
https://doi.org/10.1007/s00145-024-09531-4
J Cryptol (2025) 38:10

Research Article

An Efficient ZK Compiler from SIMD Circuits to
General Circuits∗

Dung Bui
Université Paris Cité, CNRS, IRIF, Paris, France

bui@irif.fr

Haotian Chu
Shanghai Jiao Tong University, Shanghai, China

chtvii@sjtu.edu.cn

Geoffroy Couteau
Université Paris Cité, CNRS, IRIF, Paris, France

couteau@irif.fr

Xiao Wang
Northwestern University, Evanston, USA

wangxiao@northwestern.edu

Chenkai Weng
Arizona State University, Tempe, USA

chenkai.weng@asu.edu

Kang Yang
State Key Laboratory of Cryptology, Beijing, China

yangk@sklc.org

Yu Yu
Shanghai Jiao Tong University, Shanghai, China

yyuu@sjtu.edu.cn

Communicated by Benoit Libert and Carla Rafols Salvador

Received 21 February 2024 / Revised 28 October 2024 / Accepted 29 October 2024

Abstract. We propose a generic compiler that can convert any zero-knowledge (ZK)
proof for SIMD circuits to general circuits efficiently, and an extension that can preserve
the space complexity of the proof systems. Our compiler can immediately produce new
results improving upon state of the art.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00145-
024-09531-4) contains supplementary material, which is available to authorized users.

∗This paper was reviewed by Cyprien Delpech de Saint-Guilhem and Daniel Demmler

© The Author(s) 2024

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-024-09531-4&domain=pdf
https://doi.org/10.1007/s00145-024-09531-4
https://doi.org/10.1007/s00145-024-09531-4

 10 Page 2 of 31 D. Bui et al.

– By plugging in our compiler to Antman, an interactive sublinear-communication protocol,
we improve the overall communication complexity for general circuits from O(C3/4) to
O(C1/2). Our implementation shows that for a circuit of size 227, it achieves up to 83.6×
improvement on communication compared to the state-of-the-art implementation. Its end-
to-end running time is at least 70% faster in a 10Mbps network.

– Using the recent results on compressed Σ-protocol theory, we obtain a discrete-log-based
constant-round zero-knowledge argument with O(C1/2) communication and common ran-
dom string length, improving over the state of the art that has linear-size common random
string and requires heavier computation.

– We improve the communication of a designated n-verifier zero-knowledge proof from
O(nC/B + n2B2) to O(nC/B + n2).

To demonstrate the scalability of our compilers, we were able to extract a commit-and-
prove SIMD ZK from Ligero and cast it in our framework. We also give one instantiation
derived from LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our
methodology.

Keywords. Zero-Knowledge Proof, General Compiler, SIMD ZK, VOLE-based ZK,
Σ-protocol.

1. Introduction

Assume that the verification of a statement is represented as a public circuitC : {0, 1}n →
{0, 1}. A zero-knowledge proof (ZKP) allows a prover to convince a verifier that it
possesses a witness w such that C(w) = 0, without the verifier learning any information
beyond the circuit output. The commit-and-prove zero-knowledge (CP-ZK) paradigm
is among the most flexible and modular design mechanisms for constructing ZKP. For
instance, a CP-SNARK allows a prover to commit to a batch of secrets via a commitment
scheme (e.g., vector commitment or polynomial commitment), then prove relations
between the committed values in ZK [17,18,38]. A small communication footprint
is achieved when the commitment is compressing and the proof is succinct. On the
other hand, schemes like VOLE-based ZKPs [5,23,49,52] rely on efficient interactive
commitment scheme that separately commits to wire values in the circuit, then prove
the consistency between committed wire values with constant overhead. Though general
VOLE-ZKs incur communication complexity linear to the circuit size, they achieve high
throughput owing to the lightweight operations.

Generally, CP-ZK proof systems with sublinear communication involve two compo-
nents after the batch commitment of witnesses: (1) Hadamard product of committed
vectors, (2) equality of individual wires across different committed vectors. The former
is used to demonstrate the correct computation of multiplication gates and the latter is
used to show that the committed wire values are consistent with the circuit topology.
FromSIMD-ZKtogeneralZK.From another perspective, the above approach can be

viewed as a conversion from commit-and-prove SIMD-ZK to general ZK. Define (B, C)-
SIMD circuit which contains B identical components of the circuit C. A SIMD-ZK
proves that for input witnesses (w1, . . . ,wB), C(wi) = 0 for i ∈ [B]. By exploiting
the fact that operations are identical across B components, SIMD-ZK schemes typically
utilize vector commitments and batch proofs to achieve communication sublinear in
B · |C|. In more detail, denote by �w� a commitment to a vector w. Define a witness
matrix W = (w1‖ . . . ‖wB). Instead of viewing the i th column as the witness to the

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 3 of 31 10

i th evaluation of C, a prover commits to each row vector and lets the verifier obtain
(�w1�, . . . , �w|C|�). In this way, for any gate (α, β, γ,�) in C and � ∈ {Add,Mult}, the
prover only needs to prove that wγ = wα �wβ . ZKP schemes achieve O(|C|) proof size
if both the vector commitment and batch proof of additions and multiplications incur
constant size.

Most of priors work on different proof systems indeed take this approach by first
implementing batch commitment and proof of multiplication gates, which are followed
by a wiring consistency check [2,17,18,20,26,50,53]. However, they take divergent
paths to tackle the latter problem. A popular approach is to compile the circuit into an
algebraic format via a constraint system, e.g., rank-1 constraint system (R1CS) [27].
Define z := (1, x,w) in which x and w are the public and private inputs of the circuit.
Denote (L,R,O) as the matrices that represent the map from z to the vectors of the left,
right and output wires of multiplication gates a, b, c. Then the relation a ∗ b − c = 0
can be expressed as (L · z) ∗ (R · z) − (O · z) = 0. In this way, the ZKP is reduced to
proving matrix–vector products on committed values. On the other hand, some ZKPs
like [50,53] proceed differently: they individually prove that wα[i] = wβ [j] for any
i, j ∈ [B]. Although this approach yields better scalability for the ZKP, it results in
worse communication complexity, usually with a B2 factor.

An interesting question is whether we can design a generic compiler that translates
any commit-and-prove SIMD-ZK (CP-SIMD-ZK) into a general CP-ZK with sublinear
communication. It would facilitate the design of communication-efficient ZKP because
it allows the focus to be shifted to the design of SIMD-ZK primitives, which are generally
easier than general-purpose ZKP.
From SIMD-ZK to scalable ZK. It is common for ZKPs to trade off scalability

against succinctness. On the one hand, although zk-SNARKs generate proofs of constant
size or size sublinear to |C|, their memory overhead is at least O(|C|). The constant
factor is large when public-key operations are involved. This prevents them from being
applied to large statements: prior benchmarks only focus on statements represented
by less than 225 constraints [19]. Efforts are made to distribute the zk-SNARK proof
generation among a set of provers [9,33,40,45,51], however, the overall computational
and memory overhead is still prohibitive. They either need to disclose secret input to
all provers, or only aim to delegate computation to more powerful workers but not
to reduce the computational cost of them. Another line of work focuses on recursive
SNARKs [14,35,37] that allow a statement that can be divided into multiple steps to
be proven step-by-step, but they require the statement to be structured, i.e., each step is
represented by identical constraints. On the other hand, interactive ZKPs such as VOLE-
ZK [5,23,49,52] achieve high scalability by “streaming” the circuit evaluation. They
evaluate the circuit gate-by-gate and only incur memory overhead linear in the current
gates that are evaluated. Neither the witness nor the circuit structure for future gates are
required to be known in advance. Hence these types of ZKPs scale to large circuits with
billions of gates. However, their drawback is the O(|C|) communication complexity and
lack of public verifiability.

Naturally, it would be interesting to study how to achieve scalability and succinctness
at the same time. Specifically, can we obtain efficient ZKPs with proof size sublinear to
the circuit size, without the memory overhead being lower bounded by the circuit size?

