
Scalable Mixed-Mode MPC

Radhika Garg
Northwestern University

radhikaradhika2028@u.northwestern.edu

Kang Yang⇤
State Key Laboratory of Cryptology

yangk@sklc.org

Jonathan Katz⇤
University of Maryland

jkatz2@gmail.com

Xiao Wang⇤
Northwestern University

wangxiao@northwestern.edu

Abstract—Protocols for secure multi-party computation (MPC)
supporting mixed-mode computation have found a lot of appli-
cations in recent years due to their flexibility in representing
the function to be evaluated. However, existing mixed-mode
MPC protocols are only practical for a small number of
parties: they are either tailored to the case of two/three parties,
or scale poorly for a large number of parties.

In this paper, we design and implement a new system for
highly efficient and scalable mixed-mode MPC tolerating an
arbitrary number of semi-honest corruptions. Our protocols
allow secret data to be represented in Encrypted, Boolean,
Arithmetic, or Yao form, and support efficient conversions
between these representations.
1) We design a multi-party table-lookup protocol, where both

the index and the table can be kept private. The protocol
is scalable even with hundreds of parties.

2) Using the above protocol, we design efficient conversions
between additive arithmetic secret sharings and Boolean
secret sharings for a large number of parties. For 32
parties, our conversion protocols require 1184⇥ to 8141⇥
less communication compared to the state-of-the-art proto-
cols MOTION and MP-SPDZ; this leads to up to 1275⇥
improvement in running time under 1 Gbps network. The
improvements are even larger with more parties.

3) We also use new protocols to design an efficient multi-party
distributed garbling protocol. The protocol could achieve
asymptotically constant communication per party.

Our implementation will be made public.

1. Introduction
Protocols for secure multi-party computation (MPC)

allow a set of parties to jointly compute on their private
data while revealing nothing beyond the output. In principle,
general-purpose MPC protocols can evaluate an arbitrary
program by first representing that program as a Boolean
or arithmetic circuit; this will typically not be very ef-
ficient. Mixed-mode MPC protocols, on the other hand,
allow different parts of a program to be represented (and
securely computed) using different models of computation,
e.g., part of the computation can be represented as a Boolean
circuit and another part is represented using an arithmetic
circuit. These protocols are of particular interest because
they allow different parts of the program to be represented

⇤Corresponding authors

in the most suitable form and, therefore can achieve greater
efficiency than utilizing a monolithic representation. As a
result, they have found many applications, e.g., privacy-
preserving machine learning and private biometric matching.

The first general-purpose MPC protocol supporting
mixed-mode computation is TASTY [1], which supports
conversions between garbled circuits and computation using
additive homomorphic encryption in the two-party setting.
It was later improved by the ABY protocol [2] that supports
Boolean circuits (via garbled circuits or the GMW protocol)
and arithmetic circuits (via Beaver triples). Follow up works
further improve the efficiency in the two-party setting by
moving some operations to offline [3], [4]. Other works have
looked at decreasing the corruption threshold (e.g., [5], [6],
[7]), and have shown efficiency improvements in the three-
party and four-party settings with one corruption (thus hon-
est majority). In the multi-party case, tolerating any number
of corruptions, Rotaru and Wood [8] proposed mixed-mode
MPC protocols supporting Boolean and arithmetic circuits
for both the semi-honest and malicious settings. This was
further improved in subsequent work [9], [10], [11].

Although there has been huge progress in bringing
mixed-mode MPC to practical use, state-of-the-art protocols
are still far from satisfactory in the following aspects:
• Supporting MPC with massive participants. Most exist-

ing mixed-mode MPC protocols are specifically tailored
for 2–4 parties with a single corrupted party, which is
useful but not sufficient. Protocols that can support an
arbitrary number of parties [8], [9], [10], [11], require at
least quadratic total communication complexity, rendering
them inefficient for a massive number of participants.

• Supporting high corruption thresholds. Most protocols
supporting mixed-mode computation (including all the
aforementioned protocols for 2–4 parties) only allow one
party to be corrupted. Exceptions are the work of Rotaru
and Wood [8] and followup works [9], [10], [11] that tol-
erate an arbitrary number of corruptions, and MPClan [12]
that assumes an honest majority.

• Constant round complexity. There has been a long line
of work in bringing garbled circuits to the multi-party
setting to reduce round complexity. However, all existing
solutions require the total communication quadratic in
the number of parties [13], [14], [15], [16], [17], [18].
The only exception is [19], with total communication
independent of the number of parties but in the honest-
majority setting.

523

2024 IEEE Symposium on Security and Privacy (SP)

© 2024, Radhika Garg. Under license to IEEE.
DOI 10.1109/SP54263.2024.00106

20
24

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
9-

8-
35

03
-3

13
0-

1/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

54
26

3.
20

24
.0

01
06

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Note that although there exists MPC protocols for Boolean
or arithmetic circuits tolerating an arbitrary number of cor-
ruptions and with communication linear in the number of
parties, all existing conversion protocols (as required by
mixed-mode MPC) still require quadratic communication.

1.1. Our Contribution
In this work, we design and implement a scalable MPC

protocol for mixed-mode computation. We focus on the
semi-honest setting with all-but-one corruptions. Our system
is designed to run with a large number of parties and,
crucially use encrypted representations to reduce the com-
munication complexity in computing using each format and
in converting between them. In details:

1) Multi-party private lookup table. We design a multi-
party table-lookup protocol that takes as input a
public/secret-shared table and a secret-shared index, and
outputs the table value at the given index in an encrypted
representation. Encrypted representation can be further
switched to arithmetic secret sharings with a small cost.
The protocol requires communication linear in the num-
ber of parties and is thus highly scalable.

2) Multi-party secret-sharing conversions. Based on the
lookup-table protocol, we design efficient conversions
between Boolean and arithmetic additive secret sharings.
Conversion from a Boolean sharing to an arithmetic
sharing is viewed as a private-index lookup in a size-
2 table. Thus, the protocol has similar communication
complexity as the lookup protocol and is highly scalable.

3) Linear-complexity multi-party garbled circuits. Based
on a different variant of our table-lookup protocol, we
design the first multi-party garbled-circuit protocol, tol-
erating an arbitrary number of semi-honest corruptions,
with total communication linear in the number of parties.
The protocol requires lattice-based additively homomor-
phic encryption in the private-key setting, and thus is
not competitive with existing approaches for a small
number of parties. However, we estimate that the inbound
communication per party is better than quadratic-cost
protocols [20], [16] for more than 128 parties.

4) Implementation and comparison. We propose opti-
mizations to fully utilize the features of our protocols,
and implement the protocols in a project to be open-
sourced. Compared to the state-of-the-art work MO-
TION [11] in the same setting, for 32 parties, our system
reports up to 1184⇥ improvement in communication for
arithmetic-to-Boolean (A2B) conversion and 20⇥ im-
provement in communication for Boolean-to-arithmetic
(B2A) conversion. For 64 parties, the running time of our
protocols has 369⇥ improvement for A2B and 2247⇥
improvement for B2A, compared to another state-of-
the-art work MP-SPDZ [21]. Note that compared to
MOTION, MP-SPDZ is less efficient but supports more
parties such as 64 parties under the same hardware
configuration. Our protocols improve the communication
cost of MP-SPDZ for 64 parties by a factor of 8819⇥
for A2B and 15384⇥ for B2A.

2. Technical Overview
Notation. We use  and ⇢ to denote the computational and
statistical security parameters, respectively. For a finite set
S, we use x S to denote that x is sampled uniformly from
S. For a distribution D, we denote by x D sampling x

according to the distribution D. For two integers a, b with
a  b, we use [a, b] to denote the set {a, . . . , b}. We use
upper-case letters like T (or bold lower-case letters like x) to
denote a column vector. For a vector (or bit-string) x, x[j]
denotes the j-th component of x, where x[0] is the first
component of x. All arithmetic operations are computed
over a finite field Zp, where p is a prime and ` = dlog pe
is the length of a field element. We use [[x]] to denote a
homomorphic encryption (HE) ciphertext on a message x,
hxia to denote an arithmetic additive sharing over Zp, and
hxib to denote a Boolean additive sharing with x 2 {0, 1}.
Let P1, . . . , Pn be n parties. We use hxiai or hxibi to denote
the share held by Pi.

2.1. Mixed-Mode MPC: Prior Solutions
Rotaru and Wood [8], who proposed doubly authenti-

cated bits (daBits), is the first work for mixed-mode MPC in
the multi-party setting tolerating any number of corruptions.
Note that in the semi-honest setting, secret sharing without
authentication is sufficient, but we still use daBit to refer
to the underlying semi-honest construction. A daBit (in
the semi-honest setting) refers to a secret bit r that is
secret shared both in Boolean domain (namely hrib) and
in arithmetic domain (namely hria) over Zm for some m.
Suppose that n parties hold the secret sharing of a bit r,
i.e., hrib = (r1, . . . , rn). Party Pi, with share r

i, further
secret shares the bit ri in Zm so that all parties hold hriia.
Now all parties need to compute hria = hr1ia� . . .�hrnia.
Note that because arithmetic sharings do not support XOR
operations directly, they need to be simulated using multi-
plication based on the fact that x � y = x + y � 2 · x · y.
Because there are a total n� 1 number of XOR operations
to compute, this protocol requires O(n) multiplications over
Zm for each bit in the Boolean-to-arithmetic conversion.
Even using multiplication triples with linear communication,
the total communication for one conversion, which requires
` daBits, would be O(n2

`
3) bits where ` is the bit length

of the number to be converted.
An alternative approach by Escudero et al. [10] is

to generate extended daBit (edaBit) in the form of
(hria, hr0ib, . . . , hr`�1ib), where r =

P
j2[0,`�1] rj · 2j 2

Zm. Their protocol works as follows: each party Pi picks
a random r

i 2 Zm and then secretly shares r
i to all

parties in both Boolean and arithmetic sharings, i.e., hriia
and hriib. The arithmetic sharing hria =

P
i2[1,n]hriia,

which can be computed for free, and Boolean sharings
(hr0ib, . . . , hr`�1ib) =

P
i2[1,n]hriib, which requires com-

puting O(n`) multi-party AND triples. Using silent OT pro-
tocols [22], [23], this requires O(n3

`) bits of communication
with a small underlying constant; or one can use threshold
FHE to get O(n2

`) where the underlying constant is at least
64, the ciphertext expansion to encrypt bits [24].

524

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Once these (extended) daBit correlations are generated,
the actual conversion can be performed easily by securely
evaluating a circuit with size linear in the bit length, which
is very cheap compared to the cost of generating the triples
in the offline phase.
Conclusion. The above methods can be viewed as a trade-
off between a larger number of parties (n) and high bit-
length (`). Based on these methods, follow-up works [9],
[11] further optimized the concrete efficiency when m = 2`,
but their best variations still have a complexity of either
O(n2

`
3) or O(n3

`).

2.2. Mixed-Mode MPC: Our Protocols
Our high-level idea is that since homomorphic encryp-

tion (HE) is a crucial tool to obtain linear communication-
complexity monolithic-circuit MPC, we could also get linear
communication conversions based on it. In particular, it is
already known how to convert in linear complexity between
additive secret sharings and the corresponding ciphertexts,
with a secret key secretly shared among all parties.
Secure table lookup in the multi-party setting. Building
towards scalable conversions, we first propose an efficient
multi-party table lookup protocol. Suppose that we have a
table T of size m = 2` containing elements in Zp. First, we
run a cheap arithmetic sharing to encryption protocol so that
P1 holds the ciphertexts of all table entries, namely [[T]] =
([[T [0]]], . . . , [[T [m�1]]]) where T [i] is the i-th table entry. If
T has multiple outputs, i.e., T [i] has multiple elements, then
all the entries corresponding to i can be packed in a single
ciphertext [[T [i]]]. Then, P1 picks a random string r

1
{0, 1}` and locally permutes all ciphertexts to obtain [[T1]]
such that T1[j] = T [j � r

1] for each j 2 [0,m� 1]. P1 re-
randomizes the permuted ciphertexts, and sends the resulting
ciphertexts to P2, who picks a random r

2 {0, 1}` and
performs a permutation to obtain [[T2]] such that T2[j] =
T1[j�r2] for all j 2 [0,m�1]. Now P2 sends all ciphertexts
[[T2]] to the next party after re-randomization. Finally, Pn

obtains the ciphertexts that encrypt a table permuted by all
parties; in other words, Pi holds ri as the share of r, and the
ciphertexts on the permuted table [[Tn]] such that for each
j 2 [0,m�1], Tn[j] = T [j�r

1� . . .�r
n] = T [j�r]. Now

with this setup, a private lookup to this table on index j can
be performed efficiently given a Boolean sharing hjib: the
parties compute locally and reconstruct hj � rib = hjib �
hrib to Pn, who fetches [[Tn[j � r]]] = [[T [j]]]. Then all
parties convert it to an arithmetic sharing of the underlying
plaintext T [j].
Boolean-to-arithmetic (B2A) conversion. Our main idea
for efficient conversion from Boolean to arithmetic secret
sharing is to view this conversion as a lookup of a public
table using a private index. In more detail, we use a public
table of size 2 with 0 and 1 in Zp. To convert the Boolean
sharing hxib of an integer x to its arithmetic sharing, we
essentially just want to perform a table lookup for each
XOR-shared bit in hxib. This produces an arithmetic sharing
of each bit in x just like daBit, which can further be locally
combined to an arithmetic sharing of x.

