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ABSTRACT 12 

Microbiota dynamics arise from a plethora of interspecies interactions1-3, including 13 

resource competition4-6, cross-feeding7,8, and pH modulation9,10. The individual 14 

contributions of these mechanisms are challenging to untangle11,12, especially in natural 15 

or complex laboratory environments where the landscape of resource competition is 16 

unclear. Here, we developed a framework to estimate the extent of multi-species niche 17 

overlaps by combining metabolomics data of individual species, growth measurements in 18 

pairwise spent media, and mathematical models. When applied to an in vitro model 19 

system of human gut commensals in complex media13,14, our framework revealed that a 20 

simple model of resource competition described most pairwise interactions. By grouping 21 

metabolomic features depleted by the same set of species, we constructed a coarse-22 

grained consumer-resource model that predicted assembly compositions to reasonable 23 

accuracy. Moreover, deviations from model predictions enabled us to identify and 24 

incorporate into the model additional interactions, including pH-mediated effects and 25 

cross-feeding, which improved model performance. In sum, our work provides an 26 

experimental and theoretical framework to dissect microbial interactions in complex in 27 

vitro environments.  28 



INTRODUCTION 29 

Microbial communities are important for host health and environmental functions1,2, but 30 

their complex dynamics remain difficult to predict and engineer3. A major challenge is that 31 

community members affect each other through a plethora of interaction mechanisms, 32 

including resource competition4-6, metabolic cross-feeding7,8, pH modulation9,10, toxins15, 33 

and physical inhibition through secretion systems16. One approach to modeling the 34 

complexity of microbial interactions is to summarize the overall effects of species on each 35 

other using phenomenological interaction coefficients11,17,18. While phenomenological 36 

approaches can be predictive, they typically do not address the mechanistic origins of 37 

interactions, and thus are difficult to generalize11,12,19. A quantitative framework for 38 

microbiota dynamics based on species traits and interaction mechanisms is sorely 39 

needed3,11,20. 40 

 41 

To this end, consumer-resource (CR) models describe community dynamics under the 42 

basic mechanism of resource competition, which shapes community dynamics in diverse 43 

contexts ranging from simple synthetic communities to the human gut microbiota21-24. 44 

Notably, it was recently shown that a CR model could predict the dynamics of bottom-up 45 

assemblies of denitrifying bacteria24. This feat was achieved by measuring the 46 

denitrification rates of individual species in a chemically defined and electron-acceptor-47 

limited growth medium, thereby quantifying resource competition in a minimal 48 

environment in which the limiting nutrients are known. However, it remains challenging to 49 

quantify resource competition in chemically undefined and complex nutrient environments 50 

such as the natural context of the gut microbiota25-27. 51 

 52 

Here, we sought to develop a trait-based modeling framework for microbiota dynamics in 53 

complex environments using stool-derived, in vitro communities that we previously 54 

established as an experimental model system for the gut microbiota of humanized mice, 55 

with similar compositions and responses to antibiotic treatment as observed in vivo13,14. 56 

We focused on 15 phylogenetically diverse species of human gut commensals isolated 57 

from the same parent in vitro community (Fig. 1a). We selected Brain Heart Infusion (BHI) 58 

as the growth medium because passaging of mouse fecal samples in BHI produced in 59 



vitro communities that were most similar to their in vivo counterparts compared to other 60 

commonly used media14. When grown in BHI, these 15 species exhibited a broad range 61 

of growth phenotypes and assembled after 48 h into a community whose composition 62 

resembled that of the parent community28 (Extended Data Fig. 1, Supplementary Text), 63 

indicating that this experimental setup may be informative of the in vivo context and is 64 

suitable for testing predictive models. 65 

 66 

By assaying growth in media spent by the growth of other species, we show that a CR 67 

model can describe most pairwise species interactions. We then develop a novel 68 

approach that exploits the large number of unannotated metabolomic features in complex 69 

media to predict biomass yield in spent media, thereby enabling an estimation of the multi-70 

species landscape of resource competition. Combining data from the metabolomics and 71 

spent-media experiments, we construct a CR model that predict assembly compositions 72 

to reasonable accuracy. Furthermore, we demonstrate a rational process to improve 73 

model predictions by identifying and incorporating additional interaction mechanisms, 74 

including cross-feeding and pH-mediated interactions. In sum, our findings establish a 75 

baseline model based on resource competition to predict community dynamics in complex 76 

nutrient environments, providing a framework to dissect microbial interactions and a step 77 

toward predictive models for natural microbiotas.  78 



RESULTS 79 

Most pairwise interactions can be described by a resource competition model 80 

To characterize interspecies interactions in our model in vitro community (Fig. 1a), we 81 

measured the growth of each of the 15 species in isolation and in pairwise co-culture with 82 

each other species in BHI (Methods, Fig. 1b). In agreement with previous in vitro studies 83 

involving species from wide-ranging microbiotas29, the 15 species typically inhibited the 84 

growth of one another in the sense that the null interaction score, the difference between 85 

the biomass yield (as measured by optical density) of the co-culture and the sum of the 86 

two individual yields, was negative in ≈89% of species pairs (93/105; Fig. 1c). 87 

 88 

Since resource competition is a common form of interspecies inhibition, we sought to 89 

quantify its extent by measuring the growth of each species in the spent medium of each 90 

other species (Methods). Spent media exclude physical effects that would emerge due 91 

to the direct presence of a species, but maintain environmentally mediated interactions 92 

like resource competition. To interpret the results, we considered a CR model in which 93 

resources are completely consumed and converted to biomass by species growth30,31. 94 

We coarse-grained the model by grouping metabolites that are consumed by the same 95 

set of species into an effective resource. A community of two species is then described 96 

by three effective resources: two specifically consumed by one of the two species, and 97 

one shared by both species. Under this coarse-graining, species 𝑖 grown individually will 98 

consume its specific resource and the shared resource, leaving the other resource 99 

specific to species 𝑗 in the spent medium, while all three resources will be consumed in a 100 

co-culture of 𝑖 and 𝑗 (Fig. 1b). Hence, if all species convert resources into yield with the 101 

same efficiency, the model predicts a simple relation for the co-culture yield 102 

𝑋%!"# = 𝑋%! + 𝑋%#,! = 𝑋%# + 𝑋%!,# ,	(1) 103 

where 𝑋%! is the yield of 𝑖 in monoculture, 𝑋%!,# is the yield of 𝑖 in the spent medium of 𝑗, and 104 

similarly for 𝑋%#,!. Small values of resource competition residues	𝑟(𝑖, 𝑗) = 𝑋%!"# − /𝑋%! + 𝑋%#,!0 105 

and 𝑟(𝑗, 𝑖) = 𝑋%!"# − /𝑋%# + 𝑋%!,#0 imply that Eq. 1 can describe the interactions between 𝑖 106 

and 𝑗, and hence, suggest that resource competition shapes this interaction. By contrast, 107 

large residues highlight deviations due to differences in metabolic efficiency or additional 108 

interactions. Note that the two residues 𝑟(𝑖, 𝑗) and 𝑟(𝑗, 𝑖) for a pair of species can be 109 



asymmetric, potentially reflecting directionality of interactions as we demonstrate later. 110 

Although Eq. 1 makes several assumptions about resource utilization, it nonetheless 111 

provides a useful baseline to interpret interactions in spent media. 112 

 113 

By contrast to the distribution of null interaction scores, the distribution of normalized 114 

resource competition residues 𝑟(𝑖, 𝑗)/𝑋%!"#  and 𝑟(𝑗, 𝑖)/𝑋%!"#  was centered about zero 115 

across the 210 ordered pairs (Fig. 1d,e). Simulations of random instances of the CR 116 

model used to derive Eq. 1 produced distributions of normalized residues centered about 117 

zero, as expected, and inclusion of empirical measurement noise for yield broadened the 118 

distribution to have a maximum magnitude of ≈0.2 (Methods, Fig. 1d). Almost 75% of all 119 

ordered pairs (155/210) had a residue with absolute value less than this maximum (Fig. 120 

1d,e), indicating that their interactions were consistent with Eq. 1. If species utilize 121 

resources with different efficiencies, then these efficiencies can be determined from yields 122 

in monoculture and spent-media experiments similarly as in Eq. 1. The distribution of 123 

efficiencies was narrowly centered around one (Extended Data Fig. 2a), in agreement 124 

with Eq. 1 and its assumptions. Moreover, the model also predicts that the yield of species 125 

𝑖 in a 1:1 mixture of the individual spent medium of 𝑗 and 𝑘 should be equal to the average 126 

of the yields of 𝑖 in each spent medium. This corollary was observed for the three-species 127 

combinations that we experimentally tested (Fig. 1f). Taken together, these results 128 

suggest that resource competition is an important driver of community dynamics in our 129 

system. 130 

 131 

Metabolomic profiles capture the landscape of resource competition 132 

To further interrogate resource competition, we obtained untargeted metabolomics data 133 

via liquid chromatography coupled with tandem mass spectrometry (LC-MS) on the spent 134 

medium of each species (Methods, Fig. 2a). Using an established pipeline designed to 135 

probe gut bacterial metabolism32,33, we detected thousands of metabolomic peaks across 136 

ionization modes and chromatography methods (“features”) in BHI, a chemically 137 

undefined medium. Although the vast majority of features could not be identified, the 138 

hundreds of features that were annotated included carbohydrates, nucleotides, and short 139 

peptides, collectively representing diverse metabolic pathways33. Therefore, we 140 



hypothesized that the metabolomic profiles reflect the landscape of resource competition 141 