 10 Page 4 of 31 D. Bui et al.

1.1. Our Contributions

In this work, we start from SIMD-ZK schemes and aim to obtain efficient general ZK and
scalable ZK. We first extend the SIMD-ZK functionality by adding a proof of linear map,
which is easily realized by most SIMD-ZK schemes. Then we design two compilers.
The first one converts a wide range of extended SIMD-ZK to general ZK, and the second
one further converts it to scalable ZK for memory-constrained provers to prove large
statements. For both constructions, we also demonstrate the generality of the compilers,
i.e., our methods promote any SIMD-ZK to general and possibly scalable ZK so that
attention can be paid only to the design of the efficient SIMD-ZK, instead of more
complicated generic primitives. Our contributions are fourfold.
Extended SIMD-ZK. We propose a functionality that extends the SIMD-ZK func-

tionalityFSIMDZK and denote it asFeSIMDZK. In addition to the subroutines commit, open
and prove that are commonly supported by SIMD-ZK schemes, it also contains a proof
of linear map that checks the relation x = M y for committed vectors (x, y). The func-
tionalityFeSIMDZK is the fundamental building block of our constructions. Additionally,
we observe that special attention needs to be paid to the security of commit-and-prove
procedures when designing a general framework for scalable ZK. Some commitment
schemes may put a restriction on its proving phase. The security consideration will be
reflected as a counter in FSIMDZK and analyzed when such a commitment scheme is
encountered.
Compiling SIMD-ZK to general ZK. Based on the extended SIMD-ZK, we design

a SIMD compiler that allows a wide spectrum of SIMD-ZK to work for general circuits.
To do so, it first converts the general circuit into a SIMD circuit by ignoring the circuit
connectivity, and proves its satisfiability via a SIMD proof. This only utilizes the commit,
open and prove thus can be handled by the underlying SIMD-ZK. Then the compiler
represents the wiring as a linear mapping of committed wire values, and proves the wiring
consistency by the proof of linear map from FeSIMDZK. Our compiler is a generalization
of a few works including Ligero [2,6] and LegoSNARK [18], which utilize R1CS-style
representations for the wiring of circuits and reduce the statement to relations that can
be better handled by the extended SIMD-ZK.
ZKP for large statements. Except for VOLE-based ZKP, most practical ZKPs incur

large RAM consumption, often linear to the circuit size. To relax the memory overhead,
we propose a framework for memory bounded provers to prove the correctness of large
statements. It also relies on FeSIMDZK and can easily achieve sublinear communication
complexity for arbitrary large circuits by properly instantiating the underlying SIMD-
ZK. Particularly, it utilizes the proving technique in our SIMD compiler to evaluate a
circuit segment-by-segment and prove the connectivity of wires between these segments.
Similar to the current scalable interactive ZK, it does not require the whole circuit
structure or the witness to be known in advance, hence allowing streaming.
Instantiation for various proof systems. To demonstrate the generality of our com-

piler, we describe and analyze the detailed instantiation of our compiler with various
CP-ZK that inherently work well for SIMD circuits, including VOLE-based ZK [50],
constant-round sublinear ZK from Σ-protocol [3], designated multi-verifier ZK from
packed Shamir sharing [53], MPC-in-the-Head [2] and zk-SNARK from pairing [18].
We show how to adapt these work for general ZK and scalable ZK by merely satisfying

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 5 of 31 10

the minimum requirement, that is, realizing the SIMD-ZK functionality. We emphasize
that the transformation may affect the security guarantee of the underlying SIMD-ZK,
and extra security analysis will be provided in that case.

In many cases, applying our compiler yields concrete efficiency improvements over
the state of the art in various settings. We list our results in Sect. 2.2. Furthermore,
we implement the SIMD compiler and evaluate the compilation of a VOLE-based ZK
[50] that is previously designed for SIMD circuits. For a circuit of size |C| = 227, it
shows up to 83.6× improvement on communication, compared to the general VOLE-ZK
Quicksilver [52]. In terms of running time, it is 70% faster when bandwidth is 10Mbps
and 30% faster when bandwidth increases to 25Mbps using the same set of parameters.
Its running time can be further improved if sacrificing communication by reducing batch
size.

1.2. Related Work

Previous work on complexity-preserving zero-knowledge proofs study efficient proof
generation with constrained space or time budget [7,8,10,11,24,31]. Bootle et al. pro-
pose elastic SNARKs that can either achieve linear time and space complexity, or reduce
the RAM consumption to O(logC) with O(C log2 C) computational complexity [13].
Assume an NP relation that can be verified in time T and space S by a RAM program,
Bangalore et al. [4] propose a public-coin ZKP based on collision-resistant hash func-
tions that allows the prover to run in time Õ(T) and space Õ(S), with proof size Õ(T/S).
Their space-preserving ZKP is converted from Ligero [2].

Recent recursive zk-SNARK and incremental verifiable computation (IVC) propose
succinct arguments for composed circuits, which can be evaluated step by step [14,16,
35–37,47]. These techniques increase the scalability of the prover, who separately gen-
erates proof for each step while simultaneously proves its consistency with all previous
steps without going over the history data. They can potentially support streaming proofs
in a way that the input and witness for future steps are not necessary known until those
steps are reached. However, many of them only support structured circuit which are
divided into a sequence of components that share the same structure. More advanced
IVCs cross this barrier, however they reveal the output of each step thus does not provide
the zero-knowledge guarantee when they are treated as general ZK [35,37].

1.3. Notation and Functionalities

Notation.Denoteλ as the computational security parameters and [1,m] as a set {1, 2, . . . ,

m}. For a vector x ∈ F
B we define its i-th coordinate by xi , and a vector x′ := (f (0), x) ∈

F
B+1 as the concatenation of a value f (0) ∈ F and the vector x. Given distribution

ensembles {Xn}, {Yn}, we write Xn ≈ Yn to denote that Xn is computationally indistin-
guishable to Yn . negl() is defined as a negligible function such that negl(λ) = o(λ−c)

for any positive constant c. A circuit C over a field F consists of input, output, addition
and multiplication gates, where input gates use circuit-input wires as their output wires
and output gates use circuit-output wires as their input wires. |C| = C is the number of
multiplication gates in the circuit C. Define (B, C)-SIMD circuit as a circuit that contains
B copies of C.

 10 Page 6 of 31 D. Bui et al.

Zero-knowledge proof FZK:

– Upon receiving (prove, C,w) from prover P and (verify, C) from verifier V , if
C(w) = 0, then output (true) to V , else output (false) to V .

Vector oblivious linear evaluation FVOLE. This functionality works over a field F,
and upon receiving (init) from P and V , if V is honest, then sample Δ ← F, else receive
Δ ∈ F from the adversary. Store Δ and ignore all subsequent (init) commands. Upon
receiving (extend, n) from P and V , execute:

– If V is honest, sample v ← F
n . Otherwise, receive v ∈ F

n from the adversary.
– IfP is honest, sample u ← F

n and compute w := v+u·Δ ∈ F
n . Otherwise, receive

u ∈ F
n and w ∈ F

n from the adversary, and then recompute v := w − u · Δ ∈ F
n .

– Output (u,w) to P and v to V .

Commitment FCom. Similar to the functionality of Commit command in FSIMDZK:

– Upon receiving input (Commit,w) from P and (Commit) from V , pick a tag �w�
and store (�w�,w) in the memory. Return �w� to both parties.

– Upon receiving (Open, �w�), if a tuple (�w�,w) was previously stored, output
(�w�,w) to V; otherwise abort.

The descriptions of special honest-verifier ZK argument are deferred to Supplementary
Material A.1.

2. Technical Overview

2.1. From SIMD to General Circuit in ZK

Denote the prover as P and verifier as V . Define (B, C)-SIMD circuit as B identical
repetitions of a circuit C with size |C| = C . SIMD-ZK is designed for such circuits.
First, we would like to focus on converting SIMD-ZK to general ZK that works for
arbitrary circuits. The functionality of ZKP for SIMD circuits is shown in Fig. 1. P first
groups and commits to the vectors of witnesses. Then it uses the underlying ZKP to prove
the relation of committed values by directly operating on commitments. Since elements
in each vector are committed in a batch, the operations on the commitment apply to all
of the committed elements. For a SIMD-ZK to be interesting, it usually costs less than
separately evaluating C for B times. For example, AntMan [50] has a complexity of
O(B+C) for (B, C)-SIMD circuits, which shows significant saving on communication
compared with its non-SIMD opponents [23,52] that incur O(BC) complexity.

There are multiple ways to conduct the transformation from SIMD-ZK to general ZK.
As discussed in Sect. 1, such constructions usually need a wire consistency check on top
of SIMD-ZK. Taking AntMan [50] as an example, one can first arrange all gates in
batches, commit to their input and output wire values, then utilize a SIMD-ZK to prove
that all batches of gates are computed correctly. Then an extra protocol is invoked to
prove the consistency of each individual wire value that is repeatedly packed in multiple
commitments, e.g., for batched wire values w1,w2 ∈ F

B and wire indices i, j ∈ [B], it
aims to check whether they satisfy w1[i] = w2[j]. AntMan requires O(B3) complexity
for checking all combinations of (i, j) ∈ [B]×[B], which leads to a total communication

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 7 of 31 10

Fig. 1. Functionality of SIMD ZK .

complexity of O(B3 +C/B). This translates to a O(C3/4) cost when setting B = C1/4.
The designated multi-verifier ZK from [53] also uses a similar wire consistency check,
which incurs O(n2B2) among n verifiers.
A better wire consistency check. We follow an idea similar to the above but manage

to improve the complexity from O(C3/4) to O(C1/2). As in AntMan [50], we ignore the
wiring of the circuit and pack the multiplication gates in blocks of size B, which results
in C/B batches. The SIMD proof is invoked to first commit to the input and output
wires of the packed multiplication gates, then prove the SIMD circuit satisfiability. They
totally incur communication complexityO(C/B). Then, we manage to perform the wire
consistency check with cost O(B) rather than O(B3).