Figure 1: Example for permutation of packed table [[(a, b, c, d)]]
using r1 = 0 and r2 = 1.

The idea is simple, but to make it highly efficient,
extensive protocol optimization is required to incorporate
state-of-the-art optimization on HE schemes. In particular,
the description above does not assume packing, which is
important in reducing ciphertext expansion. To make it com-
patible with packing, we design a customized protocol for
size-2 table lookup. The main challenge is to independently
permute the encrypted entries within each table that are all
packed into the same ciphertext as efficiently as possible.
For illustration, suppose that we have two size-2 tables,
namely (a, b) and (c, d). To fully utilize packing, they will
be packed in one ciphertext as e = [[(a, b, c, d)]]. The key
observation is that for a pair-wise swap, any slot after the
swap can only come from its immediate neighbors, and thus
shifting by one slot is sufficient. In more detail, we locally
left shift and right shift e so that e1 = [[(b, c, d, a)]] and
e�1 = [[(d, a, b, c)]]. Suppose that we use bits r1 and r2 to
indicate whether we should swap the table entries. Then the
final result is

(r1, r1, r2, r2) ⇤ e+ (r1, 0, r2, 0) ⇤ e1 + (0, r1, 0, r2) ⇤ e2,

which can be computed with three scalar multiplications,
all in one layer. We illustrate an example in Figure 1. To
finish up one party’s computation, it needs to re-randomize
the ciphertext using the circuit-privacy technique such as
noise flooding [25], [26] to ensure that r1 and r2 cannot be
inferred from the resulting ciphertext.

Arithmetic-to-Boolean (A2B) conversion. Our protocol for
arithmetic-to-Boolean conversion follows similar ideas as
above but with some extra complications. Our end goal
is to generate edaBit correlations over Zp, but the above
protocol only generates edaBit correlations over Z2` , which
can be higher than p for some probability. Thus, we need
a protocol to perform secure rejection sampling efficiently.
The simplest way is to perform a secure comparison, but the
cost would be high. Furthermore, to be compatible with the
mainstream lattice-based scheme, p must be NTT-friendly,
imposing more restriction. In Section 5.2, we discuss how
to pick p so that comparing a private integer and p takes
only 2 multiplication operations.

With the above described optimizations, our conversion
protocols have a running time linear in the number of
parties. We observe a significant improvement in running
time and communication compared to the prior state-of-the-
art work. Furthermore, we estimate the cost of several end-
to-end applications using mixed-mode circuits. We observe
an improvement of about 1490⇥ in the monetary cost for
running biometric matching with 64 parties.

525

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

2.3. Scalable Multi-Party Garbled Circuits
As mentioned in the introduction, all existing multi-party

garbled circuit (GC) protocols in the all-but-one corruption
setting require total communication quadratic in the number
of parties. The closest is [15], which achieves linear online
communication for the GCs (i.e., the function-dependent
phase) by using a key and message homomorphic PRF,
which can be built from, e.g., lattice-based assumptions.
However, to distributedly generate the garbled circuits in the
preprocessing phase (i.e., producing the additive sharings
of keys), it still requires communication quadratic in the
number of parties.

We build on the prior work [15], and achieve the
total communication linear in the number of parties. In
their protocol, each wire w is associated with two keys
kw,0 and kw,1 and a random mask �w. These keys and
masks are additively shared among all parties. Due to
the key-homomorphic property, the parties can evaluate
their shares of the PRF values locally and later com-
bine them together. Ignoring some details, the protocol
works as follows. For each gate g with input wires u, v

and output wire w, for each ↵,� 2 {0, 1}, each party
Pi computes PRFki

u,↵+ki
v,�

(gk↵k�) + hkw,ew,↵,� iai , where
ew,↵,� = g((�u � ↵), (�v � �)) � �w, ki

u,↵,k
i
v,� are the

shares of Pi for two keys ku,↵,kv,� and hkw,ew,↵,� iai is
the arithmetic share of Pi on the key kw,ew,↵,� . The main
communication cost is to compute hkw,ew,↵,� ia. In [15], this
was accomplished by an OT-based protocol, which requires
the O(n2)-communication for n parties.

Our key observation is that the computation of
hkw,ew,↵,� ia can be viewed as a secure table lookup. In par-
ticular, computing an arithmetic sharing hkw,ew,↵,� ia boils
down to computing a Boolean sharing hew,↵,�ib, which can
be generated in a small communication using one random
Beaver triple over binary field. We use hew,↵,�ib to perform
a table lookup, which has an efficient instantiation with
O(n)-communication in previous discussions. For every
AND gate, we need to compute 4 private table lookups,
each corresponding to one arithmetic sharing hkw,ew,↵,� ia
with ↵,� 2 {0, 1}. For each XOR gate, we need to compute
only one private table lookup. In particular, for each XOR
gate with input wires u, v and output wire w, we observe
that ew,↵,� = ↵��u����v��w, and thus one table value
is kw,ew,0,0 = kw,ew,1,1 and the other value in the table is
kw,ew,1,0 = kw,ew,0,1 .

3. Preliminaries
We use the standard ideal/real paradigm [27] to prove the

security of our protocols in the presence of a semi-honest,
static adversary.

3.1. Additive Secret Sharings
We use hxit to denote an additive sharing over a finite

field F in the multi-party setting, where the superscript
t 2 {a, b} indicates the type of sharings. In particular, hxia
denotes an arithmetic sharing over a field F = Zp where p

is a prime; hxib represents a Boolean sharing over a field

F = F2. Then, we define the following algorithms for two
types of additive sharings.

• hxit Share(x) : The party Pj , who holds the secret x,
runs this algorithm to generate an additive sharing hxit.
Specifically, this algorithm samples hxiti F for i 2
[1, n� 1] and computes hxitn := x�

P
i2[1,n�1]hxiti 2 F.

• x Rec(hxit, i) : Given all shares hxit1, . . . , hxitn, Pi can
run this algorithm to reconstruct the secret x. Specifically,
this algorithm outputs x :=

P
j2[1,n]hxitj 2 F.

• x Open(hxit) : The open procedure is run as follows:
1) All parties run Rec(hxit, 1) such that P1 obtains x.
2) P1 sends x to all other parties.

It is well-known that additive secret sharings satisfy the
linear property. For a vector x 2 F`, we use hxit to denote
(hx[0]it, . . . , hx[` � 1]it). By hxiti[j], we denote the share
of hx[j]it held by the party Pi.

3.2. Threshold Homomorphic Encryption
We use threshold homomorphic encryption (THE) to

encrypt messages and perform operations over ciphertexts.
In most cases, we only need THE to support linear com-
bination (including addition and scalar multiplication) and
rotation operations over ciphertexts. In a few special cases
(e.g., producing Beaver triples as shown in Appendix 3.3),
we require THE to additionally support one multiplication
operation over two ciphertexts (i.e., depth-1 THE). Let
P = {P1, . . . , Pn} be the set of n parties. Our protocols
work in the full-threshold setting, i.e., the secret key is
shared by all parties using additive secret sharing, and no
party (even if n� 1 parties collude) can recover the secret
key. Let M be the plaintext space. Following the previous
work [26], [28], [29], a THE scheme over M consists of
the following algorithms and protocols:

• Setup: pp Setup(1). On input , the setup algorithm
outputs a set of public parameters pp, which is an implicit
input to the following algorithms and protocols.

• Key Generation: Every party Pi generates a share of
a secret key by running ski SecKeyGen(pp). The
secret key sk is identical to

P
i2[1,n] ski. All parties jointly

produce a public key pk by executing a multi-party key-
generation protocol pk

Q
PubKeyGen(sk1, . . . , skn).

• Encryption: [[m]] Encpk(m). On input a public key pk

and a plaintext m 2M, the encryption algorithm outputs
a ciphertext [[m]].

• Evaluation: We consider the following operations:
– Linear combination : Given ciphertexts [[m1]], . . . , [[m`]]

and public coefficients c0, c1, . . . , c`, one can compute
a ciphertext [[m]] =

P`
i=1 ci · [[mi]] + c0 such that m =P`

i=1 ci ·mi + c0.
– Multiplication : Given two ciphertexts [[m1]], [[m2]], any

party can compute the ciphertext [[m3]] = [[m1]] · [[m2]]
such that m3 = m1 ·m2.

• Decryption: Given sk =
P

i2[1,n] ski and a ciphertext
[[m]], one party can run Decsk([[m]]) to obtain a plaintext
m. Given the secret key’s shares sk1, . . . , skn and a cipher-

526

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

text [[m]], all parties jointly execute the decryption protocolQ
Dec(sk1, . . . , skn, [[m]]) to let some party Pi obtain m.

We require that the THE scheme satisfies the standard
correctness and CPA security.
Circuit privacy. For a ciphertext [[m]] = f([[m1]], . . . , [[m`]])
that will be decrypted, it is desirable that no parties (except
for the party evaluating [[m]] with f) could learn the secret
function f , even if they hold secret key sk. This is modeled
as circuit privacy, whose formal definition can be found
in [30]. As in prior work [31], we define an algorithm
CP(ct, pk), which takes as input an evaluated ciphertext
ct and public key pk, and outputs a ciphertext ct

0 with
circuit privacy. We adopt the noise-flooding technique [26]
to achieve circuit privacy (see Appendix A.1 for details).
More efficient technique called “divide-and-round” [31] can
also be applied to our protocols.
Instantiation and packing. In the implementation, we
adopt a threshold version of the BGV-HE scheme [32],
which is outlined in Appendix A.1. Other full-threshold HE
schemes, such as the BFV-THE scheme [33], [34], [29]
can also be applied in our protocols. For the BGV-THE
scheme, every ciphertext is defined over a ring Rq = R/qR,
and any plaintext lies in a ring Rp = R/pR, where
R = Z[X]/(XN + 1) is a polynomial ring with integer
coefficients modulo X

N + 1, N is a power-of-two integer,
and p, q 2 N are co-prime. Based on the packing technique,
we can pack N plaintexts in a single ciphertext where every
plaintext in Zp is placed in a different slot and support
parallel evaluation of plaintexts using the single instruction
multiple data (SIMD) operations. Suppose that a prime
p = 1 (mod 2N) is used. We can view a ring element
a 2 Rp as a vector in (Zp)N . When using the packing
technique, we often use m 2 (Zp)N and [[m]] to denote
a vector of plaintexts and its ciphertext, unless otherwise
specified. Due to the usage of packing, we need to perform
the following operations to rotate or permute the plaintext
slots in a single ciphertext.
• Rotation: Any party can run [[m0]] Rotatepk([[m]], r)

such that m0 is a vector obtained by cyclically left-shifting
(resp., right-shifting) the components of m by r if r > 0
(resp., r < 0).

• Permutation: Any party can run [[u]] Permpk([[m]],⇡)
such that u = (m[⇡(0)],m[⇡(1)], . . . ,m[⇡(N � 1)]),
where ⇡ is a permutation. The permutation operation can
be realized by a linear combination of multiple rotations.

It is well known that the BGV-THE scheme is CPA secure
under the ring-LWE assumption [35].

3.3. Arithmetic Black Box and Conversions
We model MPC via the arithmetic black-box (ABB)

model [36], which is an ideal functionality FABB defined
in Figure 2. This functionality allows a set of n parties
to input/output secret-shared values and evaluate arbitrary
circuits performing addition and multiplication operations.
As in [10], we define an extended version of the ABB model,
which handles values in both arithmetic and Boolean do-
mains and thus can evaluate any arithmetic/boolean circuits.

Functionality FABB

This functionality operates over a finite field Zp (resp., F2) for
arithmetic secret-shared values (resp., Boolean secret-shared
values), and interacts with parties P1, . . . , Pn.
Input: Upon receiving (Input, Pi, type, id, x) from a party Pi

and (Input, Pi, type, id) from all other parties, where type 2

{arith, bool}, id is a fresh identifier, and either x 2 Zp or
x 2 {0, 1} depending on type, store (id, type, x).
Random: Upon receiving (Random, type, id) from all parties
where type 2 {arith, bool} and id is a fresh identifier, sample
r Zp or r {0, 1} relying on type, store (id, type, r).
Encrypt: Upon receiving (Enc, id, id0) from all parties where
id is present in memory, retrieve (id, type, x) and store
(id0, enc, x).
Linear combination: Upon receiving (LinComb, type, id,
id

0, c0, c1, . . . , c`) from all parties, where (id[j], type) for
j 2 [1, `] are present in memory, and cj 2 Zp (resp.,
cj 2 {0, 1}) for j 2 [0, `] if type 2 {arith, enc} (resp.,
type = bool), retrieve (id[j], type, xj) for j 2 [1, `], then
compute y :=

P`
j=1 cj · xj + c0 modulo p if type 2

{arith, enc} and modulo 2 if type = bool. Store (id0, type, y).
Multiply: Upon receiving (Mult, type, id1, id2, id3) from all
parties where (id1, type) and (id2, type) are present in mem-
ory and type 2 {arith, bool}, retrieve (id1, type, x) and
(id2, type, y), compute z := x · y modulo p if type = arith

and modulo 2 if type = bool, and store (id3, type, z).
Output: Upon receiving (Output, Pi, type, id) from all
parties, where (id, type) is present in memory, retrieve
(id, type, x) and then output it to Pi.

Figure 2: Functionality for the MPC black box.