(i.e., the extent of resource sharing among species as well as the approximate sizes of 142 

individual and shared niches), and sought to predict species growth based on these data. 143 

 144 

To connect metabolomic profiles and growth measurements, we would ideally be able to 145 

relate the signal intensity of a metabolite as reported by LC-MS to its contribution to 146 

biomass. However, one metabolite can generate multiple metabolomic features, the 147 

conversions from feature intensity to metabolite concentration can differ across 148 

metabolites, and conversions from metabolite concentration to biomass can differ across 149 

species33,34. In any case, these conversion factors are typically unknown. We reasoned 150 

that these details might be secondary to the total number of metabolites consumed in the 151 

limit of many involved metabolites, due to averaging over variations in these conversion 152 

factors. Accordingly, we tested the hypothesis that biomass yield is proportional to the 153 

number of features depleted (>100-fold depletion of signal intensity compared to fresh 154 

medium; Methods, Fig. 2b). This logic also predicts that the yield of species 𝑖 in the spent 155 

medium of 𝑗 should be proportional to the number of features depleted by 𝑖 but not 𝑗. 156 

Since this hypothesis does not depend on metabolite identity, it enabled the incorporation 157 

of unannotated features. The resulting predictions were well correlated with experimental 158 

measurements of biomass yield (Pearson’s correlation coefficient 𝜌 = 0.78; Fig. 2c). 159 

Predictions using only the annotated metabolites were similarly well correlated (𝜌 = 0.54; 160 

Extended Data Fig. 2b). Analogous predictions for yields in co-cultures and in the spent 161 

media of co-cultures were also well correlated with these data and followed the same 162 

general trend as in the pairwise spent-media experiments (𝜌 = 0.65 and 0.74, respectively; 163 

Fig. 2d,e). Notably, successful predictions of the latter scenario indicate that multi-164 

species interactions among the 3-species combinations tested were also captured. These 165 

results demonstrate that metabolomic profiles can approximate the resource competition 166 

landscape. 167 

 168 

Resource competition approximately predicts community assembly 169 

We next sought to use the metabolomics-based approximation of the resource 170 

competition landscape to predict the assembly of multiple species. We randomly selected 171 



185 combinations of the 15 species while ensuring sampling among the various 172 

taxonomic families and community sizes, assembled them, and passaged their mixtures 173 

until they approximately reached an ecological steady state, defined as when subsequent 174 

passages exhibited identical dynamics. In practice, we found previously using similar in 175 

vitro communities that ecological steady state was approximately reached in five 176 

passages14. Finally, we obtained species relative abundances at ecological steady state 177 

by 16S rRNA gene sequencing (Methods). No assemblies were discarded during 178 

downstream analyses. We then constructed a coarse-grained CR model based on the 179 

monoculture metabolomics data and pairwise spent-media experiments, and tested to 180 

what extent it could predict assembly compositions (Fig. 3a). 181 

 182 

Specifically, we considered the following model31, 183 

𝑑𝑋!
𝑑𝑡 = 𝑋! 6𝑅!%𝑌%

&

%'(

	184 

𝑑𝑌%
𝑑𝑡 = −𝑌%6𝑅!%𝑋!

)

!'(

.	(2) 185 

Here, 𝑋! denotes the absolute abundance of species 𝑖, 𝑌% the amount of coarse-grained 186 

resource 𝜇 , and 𝑅!%  the consumption rate of resource 𝜇  by species 𝑖 . Resources are 187 

assumed to be substitutable such that species growth continues until all resources are 188 

depleted. The efficiency of resource conversion into biomass is assumed to be the same 189 

for all species, and set to one such that resource amounts and species abundances are 190 

measured in the same unit. Key to this model is coarse-graining, the grouping of 191 

metabolites consumed by the same species into a coarse-grained resource (“resource 192 

group”). The same coarse-graining was used to derive Eq. 1, which is a special case of 193 

the dynamics explicitly described by Eq. 2. Coarse-graining ignores complexities in 194 

nutrient utilization such as hierarchical resource preferences, but enables an estimation 195 

of resource competition in complex nutrient environments. 196 

 197 

To compare to experimental data, Eq. 2 was parametrized as described below and then 198 

simulated under serial dilution in which each dilution cycle continued until stationary 199 



phase when all resources are depleted (𝑑𝑌%/𝑑𝑡 = 0), after which a new cycle was initiated 200 

by replenishing the resources to their initial levels 𝑌%* and diluting all species abundances 201 

by a constant factor. Serial dilution was repeated until species abundances reached an 202 

ecological steady state in which further cycles produced virtually identical dynamics, 203 

mimicking the experimental protocol (Methods). For one species and one resource, this 204 

model described well the monoculture growth curves of the 15 species (Methods, 205 

Extended Data Fig. 2c). In a community context, species abundances at steady state 𝑋%! 206 

were independent of the initial abundances as long as the same species were initially 207 

present, consistent with previous studies involving similar formulations of CR 208 

models31,35,36. This independence was also observed experimentally for the following 209 

scenario: when dropout communities consisting of 14 of the 15 species were assembled 210 

and then mixed with the dropped-out species at ratios spanning five orders of magnitude, 211 

the resulting steady-state community compositions were virtually indistinguishable 212 

(Methods, Extended Data Fig. 3). 213 

 214 

Since each coarse-grained resource group consists of many metabolites, the aggregate 215 

amount in fresh medium 𝑌%* of group 𝜇 along with its associated consumption rates 𝑅!% 216 

are unknown. We decomposed the challenge of estimating these model parameters into 217 

three steps (Methods, Fig. 3a). The first step is to choose the set of resource groups that 218 

are incorporated into the model. Choosing this resource utilization structure is a core 219 

challenge because it is combinatorially complex. There are 215 = 32,768 species 220 

combinations, and hence the same number of potential resource groups. Crucially, as we 221 

have seen, metabolomics data can directly reveal niche overlaps among multiple species 222 

(Fig. 2). The >15,000 features that were depleted in at least one spent medium grouped 223 

into ≈1,000 resource groups (Extended Data Fig. 4a). Most features fell into large 224 

groups, and the 100 groups with the most constituent features comprised 84% of all 225 

features. Notably, each species was associated with a set of features that it uniquely 226 

depleted, which collectively comprised 49% of all features (Extended Data Fig. 4b). 227 

Taking into account the above properties, we restricted our analysis to the 15 species-228 

specific resource groups and the 𝑀 groups with the most constituent features, reasoning 229 



that these groups should encode most of the information about the resource competition 230 

landscape. 231 

 232 

Given a set of resource groups, the second step is to estimate the 15+𝑀 unknown initial 233 

resource amounts 𝑌%*  via a linear regression in which the known variables are the 234 

experimentally determined yields in pairwise spent media (Extended Data Fig. 5a). 235 

Within the model, yield in spent media is equal to the sum of 𝑌%* for 𝜇 consumed by the 236 

grown species but not the spent medium-generating species (Methods, Fig. 3A), 237 

analogous to the logic of Eq. 1. With this approach, the problem reduces to choosing the 238 

number 𝑀. To do so, we carried out the regression for each 𝑀, and chose the one that 239 

minimized the Akaike Information Criterion (AIC) of the regression for the final model 240 

(Extended Data Fig. 5b). Finally, consumption rates were inferred from the 241 

experimentally determined growth rates in spent media, following a similar logic as for 242 

resource levels (Methods). 243 

 244 

The outcome was a set of resource levels and consumption rates for the 15 species (Fig. 245 

3a). This CR model was numerically simulated to predict species abundances at 246 

ecological steady state for each of the 185 assemblies tested (Extended Data Fig. 5c). 247 

Model predictions were compared against experimental data using the absolute error of 248 

log2(fold-change) per species, defined as ∑ ?log+/𝑥!actual/𝑥!
predicted0?)

!'( /𝑁 , where 𝑥! =249 

𝑋%!/∑ 𝑋%#)
#'(  is the relative abundance at steady state of species 𝑖 (which for this calculation 250 

was set to the detection threshold in our experiments, 10-4, if 𝑖  was undetectable; 251 

Methods). This error metric accounts for the compositional nature of relative abundance 252 

data by weighting errors in high- and low-abundance species equally in terms of fold-253 

change37, and can be interpreted intuitively as doublings per species. 254 

 255 

Averaged across all assemblies tested, the mean error achieved by the model was 1.33 256 

doublings per species (Methods, Fig. 3b,c, Extended Data Fig. 5c-f). Model error was 257 

only weakly correlated with the Shannon index (𝜌 = 0.18, 𝑝-value = 0.02; Extended Data 258 

Fig. 5e), demonstrating that model performance was robust to assembly diversity. 259 

 260 



To evaluate the performance of this modeling approach, we tested several other 261 

approaches for parametrizing Eq. 2, briefly summarized below (Methods). First, we 262 

tested alternative methods to select the set of resource groups to include in the model, 263 

including three hypothetical resource utilization structures: 1) the base model consisting 264 

of the 15 species-specific groups, 2) the base model plus all pairwise niche overlaps, and 265 

3) the base model plus all 15 all-but-one niche overlaps (Extended Data Fig. 6a). In 266 

addition, we tested resource utilization structures selected via regularized regression 267 

against all ≈1,000 resource groups detected by metabolomics (Extended Data Fig. 6b).  268 

