainty in quantitation was simulated by varying the threshold fold-change for
classifying depletion. The depletion threshold could be varied over an order of
magnitude without changing more than 5 of the 50 largest groups.
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Extended Data Figure 8: The CR model captured metabolite depletion dynamics at

a coarse-grained level.

a)

b)

d)

e)

Experiment schematic. The full 15-species community was assembled and
passaged to reach ecological steady state. Replicate cultures were inoculated from
the steady-state culture, and 3 replicates were collected at 24 time points
throughout the next growth cycle. Sequencing and metabolomics data were
obtained for all samples (Methods).

The CR model predicted assembly compositions. The parametrization based on
pH-neutralized Bp-spent medium experiments was used (Fig. 4). One species (C.
hylemonae) was incorrectly predicted to be undetectable, which could be remedied
by using metabolite depletion rates to improve the model as in (c).

The CR model captured the depletion time of coarse-grained resources, defined
as when the log1o(fold-change) first decreases below -1. Without any modification,
the model achieved a reasonable performance (p = 0.55, left). Several outliers
were species-specific resource groups (empty symbols). The model was improved
by adjusting the consumption rates of these outlier groups to match their depletion
times (p = 0.71, right), which simultaneously improved predictions for species
abundances as in (b). The remaining outliers are highlighted in yellow.

Resource dynamics were captured at a coarse-grained level. Each panel shows
the dynamics of a coarse-grained resource. The matrix shows the set of coarse-
grained resources included in the model. (Parametrization using pH-neutralized
Bp-spent medium experiments led to the incorporation of 2 additional resource
groups with non-zero Y;? compared to the parametrization shown in Fig. 3a.) Solid
lines show the mean log1o(fold-change) across all metabolomic features in a group.
Shading shows the standard deviation. Dotted lines show the predictions of the
improved model. Outlier groups in (c) are highlighted.

The model also captured species abundances over time in the full community.
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Extended Data Figure 9: The model can be extended to incorporate pH, cross-

feeding, and lag times.

a)

b)

c)

d)

e)

f)

The full community and most species, except for Blautia producta and a few other
species, did not modify the pH. pH was obtained during growth measurements
using BCECF for each species in monoculture and the full 15-species community
(Methods). Shading denotes standard error of the mean.

Growth curves for Bt grown in fresh medium (solid line), in Efe-spent medium
(dotted line), and in fresh BHI plus hemin (dash dotted line). Shown is the mean
over replicates. Shading denotes standard error of the mean.

Interactions persisted in a community context, and strong interactions in dropout
assemblies were rare. Relative abundances in dropout assemblies are shown in
terms of z-scores. Each column represents a dropout assembly of 14 of the 15
species, with the denoted species left out of the community. Each row represents
the z-scores of the denoted species, defined as z;; == (x;; — u;)/0;, where x;; is
the logio(relative abundance) of species i in the dropout assembly in which
species j was left out, and y; and o; are the mean and standard deviation,
respectively, of the logio(relative abundance) of species i across all dropout
assemblies. Asterisks denote z-scores with absolute value >3.

Same as (b) but for Pd.

Lag times in monoculture and in the full 15-species community were correlated.
For the full community, absolute abundances over time were obtained by
multiplying relative abundances by culture OD over the time course of the full
community. Lag times were extracted by fitting as for monocultures.

The difference between the lag time of a species grown in the spent medium of

another species and grown in fresh medium was typically positive.
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1213
1214  Extended Data Figure 10: Modeling framework was able to predict assembly

1215 compositions and interrogate interactions in the complex medium mGAM.
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f)

Monoculture yields in mGAM differed from those in BHI, particularly for the
Bacteroidetes, which exhibited substantially larger yields in mGAM. Shown are
mean values across replicates.

The distribution of resource competition residues in mGAM was centered about
zero, as in BHI (Fig. 1d).

Pairwise overlaps in metabolomic profiles in mGAM and BHI were correlated (p =
0.66). The pairwise overlap between the ordered species pair (i, j) was defined as
the number of metabolomic features depleted by both species divided by the
number depleted by species i. Shown are all 210 ordered pairs, colored according
to species i.

Yield in monoculture (left) and pairwise spent-media experiments (right) was
correlated with feature counts for experiments not involving the four Bacteroidetes
(p = 0.54). Pairwise spent-media experiments involving the four Bacteroidetes are
not shown.

Incorporation of additional interactions significantly and specifically improved
model performance in mMGAM. Shown are mean errors for model predictions in BHI
(orange) and mGAM (blue), parametrized using metabolomics and spent-media
experiments in the corresponding media, as well as mean errors for the CR model
in mMGAM modified to incorporate Bt/Bu-Clostridia interactions (dark blue) or with
ubiquitous Clostridia inhibition (light blue). Error bars denote the standard error of
the mean.

The 5 Clostridia species exhibited no detectable growth in Bt- or Bu-spent media.
Each panel shows the growth curve of a species in monoculture (solid line) and in
pairwise spent media (dotted lines). The color of the solid line denotes the species
grown in each panel. The color of the dotted lines denotes the species that
generated the spent media. Gray dotted lines show growth curves in all other spent

media.