Furthermore, this functionality is also extended to allow
the parties to encrypt values and evaluate the addition of
two ciphertexts. Without loss of generality, suppose that the
plaintext space for encryption is Zp. Here, we do not allow
the parties to evaluate the multiplication of two ciphertexts,
as our protocols do not require it when invoking functional-
ity FABB. This functionality abstracts away the underlying
details of secret sharings, encryption, and MPC.
Instantiation for FABB. We can use a THE scheme to
encrypt values and perform a linear combination of en-
crypted values. We adopt additive secret sharings to securely
compute the linear combination and multiplication of secret
values. Due to the linear property of additive secret sharings,
the linear combination of multiple sharings can be locally
computed. For multiplication of two secret sharings, we
consider two cases:
• Arithmetic sharings : We can compute the multiplication

of two arithmetic sharings hxia and hyia using threshold
HE that supports 1-depth multiplications. Specifically,
every party Pi with i 6= 1 runs [[hxiai]] Encpk(hxiai) and
[[hyiai]] Encpk(hyiai), and then sends ([[hxiai]], [[hyiai]])
to P1 who computes [[x]] :=

Pn
i=1[[hxiai]] and [[y]] :=Pn

i=1[[hyiai]], where [[x]]1, [[y]]1 are computed by P1 by run-
ning Encpk(·). Then, P1 locally computes [[z]] := [[x]] · [[y]]
and sends [[z]] to all other parties. Finally, all parties call
the E2A command of FConv to convert [[z]] into hzia. This

527

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Functionality FConv

This functionality has all of the same features as FABB with
the following additional commands.
From Boolean to Arithmetic: Upon receiving (B2A, id, id0)
from all parties where (id, bool) is present in memory, retrieve
(id, bool, x) and store (id0, arith, x).
From Arithmetic to Boolean: Upon receiving (A2B, id,
id0, . . . , id`�1) from all parties where (id, arith) is present
in memory, retrieve (id, arith, x) and store (idi, bool, xi) for
i 2 [0, `� 1] where x =

P`�1
i=0 xi · 2

i mod p.
From Encryption to Arithmetic: Upon receiving (E2A, id,
id

0) from all parties where (id, enc) is present in memory,
retrieve (id, enc, x) and store (id0, arith, x).
From Arithmetic to Encryption: Upon receiving (A2E, id,
id

0) from all parties where (id, arith) is present in memory,
retrieve (id, arith, x) and store (id0, enc, x).

Figure 3: Functionality for the black box of conversions.

needs to send at most 3.5(n� 1) HE ciphertexts in total,
when the E2A command of FConv is instantiated by the
protocol shown in Figure 14 of Section A.3.

• Boolean sharings : We can use the above approach
based on threshold HE to multiply two Boolean sharings
hxib, hyib, where XOR is simulated by multiplication
and addition operations. In this way, the communication
complexity of O(n) can be achieved, but the computa-
tion complexity is high. Alternatively, we can adopt the
standard protocol based on correlated oblivious transfer
(COT) to perform pairwise bit multiplications, and then
locally combine the shares of these bit multiplications to
obtain Boolean sharing hzib with z = x ^ y. We can use
the recent PCG-like COT protocols (e.g., [22], [23]) to
generate COT correlations. Although the COT approach
has the communication complexity of O(n2), it allows us
to obtain much faster computation.

We can adopt the Beaver’s multiplication technique to im-
prove the online performance. In this case, the online com-
munication per multiplication is 4(n � 1) log p bits (resp.,
4(n� 1) bits) in total for t = a (resp., t = b).
Functionality for arithmetic, Boolean and encryption
conversions. Our protocol would securely realize function-
ality FConv shown in Figure 3. This functionality allows the
parties to convert between arithmetic secret-shared values
and Boolean secret-shared values and also allows them to
convert between arithmetic secret-shared values and en-
crypted values. We omit the conversions between Boolean
secret-shared values and encrypted values, as they can be re-
alized by performing Boolean-to-arithmetic and arithmetic-
to-encryption conversions. As for the conversions between
arithmetic secret-shared values and encrypted values, we
w.l.o.g. assume that the space of secret values for arithmetic
sharings is the same as that of HE plaintexts. We show how
to perform efficient conversions between arithmetic sharings
and encrypted values in Appendix A.3 and will present
our conversion protocols between arithmetic sharings and
Boolean sharings in Section 5.

Functionality FPrep�LUT

Let M = 2m be the length of a public/private table. This
functionality has all of the same features as FABB shown in
Figure 2, with the following additional commands.
Public masked table: Upon receiving (MaskedPubTab, T,
id1, id2) from all parties, where T 2 (Zp)

M is a vector
defining a public table, and id1, id2 are two vectors of
fresh identifiers with respective length m and M , sample
r {0, 1}m, write r = (r0, . . . , rm�1) with rj 2 {0, 1}
for j 2 [0,m� 1], store (id1[j], bool, rj) for j 2 [0,m� 1],
and store (id2[j], arith, T [r � j]) for j 2 [0,M � 1].
Private masked table: Upon receiving (MaskedPriTab, id1,
id2, id3) from all parties, where (id1[j], arith) for all j 2
[0,M � 1] are present in memory, and id2, id3 are two
vectors of fresh identifiers with respective length m and
M , retrieve (id1[j], arith, T [j]) for j 2 [0,M � 1], set
the vector T accordingly, sample r {0, 1}m with r =
(r0, . . . , rm�1), store (id2[j], bool, rj) for j 2 [0,m � 1],
and store (id3[j], arith, T [r � j]) for j 2 [0,M � 1].

Figure 4: Functionality for masked lookup tables.

Functionality FLUT

Let M = 2m be the length of a public/private table. This
functionality has all of the same features as FABB shown in
Figure 2, with the following additional commands.
Public table lookup: Upon receiving (PubTabLookup, T,
id1, id2) from all parties, where T 2 (Zp)

M is a vector
defining a public table, and (id1[j], bool) for j 2 [0,m� 1]
are present in memory, retrieve (id1[j], bool, x[j]) for j 2
[0,m� 1], set x 2 {0, 1}m and store (id2, arith, T [x]).
Private table lookup: Upon receiving (PriTabLookup, id1,
id2, id3) from all parties, where (id1[j], arith) for all j 2
[0,M � 1] and (id2[j], bool) for j 2 [0,m � 1] are present
in memory, retrieve (id1[j], arith, T [j]) for j 2 [0,M � 1]
and (id2[j], bool, x[j]) for j 2 [0,m � 1], set T 2 (Zp)

m

and x 2 {0, 1}m accordingly, and store (id3, arith, T [x]).

Figure 5: Functionality for MPC using look-up tables.

4. Multi-Party Lookup-Table Protocol
In this section, we present a multi-party lookup-table

protocol with linear communication complexity, where ei-
ther the table is public, or a private table is secretly
shared. We separate the lookup-table protocol into two sub-
protocols, where the preprocessing sub-protocol generates a
masked table and the online sub-protocol realizes the lookup
table using the masked table. We model the preprocessing
of public/private masked tables in functionality FPrep�LUT

shown in Figure 4. Functionality FPrep�LUT samples a ran-
dom string r to permute the table T , which is equivalent
to generating the additive sharings of masked table T

0

and r, where T
0[j] = T [r � j] for j 2 [0,M � 1]. By

invoking FPrep�LUT, our online protocol securely realizes
functionality FLUT shown in Figure 5. Both functionalities
FPrep�LUT and FLUT are an extension of the lookup-table
functionality [37] to additionally support private tables. In
both FPrep�LUT and FLUT, we w.l.o.g. assume that the table

528

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Protocol ⇧size2
prepLUT

Inputs: Parties P1, . . . , Pn have the following inputs:
• Case 1 : Let T 2 (Zp)

2 be a public vector corresponding
to a size-2 public table. Case 2 : Let hT ia be an arithmetic
sharing w.r.t. a private vector T 2 (Zp)

2 that is related to
a size-2 private table.

• The THE scheme with Enc and Rotate. Suppose that the
public parameters and public key pk have been established.

Preprocessing of a masked size-2 table:
1) All parties call the (Random) command of functionality

FE2A to sample a vector of random Boolean sharings hrib

with r = (r0, r1, . . . , rN/2�1) 2 {0, 1}N/2.
2) P1 obtains a ciphertext [[m]] where m[2j] = T [0] and

m[2j + 1] = T [1] for j 2 [0, N/2� 1], by executing the
following depending on whether T is public or not.
• In Case 1, P1 sets m as above and runs [[m]]
Encpk(m).

• In Case 2, every party Pi sets mi 2 (Zp)
N as

m[2j] = hT iai [0] and m[2j + 1] = hT iai [1] for
j 2 [0, N/2 � 1], and then runs [[mi]] Encpk(mi).
For each i 6= 1, Pi sends [[mi]] to P1, who computes
[[m]] :=

P
i2[1,n][[mi]].

3) From i = 1 to n, the parties execute the following steps:
a) P1 sets c0 := [[m]]. If i 6= 1, Pi gets ci�1 from Pi�1.
b) Pi computes two ciphertexts t1 Rotatepk(ci�1, 1)

and t2 Rotatepk(ci�1,�1).
c) Pi initializes three zero-vectors h = h1 = h2 = 0N ,

and for each j 2 [0, N/2� 1], does the following:
i) If hrjibi = 0, then set h[2j] = h[2j + 1] = 1.

ii) If hrjibi = 1, then set h1[2j] = h2[2j +1] = 1.
d) Pi computes ci := h ·ci�1+h1 ·t1+h2 ·t2, and then

update ci as a circuit-private ciphertext CP(ci, pk).
e) If i 6= n, Pi sends ci to Pi+1. If i = n, Pn sends cn

to all parties.
4) The parties call functionality FE2A to convert ciphertext

cn into arithmetic sharings hT 0
i i

a for i 2 [0, N/2 � 1],
where T 0

i [j] = T [ri � j] for i 2 [0, N/2� 1], j 2 {0, 1}.
5) The parties output additive sharings hriib and hT 0

i i
a for

i 2 [0, N/2� 1].

Figure 6: Protocol for the preprocessing of masked size-2
tables in the FE2A-hybrid model.

size is power-of-two. As in [37], we also let FPrep�LUT

and FLUT involve the commands defined in functionality
FABB shown in Figure 2. In Section 4.1 and Section 4.2, we
describe two preprocessing protocols for generating masked
tables. Then, we present the online protocol in Section 4.3.

Our conversion and multi-party garbling protocols
shown in the next sections only need a lookup-table protocol
for size-2 tables. Therefore, we first describe the multi-
party lookup-table protocol for size-2 tables. Then, we show
how to construct a multi-party lookup-table protocol for
any polynomial-sized tables, which may be of independent
interest for other applications, e.g., secure AES evaluation.

4.1. Preprocessing for Masked Two-Sized Tables
In Figure 6, we show a multi-party preprocessing pro-

tocol ⇧size2
prepLUT for masking the tables that have only two

entries. This protocol works in the FE2A-hybrid model,
where FE2A consists of the commands defined in FABB

(shown in Figure 2) and the E2A command defined in
FConv (shown in Figure 3). Besides, this protocol adopts
a THE scheme supporting packing and SIMD, where the
THE scheme adopts the plaintext space (Zp)N for a prime
p, and the number of plaintext slots is N (power of two).

Theorem 1. Protocol ⇧size2
prepLUT (shown in Figure 6) securely

realizes functionality FPrep�LUT with size-2 tables (shown
in Figure 4) against semi-honest adversaries in the FE2A-
hybrid model, assuming that the THE scheme is CPA secure
and satisfies circuit privacy.

The proof of Theorem 1 is provided in Appendix B.1.
Reducing noise growth. Every ciphertext ci produced by
Pi for i � 2 is computed by performing rotation and scalar-
multiplication operations over ciphertext ci�1. In this case,
the noise will grow with the number of parties, which will
lead to very large parameters. To solve the issue, we reduce
the noise growth by refreshing every ciphertext ci with the
Bootstrapping operation. This optimization is described in
Section 7.1, and keeps the ciphertext size almost constant.
Instead of bootstrapping every ciphertext, one only needs to
bootstrap the ciphertexts {cj} where j = i·k for i 2 [1, n/k]
and some integer k � 2, by tuning the parameters.
Special case that table entries are in (Zp)N . When each
table entry is taken from the message space of the packed
THE scheme (i.e., T [0], T [1] 2 (Zp)N), we can use a sim-
pler approach to generate a masked lookup table. The special
case occurs in the application of our multi-party garbling
protocol shown in Section 6. The preprocessing protocol
for the special case is the same as the protocol ⇧size2

prepLUT
shown in Figure 6, except for the following differences:
1) A random Boolean sharing hrib with r 2 {0, 1} (instead

of r 2 {0, 1}N/2) is generated.
2) A THE ciphertext on a public/private table T is computed

as ([[x]], [[y]]), where x = T [0] and y = T [1].
3) From i = 1 to n, Pi does the following:

a) If i = 1, set c0 = ([[x]], [[y]]). If i 6= 1, receive ci�1

from Pi�1.
b) Parse ciphertext ci�1 = ([[xi�1]], [[yi�1]]). If hribi =

1, then swap ([[xi�1]], [[yi�1]]) and update ci�1 ac-
cordingly. Otherwise, keep ci�1 unchanged.

c) Compute THE ciphertexts with circuit privacy ci :=
(CP(ci�1[0], pk),CP(ci�1[1], pk)).

Through the above approach, only one table (instead of N/2
tables) is masked for each protocol execution. In the special
case, it is unnecessary to bootstrap ciphertexts, as only
circuit-privacy operations are involved and noise growth is
slower. Therefore, for the special case, this protocol is more
computation-efficient than the protocol ⇧size2

prepLUT.