We tested a different approach to parametrize the resource amount 𝑌%*  for the same 269 

resource utilization structure as before but based on metabolomic feature counts without 270 

regression against growth data in spent media. As an additional benchmark, we 271 

considered a null model in which the predictions of the CR model were shuffled with 272 

respect to species identity (Extended Data Fig. 6c). Finally, we examined several 273 

formulations of generalized Lotka-Volterra models with pairwise interspecies interactions 274 

(Extended Data Fig. 6d,e, Supplementary Text). Our CR model combining data from 275 

monoculture metabolomics and pairwise spent-media experiments predicted community 276 

assembly significantly better than all other approaches and models tested (Mann-Whitney 277 

U-test; Fig. 3b). This result was qualitatively robust when using the Bray-Curtis 278 

dissimilarity metric to assess error (Extended Data Fig. 6f), and model performance was 279 

similar when evaluated against estimates of absolute abundance obtained by multiplying 280 

experimentally determined relative abundance by culture yield (Extended Data Fig. 6g). 281 

Although these results do not rule out other models, they indicate that our CR model is a 282 

reasonable baseline for predicting community assembly. 283 

 284 

The modeling framework above addressed several challenges posed by complex nutrient 285 

environments. First, the regressed resource levels 𝑌%* recapitulated yields in spent media 286 

better than the number of metabolomic features alone (𝜌 = 0.91 versus 0.78; Fig. 3d), 287 

while remaining well correlated with feature counts excepting two groups with atypically 288 

large 𝑌%*  (𝜌 = 0.77 without these two outlier groups; Extended Data Fig. 7a). These 289 

groups contained features that were identified as the highly exploitable carbon sources 290 

glucose and trehalose, demonstrating that the incorporation of growth data fine-tuned the 291 



metabolomics-based competition landscape in a manner consistent with biological 292 

expectations. Nonetheless, most incorporated groups did not contain any annotated 293 

features (Extended Data Fig. 7b), highlighting the ability of coarse-graining to harness 294 

information from the vast number of unannotated features. Second, coarse-graining 295 

circumvented some of the uncertainty in LC-MS measurements, as the large numbers 296 

involved made the resource utilization structure robust to noise in peak calling and 297 

quantification (Extended Data Fig. 7c). 298 

 299 

To further test our CR model, we collected a time course of metabolomics data throughout 300 

a growth cycle of the full 15-species assembly and found that the model successfully 301 

predicted the dynamics of most coarse-grained resources (Methods, Extended Data Fig. 302 

8). Additionally, errors in model predictions of resource dynamics were reduced through 303 

rational modification of the consumption rates, which simultaneously improved model 304 

predictions of species abundances (Extended Data Fig. 8). In sum, the above findings 305 

indicate that coarse-grained resource competition is a useful simplification of the complex 306 

dynamics in our system. 307 

 308 

Rational incorporation of additional interaction mechanisms improves model 309 

predictions 310 

While most pairs of species exhibited small resource competition residues, ≈25% of the 311 

residues deviated substantially from Eq. 1 (Fig. 1d). Deviations from Eq. 1 can arise in 312 

many ways. For example, if the growth of species 𝑖 affects that of 𝑗 by an amount Δ in 313 

addition to the assumptions of resource competition underlying Eq. 1 and this effect 314 

occurs similarly in spent medium and in co-culture, then the model would predict that 315 

𝑟(𝑖, 𝑗) = 𝑋%!"# − /𝑋%! + 𝑋%#,!0 = 0 and 𝑟(𝑗, 𝑖) = 𝑋%!"# − /𝑋%# + 𝑋%!,#0 = Δ (Fig. 4a). If the effect of 316 

𝑖 on 𝑗 is specific to spent medium and does not occur in co-culture, the model would 317 

instead predict 𝑟(𝑖, 𝑗) = −Δ and 𝑟(𝑗, 𝑖) = 0. A species involved in the latter scenario is 318 

Blautia producta (Bp), whose spent medium almost completely inhibited the growth of all 319 

other species, i.e., Δ < 0 (Fig. 4b). However, Bp grew more slowly than many other 320 

species (Extended Data Fig. 5a), and thus, these other species were able to grow in co-321 

culture before the inhibitory effects of Bp occurred. In agreement, the residues 𝑟(Bp, 𝑗) 322 



were >0 for these other species 𝑗 (Fig. 4c), indicating that there is a surplus of growth in 323 

co-culture relative to the inhibitory effects of Bp-spent medium. 324 

 325 

We hypothesized that this inhibition could be mediated by pH. Bp-spent medium was 326 

highly acidic with pH ≈5, while the spent media of other species and the full community 327 

were mostly neutral (Extended Data Fig. 9a). Moreover, growth inhibition was largely 328 

lifted in Bp-spent medium that was adjusted to neutral pH (Methods, Fig. 4b). Residues 329 

computed from yields in pH-neutralized Bp-spent medium were less positive and closer 330 

to zero (Fig. 4c), demonstrating that pH neutralization brought these species pairs into 331 

closer agreement with Eq. 1 and its underlying CR model. 332 

 333 

Within a model that accounts for only resource competition, growth inhibition can only be 334 

due to niche overlap. Therefore, the outsized inhibition by Bp-spent medium caused the 335 

regression to infer high levels for resources shared between Bp and other species but 336 

zero for the Bp-specific resource group (Fig. 3a). As a result, Bp was often predicted to 337 

go extinct, in disagreement with experimental data (Fig. 3c). Consequently, Bp was the 338 

species with the worst predictions (Extended Data Fig. 5f). By contrast, when the 339 

regression used yields from pH-neutralized Bp-spent medium, the Bp-specific resource 340 

group was inferred to have a non-zero level, which improved model predictions for Bp 341 

and overall (mean error = 1.31 doublings per species; Fig. 4d). These findings exemplify 342 

that while mechanisms other than resource competition can confound model 343 

parametrization, their effects can be disentangled and incorporated into the model in a 344 

rational manner. 345 

 346 

Metabolic cross-feeding is another potential interaction mechanism. Of all metabolomic 347 

features in BHI that changed significantly in the spent medium of any of the species, <15% 348 

were produced (>10-fold increase in signal intensity relative to fresh medium) by at least 349 

one species. Of these produced features, <5% were consumed by at least one other 350 

species (Fig. 2a). The low percentages of produced and potentially cross-feeding 351 

metabolomic features detected suggest that cross-feeding interactions are uncommon in 352 

our system. Indeed, substantial growth promotion by spent media was rare. Only a single 353 



ordered pair of species out of 210 exhibited strong enough growth promotion such that 354 

growth in spent medium surpassed that in fresh medium: the spent medium of 355 

Escherichia fergusonii (Efe) substantially boosted the growth of Bacteroides 356 

thetaiotaomicron (Bt), resulting in a positive residue, 𝑟(Bt, Efe) > 0 (Fig. 4e). This growth 357 

promotion persisted in larger assemblies (Extended Data Fig. 9b-d), and was likely due 358 

to the production of porphyrins, cofactors involved in iron metabolism that can stimulate 359 

the growth of certain Bacteroidetes38. 360 

 361 

To incorporate the beneficial effects of Efe on Bt, we modified the model by assuming 362 

that whenever Efe and Bt were both present, the predicted absolute abundance of Bt 363 

would be increased by a constant amount equal to the difference in yield between Bt 364 

grown in Efe-spent and fresh medium. Remarkably, without any additional tuning of model 365 

parameters, prediction errors decreased for all assemblies containing both Efe and Bt 366 

(Fig. 4f). By contrast, when the same modification was applied to Bt even when Efe was 367 

absent, prediction errors increased in some cases (Fig. 4f), implying that the enhanced 368 

growth of Bt was Efe-dependent. These findings demonstrate that cross-feeding 369 

interactions can also be incorporated into the model in a straightforward manner. 370 

 371 

In addition to yield, lag time is another growth characteristic often affected by microbial 372 

interactions39. In our system, lag times in spent media and in the full community 373 

(estimated from the time course experiment) were correlated with, albeit somewhat longer 374 

than those in monoculture (Extended Data Fig. 9e,f). Incorporation of monoculture lag 375 

times into the model slightly improved predictions on average (mean error = 1.31 376 

doublings per species; Methods), suggesting that a better understanding of lag times in 377 

community contexts could improve model predictions even further. 378 

 379 

More generally, the above findings illustrate how deviations from model predictions can 380 

detect additional microbial interactions. When applied to another complex medium, 381 

mGAM, our approach revealed a set of interactions between several Bacteroides and 382 

Clostridia species that were not apparent in BHI (Extended Data Fig. 10, 383 

Supplementary Text), consistent with growing evidence that microbial interactions can 384 



depend on the environment3. Nonetheless, the distribution of resource competition 385 

residues, the approximate proportionality between yield and feature count, and the overall 386 

performance of the CR model were qualitatively similar in mGAM as in BHI (Extended 387 