Instead of considering the wire consistency among each pair of commitments that
contain values from the same wire as done in AntMan, we consider how they are all
consistent with a global vector w that contains all wire values in the circuit. Taking
the left input wire of all multiplication gates as an example. Define a circuit C that
has a total of Bm wire values and Bn multiplication gates. Assume global wire values
w ∈ F

Bm and the values of left input wires across all multiplication gates l ∈ F
Bn .

For any i ∈ [Bn], the left wire of the i-th multiplication gate must be associated a wire
index αi ∈ [Bm] such that l[i] = w[αi]. Alternatively, one can define a mapping matrix
L ∈ {0, 1}Bn×Bm such that the i-th row Li is all-zero except at the entry Li [αi]. In
this way, the wire consistency check boils down to check l = Lw, where L is public
and parties have commitments {�l i �}i∈[n] and {�wi �}i∈[m]. In the context of SIMD-ZK
protocols, values in l and w are batch-committed, meaning that operations on them
are applied to every element in the vector. As a result, it is not straightforward to use
SIMD-ZK to prove wire consistency which intuitively involves operations for separate
elements.

We sketch our idea below. First, let V send a challenge vector r̂ ∈ F
Bn and convert

the check of l
?= Lw to the check of r̂ᵀl ?= r̂ᵀLw. This reduces the proof of a matrix–

vector multiplication to a proof of two inner products, with an increase in soundness

 10 Page 8 of 31 D. Bui et al.

error depending on the distribution of r̂ . To simplify the notation, we define a public

vector vᵀ = r̂ᵀL, then rewrite the above relation as r̂ᵀl ?= vᵀw. If we define a circuit
C : F2n+2m+1 → F such that C(r̂1, . . . , r̂n, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q) :

∑

i∈[n]
r̂i · li −

∑

j∈[m]
v j · w j − q,

thenP can prove the above statement by: (1) Divide each of the vectors in (r̂, l, v,w) into
length-B segments. Compute and commit to q := ∑

i∈[n] r̂i ∗ li −
∑

j∈[m] v j ∗w j ∈ F
B .

Prove the consistency between (r̂, l, v,w, q) by using a SIMD-ZK composed of B
evaluations of the circuit C. (2) prove that

∑
i q[i] = 0. This is not obvious, as it

involves the computation of the sum of values in one commitment. A naive way is for
P to open the commitment to q, but it compromises the zero-knowledge requirements
because q is the linear combination of private circuit wire values. To tackle the problem,
P instead commits to a uniform vector r̃ ∈ F

B under the constraint that
∑

i∈[B] r̃[i] = 0.
It should be done before V samples r̂ (else P can break soundness). After P commits
to the mask vector, V sends the challenge r̂ and the new SIMD circuit is defined to be

C′(r̂1, . . . , r̂n, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q, r̃)

=
∑

i∈[n]
r̂i · li −

∑

j∈[m]
v j · w j − q − r̃

P computes and commits to q ∈ F
B such that

q =
∑

i∈[n]
r̂ ∗ li −

∑

j∈[m]
v j ∗ w j − r̃ .

The parties can now use the SIMD-ZK to prove B number of instances of C′ with
committed inputs �r̂1�, . . . , �r̂n�, �l1�, . . . , �ln�, �v1�, . . . , �vm�, �w1�, . . . , �wm�, �q�
and �r̃�. Finally, the proof of

∑
i q[i] = 0 is specific to the underlying commitment

schemes. The naive way is to let P fully open q to V who verifies its sum locally. This
would generally require O(B) communication complexity.

Soundness comes from the randomness of the challenge vector r that is sampled after
P commits to r̃ . Assume that F is an exponentially large field and a cheating prover
commits to (l,w) such that l −Lw
= 0Bn . By Schwarz-Zippel, the probability that the

erroneous values happen to be corrected by r̂ during the check of
∑

i q[i] ?= 0 where
q := r̂ᵀl − r̂ᵀLw is 1/|F|, which is negligible.
Plugging in the protocol. For a general circuit with a total of |w| = Bm wire values

and C = Bn multiplication gates, the above approach leads to a zero-knowledge proof
of linear map that can be instantiated by any SIMD-ZK. The actual communication
complexity depends on the cost of proving the inner product argument by the underlying
SIMD-ZK, plus the opening cost of the commitment scheme. Let (l, r, o) ∈ F

nB be the
batched wire values of left, right and output of multiplication gates in the circuit. The wire

consistency can be proven by checking (l
?= Lw, r

?= Rw, o
?= Ow), where (L,R,O) ∈

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 9 of 31 10

Fig. 2. Functionality of extended SIMD zero-knowledge.

F
nB×mB are public maps that describe the circuit connectivity. Furthermore, the SIMD-

ZK protocol handles the rest of the multiplicative relation check o
?= l∗r . This scheme is

captured in the extended SIMD-ZK functionality FeSIMDZK shown in Fig. 2. Compared
to the common SIMD-ZK functionality shown in Fig. 1, it additionally supports the
proof of linear map between committed vectors. Based on this extended SIMD-ZK,
we propose a compiler that compiles any SIMD-ZK into general ZK. By plugging this
compiler to AntMan [50], it improves its communication complexity from O(C3/4) to
O(C1/2). In another case, for compressed Σ-protocols [3], this yields a reduction of
the CRS size from O(C) to O(

√
C) for constant-round sublinear ZK. Eventually, the

multi-verifier ZK [53] can be improved from O(nC/B + n2B2) to O(nC/B + n2).
Memory constrained prover. The above construction can be viewed as a compiler

that enables a SIMD-ZK to handle arbitrary circuits C, where all wire values fit in a vector
w of size O(C). Assume the linear mapping matrices use succinct representation, the
proof requires memory overhead O(C), which upper bounds the largest circuit that the
scheme can prove. We propose a second compiler that further extends the previous idea
to the streaming setting, in which the memory overhead is proportional to the plaintext
evaluation of the circuit. Furthermore, the whole circuit structure and the witnesses are
not required to be known until they are reached. Instead,P proves the circuit segment-by-
segment and only needs to evaluate the current and the previous one at a time: the circuit
C is split into segments C = (C1, . . . , Cn′) using existing circuit partition methods [1,43,
44]. For any consecutive segments C j and C j+1, let (w j , l j , r j , o j) and (w j+1, l j+1,

r j+1, o j+1) be the witness and the input and output wire values of multiplication gates
for each segment. P first uses a commit-and-prove SIMD-ZK to prove the internal
satisfiability of C j including the linear and multiplicative relations of (w j , l j , r j , o j).
Then P proves that the output wires of C j correctly link to some input wires of C j+1.
Namely, it additionally invokes the check of linear map to prove Mw j = w̃ j+1, in
which M is a map that indicates the connectivity between C j and C j+1 and w̃ j+1 are the
input wire values of C j+1. After this, P and V discard everything for segment C j and
carry on with the check of internal circuit satisfiability of C j+1. The above step incurs
memory overhead O(|w j | + |w̃ j+1|). Based on this framework, P is able to prove the
satisfiability of a large circuit by separately evaluating a sequence of smaller circuits.

2.2. Improved Commit-and-Prove ZK via SIMD Compiler

Now we show three commit-and-prove SIMD ZK protocols that take advantage of our
compilers to perform general ZKP with either reduced online communication complexity
or reduced setup cost:

 10 Page 10 of 31 D. Bui et al.

– The aforementioned AntMan [50] requires O(B +C) communication for (B, |C|)-
SIMD circuit and at least O(C3/4) for a general circuit. Our compiler transforms
it into a general VOLE-ZK with communication O(C/B + B), which is O(C1/2)

when B = O(C1/2).
– A constant-round SHVZK argument of knowledge for NP from the discrete loga-

rithm assumption with sublinear communication O(C/B + B) = O(C1/2) and a
CRS of size O(B) = O(C1/2), where the computation is dominated by O(C1/2)

C1/2-size Fast Fourier Transforms (FFT). It builds upon the techniques from Attema
et al. [3] (denoted as AC20) and is combined with a 2-round SHVZK for Hadamard
product of [30]. It improves upon a protocol of AC20 which has a CRS of size
O(C) and requires O(1) C-sized FFT. For (B, C)-SIMD circuit, our protocol has
O(C + √

B) = O(C1/2) communication.
– A non-interactive designated n-verifiers ZK based on the packed Shamir secret

sharing [25,53]. Restricting B < n−2t where t is the number of corrupted verifiers,
it incursO(nC) communication overhead for (B, C)-SIMD circuits andO(nC/B+
n2B2) for arbitrary circuit of size C , The cost is optimized to O(nC/B + n2) with
the help of our compiler.