4.2. Preprocessing for Masked Poly-Sized Tables
Now, we describe the multi-party preprocessing protocol

for masking any polynomial-sized tables. This protocol still
works in the FE2A-hybrid model, and adopts the threshold

529

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Protocol ⇧polysize
prepLUT

Inputs: Parties P1, . . . , Pn have the following inputs:
• Case 1 : Let T 2 (Zp)

M be a vector corresponding to a
size-M public table. Case 2 : Let hT ia be an arithmetic
sharing w.r.t. a vector T 2 (Zp)

M related to a size-M
private table. Let m be the length of indices, i.e., M = 2m.

• The THE scheme with Enc and Perm. Suppose that the
public parameters and public key pk have been established.

Preprocessing of a masked size-M table:
1) All parties call the (Random) command of FE2A to sample

random Boolean sharings hrib with r 2 {0, 1}m.
2) P1 computes a ciphertext [[T]] by executing the following

depending on if T is public.
• In Case 1, P1 runs [[T]] Encpk(T).
• In Case 2, every party Pi runs [[T i]] Encpk(hT i

a
i).

For i 6= 1, Pi sends [[T i]] to P1, who computes [[T]] :=P
i2[1,n][[T

i]].
3) From i = 1 to n, the parties execute the following steps:

a) If i = 1, P1 sets [[T0]] := [[T]]. If i 6= 1, Pi receives
[[Ti�1]] from Pi�1.

b) Pi defines ⇡i as ⇡i(j) = j � hribi 2 {0, 1}m for j 2
[0,M�1], and then runs [[Ti]] Permpk([[Ti�1]],⇡i).
Then Pi updates [[Ti]] as a circuit-private ciphertext
CP([[Ti]], pk).

c) If i 6= n, Pi sends [[Ti]] to Pi+1. If i = n, Pn sends
[[Tn]] to all other parties.

4) The parties call FE2A to convert ciphertext [[Tn]] into a
vector of arithmetic sharings hT 0

i
a with T 0[j] = T [r� j]

for j 2 [0,m� 1].
5) The parties output additive sharings hrib and hT 0

i
a.

Figure 7: Protocol for the preprocessing of masked poly-
sized tables in the FE2A-hybrid model.

HE scheme to encrypt the public/private table. This pro-
tocol makes the parties sequentially permute the encrypted
table, and requires more rotation operations compared to
the protocol ⇧size2

prepLUT shown in Figure 6. The details of
the protocol is shown in Figure 7. Similarly, to control the
noise growth, we would adopt the bootstrapping technique to
refresh evaluated ciphertexts. For the sake of simplicity, we
do not involve the packing technique for the THE scheme.
Below, we will give the overview how to adopt the packing
technique to optimize the protocol for moderate-sized tables.

Theorem 2. Protocol ⇧polysize
prepLUT (shown in Figure 7) se-

curely realizes functionality FPrep�LUT with poly-sized ta-
bles (shown in Figure 4) against semi-honest adversaries in
the FE2A-hybrid model, assuming that the THE scheme is
CPA secure and satisfies circuit privacy.

The proof of Theorem 2 can be found in Appendix B.2.
Optimization with packing. When a packed THE scheme
is adopted, we can further optimize the protocol if the table
size M is two times smaller than the number of slots N .
Let L = bN/Mc. In this case, we can encrypt and permute
L tables packed in a single ciphertext. In particular, every
party can permute each encrypted table independently and
randomly. For a moderate table size M , we can select a

Protocol ⇧Lookup

Input: Parties P1, . . . , Pn have the following inputs:
• Let M = 2m is the table length.
• Case 1 : Let T 2 (Zp)

M be a public vector corresponding
to a public-table map f : {0, 1}m ! Zp such that T [j] =
f(j) for j 2 {0, 1}m. Case 2 : Let hT ia be the arithmetic
sharing of a private vector T related to a private-table map.

• hxib is the Boolean sharings of a private index x 2
{0, 1}m.

Preprocessing of masked table: In Case 1 (resp., Case 2), all
parties call the (MaskedPubTab, T) (resp., (MaskedPriTab))
command of functionality FPrep�LUT to generate a masked
table (hrib, hT 0

i
a) with r 2 {0, 1}m and T 0[j] = T [r � j]

for j 2 [0,M � 1].
Online table lookup: Given (hrib, hT 0

i
a) and hxib, the

parties generate hT [x]ia as follows:
1) All parties locally compute huib := hxib � hrib.
2) The parties run the Open(huib) procedure such that they

obtain u = x� r 2 {0, 1}m.
3) The parties locally compute hT [x]ia := hT 0

i
a[u].

Figure 8: Online lookup-table protocol.

suitable parameter N to obtain a better efficiency.

4.3. Online Protocol for Lookup Table
The online lookup-table protocol follows the known

approach [38], [39], [37], [40], [41], and allows the table
to be public or private. The detailed protocol is shown in
Figure 8, and works in the FPrep�LUT-hybrid model. This
protocol takes an input a vector of Boolean sharings hxib
with x 2 {0, 1}m and outputs an arithmetic sharing hT [x]ia.

Theorem 3. Protocol ⇧Lookup (shown in Figure 8) securely
realizes functionality FLUT in the presence of semi-honest
adversaries in the FPrep�LUT-hybrid model.

The proof of Theorem 3 is postponed to Appendix B.3.

5. Conversions of Sharings from LUT
We first show how to convert Boolean sharings into

arithmetic sharings in the FLUT-hybrid model. Then, we
describe the protocol to convert arithmetic sharings into
Boolean sharings in the FLUT-hybrid model.

5.1. Boolean to Arithmetic Conversion
In Figure 9, we show a LUT-based protocol that converts

a vector of Boolean sharings hxib into an arithmetic sharing
hxia with x =

P`�1
j=0 2

j · x[j] mod p. Specifically, all
parties compute an arithmetic sharing for each bit x[j] by
defining a public table T = (0, 1) and calling FLUT. Then,
the parties locally sum the arithmetic sharings on all bits to
get hxia.

Theorem 4. Protocol ⇧B2A (shown in Figure 9) securely
realizes the B2A command of functionality FConv against
semi-honest adversaries in the FLUT-hybrid model.

The proof of Theorem 4 is given in the full version [42].

530

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Protocol ⇧B2A

Inputs: P1, . . . , Pn hold Boolean sharings hxib where x 2
(F2)

` and ` = dlog pe is the length of an element in Zp.
Conversion from Boolean to arithmetic sharings:
1) All parties set a pubic vector T = (0, 1) corresponding to

a public lookup-table fT (j) = j for j 2 {0, 1}.
2) For j 2 [0, ` � 1], the parties call the (PubTabLookup)

command of functionality FLUT on input (T, hx[j]ib) to
obtain hT [x[j]]ia = hx[j]ia.

3) The parties compute and output hxia :=
P`�1

j=0 2
j
·

hx[j]ia, where x =
P`�1

j=0 2
j
· x[j] mod p.

Figure 9: Protocol for converting Boolean sharings to arith-
metic sharings in the FLUT-hybrid model.

Protocol ⇧A2B

Inputs: Parties P1, . . . , Pn hold an arithmetic sharing hxia
with x 2 Zp. Let ` = dlog pe.
Conversion from arithmetic to Boolean sharings:
1) All parties call the (Random) command of FLUT to sam-

ple a vector of Boolean sharings hrib with r 2 (F2)
`.

2) The parties execute ⇧B2A shown in Figure 9 to obtain an
arithmetic sharing hria with r =

P`�1
j=0 2

j
· r[j].

3) If (2` � p)/2` > 1/2⇢, all parties call the LinComb and
Mult commands of FLUT on input hrib to check if r =P`�1

j=0 2
j
·r[j] < p. If r � p, the parties go back to step 1.

4) All parties locally compute huia := hxia � hria. Then,
the parties run Rec(huia, 1) to make P1 reconstruct u =
(x � r) mod p, and locally define a vector of Boolean
sharings huib via letting P1 set huib1[j] as the j-th bit of
the bit-decomposition of u 2 Zp and letting Pi for i 6= 1
set huibi [j] = 0 for j 2 [0, `� 1].

5) The parties call the Input, LinComb and Mult commands
of FLUT on input (huib, hrib) to compute a modulo-
addition circuit, which takes as input u, r 2 {0, 1}` and
outputs u+r mod p. Functionality FLUT returns hxib to
the parties, where x =

P`�1
j=0 2

j
· x[j] mod p.

6) The parties output hxib with x 2 (F2)
`.

Figure 10: Protocol for converting arithmetic sharings to
Boolean sharings in the FLUT-hybrid model.

5.2. Arithmetic to Boolean Conversion
In Figure 10, we describe a protocol to convert an

arithmetic sharing hxia to Boolean sharings hxib with
x =

P`�1
j=0 2

j ·x[j] mod p. This protocol also works in the
FLUT-hybrid model where FLUT involves the commands de-
fined in FABB (shown in Figure 2), and invokes ⇧B2A (shown
in Figure 9) as a sub-protocol. Specifically, the parties
sample a vector of random Boolean sharings hrib and run
⇧B2A to get hria, where r 2 (F2)` and r =

P`�1
j=0 2

j · r[j]
mod p. They open u = x�r, and jointly compute a modulo-
addition circuit with input huib and hrib to obtain hxib,
where huib can be locally computed by the parties given u.

If (2` � p)/2`  1/2⇢, then r =
P`�1

j=0 2
j · r[j] mod p

is indistinguishable from a uniform element in Zp except
with probability at most 1/2⇢, where r is a random vector

in (F2)`. Otherwise, we need a check if r < p to assure that
r is random in Zp and re-sample hrib if r � p. In general,
the parties compute a comparison circuit with input hrib to
decide if r < p. In the special case that p = 232 � 230 + 1
used in our implementation, we provide a more efficient
approach to determine if r < p. Particularly, the parties do
the following:
1) During executing sub-protocol ⇧B2A, all parties store the

arithmetic sharings hr[j]ia for j 2 [0, `� 1].
2) The parties set haia := hr[`� 1]ia and hbia :=
hr[`� 2]ia, and compute hcia :=

P`�3
j=0hr[j]ia.

3) The parties call the (Mult) command of FLUT on input
(haia, hbia, hcia) to obtain hdia with d = a · b · c 2 Zp.

4) The parties run d Open(hdia), and output the bit
indicating r < p if d = 0 or r � p if d 6= 0.

Theorem 5. Protocol ⇧A2B (shown in Figure 10) securely
realizes the A2B command of functionality FConv against
semi-honest adversaries in the FLUT-hybrid model.

The proof of Theorem 5 is deferred to Appendix B.4.

6. Scalable Multi-Party Garbling
We present how to generate multi-party garbled circuits

(MPGCs) using a key-homomorphic additive homomorphic
encryption (AHE) scheme in the private-key setting and pri-
vate table lookup. Building upon this, we describe a scalable
MPC protocol with linear communication complexity and
O(n) rounds. In Appendix A.2, we show that the BGV-AHE
scheme [32] in the private-key setting is key-homomorphic.

6.1. Private-Key AHE with Key Homomorphism
We provide the definition of key-homomorphic AHE

schemes in the private-key setting. Let K and M denote the
secret-key space and message space, respectively. We always
assume that K ✓ M ✓ FN where F is some finite field
(e.g., F = Zp) and N is a parameter determining the length
of vectors. The private-key AHE scheme with the key-
homomorphic property involves the following algorithms:
• Setup: pp Setup(1). The setup algorithm is defined

as in the threshold HE scheme shown in Section 3.2.
• Key Generation: sk SecKeyGen(pp). On input pp, the

key-generation algorithm outputs a secret key sk 2 K.
• Encryption: [[m]]sk,t Encsk(t,m). On input sk, a label
t and a vector of messages m 2 M, the encryption
algorithm outputs a ciphertext [[m]]sk,t. Suppose that the
scheme is instantiated by a lattice-based AHE such as
private-key BGV [32] shown in Appendix A.2. In this
case, t is used to retrieve/derive a vector a and then a is
used to encrypt m, which has been used in [15]. When
the context is clear, we simply write [[m]]sk,t as [[m]].

• Decryption: m Decsk(t, [[m]]). On input the secret
key sk, a label t and a ciphertext [[m]], the decryption
algorithm outputs a vector of messages m.

• Key-homomorphic [26]: Given two ciphertexts [[m1]]sk1,t
and [[m2]]sk2,t under different secret keys sk1, sk2 and the
same label t, any party can locally compute a ciphertext

531

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Protocol ⇧MPGC

Inputs: Parties P1, . . . , Pn have 1) a Boolean circuit C with the set of circuit-input wires I, the set of circuit-output wires O and
the set of all AND and XOR gates G; 2) a Boolean sharing hxwi

b for each input bit xw 2 {0, 1}; 3) a key-homomorphic private-key
AHE scheme equipped with (SecKeyGen,Enc,Dec). Suppose that the set of public parameters pp has been established.
Preprocessing phase for generating multi-party garbled circuit:
1) All parties call functionality FLUT to sample a random Boolean sharing h�wi

b for every wire w. Then for each wire w, every
party Pi samples two secret keys ki

w,0,k
i
w,1 by running SecKeyGen(pp), such that ki

w,0[0] = 0, and ki
w,1[0] = 0 if i 6= 1 or

ki
w,1[0] = 1 if i = 1. These keys constitute two vectors of arithmetic sharings hkw,0i

a and hkw,1i
a where kw,0 =

P
i2[1,n] k

i
w,0,

kw,1 =
P

i2[1,n] k
i
w,1, kw,0[0] = 0 and kw,1[0] = 1.