Data Fig. 10, Supplementary Text). Although an exhaustive investigation into the vast 388 

space of microbial interactions is outside the scope of this study, our results establish a 389 

rationally expandable and generalizable framework to dissect microbial ecology in 390 

complex environments.  391 



DISCUSSION 392 

Microbiome research is rapidly building toward high-throughput experimentation, and 393 

numerous experimental model systems with defined species compositions have recently 394 

been developed for natural microbiotas40,41. Motivated by the natural context, these 395 

systems typically use chemically undefined, complex media in which predictive, trait-396 

based models are lacking. Here, we addressed this gap by developing a combined 397 

experimental and modeling framework. Rather than using relative abundance data to infer 398 

effective interspecies interactions, our framework builds a coarse-grained consumer-399 

resource model for a system of 𝑁  species using 𝑁  monoculture metabolomics 400 

experiments and growth data in 𝑁+  pairwise spent-media experiments. The resulting 401 

model can be applied to interrogate any of the 2) possible species combinations. The 402 

model makes predictions by quantifying the resource competition landscape among all 403 

species, which also encodes higher-order resource competition among more than two 404 

species. For the in vitro gut bacterial communities investigated here, the model predicted 405 

assembly compositions to a mean error of ≈1.3 doublings per species. 406 

 407 

Prediction error tended to be larger for assemblies with intermediate richness (Extended 408 

Data Fig. 5e), which can contain a relatively large number of species that interact by 409 

mechanisms other than resource competition due to random sampling, thereby increasing 410 

their prediction error. By contrast, assemblies with high richness will always be dominated 411 

by effective resource competition regardless of sampling since most species pairs have 412 

near-zero residues. 413 

 414 

To obtain this level of accuracy, metabolomic feature counts were required to identify the 415 

set of resource groups to model. This coarse-graining process is a combinatorially 416 

complex problem and could be improved in future work. The resource level associated 417 

with each group must be refined using data from pairwise spent-media experiments. 418 

Although pairwise experiments are required, growth assays are more accessible and 419 

have higher throughput than sequencing of pairwise co-cultures, and can be feasibly 420 

applied to systems with hundreds of species. Building on this baseline model, cross-421 

feeding and pH-mediated interactions could be incorporated to further improve 422 



predictions. Future work should be able to build upon these findings to disentangle and 423 

quantify other interaction mechanisms, such as toxins and secretion systems. 424 

 425 

Key to approximating the resource competition landscape was the proportionality 426 

between the number of metabolomic features and biomass yield. This surprising finding 427 

revealed that each of the 15 species had access to its own niche, which together 428 

comprised approximately half of all features and mechanistically explained the 429 

widespread coexistence of these species in various assemblies. Resources shared 430 

among multiple species comprised the remaining half of metabolomic features, as well as 431 

half of the total resource level in the model. Correspondingly, ignoring the shared 432 

resources led to ≈40% more error in model predictions (Fig. 3c). Elucidating the 433 

conditions under which this proportionality holds may lead to better understanding of 434 

microbial interactions in complex nutrient environments. However, chemically undefined 435 

complex media cannot easily be separated into components, limiting direct tests of the 436 

effects of individual metabolites. For example, it remains unclear what constitutes the bulk 437 

of biomass precursors in BHI. Since peptone is an ingredient, a substantial fraction likely 438 

consists of short peptides, which shaped the resource competition landscape in our 439 

system (Extended Data Fig. 7b). The effects of vitamins, lipids, and other metabolite 440 

classes that we did not identify remain to be elucidated in future work. 441 

 442 

Another limitation is that strain choice can potentially affect interactions, especially 443 

strongly negative interactions among mutually excluding strains that can result in complex 444 

behaviors such as multi-stability. Although systematic studies of this question are lacking, 445 

we found in another study that assembling type strains of the 15 species used here led 446 

to approximately the same community composition42. Moreover, robustness to variability 447 

in initial abundance was recently observed for the assembly in mice of >100 gut 448 

commensal strains from different donors41, suggesting that such robustness is not 449 

exclusive to strains from the same microbiota nor to in vitro conditions. 450 

 451 

Despite the above limitations, we envision that our framework can be applied to generate 452 

predictions for in vitro scenarios such as nutrient perturbation, resistance to invasion, and 453 



community coalescence, which will facilitate understanding of their in vivo analogs of 454 

dietary change, pathogen infection, and fecal microbiota transplantation, respectively. For 455 

example, inulin simultaneously affects community composition and decreases burden 456 

from C. difficile infection in mouse models43. This decrease was linked to short chain fatty 457 

acids, metabolites associated with microbial metabolism of complex carbohydrates 458 

whose production by Bacteroides species has been implicated in colonization resistance 459 

against Salmonella44. Such interplay among diet, community composition, and 460 

colonization resistance can be further clarified by measuring resource competition 461 

landscapes in media supplemented with complex carbohydrates. In this way, the 462 

framework presented here provides a foundation for developing and deploying predictive 463 

models for natural microbiotas.  464 



METHODS 465 

Bacterial culturing 466 

Isolates were obtained via plating of in vitro communities, derived from culturing fecal 467 

samples from humanized mice, on agar plates made with various complex media and 468 

frozen as glycerol stocks, as previously described14,28. Frozen stocks were streaked onto 469 

BHI-blood agar plates (5% defibrinated horse blood in 1.5% w/v agar). Resulting colonies 470 

were inoculated into 3 mL of Brain Heart Infusion (BHI) (BD #2237500) or modified Gifu 471 

Anaerobic Medium (mGAM) (HyServe #05433) in test tubes. All culturing was performed 472 

at 37 °C without shaking in an anaerobic chamber (Coy). To minimize potential 473 

physiological changes from freeze-thaw cycles and changes in growth medium, cultures 474 

were diluted 1:200 every 48 h for 3 passages before growth or metabolomics 475 

measurements. After the first passage, subsequent passages were performed in 96-well 476 

polystyrene plates (Greiner Bio-One #655161) filled with 200 μL of growth medium. 477 

 478 

Bacterial growth measurements 479 

Biomass yield over time was obtained via optical density at 600 nm (OD) as measured by 480 

an Epoch 2 plate reader (Biotek). All measurements were performed in clear, flat-481 

bottomed 96-well plates (Greiner Bio-One #655161). Each well was filled with 200 μL of 482 

growth medium and inoculated with 1 μL of stationary phase culture immediately before 483 

measurement. Plates were sealed with transparent seals (Excel Scientific #STR-SEAL-484 

PLT), with small ≈0.5 mm holes cut above each well to allow gas exchange. Holes were 485 

cut using a laser cutter with the sterile casing in place, minimizing contact that might result 486 

in contamination. Any contamination would be straightforwardly detected in assembly 487 

experiments involving known isolates, and we found no contamination for any such 488 

experiments in this study. Measurements were taken with continuous shaking at 37 °C. 489 

 490 

Growth in spent media 491 

Spent media were obtained by centrifuging saturated cultures at 4,000 × 𝑔 for 5 min and 492 

filtering the supernatant with 0.22-μm polyethersulfone filters (Millex-GP #SLGP033RS) 493 

or 96-well 0.22-μm filter plates (Pall #8019). To investigate pH-mediated effects, Bp-spent 494 

medium was adjusted to a pH of 7.35 with NaOH, and filtered again to sterilize. 495 



 496 

pH measurements via BCECF 497 

pH measurements were obtained during plate reader measurements via the dual-498 

excitation, ratiometric pH indicator 2’,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein 499 

BCECF (Invitrogen #B1151). BCECF dissolved in DMSO (Fisher BioReagents #BP231) 500 

was diluted 1,000-fold into growth media to a final concentration of 1 mg/mL. Growth 501 

curves were obtained as described above, and in addition to absorbance, fluorescence 502 

was measured using monochromators at excitation/emission combinations 440 nm/535 503 

nm and 490 nm/535 nm. pH values were obtained by calculating the ratio of the signals 504 

excited at 490 nm over 440 nm after subtracting background fluorescence, and calibrated 505 

to fresh medium set to various pH values. 506 

 507 

Liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics 508 

Spent media were collected as described above and immediately stored at -80 °C. 509 

Samples were thawed only once, immediately before LC-MS/MS. Thawed samples were 510 

kept on ice, each sample was homogenized by pipetting prior to dispensing. Two 20-µL 511 

aliquots of supernatant were removed from each sample well and dispensed into two 512 

shallow 96-well polypropylene plates, maintained on ice. Additionally, 5 µL were removed 513 

from each sample and combined into a homogenous pool; this pool was dispensed in 20-514 

µL aliquots and prepared in parallel with samples. These pooled samples were used for 515 

in-run quality control, injected at predefined intervals over the course of analysis to ensure 516 

consistent instrument performance over time. Samples were analyzed using two 517 

complementary chromatography methods: reversed phase (C18) and hydrophilic 518 

interaction chromatography (HILIC). All samples were analyzed by positive and negative 519 

mode electrospray ionization (ESI+, ESI-). Sample analysis order was randomized to 520 

minimize potential bias in data acquisition. Procedural blanks were prepared by extracting 521 

20 µL of water in place of bacterial supernatant. Procedural blanks were inserted 522 

throughout the run as additional quality control. 523 

 524 

HILIC analysis: Metabolites were extracted by adding 80 µL of extraction mixture 525 

containing a solution of acetonitrile and methanol (1:1), including 5% water and stabile 526 



isotope-labeled internal standards, maintained at -20 °C. The extraction mixture was 527 

homogenized by pipetting, and the plate(s) was sealed and equilibrated in the -20 °C 528 

freezer for 1 h to ensure precipitation of any remaining protein. Plates were then placed 529 

in a centrifuge maintained at -9 °C and spun at 6,000 rcf for 5 min. Supernatant was 530 

removed and placed in a new 96-well plate for HILIC analysis. Internal standards were 531 

used to ensure complete injection of the sample and chromatographic integrity throughout 532 

the analysis. Two microliters of prepared sample were injected in each analysis. 533 