Additionally, we also demonstrate that Ligero [2] and its follow-up work [4] perfectly
fit our compilers. Although there is no improvement in terms of the proof size or compu-
tational complexity, casting Ligero in our framework and using it as a commit-and-prove
ZK allows us to identify an important security consideration that would affect both the
soundness and zero-knowledge properties.
Compiling AntMan SIMD-ZK. The AntMan SIMD-ZK protocol consists of the

following key components: 1) a constant-size additive-homomorphic polynomial com-
mitment scheme, 2) a proof of multiplicative relation on committed polynomials, i.e.,
prove that f0(·) = f1(·) · f2(·). and 3) a proof of degree reduction, i.e., for two polyno-
mials (f (·), f̂ (·)) with degrees d1 < d2, f (i) = f̂ (i) for i ∈ [d1 + 1]. We write � f �
for a commitment to the polynomial f (·). The AntMan protocol realizes FSIMDZK as
follows:

1. For each batch of B private inputs wα ∈ F
B , P computes a degree-(B − 1)

polynomial fα such that fα(i) = wα[i]. P commits to fα so that P and V obtain
� fα�.

2. The parties process the circuit in topological order. For any batch of k addition
gates with commitments to input wires (� fα�, � fβ�), P and V locally computes
the commitment to output wires by � fγ � = � fα� + � fβ�. For multiplication gates
with input commitments � fα� and � fβ�, P computes wγ = wα ∗wα and a degree-
(B − 1) polynomial fγ such that fγ (i) = wγ [i], i ∈ [B]. P also computes
f̂γ (·) = fα(·) · fβ(·). P commits to them by generating � fγ � and � f̂γ �.

3. For each multiplication gates with input and output wires (α,β, γ), P proves that
(� fα�, � fβ�, � f̂γ �) is a multiplication triple and f̂γ (i) = fγ (i) for i ∈ [B].

4. When a batch of k output wires α, P opens the commitment to fα , from which V
reconstructs wα .

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 11 of 31 10

The overhead of AntMan SIMD-ZK lies in the commitment of batch circuit interme-
diate wire values at Step 2, which takes O(C) for a (B, C)-SIMD circuit. The proof of
multiplication and degree reduction only incurs O(B) with random linear combination.

When applying the SIMD compiler to the AntMan SIMD-ZK, it takes O(C/B) to
prove all multiplicative relations for a general circuit of size C . Namely, it checks C
multiplication triples (l, r, o) via SIMD-ZK. Additionally, it invokes the proof of linear
map to check the wire consistency between (l, r, o) and w, which contains intermediate
wire values in the circuit. This procedure incurs O(B) communication overhead at
the final commitment opening. Hence, it takes O(C/B + B) ≥ O(C1/2) in total to
prove the satisfiability of arbitrary circuits. This protocol is referred as AntMan++. We
implemented the AntMan++ and evaluate its performance on proving general circuits of
size up to C = 227. It is compared with the prior practical VOLE-based ZK QuickSilver
[52], which requiresO(C) communication overhead. More details are shown in Sect. 4.1.

SIMD-ZK based on Pedersen commitment. We briefly present a SHVZK argument
of knowledge for (B, C)-SIMD circuits which relies on the techniques of AC20 [3].
The key construction of AC20 is a compression mechanism to handle ZK proof for
general linear relations (the prover wants to prove the correction of evaluation of a linear
form over a committed vector). We expand this technique to obtain a constant-round
DLOG-based ZK proof for (B, C)-SIMD circuits with O(C + √

B) communication.
When plugged into our compiler, we get a constant-round circuit ZK with O(C1/2)

communication, O(C1/2) CRS size, and with computation dominated by O(C1/2) FFTs
of size O(C1/2). It improves over AC20 in both CRS size (from linear to square root)
and computation time.

Specifically, for a group of B multiplication gates, we encode the values over all B
evaluations on left wire values i.e x ∈ F

B into one polynomial f using pack secret

sharing such that f (0)
$←− F, f (i) = xi for i ∈ [1, B] and commit to it using Pedersen

commitment to obtain � f � = gx
′
hr where x′ := (f (0), x) ∈ F

B+1. The vector of
right wire values y is committed in the same way as x to get �g�. For the vector of
output wire values z, we define h(X) := f (X)g(X) and �h� = gz

′
hr where z′ :=

(h(0), z, h(B + 1), . . . , h(2B)) ∈ F
2B+1. P can convince V that zi = xi yi for all

i ∈ [1, s] by revealing f (c), g(c) and h(c) where the challenge c is randomly picked

by V . V now checks f (c)g(c)
?= h(c) while P needs to prove that the revealed values

are correct evaluations of f (X), g(X) and h(X) at c. This can be handled by using a
ZK proof for linear relations since by Lagrange formula, f (c), g(c) and h(c) can be
expressed as linear form on the committed vectors x′, y′ and z′. Observe that this way,
P can prove correctness of a batch of B-tuples of multiplication gates, by showing
that the evaluation of many different committed polynomials at a given challenge c is
correctly computed. This can be done using an amortized check over many executions,
with cost identical to that of a single execution. Using a sublinear argument for a batch
of B-tuples of multiplications, the circuit ZK can be obtained by combing our compiler
with an amortized nullity check over one commitment scheme which is used to check
the consistency of output gates and also of two different commitments of two vectors
of the form x ∈ F

B+1 and (x,aux) ∈ F
2B+1. The details of construction are shown in

Sect. 4.2.

 10 Page 12 of 31 D. Bui et al.

Compiling multi-verifier ZK. Yang et al. [53] proposed an non-interactive desig-
nated multi-verifier zero-knowledge proof (MVZK) that allows a prover to prove the
correctness of a statement to a set of n honest-majority verifiers. It leverages packed
Shamir secret sharing (PSS) [25] to support SIMD statements. At a high-level, P first
distributes the witnesses to V in the form of PSS, then utilize a polynomial compression
protocol [12,15,29] to reduce the check of all multiplications into a single multiplication
triple. The PSS of witnesses serves as commitments among all V , thus it can be viewed
as a commit-and-prove SIMD ZK. Effort is made in [53] to convert its SIMD-ZK to
general ZK by arranging all wire connection as a tuple (�w1�, �w2�, i, j), indicating
that w1[i] = w2[j]. All tuples with the same (i, j) can be checked in a batch with
commitment-opening cost O(n2) by a random linear combination. Since i, j ∈ [B], the
total wire consistency check incursO(n2B2). However, by applying our SIMD compiler,
the overhead for the check is reduced toO(n2). The cost to prove multiplicative relations
remains O(nC/B). One caveat is that this protocol is not flexible in choosing the batch
size B. Assume the maximum number of corrupted verifiers t < n/2, it requires that
2t + B < n to ensure that honest verifiers have enough shares to determine the result.

SIMD-ZK from Ligero. Our compiler is partially inspired by Ligero [2], an MPC-
in-the-head-based ZKP [32] that works for general circuits. At the core of Ligero, P
batch encodes the witness using the Reed-Solomon (RS) coding scheme and commits
to each entry of the codewords. V chooses a subset of entries in codewords, and applies
the interleaved RS test, linear constraint test and quadratic constraint test to verify the
correctness of encoding, wiring consistency and multiplicative consistency.

We first extract a commit-and-prove SIMD-ZK from Ligero and prove that it real-
izes FSIMDZK. Applying our SIMD compiler would result in the original Ligero. We
then identify a security issue when applying SIMD Ligero to our memory-constrained
framework designed for scalable ZK. Namely, although Ligero can be turned into a
commit-and-prove ZK, its commitment only supports a pre-determined limited number
of invocations from the proving procedure. Following the MPC-in-the-head paradigm,
the committing phase mentioned above is equivalent to emulating a n-party computation
of such circuit, then separately commit to the view of each party among (P1, . . . , Pn).
During the proving phase, P opens a subset of t < n views to V , who applies the above-
mentioned tests. This is fine for one-shot proofs. However, general commit-and-prove
ZK does not restrict the number of times that the proving procedure is applied to a com-
mitment. The zero-knowledge property can be compromised if the number of opened
views exceeds the degree parameter of Reed-Solomon encoding. Although refreshing
the commitment solves this issue, a proof of equality across the obsolete and new com-
mitments does not come for free. Our framework covers this issue by adding a counter
in FSIMDZK to check the usage of each commitment, and abort the proving phase when
an input commitment is overused.

3. Generic Compiler of ZK Proofs from SIMD Circuits to Arbitrary Circuits

In this section, we first present a construction for extended SIMD-ZK functionality
FeSIMDZK which supports the proof of linear map, in addition to the normal SIMD-ZK
functionality FSIMDZK. Based on the extended SIMD-ZK, we describe our compiler that

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 13 of 31 10

Fig. 3. The protocol for extended SIMD ZK from SIMD ZK.

enables a SIMD-ZK scheme to work for general circuits. At last, we present a framework
that allows SIMD-ZK schemes to prove large statements with small memory footprints.