2) For every gate g 2 G with input wires u, v and output wire w, the parties generate a Boolean sharing hew,↵,�i
b for all

↵,� 2 {0, 1}, where ew,↵,�
def
= g((�u � ↵), (�v � �))� �w 2 {0, 1}.

a) If g is an AND gate, then ew,↵,� = �u�v � ��u � ↵�v � ↵� � �w. In this case, all parties call the (Mult) command
of functionality FLUT on input (h�ui

b, h�vi
b) to compute a Boolean sharing h�u�vi

b. Then, the parties locally compute
hew,↵,�i

b = h�u�vi
b
� �h�ui

b
� ↵h�vi

b
� h�wi

b
� ↵� for each ↵,� 2 {0, 1}.

b) If g is a XOR gate, then ew,↵,� = �u � �v � (↵ � �) � �w. The parties locally compute hew,↵,�i
b = h�ui

b
� h�vi

b
�

h�wi
b
� (↵� �).

3) For the output wire w of each gate g 2 G, all parties generate hkw,ew,↵,� i
a for all ↵,� 2 {0, 1} as follows:

a) The parties define a vector of arithmetic sharings hT ia such that hT [j]ia = hkw,ji
a for j 2 {0, 1}.

b) If g is an AND gate, then for each ↵,� 2 {0, 1}, all parties call the (PriTabLookup) command of functionality FLUT on
input (hT ia, hew,↵,�i

b) to obtain hkw,ew,↵,� i
a.

c) If g is a XOR gate, the parties perform the following steps:
i) Call the (MaskedPriTab) command of functionality FPrep�LUT on input hT ia to generate hT 0

i
a and hrib such that

r 2 {0, 1} is a random bit and T 0[j] = T [r � j] for j 2 {0, 1}.
ii) Locally compute huib := hew,0,0i

b
� hrib, and then execute Open(huib) to obtain u = ew,0,0 � r 2 {0, 1}.

iii) Set hkw,ew,0,0i
a = hkw,ew,1,1i

a = hT 0
i
a[u] and hkw,ew,0,1i

a = hkw,ew,1,0i
a = hT 0

i
a[u� 1].

4) For the output wire w of each gate g 2 G, for each ↵,� 2 {0, 1}, all parties compute a garbled row ggw,↵,� as follows:
a) Every party Pi sets a secret key ski := ki

u,↵ + ki
v,� , and runs [[hkw,ew,↵,� i

a
i]] Encski((g,↵,�), hkw,ew,↵,� i

a
i).

b) For each i 6= 1, Pi sends [[hkw,ew,↵,� i
a
i]] to P1, who computes [[kw,ew,↵,�]] :=

P
i2[1,n][[hkw,ew,↵,� i

a
i]], where [[kw,ew,↵,�]] =P

i2[1,n] Encski((g,↵,�), hkw,ew,↵,� i
a
i) = Encsk((g,↵,�),kw,ew,↵,�), where sk =

P
i2[1,n] ski.

5) Now, P1 obtains a garbled circuit GC = {(ggw,0,0, ggw,0,1, ggw,1,0, ggw,1,1)}w2W , where for each ↵,� 2 {0, 1}, ggw,↵,� =
[[kw,ew,↵,�]] and W is the set of output wires of all gates in G.

Online phase for evaluating multi-party garbled circuit: When hxwi
b for all w 2 I are known, the parties execute the following:

6) For each w 2 I, all parties locally compute hewib = hxwi
b
� h�wi

b, and then the parties run Open(hewi
b) to obtain a masked

bit ew = xw � �w.
7) For each w 2 I, every party Pi with i 6= 1 sends ki

w,ew to P1, who computes kw,ew :=
P

i2[1,n] k
i
w,ew .

8) In a topological order, for each gate g 2 G with input wires u, v and output wire w, P1 holds (ku,eu , eu) and (kv,ev , ev), and
then computes kw,ew := Decku,eu+kv,ev

((g, eu, ev), ggw,eu,ev) and sets ew := kw,ew [0].
9) For each w 2 O, P1 sets hywib1 := ew � h�wi

b
1 and Pi for each i 6= 1 sets hywibi := h�wi

b
i , and the parties output hywib.

Figure 11: Protocol for generating and evaluating multi-party garbled circuits in the (FPrep�LUT,FLUT)-hybrid model.

[[m3]]sk3,t = [[m1]]sk1,t + [[m2]]sk2,t such that sk3 = sk1 +
sk2 and m3 = m1 +m2.

We always assume that the AHE scheme satisfies the stan-
dard correctness. We need that the AHE scheme satisfies a
simple variant of the CPA security. Specifically, any PPT
adversary A can make a query (mi, ti) to the encryption
oracle which returns [[mi]]sk,ti to A for each i 2 [1, `]
where ` is the number of oracle queries, and then A can
choose two message-label pairs (m⇤

0, t
⇤
0) and (m⇤

1, t
⇤
1) with

t
⇤
0, t

⇤
1 /2 {t1, . . . , t`}. Then the probability that A distin-

guishes [[m⇤
0]]sk,t⇤0 from [[m⇤

1]]sk,t⇤1 is negligible in . Fur-
thermore, the CPA security holds for a polynomial number
of secret keys, which is guaranteed using a standard hybrid
argument. When a lattice-based AHE scheme is adopted, t
uniquely determines a used in encryption, and the security
notion is naturally equivalent to the standard CPA security.

In the private-key setting, we show that the BGV scheme
with a single level [32] is a key-homomorphic AHE scheme,
which is described in Appendix A.2. Alternatively, the BFV-
AHE scheme [33], [34] is another candidate.

6.2. Multi-Party Garbled Circuits
In Figure 11, we give the details of the MPC proto-

col based on multi-party garbled circuits. Without loss of
generality, we assume that only one party P1 can evaluate
the garbled circuit, which is easy to be extended to support
that all parties are able to evaluate the garbled circuit. To
be compatible with the conversion protocols between arith-
metic sharings and Boolean sharings shown in Section 5,
we consider that the inputs and outputs of the parties are
Boolean sharings. In a general case that the inputs are secret
bits, the parties can run the Share algorithm to generate

532

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

corresponding Boolean sharings. To make P1 get the output,
the parties can send the shares of the Boolean sharings
on circuit-output wires to P1 who reconstructs the output
bits by running the Rec algorithm. We can use a standard
approach to support that all parties obtain different outputs.

We divide the MPC protocol into two phases: the prepro-
cessing phase and online phase. In the preprocessing phase,
for each wire w, the parties generate the Boolean sharing
of a random mask h�wib, and we refer to ew = zw � �w

as a masked value where zw 2 {0, 1} is an actual value for
w. For each wire w, every party Pi samples two random
keys ki

w,0,k
i
w,1 for the private-key AHE scheme, where the

sums of these keys are the keys kw,0,kw,1 encrypted in
the garbled circuit. As in prior work [15], we set the first
components of vectors kw,0,kw,1 are 0 and 1 respectively,
which allows the evaluator to extract the masked value ew

from kw,ew . At first glance, this loses one dimension of the
secret key, which slightly reduces security. On the one hand,
when using BGV as the AHE scheme, the secret keys can be
sampled uniformly from R3, and have already sufficiently
high entropy to guarantee the security. On the other hand, as
we need only private-key AHE, the secret keys can actually
be sampled uniformly from Rq (instead of R3) where q � 3.
For each gate with output wire w, the parties also compute
the Boolean sharings of four masked values hew,↵,�ib for all
↵,� 2 {0, 1}, where ↵,� enumerate all four possible values
of masked values on input wires of the gate. These Boolean
sharings hew,↵,�ib for each ↵,� 2 {0, 1} can be used to
generate arithmetic sharings hkw,ew,↵,� ia using our table-
lookup approach. Through the key-homomorphic addition
operations of the private-key AHE scheme, for each gate
with input wires u, v and output wire w, the parties jointly
compute the garbled rows like the classical Yao’s GC.

In the online phase, for each circuit-input wire w, all
parties open ew, and then every party sends ki

w,ew to P1

who reconstructs the key kw,ew . Then, P1 can evaluate
the garbled circuit by decrypting the corresponding garbled
rows. Finally, for each circuit-output wire w, the parties can
locally compute a Boolean sharing hywib. In the following
theorem, we prove that protocol ⇧MPGC securely realizes
the standard MPC functionality FMPC.

Theorem 6. Protocol ⇧MPGC (shown in Figure 11) securely
realizes functionality FMPC against semi-honest adversaries
in the (FPrep�LUT,FLUT)-hybrid model, assuming that the
key-homomorphic AHE scheme is CPA secure.

The proof of Theorem 6 can be found in Appendix B.5.

7. Implementation Optimizations
We discuss two optimizations for the preprocessing pro-

tocols of masked lookup tables ⇧size2
prepLUT (Figure 6) and

⇧polysize
prepLUT (Figure 7), along with one optimization for the

scalable MPC protocol ⇧MPGC (Figure 11).

7.1. Optimizations for Lookup Table Protocol

Bootstrapping. In protocol ⇧size2
prepLUT (shown in Figure 6),

we use the packing technique to reduce the communication

cost incurred by ciphertext expansion, which in turn requires
a customized private pair-wise swapping. To obtain the
communication complexity linear in the number of parties,
the underlying THE scheme requires a budget to support
the number of scale-multiplication and rotation operations
that is linear in the number of all parties. However, for
a large number of parties, it would require a very large
size of parameters. We use bootstrapping to refrain from
having a large budget. We consider two approaches to realize
bootstrapping for threshold HE.
1) Non-interactive bootstrapping: All parties run an MPC

protocol to generate a bootstrapping key, and then use
the key to bootstrap HE ciphertexts and thus reduce the
noise size.

2) Interactive bootstrapping: The parties can convert an
evaluated HE ciphertext to a vector of arithmetic shar-
ings, and then convert it back to a fresh HE ciphertext,
following the previous work [29].

The non-interactive bootstrapping allows us to achieve com-
munication complexity linear in the number of parties. Our
implementation adopts interactive bootstrapping as it is more
efficient for most of the reasonable network configurations.
However, the communication complexity is now quadratic
in the number of parties with a very small constant (⇡ 0.1).
Both bootstrapping approaches as described above can also
be applied in protocol ⇧polysize

prepLUT (Figure 7) in the same way.

Pipelining. Our protocols (i.e., ⇧size2
prepLUT and ⇧polysize

prepLUT) do
not require a party to remain active after it sends a HE
ciphetext to the next party. This enables us to pipeline the
computation, such that the computation complexity is linear
in the number of parties rather than quadratic. Instead of
processing all the ciphertexts at once and sitting idle, each
party processes one ciphertext, then sends it to the next party
and starts processing the next ciphertext. For a small number
of parties where bootstrapping is not required, this method
of pipelining works.

When interactive bootstrapping is involved, the parties
are idle but waiting for a bootstrapping request to respond.
To handle such case, we use the system called poll. On
one thread, every party executes the protocol regularly as
if the ring structure works (i.e., receiving a ciphertext from
the previous party, processing it, and sending it to the next
party), and on the other thread, it listens for any ready boot-
strapping request and responds to it. We allow the maximum
multiplicative depth for the underlying THE scheme to be
10, and choose the minimum budget that requires the same
number of bootstrapping requests as with a budget of 10.

We evaluate the performance of the protocol ⇧size2
prepLUT

with and without pipelining. The performance evaluation
is reported in Figure 12a. As shown in the figure, with
pipelining the running time scales linearly with the number
of parties rather than quadratically as without pipelining.

7.2. Optimization for Multi-Party Garbling
In the MPGC protocol (shown in Figure 11), every

garbler Pi with i 6= 1 sends four AHE ciphertexts for each
gate to the evaluator P1, who combines all the ciphertexts

533

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

(a) ⇧size2
prepLUT (b) ⇧B2A and ⇧A2B

Figure 12: Microbenchmarks of our protocols. (a) The running
time of protocol ⇧size2

prepLUT with and without pipelining optimization.
(b) Running time of the offline phase of our Boolean-to-arithmetic
and arithmetic-to-Boolean conversion protocols.

into a garbled circuit. When the circuit is large or the number
of parties n is large, P1 needs a very large bandwidth to
receive these ciphertexts. When the bandwidth of P1 is
not sufficient, this would form an efficiency bottleneck. To
solve the efficiency issue, we adopt a different communica-
tion pattern. That is, we let Pn send the AHE ciphertexts
to Pn�1, who combines these ciphertexts with the AHE
ciphertexts computed by itself; and then Pn�1 sends the
resulting ciphertexts to Pn�2 and so on. This amortizes
the O(n) communication of P1 to constant communica-
tion for every party. Nevertheless, this increases the round
complexity from one round to n� 1 rounds. To reduce the
rounds, we can adopt a binary-tree architecture to transfer
AHE ciphertexts. In particular, all the parties are arranged
in a binary tree such that each node only interacts with
its children and parent nodes. Two children nodes Pi and
Pi+1 send the AHE ciphertexts to their parent node Pi+2,
who aggregates the AHE ciphertexts from three parties and
then sends the resulting ciphertexts to the parent node of
Pi+2. The communication bandwidth of every party is at
most 2⇥ larger than the first approach, and the rounds are
reduced from n�1 to log n. In addition, the AHE ciphertexts
generated by every party Pi can be sent in a pipelined way.