 534 

Chromatographic separation parameters32 and mass spectral parameters33 were as 535 

described previously, with minor modifications. Briefly, spectra were collected using a 536 

Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer in both positive 537 

and negative mode ionization (separate injections, sequentially). Full MS-ddMS2 data 538 

was collected, an inclusion list was used to prioritize MS2 selection of metabolites from 539 

an in-house library. Additional scan bandwidth allowed for MS2 collection in a data-540 

dependent manner. Mass range was 60-900 m/z, resolution was 60k (MS1) and 15k 541 

(MS2), centroid data was collected, loop count was 4, and the isolation window was 1.2 542 

Da. 543 

 544 

C18 analysis: Metabolites for C18 analysis were prepared similarly to HILIC analysis, with 545 

slight modification. Briefly, the extraction solution for C18 analysis was -20 °C MeOH 546 

containing internal standards. Subsequent steps matched the HILC procedure described 547 

above. In addition to the HILIC protocol, C18-analyzed samples were dried using a 548 

Labconco Centrivap at room temperature. Once dried, samples were stored at -20 °C 549 

until analysis, when analyzed samples were reconstituted in 20% acetonitrile in water and 550 

placed in the autosampler maintained at 4 °C. 551 

 552 

Two microliters of prepared sample were injected onto an Agilent SB-C18 column (100 553 

mm length × 3.0 mm inner diameter; 1.8-μm particle size) with a Phenomenex 554 

KrudKatcher Ultra filter frit attached to the column inlet. The column was maintained at 555 

40 °C coupled to an Thermo Vanquish UPLC. The mobile phases were prepared with 556 

0.1% formic acid in LC-MS grade water for mobile phase A or 100% LC-MS grade 557 



acetonitrile for mobile phase B. Gradient elution was performed from 3% (B) at 0–0.43 558 

min to 97% (B) at 9 min, isocratic until 11 min, returning to 3% (B) at 11.5 min and 559 

maintained isocratically until 14 min. Column flow was maintained at 0.4 mL/min. Spectra 560 

were collected using a Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap mass 561 

spectrometer in both positive and negative mode ionization (separate injections). Full MS-562 

ddMS2 data were collected, an inclusion list was used to prioritize MS2 selection of 563 

metabolites from an in-house library. Additional scan bandwidth allowed for MS2 564 

collection in a data-dependent manner. Mass range was 60-900 m/z, resolution was 60k 565 

(MS1) and 15k (MS2), centroid data was collected, loop count was 4, and the isolation 566 

window was 1.0 Da. 567 

 568 

Data was processed using MS-DIAL v. 4.6045,46. MS1 tolerance was set to 0.01 Da, MS2 569 

tolerance set to 0.015 Da, and minimum peak height was set to 100k. Alignment retention 570 

time tolerance was set to 0.05 min, and mass tolerance was set to 0.015 Da. Annotations 571 

were based on in-house libraries of standards analyzed using these chromatographic 572 

methods. The freely available MassBank of North America MS2 repository 573 

(https://mona.fiehnlab.ucdavis.edu/) was used for annotations of metabolites not found in 574 

our library. All annotations were MS2-based. Aligned peaks were retained for further 575 

analyses only if they were present in at least two of three replicates and were >5-fold 576 

higher than the water blank average in at least one sample. 577 

 578 

Assembly experiments 579 

Communities were assembled from stationary phase cultures of isolates mixed at equal 580 

volume, and 1 μL of the mixture was inoculated into 200 μL of growth medium. Plates 581 

were sealed and incubated at 37 °C without shaking. The assemblies were diluted 1:200 582 

into fresh medium every 48 h for 5 passages to approximately reach an ecological steady 583 

state, defined as when subsequent passages exhibited identical dynamics. Using in vitro 584 

communities similar to the ones in this study, we previously found that ecological steady 585 

state was reached in approximately five passages14. The 15 single-species “dropout” 586 

assemblies with 14 of the 15 members were serially diluted for only 3 passages. In “refill” 587 

experiments, the inoculum for each dropout was mixed 1:1, 1:10, 1:100, 1:1,000, or 588 



1:10,000 with a monoculture of the species that was left out and passaged 3 times. The 589 

final passage for assembly experiments was grown in a plate reader for OD 590 

measurements, after which the plate was stored at -80 °C until DNA extraction for 16S 591 

rRNA gene sequencing was performed. 592 

 593 

Time course experiment 594 

The full community of 15 species was assembled and passaged via serial dilution until 595 

ecological steady state. Using one culture of the full community in stationary phase, 72 596 

replicate cultures were inoculated into fresh media. At each of 24 time points throughout 597 

the next growth cycle (at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32, 598 

36, 40, 44, and 48 h), 3 replicate samples were collected. Cells were pelleted by 599 

centrifuging at 4,000 × 𝑔  for 5 min, separated from supernatants, and stored for 600 

sequencing. Supernatants were stored for metabolomics. The result was a time course 601 

of sequencing and metabolomics data representing the dynamics of the full community. 602 

 603 

Summary of experiments 604 

Several sets of experiments involved combinations of species, which are summarized 605 

here for clarity. The following growth measurements were carried out: 1) all monoculture, 606 

pairwise spent-media, and pairwise co-culture experiments; 2) a subset of 3-species 607 

combinations for which a species was grown in the mixture of the individual spent media 608 

of two other species; 3) a subset of 3-species combinations for which a species was 609 

grown in the spent medium of the co-culture of two other species. For the 3-species 610 

combinations, the species used for growth measurements were chosen based on 611 

exhibiting high yield in monoculture to ensure a broad range of growth behaviors, and the 612 

other two species were randomly selected; these combinations are listed in the 613 

corresponding figure legends. In addition, 185 combinations of a subset of the 15 species, 614 

randomly selected while ensuring sampling across community sizes and taxonomic 615 

families, were assembled as described above. The full list of assemblies is shown in 616 

Extended Data Fig. 5c,d. 617 

 618 

16S rRNA gene sequencing and analyses 619 



Amplicon sequencing data were obtained and processed as previously described14,47: 620 

DNA was extracted from 50 mL of culture using the DNeasy UltraClean 96 Microbial Kit 621 

(Qiagen #10196-4). The bacterial 16S rRNA V4 region was amplified with Earth 622 

Microbiome Project-recommended 515F/806R primer pairs using the 5PRIME 623 

HotMasterMix (Quantabio #2200410) with the following thermocycler program: 94 °C for 624 

3 min, 35 cycles of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], followed by 72 °C 625 

for 10 min. PCR products were cleaned with the UltraClean 96 PCR Cleanup kit (Qiagen 626 

#12596-4) and pooled using the same volume for each sample. Pooled libraries were 627 

concentrated by ethanol precipitation and purified by gel extraction of the corresponding 628 

library size using the NucleoSpin Gel and PCR Clean-up Mini kit (Macherey-Nagel). 629 

Libraries were prepared using the MiSeq Reagent Kit v3 with 300-bp paired-end reads 630 

and sequenced on a MiSeq (Illumina). Demultiplexed fastq files for each sample were 631 

processed using DADA2 (46) with the following parameters for the “filterAndTrim” function: 632 

[truncLenF = 240, truncLenR = 160, maxEE = c(2,2), truncQ = 2, maxN = 0]. Default 633 

parameters were used for the “learnErrors” and “dada” functions. Taxonomic assignment 634 

was performed with the “assignTaxonomy” function using the Greengenes Database 635 

(gg_13_8_train_set_97.fa). 636 

 637 

Relative abundances were determined to a minimum threshold of 10-4, reflecting the 638 

typical depth of sequencing, and the relative abundance of undetected species was set 639 

to 10-4 for visualization and for calculating the error between model predictions and 640 

experimental data. The three Enterococcus species were indistinguishable by the 641 

amplicon protocol used here. When more than one was present, their relative 642 

abundances were summed and visualized as Eh if Eh was present, else as Efs. 643 

 644 

Analyses of growth curves 645 

OD measurements were calibrated to be proportional to cell density by linear interpolation 646 

to data obtained in a previous study48. The minimum point of each growth curve was 647 

subtracted as a proxy for the background absorbance. To extract the final yield 𝑋% and 648 

growth rate 𝜆, each growth curve was fit to Eq. 2, modified to incorporate a lag time 𝜏, 649 

with one species and one resource. Prior to the time 𝜏, the species does not consume 650 



resources nor grow, which was implemented by multiplying 𝑋  by the step function 651 

𝜃(𝑡 − 𝜏), where 𝜃(𝑡)  = 1 for 𝑡 ≥ 0 and 0 otherwise. The culture yield over time 𝑋(𝑡) 652 

becomes 653 

𝑋(𝑡) = 𝑋%O1 + (𝑋%/𝑋* − 1) exp/−𝜆(𝑡 − 𝜏)0S
,(, 654 

where 𝜆 = 𝑅𝑌(𝑡 = 0) is the growth rate, 𝑋* = 𝑋(𝑡 = 0) is the initial abundance, and 𝑋% =655 

𝑋(𝑡 = 48 h) is the yield at 48 h (defined as such to match our experimental protocol). The 656 

growth rate 𝜆 and lag time 𝜏 were determined by exhaustive grid search minimizing the 657 

mean squared error between predicted and measured 𝑋(𝑡). Unless otherwise stated, lag 658 

time was not included in simulations of community dynamics. 659 

 660 

Analyses of metabolomics data 661 

Metabolomic features that passed pre-processing were defined as depleted or produced 662 

if they decreased by >100-fold or increased by >10-fold, respectively, compared to fresh 663 

medium, and if the difference was significant (p<0.05) by a two-sample t-test. An ion 664 

intensity of 0 was set to 1 for the purpose of calculating fold changes. Coarse-grained 665 

resource groups were obtained by grouping metabolomic features that shared the same 666 

set of depleting species. 667 

 668 

Residues in randomly generated coarse-grained CR models 669 

To determine the typical distribution of resource competition residues in coarse-grained 670 