3.1. Extended SIMD-ZK

The protocol for extended SIMD-ZK is shown in Fig. 3, which realizes the function-
ality FeSIMDZK. It is based on the FSIMDZK functionality to perform the committing
and opening of batched wire values, as well as prove the element-wise multiplicative
relations between these batches. It takes input a public matrix M ∈ F

Bn×Bk and two
vectors x = (x1, . . . , xn) ∈ F

Bn and y = (y1, . . . , yk) ∈ F
Bk from P , outputs 1-bit

information to V indicating whether x = M y. Essentially, it is a proof of linear map.
The first step is to reduce the proof of linear map to a proof of inner products, which is
achieved by a random linear combination: V uniformly samples r̂ ∈ F

Bn and converts

the check of x
?= M y into r̂ᵀx ?= vᵀ y, where vᵀ = r̂ᵀM. After dividing these vectors

into length-B segments, P and V invoke the FSIMDZK functionality of batch size B.
P inputs q and proves the correctness of q = ∑n

i=1 r̂ i ∗ xi − ∑k
j=1 vi ∗ yi ∈ F

B .

Eventually it opens the commitment to q and let V check
∑B

i=1 q[i] ?= 0. To ensure the
privacy of P , it needs to make sure that only opened commitment to q does not reveal
information of x and y. It does so by the random mask r̃ . The impact of this mask on
soundness is negligible since it is committed before r̂ is sampled.

 10 Page 14 of 31 D. Bui et al.

In terms of the cost, the protocol ΠeSIMDZK takes input k + n vector commitments.
During the protocol execution, it additionally commits to k + n + 1 size-B vectors. If
element-wise product between a public vector and a committed vector is supported by
the underlyingFSIMDZK, the number of commitments is reduced to 1 size-B vector com-
mitment. Parties invoke the Prove procedure fromFSIMDZK to prove a (B, n+k)-SIMD
circuit. P also opens a size-B vector to V with cost at most O(B). The cost is reduced if
the underlying SIMD-ZK protocol provides an easier way to prove

∑B
i=1 q[i] = 0 for

a committed vector q without opening the commitment.

Theorem 1. ProtocolΠeSIMDZK (Fig.3) securely realizes the FunctionalityFeSIMDZK
(Fig.2) in the FSIMDZK-hybrid model, with soundness error |F|−1.

Proof. We first consider the case of a malicious prover and then the case of a malicious
verifier. In each case, we construct a PPT simulator S given access to functionality
FeSIMDZK, and running a PPT adversary A as a subroutine while emulating FSIMDZK
for A. We show that no PPT environment Z can distinguish the real-world execution
from the ideal-world execution.
Malicious prover. The simulator S simulates the view of adversary A for the protocol

execution of ΠeSIMDZK as follows:

1. By emulating the (Commit) command ofFSIMDZK,S receives r̃ fromA and sends
a handler �r̃� to A.

2. S uniformly samples r̂ ∈ F
Bn and sends to A. For i ∈ [k], after receiving

(Commit, vi) from A, S sends a handler �vi � to A. Similarly, S sends �r̂ i � to
A for i ∈ [n].

3. After receiving (Commit, q) from A, S emulates FSIMDZK by sending A another
handler �q�.

4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A, and then checks whether τi for
all i ∈ [2n+2k+2] match their corresponding tags. For i ∈ [B],S checks whether∑n

j=1 r̂ j [i]x j [i] − ∑k
j=1 v j [i] y j [i] + r̃[i] − q[i] equals to 0 or not. If any check

fails, S aborts; otherwise sends Pass to A.
5. S emulates the (Open) command of FSIMDZK and receives a handler τ from A.

If τ does not match �q� or the vector q previously sent by A does not satisfy∑B
i=1 q[i] = 0, S aborts.

Define E to be the event that a cheating prover A successfully convinces V in the
real-world. This happens when r accidentally corrects the wrong input of A. Define
z = M y and

f (x1, . . . , xBn) =
Bn∑

i=1

xi (x[i] − z[i]) +
B∑

i=1

r̃[i].

With fixed x, z, r̃ and uniformly sampled r̂ , we have

Pr
[
E |x
= M y

] = Pr
[
f (r̂) = 0|x
= M y

] = |F|−1.

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 15 of 31 10

since f (x1, . . . , xBn) is a Bn-variate degree-1 polynomial. Hence we conclude that A
cannot distinguish between the real and ideal world except with probability |F|−1.

Malicious verifier. Similarly in this case, S interacts with A as follows:

1. To emulate the (Commit) command, S sends a handler �r̃� to A.
2. S recieves r̂ and (Commit, vi) from A for i ∈ [k]. Then S emulates FSIMDZK

by sending A a handler �vi � for i ∈ [k]. In the same way, S sends A handlers
{�r̂ i �}i∈[n].

3. Then, S plays the role of FSIMDZK and sends a handler �q� to A.
4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) fromA and checks whether {τi }i∈[2n+2k+2]

match their corresponding tags. ThenS queriesFeSIMDZK. If check fails orFeSIMDZK
aborts, S aborts; otherwise sends Pass to A.

5. By emulating the (Open) command of FSIMDZK, S uniformly samples a vector
q ∈ F

B such that
∑B

i=1 q[i] = 0 and sends q to A.

The only difference between reality and the ideal world is the method of calculating
vector q. Following the constraint

∑B
i=1 q[i] = 0, S uniformly samples vector q. While

in reality, each entry of q is masked by vector r̃ chosen by P . As a result, in both worlds,
all entries except one of q are information-theoretic secure, so no one can distinguish
one from another.

Overall, any PPT environment Z cannot distinguish between the real-world execution
and ideal-world execution, which completes the proof.

�

3.2. Compiling Extended SIMD-ZK

The general approach to compile a SIMD protocol into a generic protocol is to supple-
ment it with an additional proof of wiring consistency. Namely, denote w as a vector that
includes all the wire values in a circuit, then any input wire of a multiplication gate can
be represented as the linear combination of a series of values in w, who are the wire val-
ues that connect from the circuit inputs or the output of other gates. This relation can be
generally represented as a linear map M between a vector of wire values x, and w, which
should satisfy x = Mw. As shown in Fig. 4, along with the vector w, P also commits
to (l, r, o) which are the batches of input and output wire values of multiplication gates.
Showing that o = l ∗ r is enough to prove that all multiplication gates are computed
correctly. Additionally, P also proves the correctness of (l = Lw, r = Rw, o = Ow),
in which (L, R, O) are the linear maps that defines the routing of wires that connects
to the input and output wires of multiplication gates. Additionally, the proof of 0 = Aw

shows the correct computation of all addition gates.
To handle a general circuit C, our compiler fully depends on the extended SIMD-ZK

functionality FeSIMDZK. Regarding the cost analysis, P commits to a total of k + 3n2
size-B vectors to V . They invoke the proof of linear map for 4 times to prove the wiring
consistency, and the proof of element-wise multiplication to prove the correctness of
n2 batches of multiplication gates. An optimization to reduce the cost for the proof of
linear map is to combine the 4 of them into 1. Namely, define w′ to be the wire values
excluding the input and output wires of multiplication gates. Construct the witness

 10 Page 16 of 31 D. Bui et al.

Fig. 4. Generic ZK in the FeSIMDZK hybrid.

vector w = (w′‖l‖r‖o) and prove the wiring consistency by proving 0 = A′w, in
which A′ ∈ F

K×K is a map that describes the circuit wire connectivity.

Theorem 2. The Protocol Πcompiler (Fig.4) securely realizes the Functionality FZK
in the FeSIMDZK-hybrid model, with 0 soundness error.

Proof. Similarly, we construct a PPT simulator in two cases and argue that no PPT
environment Z can distinguish reality and the ideal world.
Malicious prover. The simulator S simulates the view of adversary A for the protocol

execution of Πcompiler as follows:

1. Following the protocol specification, S obtain matrix L,R,O and A from circuit
C.

2. By emulating the (Commit) command of FeSIMDZK, S receives {l i , r i , oi }i∈[n2]
and {wi }i∈[k] from A and sends A handlers {�l i �, �r i �, �oi �}i∈[n2] and {�wi �}i∈[k].

3. After receiving (LinearMap, {τi }i∈[n2+k],L) from A, S checks whether {τi }i∈[n2]
match {�l i �}i∈[n2] and {τi }i∈[n2+1,n2+k] matches {�wi �}i∈[k]. Then,S checks whether
l = Lw. If any check fails, S aborts; otherwise, S sends Pass to A. Similarly, S
handles other three (LinearMap) commands from A.

4. For i ∈ [n2],S receives (Prove, C, τ1, τ2, τ3) fromA and checks whether {τ1, τ2, τ3}
match the tags {�l i �, �r i �, �oi �}. In each round, S also checks that l i [j] · r i [j] =
oi [j] for j ∈ [B]. If any check fails, S aborts; otherwise, S sends Pass to A.

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 17 of 31 10

It is trivial thatS is perfect, since whenever an ideal functionality is called in the protocol,
S acts exactly the same as the definition of the functionality. On the other hand, if the
witness indeed satisfies linear as well as the multiplication constraints, we can conclude
that it satisfies circuit C. Given the perfectness of the ideal functionality, we can conclude
that the soundness error is 0.
Malicious verifier. The simulator S simulates the view of adversary A for the protocol

execution of Πcompiler as follows:

1. S follows the protocol specification and obtain matrix L,R,O and A from circuit
C.

2. By emulating the (Commit) command of functionality FeSIMDZK, S sends A
handlers {�l i �, �r i �, �oi �}i∈[n2] and {�wi �}i∈[k].