8. Performance Evaluation
8.1. Summary of Evaluation

We summarize the key findings from our performance
evaluation below.
1) We show that pipelining protocol ⇧size2

prepLUT (Figure 6)
improves its execution time from quadratic in the number
of parties to almost linear in the number of parties.

2) We compare our conversion protocols with the state-of-
the-art works MOTION [11] and MP-SPDZ [21].
a) In terms of running time, for 64 parties, our protocols

improve MP-SPDZ by a factor of 2247⇥ for B2A
conversion and 369⇥ for A2B conversion.

b) In terms of communication cost, for 64 parties, our
protocols improve MP-SPDZ by a factor of 15384⇥
for B2A conversion and 8819⇥ for A2B conversions;
for 32 parties, we improve MOTION by factor of
20⇥ for B2A and 1184⇥ for A2B.

3) When applying our protocol on end-to-end applications,
we achieve 8242⇥ improvements in communication and

up to 1490⇥ improvements in monetary cost.
4) Protocol ⇧MPGC (Figure 11) reduces the inbound com-

munication per party of optimized BMR [20] by about
56 GB for evaluating an AES circuit among 128 parties.
Note that the inbound communication is an efficiency
bottleneck of multi-party distributed garbling, as a central
party receives garbled circuits from all other parties.

8.2. Evaluation Setup
We implemented our protocols using EMP-toolkit [43]

for correlated OT and OpenFHE [44] for threshold ho-
momorphic encryption. The implementation will be open-
sourced, and we are happy to provide it upon request.
All experiments are conducted on AWS of instance type
m5.2xlarge. We consider three settings with up to 128
parties, which are described as follows:
1) Local setting: The network bandwidth is up to 10 Gbps

with 0.1 ms latency.
2) LAN setting: The network bandwidth is up to 1 Gbps

with 0.1 ms latency.
3) WAN setting: The network bandwidth is up to 200 Mbps

with 100 ms latency.
For threshold HE in the public-key setting, we choose

the parameters that achieve the 128-bit security level [45].
The plaintext prime p is equal to 232�230+1, the length of
the ciphertext prime q is more than 530 bits, and the number
of slots N = 65536.

8.3. Performance of Conversions
We evaluate the performance of conversion protocols

⇧A2B and ⇧B2A in the offline phase and the online phase,
respectively. We compare the performance of our conversion
protocols with the state-of-the-art protocols MOTION [11]
and MP-SPDZ [21] for semi-honest security with all-but-one
corruption. When using m5.2xlarge, MOTION can only
execute up to 16 parties due to their high requirement of
hardware resources. When we increase the instance size to
m5.4xlarge, MOTION can be successfully executed with
32 parties; to further scale MOTION with 64 parties, one
would need to use even larger machines. We note that our
framework relies on the RLWE assumption, while MOTION
(and MP-SPDZ, resp.) depend on LPN (and Minicrypt,
resp.).
Execution time of offline phase. We evaluate the perfor-
mance of the offline phase for our conversion protocols up to
128 parties in all three settings. The performance for ⇧B2A

and ⇧A2B is reported in Figure 12b, which shows that the
performance is linear in the number of parties. The execution
time for the WAN setting grows faster than that in the LAN
setting due to the communication overhead.

We compare the execution time with MOTION and MP-
SPDZ for B2A and A2B conversions in Figure 13a and
Figure 13b, respectively. We observe that our framework
outperforms the existing conversion protocols in all three
settings. Compared to MP-SPDZ, our B2A (resp., A2B)
protocol improves the running time of the offline phase by
a factor of 2247⇥ (resp., 369⇥) for 64 parties. Compared to

534

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

(a) Offline phase of ⇧B2A. (b) Offline phase of ⇧A2B. (c) Total communication.

Figure 13: Performance comparison for the conversion protocols of our framework, MOTION [11] and MP-SPDZ [21]. For the
MOTION benchmarks for 32 parties, each party runs on a machine with double the resources than all other benchmarks.

Protocol Setting 2 4 8 16 32 64

B2A
Local 0.038 0.046 0.05 0.066 0.11 0.494
LAN 0.038 0.049 0.06 0.09 0.157 3.461
WAN 0.066 0.076 0.181 0.357 0.988 4.696

A2B
Local 0.012 0.002 0.003 0.004 0.006 0.05
LAN 0.006 0.004 0.006 0.012 0.023 0.049
WAN 0.157 0.087 0.12 0.147 0.209 0.333

TABLE 1: Performance of the online phase of our conversion
protocols. Running time is measured in milliseconds (ms), and
the first row (2⇠64) is the number of parties. Running time is
amortized over many conversions.

MOTION, in the offline phase, the running-time improve-
ment of our B2A (resp., A2B) protocol is up to 15⇥ (resp.,
20⇥) for 32 parties.

Execution time of online phase. The online phase of our
conversion protocols is interchangeable with that of MO-
TION and MP-SPDZ. We evaluate the online running time
for our protocols in all three network settings. Benchmarks
for the online time can be found in Table 1. We note that
the running time of the online phase is at most 10% of the
offline time.

Communication cost of conversions. We benchmark the
total communication required by each conversion using our
protocols, MOTION and MP-SPDZ. The comparison of
the total communication cost is reported in Figure 13c.
The multi-party LUT protocol used as the main building
block in our conversion protocols does not require parties
to communicate with every other party; thus, our system
requires a significantly smaller amount of communication
— up to 20⇥ less than MOTION and 15384⇥ less than MP-
SPDZ for B2A and 1184⇥ less than MOTION and 8819⇥
less than MP-SPDZ for A2B.

8.4. Performance of Boolean/Arithmetic Triples
For completeness, we benchmark the performance of

triple generation for arithmetic and Boolean circuits in Ta-
ble 2. With increasing number of parties, we observe that
the cost of arithmetic triple generation increases slower than
the cost of Boolean triple generation. This is because we use
COT to generate the Boolean triples. This can be replaced
by THE. However, using THE increases the computational
overhead significantly.

Triples Setting 2 4 8 16 32 64

Boolean
Local 0.7 3.6 8.2 8.1 17 34.2
LAN 0.7 3.5 8.5 9.3 18.6 37.2
WAN 0.7 3.5 14.9 24.1 49.2 99.5

Arithmetic
Local 11.4 26.7 46.7 61 94.6 174.9
LAN 12.6 27.9 63.4 109.3 191.1 418.2
WAN 11.4 27.9 128 312.2 674 1621.5

TABLE 2: Performance of Beaver triple generation. Running
time in microseconds (µs) for Boolean sharings (using Ferret-
COT) and arithmetic sharings (using BGV THE).

#Parties Biomatch Kmeans MNIST Gauss Dist. Merge DB

4 1.93 6.16 25.49 0.07 0.24
16 9.7 17.79 94.44 0.27 1.18
64 64.97 76.6 387.7 1.52 8.51

TABLE 3: Performance of end-to-end applications. Perfor-
mance estimation in seconds (s) for running the end-to-end ap-
plications in the LAN setting.

8.5. Performance for End-to-End Applications

We estimate the performance of several end-to-end
applications using mixed-mode circuits generated by
Silph [46]. The applications are listed with the number of
operations in Table 5. The performance estimation to run
the end-to-end applications is given in Table 3.

Monetary cost analysis. We analyze the monetary cost of
running the applications among 64 parties using our frame-
work and MP-SPDZ. Suppose that we run the instances
in a single region, and the communication cost is USD
0.01 per GB. We run each party on AWS of instance type
m5.2xlarge, which costs USD 0.384 per hour. A detailed
comparison is given in Table 4. We observe that MP-SPDZ
is up to 1490⇥ more expensive than our framework.

Protocol Biomatch Kmeans MNIST Gauss Dist. Merge DB

Ours 0.54 1.55 2.97 0.02 0.08
MP-SPDZ 803.3 399.8 102.45 21.75 10.05

TABLE 4: Comparison of monetary cost for our framework
and MP-SPDZ [21]. The monetary cost estimates in USD for
running the applications among 64 parties.

535

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Applications #AND #MULT #B2A #A2B

Biomatch 23,205 1024 1028 256
Kmeans 1,568,660 8800 118 116
MNIST 1,624,460 666,600 1192 1

Gauss Dist. 8275 14 15 7
Merge DB 3930 200 201 1

TABLE 5: The number of operations using mixed-mode
circuits for end-to-end applications.

8.6. Communication Cost of MPGC
The OpenFHE library [44] does not support private-key

AHE, and so we only give a conservative estimation of the
communication cost of our protocol ⇧MPGC (Figure 11).
For the parameters with 128-bit security level, we select
the plaintext prime p to be 216 + 1, the length of the
ciphertext prime q is more than 45 bits, and the number of
slots N = 4096. We find that our protocol has constant in-
bound and outbound communication per party. We report the
inbound and outbound communication per party when se-
curely computing an AES-128 circuit with 128 parties using
our protocol ⇧MPGC and the optimized BMR protocol [20].
Both inbound and outbound communication for ⇧MPGC is
51.12 GB. The inbound and outbound communication for
BMR is 107.37 GB and 0.33 GB, respectively. Compared
to BMR, the inbound communication per party for ⇧MPGC

is lower, while the outbound communication is higher.

Acknowledgements
Work of Kang Yang is supported by the National Key

Research and Development Program of China (Grant No.
2022YFB2702000), and by the National Natural Science
Foundation of China (Grant Nos. 62102037, 61932019).
Work of Jonathan Katz was partially supported by NSF
award #1837517. Work of Radhika and Xiao Wang is sup-
ported by NSF awards #2016240, #2318974 #2236819 and
research awards from Meta, Google, and JPMorgan Chase
& Co. Any views or opinions expressed herein are solely
those of the authors listed, and may differ from the views
and opinions expressed by JPMorgan Chase & Co. or its
affiliates. This material is not a product of the Research
Department of J.P. Morgan Securities LLC. This material
should not be construed as an individual recommendation
for any particular client and is not intended as a recom-
mendation of particular securities, financial instruments or
strategies for a particular client. This material does not
constitute a solicitation or offer in any jurisdiction.

References
[1] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,

“TASTY: tool for automating secure two-party computations,” in
ACM Conf. on Computer and Communications Security (CCS) 2010.
ACM Press, 2010. 1

[2] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in Network
and Distributed System Security Symposium. The Internet Society,
2015. 1

[3] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved mixed-protocol secure two-party computation,” in USENIX
Security Symposium 2021. USENIX Association, 2021. 1

[4] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” Cryptology ePrint Archive, Report 2020/721, 2020, https:
//eprint.iacr.org/2020/721. 1

[5] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in ACM Conf. on Computer and Communications
Security (CCS) 2018. ACM Press, 2018. 1

[6] A. Patra and A. Suresh, “BLAZE: Blazing fast privacy-preserving
machine learning,” in Network and Distributed System Security Sym-
posium. The Internet Society, 2020. 1

[7] A. P. K. Dalskov, D. Escudero, and M. Keller, “Fantastic four: Honest-
majority four-party secure computation with malicious security,” in
USENIX Security Symposium 2021. USENIX Association, 2021. 1

[8] D. Rotaru and T. Wood, “MArBled circuits: Mixing arithmetic and
Boolean circuits with active security,” in Progress in Cryptology—
Indocrypt, ser. LNCS. Springer, 2019. 1, 2.1

[9] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl,
and N. Volgushev, “New primitives for actively-secure MPC over
rings with applications to private machine learning,” in IEEE Symp.
Security and Privacy 2019. IEEE, 2019. 1, 2.1

[10] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved primitives for MPC over mixed arithmetic-binary circuits,” in
Advances in Cryptology—Crypto 2020, Part II, ser. LNCS. Springer,
2020. 1, 2.1, 3.3

[11] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “Motion – a
framework for mixed-protocol multi-party computation,” ACM Trans.
Priv. Secur., mar 2022. 1, 4, 2.1, 2, 8.3, 13

[12] N. Koti, S. Patil, A. Patra, and A. Suresh, “Mpclan: Protocol suite
for privacy-conscious computations,” Journal of Cryptology, vol. 36,
no. 3, p. 22, 2023. 1

[13] I. Damgård and Y. Ishai, “Constant-round multiparty computa-
tion using a black-box pseudorandom generator,” in Advances in
Cryptology—Crypto 2005, ser. LNCS, vol. 3621. Springer, 2005.
1

[14] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient constant
round multi-party computation combining BMR and SPDZ,” in Ad-
vances in Cryptology—Crypto 2015, Part II, ser. LNCS, vol. 9216.
Springer, 2015. 1

[15] A. Ben-Efraim, Y. Lindell, and E. Omri, “Efficient scalable constant-
round MPC via garbled circuits,” in Advances in Cryptology—
Asiacrypt 2017, Part II, ser. LNCS. Springer, 2017. 1, 2.3, 6.1,
6.2, A.2

[16] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty
computation,” in ACM Conf. on Computer and Communications
Security (CCS) 2017. ACM Press, 2017. 1, 3

[17] C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez, “Concretely
efficient large-scale MPC with active security (or, TinyKeys for
TinyOT),” in Advances in Cryptology—Asiacrypt 2018, Part III, ser.
LNCS. Springer, 2018. 1

[18] A. Ben-Efraim, K. Cong, E. Omri, E. Orsini, N. P. Smart, and
E. Soria-Vazquez, “Large scale, actively secure computation from
LPN and free-XOR garbled circuits,” in Advances in Cryptology—
Eurocrypt 2021, Part III, ser. LNCS. Springer, 2021. 1