CR models, 100 resource groups were randomly selected out of all possible groupings of 671 

15 species. Each group was assigned a random initial level from a uniform distribution 672 

from 0 to 1. Simulated yields of monoculture and pairwise spent-media experiments were 673 

then calculated directly by summing the levels of the consumed resource groups. The 674 

resulting yields were modified with empirical measurement noise before calculating the 675 

resource competition residues. 676 

 677 

Simulations of the coarse-grained CR model 678 

To mimic our experimental protocol, Eq. 2 was simulated under a serial dilution scheme 679 

in which each dilution cycle continued until stationary phase when all resources are 680 

depleted (𝑑𝑌%/𝑑𝑡 = 0 for all 𝜇), after which a new cycle was initiated by replenishing the 681 



resources to their initial levels 𝑌%* and diluting all species abundances by a factor 𝐷, which 682 

was set to 200 in simulations to mimic our experimental protocol. In simulations, the first 683 

cycle was initialized with equal abundances of each species, and dilutions were repeated 684 

until an ecological steady state was reached in which further cycles produced identical 685 

dynamics up to a small numerical threshold. At ecological steady state, species 686 

abundances in stationary phase are linear combinations of the resource levels since all 687 

resources have been converted to biomass, and are independent of the initial 688 

abundances given the same set of initially present species31,35,36. Note that 𝑋! in Eq. 2 689 

denotes absolute abundances, and all simulations were carried out using absolute 690 

abundances. To compare against experimental data, simulation results were converted 691 

to relative abundances and those <10-4 were considered undetectable and removed in 692 

downstream calculations. 693 

 694 

Parametrization of the coarse-grained CR model 695 

The parameters of the CR model in Eq. 2 are the resource levels in fresh medium 𝑌%* and 696 

resource consumption rates 𝑅!%, which were inferred as briefly described in the text. In 697 

greater detail, given a resource utilization structure defined by a set of coarse-grained 698 

resource groups, the corresponding resource levels were inferred from the experimentally 699 

determined yield 𝑋%!,# of species 𝑖 in the spent medium of 𝑗, which the model predicts to 700 

be 𝑋%!,# = ∑ 𝑌%*%∈.!\." . Here, 𝑆!  is the set of resources consumed by species 𝑖, and “\” 701 

denotes the difference between sets. In other words, the sum is over resources 𝜇 702 

consumed by 𝑖  but not 𝑗  such that 𝑅!% > 0 but 𝑅#% = 0. Since the resource utilization 703 

structure is given, which elements of 𝑅!% are non-zero is known (although their values are 704 

not yet known). Each of the 152 experiments in monoculture and pairwise spent media 705 

represented one equation in the non-negative least squares regression. The 𝑀 resource 706 

groups with the most constituent features to incorporate into the model was determined 707 

by minimizing the AIC assuming that residuals from the regression are normally 708 

distributed with zero mean and variance equal to the observed sample variance. This 709 

minimization was carried out to a maximum of 50 groups to avoid overfitting (Extended 710 

Data Fig. 5b). Including more groups did not improve model predictions. Resources 𝜇 711 



inferred to have near-zero 𝑌%* (<10-4) were removed from the model. The consumption 712 

rates 𝑅!% were similarly inferred from the experimentally determined growth rates, which 713 

the model predicts to have a maximum value of 𝜆!,#max = ∑ 𝑅!%𝑌%*%∈.!\."  for species 𝑖 grown 714 

in the spent medium of species 𝑗 . Given limitations in the accuracy of growth rate 715 

measurements in cultures with low yield, we further simplified the problem and assumed 716 

that 𝑅!% = 𝑅!∗ for all resources 𝜇, i.e., species 𝑖 consumes all resources that it uses at the 717 

same rate, and hence, 𝑅!∗ = 𝜆!/∑ 𝑌%*%∈.! . 718 

 719 

Comparison with hypothetical resource utilization structures 720 

To evaluate the relevance of metabolomics-derived resource groups, three hypothetical 721 

structures of resource consumption were used to predict assembly compositions: a “base” 722 

structure that included only the 15 species-specific groups, and on top of this base 723 

structure, either every group shared between species pairs, or every group shared across 724 

all but one species (Extended Data Fig. 4a). For each of these structures, a set of 725 

resource levels and consumption rates was inferred from pairwise spent-media 726 

experiments following the procedure described above. 727 

 728 

Comparison with resource utilization structures selected via regularized regression 729 

In addition to using resource groups with the most constituent features to determine the 730 

resource utilization structure, we tested another approach via LASSO. The LASSO 731 

analysis used all detected resource groups to construct the regression problem from 732 

pairwise spent-media experiments. Hence, for the same 152 known variables as in the 733 

original regression problem, there were as many unknowns as the number of detected 734 

groups, ≈1,000. A regularization parameter penalized against having many resources 735 

with non-zero values of 𝑌%* . The regularization parameter was varied across a broad 736 

range, which resulted in a minimum of 1 and a maximum of 45 resources with non-zero 737 

𝑌%*. Each value of the regularization parameter led to a set of inferred resource levels and 738 

consumption rates (Extended Data Fig. 6b). LASSO performance was defined as the 739 

mean error of the best-performing set (Fig. 3b). 740 

 741 



Comparison with model based on the number of metabolomic features alone 742 

To estimate resource levels 𝑌%*, one option is to set 𝑌%* proportional to the number of 743 

metabolomic features in resource group 𝜇 , without fine-tuning via regression against 744 

yields in spent media. To test the performance of this parametrization, the resource 745 

utilization structure was kept the same as in Fig. 3a, the proportionality constant between 746 

feature count and resource level 𝑌%* was set to the best fit value from the pairwise spent-747 

media experiments (Fig. 2c), and resource consumption rates were determined in the 748 

manner described above.  749 
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FIGURES 914 

 915 

Figure 1: Coarse-grained resource competition can describe most pairwise 916 

interactions in an in vitro model system of 15 human gut commensals. 917 

a) Phylogenetic tree of the 15 species studied here, which collectively represent an 918 

experimental model system for the gut microbiota of humanized mice14 (Extended 919 

Data Fig. 1, Supplementary Text). 920 



b) Schematic of growth experiments in pairwise spent media and predictions of the 921 

coarse-grained CR model. Growth curves of optical density (OD) over time were 922 

obtained for each species grown in monoculture, in co-culture with every other 923 

species, and in the spent media of every other species, all in the complex medium 924 

BHI (Methods). In the coarse-grained CR model, the final yield is determined by 925 

the amount of coarse-grained resources, resulting in Eq. 1. 926 

c) The null interaction score, the difference between the yield 𝑋%!"# of the co-culture 927 

of species 𝑖 and 𝑗 and the sum of the individual yields 𝑋%! and 𝑋%#, was negative for 928 

most species pairs. Shown in (c-f) are mean yields across replicates. Solid vertical 929 

line denotes the mean across all pairs. 930 

d) The distribution of normalized resource competition residues was centered about 931 

zero. Shown in gray are results for numerical simulations of randomly generated 932 

coarse-grained CR models with empirical error in yield measurements (Methods). 933 

e) Most normalized resource competition residues were close to zero. Circles “o” 934 

denote residues with absolute value <0.2, the approximate maximum value of 935 

residues in simulations of randomly generated coarse-grained CR models in (d). 936 

f) Yield in 1:1 mixtures of spent media was predicted by the average of the yield in 937 

each spent medium individually. For feasibility, only a subset of all 3-species 938 

combinations was tested. Five species, denoted by colors, were grown in every 939 

pairwise mixture of the spent media from Eh, Efe, Csy, Bt, Bp, Csc, Efs or fresh 940 

BHI (Methods).  941 



 942 

Figure 2: Metabolomic profiles can approximately predict yield in monoculture, co-943 

culture, and spent media. 944 

a) Schematic of metabolomics experiments and the resulting profile of fold change in 945 

LC-MS signal intensity relative to fresh BHI for each species. Shown are mean 946 

values across three replicates for all metabolomic features, including unannotated 947 

ones, that changed significantly in the spent medium of any of the species 948 

(Methods). 949 

b) Schematic of rule used to predict yield from metabolomic profiles. The predicted 950 

yield of a species in monoculture was defined as the number of metabolomic 951 

features (rectangles) that was depleted in the spent medium of that species (blue, 952 

solid lines). The predicted yield of species 𝑖 in the spent medium of 𝑗 was defined 953 



as the number of features depleted by 𝑖  but not 𝑗  (gray, dashed lines), and 954 

analogously for co-cultures of 𝑖 and 𝑗, as well as 𝑖 growing in the co-culture of 𝑗 955 

and 𝑘. 956 

c) Feature count was correlated with biomass yield in monocultures and pairwise 957 

spent-media experiments (Pearson’s correlation coefficient 𝜌 = 0.83, 0.76, and 958 