3. After receiving (LinearMap, {τi }i∈[n2+k],L) from A, S checks whether {τi }i∈[n2]
match {�l i �}i∈[n2] and {τi }i∈[n2+1,n2+k] matches {�wi �}i∈[k]. Then, S queries FZK.
If check fails or FZK aborts, S aborts; otherwise, S sends Pass to A. Similarly, S
handles other three (LinearMap) command from A.

4. For i ∈ [n2],S receives (Prove, C, τ1, τ2, τ3) fromA and checks whether {τ1, τ2, τ3}
match the tags {�l i �, �r i �, �oi �}. In each round, S also queries FZK. If any check
fails or FZK aborts, S aborts; otherwise, S sends Pass to A.

Similarly, since S acts according to the definition of the ideal functionality and there is
no commitment opening during the protocol, the simulation is perfect.

As a result, no PPT environment Z can distinguish between the real-world scenario
and the ideal-world execution, which completes the proof. �

3.3. Generic ZK for Limited-Memory

Besides a basic-version compiler, we also present another compiler that can deal with
a situation where the prover’s memory is limited. Although a similar question has already
been proposed before [7,27,37,41], our construction does not rely on any complicated
assumption other than the realization of FeSIMDZK with the parameter τmax > 1. The
protocol is shown in Fig. 5. We take the advantage of the commit-and-prove paradigm:
instead of proving the whole circuit at one time, circuit can be “partially" proved. The
value of wires that connect between different parts of the circuit can be reserved as
commitments and used for the proof of connectivity. Specifically, prover will clarify a
space threshold parameter S before the proof, and the original circuit C will be divided
into
|C|/S� parts (denoted as C1, C2, . . . , C
|C|/S�), where each part contains at most
S gates. In each round, S gates of Ci will be read and processed in the memory, and
P generates the proof for Ci . At the end of each round, P commits to a vector which
contains all the wire values that are still active in Ci+1, and discards those that won’t be
used in the remaining circuit.

To support this pruning operation, we add a DEL gate to the encoding of the circuit.
P reads the circuit from a stream of (α, β, γ, T), where T ∈ {ADD, MULT, DEL}.
If T ∈ {ADD, MULT }, P processes gates α, β, γ similarly as the previous compiler.
If T = DEL , P adds gate α to the set D, which contains all the wire values that no
longer appear in the next segment of the circuit. After the proof of consistency inside
Ci , P forms a new commitment to wire values that are not in the set D. By applying

 10 Page 18 of 31 D. Bui et al.

Fig. 5. Generic ZK in limited-memory scenario.

FeSIMDZK.LinearMap, P proves that the committed wire values belongs to the output
wires of Ci , which are also the input of Ci+1. P and V repeat this procedure for the proof
of each segment.

Now we claim that if the plaintext evaluation of circuit C requires memory space M ,
then in our protocol, the prover’s space complexity is O(M). Denote oi as the output of
subcircuitCi , and circuit input x is denoted as o0. In each round, we callFeSIMDZK.Prove
to complete the proof for Ci and FeSIMDZK.LinearMap to prove the transformation
between �oi−1� and �oi �. As each subcircuit contains at most S gates, proving Ci requires
O(S) space. And also, using FeSIMDZK.LinearMap to prove the consistency between
�oi−1� and �oi � requires O(|oi−1| + |oi |) space, so the space complexity of each round

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 19 of 31 10

is O(S+|oi−1|+ |oi |). As a result, the overall space complexity is O(S+max{|oi−1|+
|oi |}i∈[
|C|/S�]). Since in the plaintext evaluation of C, only active wire value needs to be
read into the memory, memory upper bound M ≥ max{|o0|, |o1|, |o2|, . . . , |o
|C|/S�|}.
By choosing S < M , we can conclude that the space complexity of the protocol isO(M)

(Fig. 6).

4. Efficient Instantiations of Our Compiler

The only assumption that our general compiler described in Sect. 3.2 makes is that the
underlying ZKP realizes the extended SIMD-ZK functionality FeSIMDZK. The compiler
for scalable ZK described in Sect. 3.3 only additionally requires the parameter τmax > 1
for FeSIMDZK. In this section, we show three instantiations of SIMD-ZK that benefits
from these compilers, including

– A ZKP based on vector oblivious linear evaluation [50].
– A zk-SNARK from Σ-protocol [3].
– A designated multi-verifier ZKP based on packed Shamir secret sharing and recur-

sive inner product check [53].

All of these works are in the form of SIMD-ZK and originally require significant extra
effort to be converted into a general ZK. Our compilers are able to transform them
into general ZK with decrease in their proof size or setup cost. The only exception is
the AntMan [50] which is restricted by τmax = 1 thus does not fit into the second
compiler for scalable ZK. In Supplementary Material A.5 and A.6, we additionally
describe a SIMD-ZK that is extracted from an MPC-in-the-head scheme Ligero [2], and
a construction from LegoSNARK [18]. Both our compilers are generalizations of them
and a follow-up work [4]. We show that Ligero SIMD-ZK perfectly fits our compilers
and discuss extra caution that need to take when compiling Ligero.

4.1. AntMan++: Sublinear Designated-Verifier ZK

AntMan [50] is a sublinear VOLE-based ZK proof for SIMD circuits, which only re-
quires communicating O(B+|C|) field elements to prove a (B, C)-SIMD circuit. It also
presents a construction for proving a single execution of an arbitrary circuit, by breaking
down the circuits into individual gates and batching them as SIMD circuits. The proving
of SIMD circuits requires sendingO(|C|/B+B) field elements, and the cost to check the
wire-value consistency is O(B3), which leads to O(|C|3/4) communication complexity
in optimal. It is the only sublinear-communication VOLE-ZK protocol for proving an
arbitrary circuit. In AntMan [50], the information-theoretic polynomial authentication
code Πk

IT-PAC servers as a polynomial commitment scheme. For arbitrary degree-k poly-
nomial f (·) known by P , an IT-PAC � f (·)� consists of a MAC M ∈ F known by P
and a tuple of keys (K ,Δ,Λ) ∈ F

3 known by V , such that M = K + f (Λ) · Δ. In the
following, we first detail the commitment scheme used in the AntMan protocol, then
discuss how to enable AntMan to prove arbitrary circuits.
Information-theoretic polynomial authentication code ΠIT−PAC. As shown in Fig. 7,

the protocol is designed in the (FVOLE,FCom)-hybrid model. It adopts additively ho-
momorphic encryption (AHE) scheme to obliviously evaluate a polynomial, where the

 10 Page 20 of 31 D. Bui et al.

Fig. 6. The protocol of SIMDZK from AntMan.

polynomial is known by P and the secret point Λ is known by V . Then VOLE corre-
lations further transform such oblivious polynomial evaluation (OPE) into IT-PACs. A
critical issue is to guarantee that the HE ciphertext which encodes the evaluation point
Λ is correct. Instead of using the zero-knowledge proof of knowledge for the proof of
validity (as done in several MPC protocols [21,34]), AntMan utilizes a simple commit-
and-open approach. Specifically, V first commits to the randomness that are used to
generate the HE ciphertexts 〈Λ1〉, . . . , 〈Λk〉. After receiving HE ciphertexts from V , P
performs the homomorphic evaluation and commits to all of HE ciphertexts 〈b〉 that it
should send to V for OPE. Then V opens the randomness and let P check the correct-
ness of 〈Λ1〉, . . . , 〈Λk〉. If they are valid, P opens 〈b〉 to continue with the execution of
OPE. This allows the AntMan protocol to remove the possible leakage of secret polyno-
mials, which is incurred by homomorphically performing polynomial evaluation upon
incorrect ciphertexts.
AntMan++. By applying our SIMD compiler to the original SIMD AntMan, we pro-

pose AntMan++, which is a more efficient VOLE-based ZK proof for arbitrary circuits.
Similar to the original AntMan, we first batch arithmetic gates and prove their correct-
ness. The generation of IT-PACs of all the wire values incurs O(|C|/B) communication
complexity. Additionally, checking the correctness of multiplication gates requires an
opening of size B.

The improvement of AntMan++ lies in the proof of wire consistency. As shown in
Πcompiler, this problem is transferred into proof of linear map. And we use a random
vector to further transfer linear-mapping proof into inner-product proof. In AntMan, we
observe that the proof of inner product between public and private vectors takes only
O(B) communication overhead. Suppose the challenge vector r is public and witness
x is private, and the IT-PACs of two vectors are known to both parties. After the secret
evaluation point Λ is revealed, both parties can locally calculate fr(Λ) because r is

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 21 of 31 10

Fig. 7. Protocol for generating IT-PACs without ZK proofs in the (FVOLE,FCom)-hybrid model .

known. Via the additively homomorphic property of IT-PACs, both parties compute
fr(Λ) · �x�, which is also the IT-PAC of Hadamard product of r and x. In this way, both
parties compute n + k IT-PACs and add them up to obtain �q�. In the end, according to
the protocol in Fig. 3, both parties open the vector of size B and check whether their
sum equals to 0. As a result, the communication cost of AntMan++ is O(|C|/B + B).
When setting B = |C|1/2, it results in O(|C|1/2).