[19] G. Beck, A. Goel, A. Hegde, A. Jain, Z. Jin, and G. Kaptchuk,
“Scalable multiparty garbling,” Cryptology ePrint Archive, Report
2023/099, 2023, https://eprint.iacr.org/2023/099. 1

[20] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest
secure multiparty computation for the internet,” in ACM Conf. on
Computer and Communications Security (CCS) 2016. ACM Press,
2016. 3, 4, 8.6

[21] M. Keller, “MP-SPDZ: A versatile framework for multi-party com-
putation,” in ACM Conf. on Computer and Communications Security
(CCS) 2020. ACM Press, 2020. 4, 2, 8.3, 13, 4

536

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

[22] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal,
and P. Scholl, “Efficient two-round OT extension and silent non-
interactive secure computation,” in ACM Conf. on Computer and
Communications Security (CCS) 2019. ACM Press, 2019. 2.1, 3.3

[23] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret: Fast
extension for correlated OT with small communication,” in ACM
Conf. on Computer and Communications Security (CCS) 2020. ACM
Press, 2020. 2.1, 3.3

[24] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
packed homomorphic operations and efficient circuit bootstrapping
for TFHE,” in Advances in Cryptology—Asiacrypt 2017, Part I, ser.
LNCS. Springer, 2017. 2.1

[25] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
41st Annual ACM Symposium on Theory of Computing (STOC).
ACM Press, 2009. 2.2, A.1

[26] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs, “Multiparty computation with low communication,
computation and interaction via threshold FHE,” in Advances in
Cryptology—Eurocrypt 2012, ser. LNCS. Springer, 2012. 2.2, 3.2,
6.1, A.2

[27] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptology, vol. 13, no. 1, Jan. 2000. 3

[28] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Ras-
mussen, and A. Sahai, “Threshold cryptosystems from threshold fully
homomorphic encryption,” in Advances in Cryptology—Crypto 2018,
Part I, ser. LNCS, vol. 10991. Springer, 2018. 3.2

[29] C. Mouchet, J. R. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P.
Hubaux, “Multiparty homomorphic encryption from ring-learning-
with-errors,” PoPETs, vol. 2021, no. 4, Oct. 2021. 3.2, 2, A.1, A.3

[30] F. Bourse, R. del Pino, M. Minelli, and H. Wee, “FHE circuit privacy
almost for free,” in Advances in Cryptology—Crypto 2016, Part II,
ser. LNCS, vol. 9815. Springer, 2016. 3.2

[31] L. de Castro, C. Juvekar, and V. Vaikuntanathan, “Fast vector obliv-
ious linear evaluation from ring learning with errors,” Cryptology
ePrint Archive, Report 2020/685, 2020, https://eprint.iacr.org/2020/
685. 3.2

[32] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS 2012. Cam-
bridge, MA, USA: Association for Computing Machinery, Jan. 8–10,
2012. 3.2, 6, 6.1, A.1, A.2

[33] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in Advances in Cryptology—
Crypto 2012, ser. LNCS, vol. 7417. Springer, 2012. 3.2, 6.1

[34] J. Fan and F. Vercauteren, “Somewhat practical fully homomor-
phic encryption,” Cryptology ePrint Archive, Report 2012/144, 2012,
https://eprint.iacr.org/2012/144. 3.2, 6.1

[35] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Advances in Cryptology—
Eurocrypt 2010, ser. LNCS. Springer, 2010. 3.2

[36] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer,” in ACM Conf.
on Computer and Communications Security (CCS) 2016. ACM
Press, 2016. 3.3

[37] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and
S. Vivek, “Faster secure multi-party computation of AES and DES
using lookup tables,” in Intl. Conference on Applied Cryptography
and Network Security (ACNS), ser. LNCS. Springer, 2017. 4, 4.3

[38] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the power of correlated randomness in secure com-
putation,” in 9th Theory of Cryptography Conference—TCC 2013, ser.
LNCS, vol. 7785. Springer, 2013. 4.3

[39] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The
TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited,” in Advances in Cryptology—Crypto 2017,
Part I, ser. LNCS, vol. 10401. Springer, 2017. 4.3

[40] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the communication barrier in secure com-
putation using lookup tables,” in Network and Distributed System
Security Symposium. The Internet Society, 2017. 4.3

[41] A. Brüggemann, R. Hundt, T. Schneider, A. Suresh, and H. Yalame,
“Flute: Fast and secure lookup table evaluations,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2023, pp. 515–533. 4.3

[42] R. Garg, K. Yang, J. Katz, and X. Wang, “Scalable mixed-mode mpc,”
Cryptology ePrint Archive, Paper 2023/1700, 2023, https://eprint.iacr.
org/2023/1700. 5.1

[43] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Mul-
tiParty computation toolkit,” https://github.com/emp-toolkit, 2016.
8.2

[44] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca, “OpenFHE: Open-
source fully homomorphic encryption library,” Cryptology ePrint
Archive, Report 2022/915, 2022, https://eprint.iacr.org/2022/915. 8.2,
8.6

[45] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gor-
bunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Mic-
ciancio, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan,
“Homomorphic encryption standard,” Cryptology ePrint Archive, Re-
port 2019/939, 2019, https://eprint.iacr.org/2019/939. 8.2

[46] E. Chen, J. Zhu, A. Ozdemir, R. S. Wahby, F. Brown, and W. Zheng,
“Silph: A framework for scalable and accurate generation of hybrid
MPC protocols,” 2023. 8.5

[47] S. Halevi and V. Shoup, “Bootstrapping for HElib,” in Advances in
Cryptology—Eurocrypt 2015, Part I, ser. LNCS, vol. 9056. Springer,
2015. A.1

Appendix A.
BGV Homomorphic Encryption
A.1. Public-Key BGV Full-Threshold HE Scheme

We outline a full-threshold version of the public-key
BGV HE scheme. We refer the reader to [32], [47], [29]
for more details (e.g., rotation and bootstrapping). The set
of public parameters pp defines the following parameters:
• The number of slots N . The plaintext modulus p and the

ciphertext modulus q such that p and q are co-prime and n·
p < q where n is the number of parties, i.e., the plaintext
and ciphertext are defined in Rp and Rq respectively.

• The standard variance � defines a discrete Gaussian distri-
bution �(�). For circuit privacy based on noise flooding,
�cp defines another discrete Gaussian distribution �(�cp),
where �cp is exponentially larger than �.

• The polynomial ring R3 where the coefficients are picked
from {�1, 0, 1}. Let Z be the distribution in which sam-
pling one polynomial in R3 such that each coefficient is 1
with probability 1/4, �1 with probability 1/4 and 0 with
probability 1/2.

• Let H be the distribution sampling one polynomial in R3

such that at least h coefficients are non-zero for some
parameter h. A common random polynomial a Rq .

Given the above public parameters, the BGV-THE
scheme has the following algorithms:
• SecKeyGen(pp): Each party Pi samples si H and sets
ski = si.

537

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

• ⇧PubKeyGen(sk1, . . . , skn): Each party Pi samples ei
�(�) and computes bi := �a · si + p · ei 2 Rq . For
each i 6= 1, Pi sends bi to P1. Then, P1 computes b :=Pn

i=1 bi 2 Rq and sends b to all other parties. The parties
P1, . . . , Pn output pk = (a, b).

• Encpk(m): To encrypt a message m 2 Rp
⇠= (Zp)N ,

sample v Z, e0, e1 �(�), and compute c0 :=
b · v + p · e0 + m 2 Rq and c1 := a · v + p · e1 2 Rq .
Output a ciphertext [[m]] = (c0, c1).

• Decsk([[m]]): On input a secret key sk =
P

i2[1,n] ski

and [[m]] = (c0, c1), write s = sk, compute m
0 :=

c0 + s · c1 2 Rq and set m := m
0 mod p. Protocol

⇧Dec(sk1, . . . , skn, [[m]]) is not used in our lookup table
protocols, and thus is omitted.

Circuit privacy with noise flooding [25]. The transforma-
tion algorithm CP([[m]]) is performed as follows:
1) Sample two large noises e

0
0, e

0
1 �(�cp), and then

run [[0]] Encpk(0; (e00, e
0
1)), where Enc adopts e

0
0, e

0
1

(instead of sampling noises from �(�)) to encrypt zero.
2) Output a circuit-private ciphertext ct := [[m]] + [[0]].
The above approach can transform an evaluated ciphertext
to a ciphertext with circuit privacy, using exponentially large
noises to flood the noises underlying the ciphertext [[m]].

A.2. Private-Key Key-Homomorphic BGV-AHE
Below, we outline the private-key BGV-AHE scheme

with the key-homomorphic property. We refer the reader
to [32] for more details. Let {t1, . . . , t`} be the set of all
possible labels. As such, the set of public parameters pp

in the private-key setting also define the parameters p, q,N

and the error distribution �(�). Differently, pp now defines
a set of random polynomials a1, . . . , a` Rq , where each
polynomial ai corresponds to a label ti. If the set of labels is
large, then the size of pp is very large. We have the following
two approaches to solve the issue:
• Let F : {0, 1} ⇥ {0, 1} ! Rq be a random oracle.

Sample a random key key {0, 1}, and any party can
compute ai := F(key, ti) for each i 2 [1, `]. Now, pp only
needs to involve key, but this approach adds a random-
oracle computation for each encryption.

• For the application of the MPGC protocol (described in
Section 6), each label ti corresponds to a triple (g,↵,�)
where g is a gate and ↵,� 2 {0, 1}. In this applica-
tion, following the work [15], we can only put random
polynomials a1, . . . , a8·fout 2 Rq into pp, where fout is
the maximal fan-out of the circuit. Using the algorithm
in [15], one can assign a random polynomial ai into the
encryption of each garbled row, such that any two gates
sharing an input wire do not share any of the random
polynomials. In this way, pp includes 8 ·fout polynomials
in Rq but less computation is required.

In the following, we give the construction of the private-key
BGV-AHE scheme.
• SecKeyGen(pp): Sample s Rq and output sk = s.
• Encsk(t,m): On input a message m 2 Rp, a label t and

a secret key sk = s, retrieve a from pp according to t,

Protocol ⇧E2A

Inputs: Parties P1, . . . , Pn hold the following inputs:
• The set of public parameters pp for public-key BGV-THE.
• A ciphertext [[x]] = (c0, c1) with x 2 Rp and c0, c1 2 Rq .
• Pi holds a share of the secret key ski = si.

Conversion from encryption to arithmetic sharings:
1) For each i 6= 1, Pi samples ei �(�cp) and hxiai Rp,

and then sends hi := si · c1 + p · ei � hxi
a
i 2 Rq to P1.

2) The party P1 computes hxia1 := s1 · c1 + c0 +
Pn

i=2 hi.
3) All parties output hxia with x 2 (Zp)

N .

Figure 14: Protocol for converting BGV HE encryption into
arithmetic sharings.

sample e �(�) and compute c := a ·s+p ·e+m 2 Rq .
Output a ciphertext [[m]] = c.

• Decsk(t, [[m]]): On input a ciphertext [[m]] = c, a label
t and sk = s, retrieve a from pp based on t, compute
m

0 := c� a · s 2 Rq , and output m := m
0 mod p.

• Key-homomorphic addition: Given two ciphertexts c1 =
a · s1 + p · e1 + m1 and c2 = a · s2 + p · e2 + m2, any
party can compute c3 := c1+ c2 = a · (s1+s2)+p · (e1+
e2) + (m1 + m2). Let s3 = s1 + s2, e3 = e1 + e2 and
m3 = m1 +m2. Then c3 = a · s3 + p · e3 +m3.

Under the ring-LWE assumption, it is easy to prove that
the above private-key BGV-AHE scheme satisfies the CPA
security (in Section 6.1), following prior works [32], [26].

A.3. Conversions between BGV-THE Encryption
and Arithmetic Sharings

We show how to convert between the BGV ciphertexts
and arithmetic sharings, where the public-key BGV-THE
scheme (shown in Appendix A.1) is used for encryption. In
Figure 14, we describe the conversion protocol from BGV
public-key encryption to arithmetic sharings. This protocol
follows the protocol in [29], except for replacing BFV THE
with BGV THE. In Figure 14, the noise ei is sampled from
a discrete Gaussian distribution �(�cp), which is used to
keep si private based on noise flooding. The BGV-THE
scheme supports the packing technique, and thus a single
ciphertext encrypts a vector in (Zp)N and the protocol would
output a vector of arithmetic sharings. It is easy to prove
that protocol ⇧E2A (Figure 14) securely realizes the (E2A)
command of functionality FConv (Figure 3) under the ring-
LWE assumption following the work [29].

For conversion from arithmetic sharings to encryption
of BGV-THE, the protocol is constructed as follows:
1) P1, . . . , Pn are given a vector of arithmetic sharings hxia

with x 2 (Zp)N and a public key pk for BGV-THE.
2) For i 2 [1, n], Pi encodes hxiai into a polynomial in Rp

and then runs [[hxiai]] Encpk(hxiai).
3) For i 6= 1, Pi sends [[hxiai]] to P1. Then, P1 computes

[[x]] :=
P

i2[1,n][[hxiai]] and sends it to all other parties.
It is easy to see that if the BGV-THE scheme is CPA
secure, then the above protocol securely realizes the (A2E)
command of functionality FConv (shown in Figure 3).

538

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Appendix B.
Formal Proofs of Our Protocols

For all our proofs, we use H and M to denote the set of
honest parties and the set of corrupted parties, respectively.