0.78 for monocultures, pairwise spent-media experiments, and together, 959 

respectively). Shown in (c-e) are mean yields across replicates. 960 

d) The same trend was also observed for pairwise co-cultures (𝜌 = 0.65). All pairwise 961 

co-cultures are shown. Monocultures and pairwise spent-media experiments, as 962 

in (c), are shown in gray in (d,e) as a visual guide. 963 

e) The same trend was also observed for yield in the spent medium of co-cultures (𝜌 964 

= 0.74). For feasibility, only a subset of all 3-species combinations was tested. Two 965 

species (Eh and Efe) were grown in the spent media of all pairwise co-cultures of 966 

Eh, Efe, Csy, Bt, Cc, Bp, Csc, and Efs (Methods).  967 



 968 

Figure 3: A consumer-resource model based on monoculture metabolomics and 969 

growth in spent media predicts community assembly. 970 

a) Schematic for predicting community assembly using a coarse-grained CR model 971 

(Methods). Metabolomic features were grouped into a coarse-grained resource if 972 

they were depleted by the same set of species. The resulting resource utilization 973 



structure (orange, left) was combined with growth data in pairwise spent media to 974 

infer resource levels and consumption rates via linear regression (blue, right). 975 

Coarse-grained resources with initial amount inferred to be <10-4 were removed 976 

from the model and not displayed. Shown are the species-specific resources and 977 

the 18 coarse-grained resources with the most constituent features, which together 978 

accounted for 71% of all features and minimized the AIC for the regression. The 979 

resulting CR model was used to predict the composition of 185 random assemblies 980 

and compared against experimentally determined relative abundances (Methods). 981 

b) The CR model based on metabolomics and pairwise spent-media experiments 982 

achieved the lowest mean error out of all models considered. Model error for an 983 

assembly was defined as the magnitude of log2(fold-change) (“fc”) between actual 984 

and predicted relative abundance averaged across species in the assembly. 985 

Shown are box plots denoting the mean error (thick central mark), the 25th and 75th 986 

percentiles (box), and the extremes (dashed lines) across all assemblies tested for 987 

the best model (red) and alternative models (black), which include 1) models with 988 

hypothetical resource utilization structures: the base model consisting of the 989 

species-specific resource groups, the base model plus all pairwise niche overlaps, 990 

and the base model plus all 15 all-but-one niche overlaps; 2) a regularized 991 

regression approach to determine the resource utilization structure; and 3) an 992 

approach to approximate resource levels based on feature counts only without 993 

using pairwise spent-media experiments (Methods). The model in (a) was 994 

significantly better than all other models by the Mann-Whitney U-test. 995 

c) Assembly predictions approximately matched experimental data. Each panel 996 

shows one assembly. Twelve examples with varying community size were 997 

randomly chosen from the 185 combinations tested. Shown are mean relative 998 

abundances across replicates. Colored squares along the top of each panel are 999 

placed at the same relative location, and indicate species that were present in the 1000 

inoculum of that assembly. The relative abundances of undetected species were 1001 

set to 10-4 for visualization. 1002 

d) Regressed resource levels 𝑌%* (red) recapitulated yield in pairwise spent media 1003 

better than feature counts alone (gray) (𝜌 = 0.91 vs 0.78, respectively).  1004 



 1005 

Figure 4: Strategies for incorporating pH and metabolic cross-feeding interactions 1006 

into the CR model. 1007 

a) Schematic for interpreting resource competition residues in the presence of 1008 

additional contributions to growth from interactions other than resource 1009 

competition as described by Eq. 1. 1010 

b) pH-mediated interactions involving Blautia producta (Bp). Shown are growth 1011 

curves in Bp-spent medium and Bp-spent medium with neutralized pH for the 1012 

subset of species that grew more quickly than Bp in monoculture. 1013 

c) Resource competition residues became less positive and closer to zero after 1014 

neutralizing the pH of Bp-spent medium (Methods). 1015 

d) Model predictions improved after parametrization based on growth data in pH-1016 

neutralized Bp-spent medium. Shown are predictions for an example assembly as 1017 

in Fig. 3c. 1018 

e) Escherichia fergusonii (Efe) promoted Bacteroides thetaiotaomicron (Bt) growth. 1019 

Bt grew more quickly and to higher yield in Efe-spent medium, the only case of 1020 

growth promotion in spent medium out of all 210 ordered pairs. 1021 

f) Errors of model predictions after incorporating the Efe-Bt interaction into the model. 1022 

Shown are prediction errors for the CR model described in Fig. 3a and the same 1023 



model with a fixed boost to the predicted abundance of Bt equal to the difference 1024 

in yields between Bt in Efe-spent medium and in monoculture. Shown are all 1025 

assemblies with Bt, including those that also contained Efe (filled) and those that 1026 

did not contain Efe (empty). Assemblies with Efe were always better predicted 1027 

when Bt-promotion was included, whereas predictions of assemblies without Efe 1028 

were better or worse in an apparently random manner.  1029 



EXTENDED DATA FIGURES 1030 

 1031 

Extended Data Figure 1: The 15 species studied here represent a tractable model 1032 

system for humanized mice gut microbiota. 1033 

a) The 15 isolates were obtained from the same parent community, which was 1034 

derived by culturing a humanized mice fecal sample. Pie chart shows relative 1035 

abundance of isolated (colored) and non-isolated (gray) species. The 15 isolates 1036 

accounted for 69% of the composition of the parent community. 1037 

b) The composition of the 15-species assembly was highly correlated with the 1038 

composition of the parent community (𝜌 = 0.80).  1039 



 1040 

Extended Data Figure 2: Model assumptions. 1041 

a) The 15 species converted resources to biomass with similar efficiencies. The 1042 

efficiency of species 𝑖 for the conversion of the resource shared with species 𝑗 was 1043 

defined as /𝑋%! − 𝑋%!,#0//𝑋%# − 𝑋%#,!0 . If the efficiency equals one, then Eq. 1 is 1044 

satisfied. The distribution of log2(efficiency) across unique ordered pairs was 1045 



centered about zero with a narrow width, except for a few outliers for which 1046 

differences between yields in monoculture and spent medium were small 1047 

compared to measurement error. 1048 

b) The number of annotated features that were depleted was correlated with biomass 1049 

yield in monocultures and pairwise spent-media experiments, analogous to Fig. 1050 

2c. The correlation is not as strong as when unannotated features were also 1051 

included, suggesting that unannotated features are informative for species growth. 1052 

c) Monoculture growth curves (orange) were well fit by Eq. 2 for one species and one 1053 

resource (black; Methods).  1054 



 1055 

Extended Data Figure 3: Assembly compositions were independent of initial 1056 

values. 1057 

a) Relative abundances at steady state in refill experiments. Each column represents 1058 

one experiment, in which a dropout assembly with 14 of the 15 species was mixed 1059 

with a monoculture of the dropped-out species at various ratios (1:1, 1:10, 1:100, 1060 

1:1,000, and 1:10,000). All 15 species × 5 ratios were tested, and all are shown 1061 

except for 3 experiments with idiosyncratic sequencing errors. The compositions 1062 

were virtually indistinguishable from each other and from the full 15 member 1063 

community, which is shown in the last column. 1064 

b) Histogram of the correlation coefficient (top) and mean absolute error in log2(fold-1065 

change) (bottom) between the relative abundances in each refill experiment and 1066 

the full 15-species community.  1067 



 1068 

Extended Data Figure 4: Metabolomics-derived coarse-grained resource groups. 1069 

a) The structure of metabolomics-derived coarse-grained resource groups. A 1070 

metabolomic feature was considered depleted if it decreased by >100-fold 1071 

compared to fresh medium, and features that shared the same set of depleting 1072 

species were grouped together into a coarse-grained resource group, shown as 1073 

one column in the matrix. The number of features in each resource group is shown 1074 

in the bar plot above each column. Only groups with more than one constituent 1075 

feature are shown. 1076 

b) The cumulative fraction of the number of metabolomic features as a function of the 1077 

number of coarse-grained resource groups included, starting with the leftmost 1078 

column in (a).  1079 



 1080 

Extended Data Figure 5: Regression input, regression optimization, and prediction 1081 

errors. 1082 



a) Yield and growth rate in monocultures (left) and yield in pairwise spent media 1083 

(right) were used to refine metabolomics-based resource utilization structures 1084 

(Methods). Shown are mean values across replicates. Error bars denote the 1085 

standard error of the mean. 1086 

b) Determination of resource utilization structure by minimization of the AIC 1087 

(Methods). Minimization was carried out over the top 𝑀 coarse-grained resource 1088 

groups with the most constituent features. The AIC-minimizing set of resource 1089 

groups is shown in Fig. 3a. 1090 

c) Prediction error for each assembly for the coarse-grained CR model shown in Fig. 1091 

3a. Shown are all 185 assemblies tested. Errors were calculated using mean 1092 

relative abundances across replicates. Each column represents one assembly, 1093 

and the matrix denotes the species that were initially present in each assembly. A 1094 

histogram of prediction errors and the mean error (solid line) are also shown. 1095 

d) The number of assemblies, out of the 64 assemblies containing 3 to 13 species, 1096 

that contained at least one species from a given family is >30 for every family, 1097 

indicating that the random combinations tested were taxonomically diverse. 1098 

e) Error for each assembly was only weakly correlated with the initial richness (left) 1099 

or the Shannon index (right) of the community, suggesting that model performance 1100 

was not dependent on community diversity. 1101 

f) Error for each species across all assemblies. The number of assemblies 𝑛 1102 

containing each species is shown. Box plot denotes the median (central mark), 1103 