The full description of SIMD AntMan is shown in Protocol Figs. 6 and 8.
Performance evaluation. We implement the AntMan++ protocol and benchmark its

performance. Its homomorphic encryption (HE) is supported by the Microsoft SEAL
[46] and other cryptographic building blocks are from EMP-toolkits [48]. Two Amazon
EC2 m5.8xlarge instances located in the same region are running as P and V . We
manually throttle the network to simulate low-bandwidth settings. We use the same 59-
bit FFT-friendly field as the AntMan [50]. The performance of AntMan++ is not affected
by the circuit structure and we benchmark with layered circuits for convenience. In all

 10 Page 22 of 31 D. Bui et al.

Fig. 8. The protocol of SIMDZK from AntMan (Cont.).

experiments, we randomly sample a circuit with 216 input wires, 227 addition gates and
227 multiplication gates distributed at 212 layers. We compare AntMan++ with the prior
general VOLE-ZK Quicksilver [52] and use its default parameter setting in [48]. We do
not compare with AntMan [50] because it only proves SIMD circuits.

We first benchmark the running time and communication overhead with variable
batch size log2 B ∈ [9, 12]. AntMan++ is split into the input-independent setup phase
and online phase, and their performance are reported separately. As shown in Table 1, the
increase of B leads to the significant reducing of the online communication overhead. The
setup communication is dominated by HE ciphertexts and rotation keys. For the security
of HE, the ciphertext size is fixed for all log2 B ≤ 11 and start to increase when B ≥ 12.
The running time for both setup and online phases increase with B. The overhead mainly
comes from the ciphertext rotation during the setup phase as well as the HE evaluation
and polynomial multiplication during the online phase. Although its running time is
2.1× ∼ 3.2× longer than Quicksilver, the bandwidth usage is 17.5× ∼ 83.6× smaller.

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 23 of 31 10

Table 1. Performance of AntMan++ with variable batch size. .

log2 B Communication (MB) Running time (s)
Setup Online Setup Online

9 4.6 60.13 6.84 377.3
10 4.6 30.54 14.7 380.7
11 4.6 15.78 38.72 407.83
12 6.7 8.82 144.75 438.19
QS [52] 1087.23 185.43

Benchmarked with 1 thread, 50 Mbps bandwidth and circuit size C = 227

Table 2. Performance of AntMan++ with variable threads and bandwidth .

Scheme-Threads Bandwidth (Mbps)
10 25 50 100

AM-1 461.71 449.75 446.55 444.17
AM-4 292.61 280.53 277.43 275.28
AM-8 263.55 249.89 248.24 246.07
QS-8 [52] 900.47 361.29 181.63 91.9

Benchmarked with circuit size C = 227 and batch size B = 211. Numbers are in seconds

Then we show the running time with the variable network bandwidth and the number
of threads (Table 2). The batch size is fixed to be B = 211. AntMan++ is highly efficient
in terms of network communication with asymptotically O(C/B) overhead. Its running
time does not significantly deteriorate with the decreasing of bandwidth. On the another
hand, AntMan++ is computationally heavy but fully parallelable, thus multi-threading is
effective on increasing its throughput. When the number of threading is increased from 1
to 4, the running time is decreased by 36% ∼ 38%. Compared to Quicksilver, it requires
70% less running time when bandwidth is 10Mbps and 30% less when bandwidth is
25Mbps.

4.2. Constant-Round SIMD-ZK in the Discrete Logarithm setting

To showcase the versatility of our framework, we present an SHVZK argument of knowl-
edge for (B,C)- SIMD circuits, and compile it to a constant-round square-root size argu-
ment for general circuit. This construction is based on the work of Attema–Cramer [3].
We note that [3] also mention (in a remark) that their techniques yield a constant-round
sublinear argument; however, our approach achieves better parameters. Our SIMD-ZK
has a better CRS size and computation complexity by taking advantage of our compiler
and the approach of dividing circuit into smaller ones, i.e our CRS size is O(B) instead
of O(|C|), our dominant computation cost is O(|C|/B) interpolations of polynomials
of degree O(B) while it is O(1) interpolations of polynomials of degree O(|C|) in [3].
Moreover, for a special type of circuit, i.e for (B, C)-SIMD circuit, our protocol has only

 10 Page 24 of 31 D. Bui et al.

O(C+√
B) communication. We provide a more in-depth comparison in Supplementary

Material A.3.
Sublinear ZK Argument for Linear Form Evaluation. Given a linear form L : Zn

p →
Zp, consider the relation

R = {(P ∈ G, L , y ∈ Zp; x ∈ Z
n
p, r ∈ Zp) : P = gxhr , y = L(x)}

Let P ∈ G be a commitment to x ∈ Zn
p. The prover wants to convince the verifier

that y = L(x), while keeping x secret. To achieve this, [3] divides the witness vector
x ∈ Zn

p into 2 parts then recursively run the protocol log(n) − 1 times and get an
honest-verifier proof of knowledge for relation R with O(log n) bits communication in
O(log n) moves. It is known [30] that there is a trade-off between communication cost
and the number of rounds, and this protocol can be generalized by dividing the witness
into k = O(

√
n) parts, yielding a 5-round protocol with sublinear communication (this

was also mentioned in [3]). We denote the 5-round sublinear ZK argument for linear
form evaluation by Π(�x�, Li , 0; x). We provide a formal description of this protocol in
the Supplementary Material A.3.
Amortization.We now overview some amortizations techniques of [3] which allow the

prover to prove correctness of (1) many nullity checks of different linear forms over the
same committed vector x and (2) many evaluations of the same linear form over many
different committed vectors in the 5-move protocols, with negligible communication
overhead compared to a single check Π .
Compressing many nullity checks Πzeros(�x�, L1, L2, . . . , Ls, 0; x): Given P = gxhr ,
s linear functions Li : Zn

p → Z p, P can show that Li (x) = 0 for all i ∈ [1, s] at the
cost of one single check plus one Z p challenge from V to P .
Amortizing over many commitments ΠAm(�xi �, L , yi ; xi)i∈[1,s]: Given Pi = gxi hri for
i ∈ [1, s], the prover wants to show that the evaluation of the same linear form L on
many committed vectors is correct i.e yi = L(xi). Intuitively, a prover can do this batch
evaluation checks of L over many committed vectors xi at the same cost of evaluation
checks of L over only one committed vector.
Batch argument for multiplication gates. Let’s consider m tuples of B multiplications

(x j,i , y j,i , z j,i = x j,i y j,i)i∈[1,B] for each j ∈ [1,m]. The batch argument is based
on algebraic interpolation polynomial and the ZK proof Π which proves the correct
evaluation of linear form (consider Π as a black box).

– For j ∈ [1,m], P defines 2 random polynomials f j , g j of degree at most B such
that f j (i) = x j,i and g j (i) = y j,i for all i ∈ [1, B]. By Lagrange-interpolation
f j , g j are well-defined from x j := (f j (0), x j,1, x j,2, . . . , x j,B) ∈ Z

B+1
p and

y j := (g j (0), y j,1, y j,2, . . . , y j,B) ∈ Z
B+1
p . Define h j := f j g j , observe that

degree of h j is at most 2B, h j (i) = z j,i for i ∈ [1, B] and h j is well-defined
from z j := (h(0), z j,1, z j,2, . . . , z j,B, h(B + 1), . . . , h(2B)) ∈ Z

2B+1
p . P com-

mits (x j , y j , z j) j∈[1,m].
– V pick randomly c

$−→ Zp\[1, B] and sends to prover.

– P reveals (f j (c), g j (c), h j (c)) j∈[1,m]. V now then checks h j (c)
?= f j (c)g j (c). P

can cheat with probability at most (2B)/(p − B). Denote Lc : ZB+1
p → Zp, L ′

c :

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 25 of 31 10

Z
2B+1
p → Zp are public linear forms by Lagrange formula such that Lc(x j) =

f j (c), Lc(y j) = g j (c) and L ′
c(z j) = h j (c) (f j , g j are corresponding to the same

linear form).
– P runs in parallel ΠAm(�x j �, �y j �, Lc, f j (c), g j (c); x j , y j) j∈[1,m] and ΠAm(�z j �,

L ′
c, h j (c); z j) j∈[1,m].

We obtain an argument for n multiplications with sublinear communication cost when
choosing B = O(

√
n).