B.1. Proof of Theorem 1
Proof. The simulation is constructed as follows:
1) For generating a vector of Boolean sharings hrib, S

emulates FE2A by recording the shares of corrupted
parties on hrib sent by A to FE2A.

2) If the table is private, for i 2 H, S sends a fresh zero-
ciphertext [[0]] to A, and initializes [[m]] := [[0]] if P1

is honest. If the table is public and P1 is honest, S
initializes [[m]] following the protocol specification.

3) For each i 2 H, S generates a fresh zero-ciphertext [[0]]
and sends it to A.

4) For each arithmetic sharing hT 0
i ia with i 2 [0, N/2�1], S

emulates FE2A by recording the corrupted parties’ shares
sent by A to FE2A.

5) For each i 2 [0, N/2�1], S sends the shares of corrupted
parties about hriib and hT 0

i ia to functionality FPrep�LUT.
It is easy to see that the simulation of FE2A is perfect. Under
the assumption that the THE scheme is CPA secure, the
simulation in the above step (2) using a zero ciphertext is
computationally indistinguishable from the real ciphertexts.
Furthermore, under the assumption that the THE scheme
satisfies circuit privacy, the simulation in the above step (3)
using a zero ciphertext is also computationally indistinguish-
able from the real ciphertext. In both worlds, the output
shares of corrupted parties and honest parties satisfy that
their sum is the correct value. Therefore, the joint distribu-
tions of the adversary’s view and the honest parties’ outputs
are computationally indistinguishable in both worlds.

B.2. Proof of Theorem 2
Proof. The simulation is constructed as follows:
1) For generating a vector of Boolean sharings hrib with

r 2 {0, 1}m, S emulates FE2A by recording the shares
of corrupted parties about hrib sent by A to FE2A.

2) If the table is private, for i 2 H, S sends a fresh zero-
ciphertext [[0]] to A, and initializes [[m]] := [[0]] if P1

is honest. If the table is public and P1 is honest, S
initializes [[m]] following the protocol description.

3) For each i 2 H, S generates a fresh zero-ciphertext [[0]]
and sends it to A.

4) For generating arithmetic sharing hT 0ia, S emulates
FE2A by recording the shares of corrupted parties on
hT 0ia sent by A to FE2A.

5) S sends the shares of corrupted parties about hrib and
hT 0ia to functionality FPrep�LUT.

The simulation of FE2A is perfect. Under the assumption that
the THE scheme is CPA secure and satisfies circuit privacy,
the simulation using zero ciphertexts is computationally
indistinguishable from the real ciphertexts. In both the ideal-
world execution and real-world execution, the output shares
of corrupted parties and honest parties satisfy the correct
correlation on additive sharings.

B.3. Proof of Theorem 3
Proof. The simulation is constructed as follows:
1) S emulates FPrep�LUT by recording the shares of cor-

rupted parties w.r.t. hrib and hT 0ia received from A.
2) Given the shares of corrupted parties on input sharings
hxib, S computes the shares of corrupted parties w.r.t.
huib = hxib � hrib.

3) S samples u {0, 1}m, and then samples the shares of
honest parties uniformly such that the sum of the shares
of all parties is equal to u. Then, S sends the shares of
honest parties to A during the Open(huib) procedure.

4) S sends the shares of corrupted parties about hT [x]ia to
functionality FLUT.

Clearly, the simulation of FPrep�LUT is perfect. In the real
protocol execution, u is uniform in {0, 1}m due to the
uniformity of r. Therefore, the simulation of string u is
also perfect. In both worlds, the output shares of corrupted
parties and honest parties satisfy the correct correlation
about arithmetic sharings. Overall, the joint distributions
of the adversary’s view and the honest parties’ outputs are
perfectly indistinguishable in both worlds.

B.4. Proof of Theorem 5
Proof. The simulation is constructed as follows:
1) S emulates FLUT by recording the shares of corrupted

parties on Boolean sharings hrib received from A.
2) S invokes the simulator for ⇧B2A to simulate the gener-

ation of arithmetic sharing hria. During the procedure,
S records the shares of corrupted parties on hria.

3) If (2`�p)/2` > 1/2⇢, then S emulates FLUT by sampling
r0 {0, 1}` and outputting the bit that indicates ifP

j2[0,`�1 2
j ·r0[j] < p to A. If

P
j2[0,`�1 2

j ·r0[j] � p,
S restarts the protocol simulation.

4) Given the shares of corrupted parties on hxia, S com-
putes the corrupted parties’ shares about huia = hxia �
hria. S samples u Zp and the shares of honest parties
uniformly such that the shares of all parties sum to u.
Then, S sends u to A.

5) S emulates FLUT by recording the shares of corrupted
parties about hxib sent by A to FLUT. Then, S sends
these shares to functionality FConv.

It is easy to see that the simulation of FLUT is perfect.
Following the proof of Theorem 4, the simulation of sub-
protocol ⇧B2A is also perfect. If (2` � p)/2` > 1/2⇢,
through the “rejection-sampling” procedure, we guarantee
that r =

P
j2[0,`�1 2

j ·r[j] is uniform in Zp. Otherwise, the
distribution of r is identical to the uniform distribution in
Zp, except with probability at most 1/2⇢. For the simulation
checking if r < p, S samples a random string r0 that has
the same distribution as the real string r, and simulates the
output bit by deciding if

P
j2[0,`�1 2

j · r0[j] < p. Clearly,
this is perfectly indistinguishable from the real protocol
execution. From the uniformity of r 2 Zp, we have that
u is uniform in Zp except with probability at most 1/2⇢

in the real protocol execution. Therefore, the simulation
of u is statistically indistinguishable from the real protocol

539

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

execution. In both the real-world execution and ideal-world
execution, the output shares of all parties satisfy the correct
correlation about arithmetic sharings. In conclusion, the joint
distributions of the adversary’s view and the honest parties’
outputs are statistically indistinguishable in both worlds.

B.5. Proof of Theorem 6
Proof. The simulation is constructed as follows:
1) For each wire w, S emulates FLUT by recording the

shares of corrupted parties on h�wib sent by A to FLUT.
2) For each AND gate g with input wires u, v, S emu-

lates FLUT by recording the shares of corrupted parties
about h�u�vib received from A. Following the protocol
specification, for each gate g with output wire w, S
computes the corrupted parties’ shares on hew,↵,�ib for
each ↵,� 2 {0, 1}.

3) For the output wire w of each gate g, S simulates the
generation of hkw,ew,↵,� ia for each ↵,� 2 {0, 1}.
• If g is an AND gate, S emulates FLUT by receiving

the corrupted parties’ shares on hkw,ew,↵,� ia from A.
• If g is a XOR gate, S emulates FPrep�LUT by recording

the shares of corrupted parties on hT 0ia and hrib sent
by A to FPrep�LUT. Then, S computes the corrupted
parties’ shares about huib = hew,0,0ib�hrib. S samples
u {0, 1} and the shares of honest parties such that
the shares of all parties are sum to u. For Open(huib),
S sends the shares of honest parties on huib to A.
Following the protocol specification, S computes the
shares of corrupted parties on hkw,ew,↵,� ia.

4) For generating garbled rows, S simulates as follows:
a) For each wire w, S samples a masked value ew

{0, 1} at random. Thus, for each gate g with input
wires u, v, S knows masked values eu, ev 2 {0, 1}.

b) S can obtain the “active path” indicating which
garbled rows A can decrypt. That is, for each gate g

with input wires u, v, A can only decrypt the garbled
row indexed by (g, eu, ev).

c) For each wire w, following the protocol specification,
S generates ki

w,ew SecKeyGen(pp) for i 2 H.
d) For each gate g with input wires u, v and output

wire w, for each ↵,� 2 {0, 1} and i 2 H, S sets
[[ki

w,ew,↵,�
]] = [[0]] if (↵,�) 6= (eu, ev) and computes

[[ki
w,ew,eu,ev

]] Encki
u,eu

+ki
v,ev

((g, eu, ev),ki
w,ew),

where [[0]] is a fresh zero ciphertext. Then, for i 2 H,
S sends [[ki

w,ew,↵,�
]] for each ↵,� 2 {0, 1} to A.

e) If P1 is honest, S receives the AHE ciphertexts from
A for each corrupted party Pi 2M.

5) Through the above step, S simulates a garbled circuit
GC. In the online phase, S holds the corrupted parties’
shares on all input bits.

6) For each circuit-input wire w 2 I, S computes the shares
of corrupted parties about hewib = hxwib � h�wib, and
samples the honest parties’ shares on hewib such that
the shares of all parties sum to ew chosen by itself.
S simulates the Open(hewib) procedure by sending the
shares of honest parties to A.

7) For each circuit-input wire w 2 I, on behalf of every
honest party Pi, S sends ki

w,ew to A. If P1 is honest, S
also receives the keys of corrupted parties from A.

8) For each circuit-output wire w 2 O, for each corrupted
party Pi 2 M, S sets its share on hywib as h�wibi if
i 6= 1, or computes its share on hywib by ew � h�wib1
otherwise. Then, S sends the shares of corrupted parties
on hywib to functionality FMPC.

It is clear that the simulation of FLUT and FPrep�LUT is
perfect. For the output wire w of each XOR gate, a bit
u = ew,0,0 � r is opened in the real protocol execution.
Since r is a uniform bit, u 2 {0, 1} is random. In the ideal-
world execution, S directly samples a random bit u and
opens it by sending the shares of honest parties. Therefore,
the distribution of u is the same in both worlds. Furthermore,
the shares of honest parties on huib are uniform under the
condition that the sum of all shares is equal to u in both
worlds. Hence, these shares sent by S during the Open(huib)
procedure have the identical distribution in both worlds.

As for the simulation of garbled circuits, we first con-
sider the case that P1 is corrupted. The evaluator P1 knows
all the keys and masked values in the active path, and thus
is able to decrypt all the AHE ciphertexts received from
every honest party Pi in the active path in the real protocol
execution. In the ideal-world execution, these AHE cipher-
texts sent by every honest party Pi are generated honestly by
S following the protocol specification. Therefore, the AHE
ciphertexts of every honest party in the active path have the
identical distribution in both worlds. Differently, the AHE
ciphertexts sent by every honest party outside the active
path encrypt the corresponding keys in the real protocol
execution, while these ciphertexts encrypt the zero vector in
the ideal-world execution. We can bound the difference in
two worlds by a hybrid argument based on the assumption
that the private-key AHE scheme is CPA secure. If P1

is honest, the analysis is the same, where A learns less
information in this case.

In the online phase of the real protocol execution, the
opened bit ew for each circuit-input wire w is the XOR
of the real input bit xw and random mask �w. We first
consider the case that P1 is corrupted. We note that ew,↵,�

for the output wire w of each gate and ↵,� 2 {0, 1} except
for the opened bit ew = ew,eu,ev are kept secret under the
assumption that the private-key AHE scheme is CPA secure.
Therefore, in the real protocol execution, �w for each wire
w is a uniform bit, which guarantees that ew is random in
{0, 1}. In the ideal-world execution, ew 2 {0, 1} is sampled
at random by S. Furthermore, the keys sent in the online
phase have the same distribution in both worlds. If P1 is
honest, then A learns less information. Overall, for both
cases, the distributions of ew and the keys are computa-
tionally indistinguishable in both worlds. In both the real-
world execution and ideal-world execution, the shares of all
parties on circuit-output bits satisfy the correct correlation
of Boolean sharings. In conclusion, the joint distributions
of the adversary’s view and the honest parties’ outputs are
computationally indistinguishable in both worlds.

540

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary
The key contribution of this paper is the construction

of efficient MPC protocols for performing secret lookups
into public and private tables. The authors use these tables
to obtain highly-efficient implementations of two key appli-
cations: (1) Protocols for conversion to and from boolean
shares to arithmetic shares. Such protocols are a key com-
ponent of MPC protocols that aim to efficiently support
boolean and arithmetic computations (e.g., ML computa-
tions), and the new protocols enable orders-of-magnitude
speedups for these protocols. (2) Protocols for multiparty
garbled circuits, which achieves asymptotically optimal
communication costs, and results in concrete improvements
in communication overhead.

The authors implement the core subprotocols, provide
microbenchmarks of these, and estimate the costs of various
mixed-mode computations when using these protocols.

C.2. Scientific Contributions
• Addresses a long-known issue in MPC protocols
• Provides a valuable contribution

C.3. Reasons for Acceptance
1) Most real-world computations contain a mix of both

bitwise computations (ANDs, XORs, etc.) and arith-
metic computations (ADDs, MULs, etc). However, most
existing MPC protocols cannot efficiently support both
workloads simultaneously, i.e. they either support bitwise
computations, or arithmetic computations. This paper
provides a highly efficient method for switching between
these two kinds of MPC protocols, thus enabling efficient
execution of mixed-workload computations.

2) The paper is generally well-written: it motivates the
problem well, and explains its techniques clearly.

3) The key underlying technique is elegant, and lends itself
to a clean and simple implementation.

C.4. Noteworthy Concerns
1) While the overall communication of the proposed gar-

bling scheme is linear in the number of parties, it comes
at the expense of requiring communication for garbling
XOR gates as well. This is a major downside considering
that all the size optimized circuits have a huge discrep-
ancy in the number of AND and XOR gates (#XOR >>

#AND) and the existing methods can garble XOR gates
for free.

2) The scheme is limited to semi-honest security and
achieving malicious security is non-trivial.

541

Authorized licensed use limited to: Northwestern University. Downloaded on January 19,2025 at 16:09:33 UTC from IEEE Xplore. Restrictions apply.