25th and 75th percentiles (box), and extremes (dashed lines).  1104 



 1105 

Extended Data Figure 6: Other approaches to predict assembly composition 1106 

performed worse than the coarse-grained CR model based on metabolomics and 1107 

pairwise spent-media experiments. 1108 



a) Hypothetical resource utilization structures. The “base” structure was defined as 1109 

the set of species-specific resource groups. On top of the base structure, pairwise 1110 

niche overlaps consumed by only two species and all-but-one niche overlaps 1111 

consumed by 14 of the 15 species were also tested. Model performance using 1112 

these hypothetical structures are shown in Fig. 3b. 1113 

b) Performance of utilization structures selected by regularized regression on all 1114 

detected resource groups (Methods). Shown are mean errors and coefficients of 1115 

determination for LASSO fits. Shading denotes standard error of the mean. 1116 

c) Prediction error of the full model as in Fig. 3a (left) versus model predictions after 1117 

randomly shuffling species identity (right). 1118 

d) The CR model achieved comparable performance as a gLV model fitted to all 1119 

assembly data. Shown are mean errors of model predictions for co-culture 1120 

assemblies, assemblies of more than two species, and all assemblies. Error bars 1121 

denote standard error of the mean. Colors denote different models 1122 

(Supplementary Text): the CR model (orange); and gLV models parametrized 1123 

using pairwise spent-media experiments (black), species abundances in pairwise 1124 

co-cultures (dark gray), or species abundances in all assemblies (light gray). 1125 

e) gLV models parametrized using assembly data failed to predict yield in pairwise 1126 

spent-media experiments. 1127 

f) The coarse-grained CR model was the best performing model for both the mean 1128 

absolute error of log2(fold-change) and the commonly used Bray-Curtis 1129 

dissimilarity metric, defined as 1 − ∑ min/𝑥!actual, 𝑥!
predicted0)

!'( . Shown are the same 1130 

models as in Fig. 3b. 1131 

g) The model successfully predicted absolute abundances, obtained by multiplying 1132 

relative abundances by culture yield in OD. Panels are representative assemblies, 1133 

analogous to Fig. 3c.  1134 



 1135 

Extended Data Figure 7: Biological basis and robustness of the metabolomics-1136 

based resource competition landscape. 1137 

a) Regressed resource levels were correlated with feature counts across coarse-1138 

grained resources. Two outliers (empty symbols) contained features identified as 1139 

the simple sugars glucose and trehalose. Without these two outliers, correlations 1140 



were high (𝜌 = 0.77), indicating that the regression refined metabolomics-based 1141 

estimations. 1142 

b) Annotated metabolomic features suggest that diverse peptide utilization 1143 

capabilities shape the resource competition landscape. Examples of annotated 1144 

metabolomic features within each coarse-grained resource group for the CR model 1145 

shown in Fig. 3a. Resource groups with empty fields did not have any annotated 1146 

features. 1147 

c) Coarse-graining is robust to uncertainty in peak calling and quantitation. “Niche 1148 

differences” denote the number of groups within the top 50 resource groups with 1149 

the most constituent features that are different from the set used in the original 1150 

analysis (Extended Data Fig. 4). Uncertainty in peak calling was simulated by 1151 

discarding a random fraction of features. Up to half of the features could be 1152 

discarded without affecting the identity of the resource groups with the most 1153 

constituent features. Shading denotes the standard deviation of niche differences 1154 

across random instances of feature removal. 1155 

d) Uncertainty in quantitation was simulated by varying the threshold fold-change for 1156 

classifying depletion. The depletion threshold could be varied over an order of 1157 

magnitude without changing more than 5 of the 50 largest groups.  1158 



 1159 



Extended Data Figure 8: The CR model captured metabolite depletion dynamics at 1160 

a coarse-grained level. 1161 

a) Experiment schematic. The full 15-species community was assembled and 1162 

passaged to reach ecological steady state. Replicate cultures were inoculated from 1163 

the steady-state culture, and 3 replicates were collected at 24 time points 1164 

throughout the next growth cycle. Sequencing and metabolomics data were 1165 

obtained for all samples (Methods). 1166 

b) The CR model predicted assembly compositions. The parametrization based on 1167 

pH-neutralized Bp-spent medium experiments was used (Fig. 4). One species (C. 1168 

hylemonae) was incorrectly predicted to be undetectable, which could be remedied 1169 

by using metabolite depletion rates to improve the model as in (c). 1170 

c) The CR model captured the depletion time of coarse-grained resources, defined 1171 

as when the log10(fold-change) first decreases below -1. Without any modification, 1172 

the model achieved a reasonable performance (𝜌 = 0.55, left). Several outliers 1173 

were species-specific resource groups (empty symbols). The model was improved 1174 

by adjusting the consumption rates of these outlier groups to match their depletion 1175 

times (𝜌 = 0.71, right), which simultaneously improved predictions for species 1176 

abundances as in (b). The remaining outliers are highlighted in yellow. 1177 

d) Resource dynamics were captured at a coarse-grained level. Each panel shows 1178 

the dynamics of a coarse-grained resource. The matrix shows the set of coarse-1179 

grained resources included in the model. (Parametrization using pH-neutralized 1180 

Bp-spent medium experiments led to the incorporation of 2 additional resource 1181 

groups with non-zero 𝑌%*	 compared to the parametrization shown in Fig. 3a.) Solid 1182 

lines show the mean log10(fold-change) across all metabolomic features in a group. 1183 

Shading shows the standard deviation. Dotted lines show the predictions of the 1184 

improved model. Outlier groups in (c) are highlighted. 1185 

e) The model also captured species abundances over time in the full community.  1186 



 1187 



Extended Data Figure 9: The model can be extended to incorporate pH, cross-1188 

feeding, and lag times. 1189 

a) The full community and most species, except for Blautia producta and a few other 1190 

species, did not modify the pH. pH was obtained during growth measurements 1191 

using BCECF for each species in monoculture and the full 15-species community 1192 

(Methods). Shading denotes standard error of the mean. 1193 

b) Growth curves for Bt grown in fresh medium (solid line), in Efe-spent medium 1194 

(dotted line), and in fresh BHI plus hemin (dash dotted line). Shown is the mean 1195 

over replicates. Shading denotes standard error of the mean. 1196 

c) Interactions persisted in a community context, and strong interactions in dropout 1197 

assemblies were rare. Relative abundances in dropout assemblies are shown in 1198 

terms of z-scores. Each column represents a dropout assembly of 14 of the 15 1199 

species, with the denoted species left out of the community. Each row represents 1200 

the z-scores of the denoted species, defined as 𝑧!# ≔ /𝑥!# − 𝜇!0/𝜎!, where 𝑥!# is 1201 

the log10(relative abundance) of species 𝑖  in the dropout assembly in which 1202 

species 𝑗  was left out, and 𝜇!  and 𝜎!  are the mean and standard deviation, 1203 

respectively, of the log10(relative abundance) of species 𝑖  across all dropout 1204 

assemblies. Asterisks denote z-scores with absolute value >3. 1205 

d) Same as (b) but for Pd. 1206 

e) Lag times in monoculture and in the full 15-species community were correlated. 1207 

For the full community, absolute abundances over time were obtained by 1208 

multiplying relative abundances by culture OD over the time course of the full 1209 

community. Lag times were extracted by fitting as for monocultures. 1210 

f) The difference between the lag time of a species grown in the spent medium of 1211 

another species and grown in fresh medium was typically positive.  1212 



 1213 

Extended Data Figure 10: Modeling framework was able to predict assembly 1214 

compositions and interrogate interactions in the complex medium mGAM. 1215 



a) Monoculture yields in mGAM differed from those in BHI, particularly for the 1216 

Bacteroidetes, which exhibited substantially larger yields in mGAM. Shown are 1217 

mean values across replicates. 1218 

b) The distribution of resource competition residues in mGAM was centered about 1219 

zero, as in BHI (Fig. 1d). 1220 

c) Pairwise overlaps in metabolomic profiles in mGAM and BHI were correlated (𝜌 = 1221 

0.66). The pairwise overlap between the ordered species pair (𝑖, 𝑗) was defined as 1222 

the number of metabolomic features depleted by both species divided by the 1223 

number depleted by species 𝑖. Shown are all 210 ordered pairs, colored according 1224 

to species 𝑖. 1225 

d) Yield in monoculture (left) and pairwise spent-media experiments (right) was 1226 

correlated with feature counts for experiments not involving the four Bacteroidetes 1227 

(𝜌 = 0.54). Pairwise spent-media experiments involving the four Bacteroidetes are 1228 

not shown. 1229 

e) Incorporation of additional interactions significantly and specifically improved 1230 

model performance in mGAM. Shown are mean errors for model predictions in BHI 1231 

(orange) and mGAM (blue), parametrized using metabolomics and spent-media 1232 

experiments in the corresponding media, as well as mean errors for the CR model 1233 

in mGAM modified to incorporate Bt/Bu-Clostridia interactions (dark blue) or with 1234 

ubiquitous Clostridia inhibition (light blue). Error bars denote the standard error of 1235 

the mean. 1236 

f) The 5 Clostridia species exhibited no detectable growth in Bt- or Bu-spent media. 1237 

Each panel shows the growth curve of a species in monoculture (solid line) and in 1238 

pairwise spent media (dotted lines). The color of the solid line denotes the species 1239 

grown in each panel. The color of the dotted lines denotes the species that 1240 

generated the spent media. Gray dotted lines show growth curves in all other spent 1241 

media. 1242 