Instantiation of SIMD ZK. We achieve a ZK proof for (B,C)-SIMD circuits with
communication O(|C| + √

B). Concretely, sending commitments of gates costs at most
3|C| elements of G. For checking the correction of multiplication gates and consistency
of output gates, the cost is less than 3 times the instantiation of Π over the committed
vector of length 2B which has O(

√
B) communication (Fig. 9).

Sublinear Circuit Satisfiability. Since Pedersen’s commitment is homomorphic, ad-
ditions are free in our system, there are two constraints needed to prove (1) that multi-
plication gates are correctly computed and (2) the consistency of wires between layers.
The former constraints is handled by the batch multiplication argument and the latter is
proven using our compiler (Sect. 3). Note here, we apply our compiler to prove in ZK
the consistency of wires between layers (this is essentially a proof of a linear map) and
combine the high-level intuition underlying the analysis of our compiler with the anal-
ysis of Attema et al. to obtain a direct security proof. Concretely, we carefully combine
two works [2,28] to obtain an SHVZK for SIMD circuit.

These two proofs use different commitments for two vectors which present for the
same tuple of output wire values of multiplication gates so then it requires to prove the
consistency. Specifically, for j group of multiplication gates, we have two commitments
�o′

j �, �o j � which committed of two vectors o′
j and o j . While o′

j := (r, o1, j , o2, j , . . . ,

oB, j) ∈ Z
B+1
p and o j := (h j (0), o1, j , o2, j , . . . , oB, j , h j (B+1), . . . , h j (2B)) ∈ Z

2B+1
p

where r ∈ Zp. Prover therefore needs to prove that �o′
j �/�o j � is the commitment of

vector which having the power 0 s of the set of generators {g2, g3, . . . , gB+1}. By the
method described earlier, this is handled by a ΠAm for checking many nullities. The
protocol ΠZKPed of our sublinear ZK is shown in Figure 14 of Supplementary Material.

Theorem 3. There is a sublinear argument of knowledge for circuit satisfiability in
constant-round with the following properties:

– Perfect completeness, computational special soundness, and special HVZK under
the discrete logarithm assumption.

– The number of rounds is 7.
– The size of CRS is O(

√|C|) random elements of G.
– Computation is dominated by O(

√|C|) interpolations of polynomial of degree
O(

√|C|).

Note that in our sublinear ZK based on DLOG setting, we do not directly derive the
result from the generic UC proof of security of the abstract compiler, and in particular,
do not achieve UC security. This would require the commitments to be extractable. The
proof of the consistency of wires follows our compiler, but there is some extra work
needed to prove the consistency of commitments (described above). As for the security

 10 Page 26 of 31 D. Bui et al.

Fig. 9. The protocol of SIMDZK from [3] .

analysis, the analysis of our ZK based on DLOG is not directly inherited from the real-
ideal security proof of instantiation of eSIMDZK, but rather follows directly from the
security analysis of the two works [3,30]. Note that we can define �x� in functionality
Fig. 2 being Perdersen commitment of x , but in DLOG-setting, we never need to extract
the commitments, and the proofs of soundness and ZK are not in the UC model.

4.3. Multi-Verifier ZK

Yang et al. propose a non-interactive designated multi-verifier ZK (MVZK) proof [53]. In
this protocol, a prover P validates a statement to n verifiers (V1, . . . ,Vn) with its private

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 27 of 31 10

Fig. 10. The protocol of SIMDZK from designated multi-verifier ZK .

input. Verifiers are assumed honest-majority with adversary threshold t < n(1/2 − ε)

for 0 < ε < 1/2. P distributes packed Shamir secret shares (PSS) of all batched
circuit wire values to (V1, . . . ,Vn), who jointly execute a distributed ZK to verify the
correctness of the circuit evaluation [12,15,29], with the assistance of P . A special coin
tossing protocol is designed to maintain non-interactiveness. This MVZK protocol can
be viewed as a commit-and-prove ZK, in which the circuit wire values are committed
by the PSS. The hiding property is ensured by the privacy property of PSS, for which
a collusion of ≤ t parties can not reconstruct the secret values. The binding property
holds by the fact that any (n − t) > t + 1 honest parties’ shares define the secret values.

In addition to proving the satisfiability of SIMD circuits, [53] also proposes a proto-
col for the check of wiring consistency, which enables the PSS-based MVZK to work
for general circuits. Define a packing parameter B, for any indices i, j ∈ [B] and PSS

 10 Page 28 of 31 D. Bui et al.

[w1], [w2], the protocol proves that w1[i] = w2[j]. Overall, the checking procedure
incurs communication complexity O(n2B2). Our compiler reduces it to O(n2). In Sup-
plementary Material A.4, we introduce an inner product verification protocol for the
check of multiplication gates, and its functionality is denoted as Fverifyprod.
SIMD-ZK from [53]. The protocol is shown in Fig. 10. A commitment in MVZK

is a PSS for a vector of B values. The opening of a commitment is done by each
verifier sending its PSS share to all other verifiers, followed by all of them validating
the shares and decoding the committed values. The proving procedure takes the input of
commitments to batch circuit input wires and output wires of all multiplication gates.
They are precomputed by P and distributed to verifiers via PSS. At Step 1, verifiers
locally arrange (�wα�, �wβ�, �wγ �) for the indices of all batch multiplication triples
(α, β, γ). The PSS for the input wires of batch multiplication gates are obtained locally
by linearly combining the PSS for previous batches. Next, parties invoke a Fiat-Shamir
procedure at Step 2 to sample a random coin χ ∈ K. The property of non-interactiveness
forbids the verifiers from sending messages to P . In this protocol, P computes the input
to the Fiat-Shamir transformation from the shares of parties and let verifiers verify their
correctness, namely, (com1, . . . , comn). In this way, verifiers are able to compute χ by
hashing these commitments. In the end, parties convert the multiplication triples to an
inner product triple, which is verified by Fverifyprod.

Acknowledgements

Work of Kang Yang is supported by the National Key Research and Development Pro
gramofChina (GrantNo. 2022YFB2702000), and by theNationalNatural Science Foun-
dation of China (Grant Nos. 62102037, 61932019). Work of Yu Yu is supported by the
National Natural Science Foundation of China (Grant Nos. 92270201 and 62125204).
Yu Yu’s work has also been supported by the New Corner-stone Science Foundation
through the XPLORER PRIZE. Work of Geoffroy Couteau is supported by the French
Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project
SCENE) and the France 2030 ANR Project ANR- 22-PECY-003 SecureCompute. Work
of Dung Bui is supported by Dim Math Innov funding from the Paris Mathematical Sci-
ences Foundation (FSMP) funded by the Paris Ile-de-France Region. Work of Xiao Wang
is supported by DARPA under Contract No. HR001120C0087, NSF award # 2016240,
2236819, # 2318975, # 2310927 and research awards from Meta and Google. The
views, opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense
or the US Government.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 29 of 31 10

References

[1] C.J. Alpert, J.H. Huang, A.B. Kahng, Multilevel circuit partitioning, in Proceedings of the 34th Annual
Design Automation Conference (1997), pp. 530–533

[2] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam, Ligero: Lightweight sublinear arguments without
a trusted setup, in B.M. Thuraisingham, D. Evans, T. Malkin, D. Xu (eds.) ACMCCS 2017 (ACM Press,
2017), pp. 2087–2104. https://doi.org/10.1145/3133956.3134104

[3] T. Attema, R. Cramer, Compressed Σ-protocol theory and practical application to plug & play secure
algorithmics, in D. Micciancio, T. Ristenpart (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172 (Springer,
Heidelberg, 2020), pp. 513–543. https://doi.org/10.1007/978-3-030-56877-1_18

[4] L. Bangalore, R. Bhadauria, C. Hazay, M. Venkitasubramaniam, On black-box constructions of time
and space efficient sublinear arguments from symmetric-key primitives, in E. Kiltz, V. Vaikuntanathan
(eds.) TCC 2022, Part I. LNCS, vol. 13747. (Springer, Heidelberg, 2022), pp. 417–446.https://doi.org/
10.1007/978-3-031-22318-1_15

[5] C. Baum, A.J. Malozemoff, M.B. Rosen, P. Scholl, Mac’n’cheese: Zero-knowledge proofs for boolean
and arithmetic circuits with nested disjunctions, in T. Malkin, C. Peikert (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828(Springer, Heidelberg, Virtual Event, 2021), pp. 92–122.https://doi.org/10.1007/978-
3-030-84259-8_4

[6] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam, T. Xie, Y. Zhang, Ligero++: a new optimized
sublinear IOP, in J. Ligatti, X. Ou, J. Katz, G. Vigna (eds.) ACM CCS 2020 (ACM Press, 2020). pp.
2025–2038.https://doi.org/10.1145/3372297.3417893

[7] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, Recursive composition and bootstrapping for SNARKS
and proof-carrying data, in D. Boneh, T. Roughgarden, J. Feigenbaum (eds.) 45th ACM STOC (ACM
Press, 2013), pp. 111–120. https://doi.org/10.1145/2488608.2488623

[8] N. Bitansky, A. Chiesa, Succinct arguments from multi-prover interactive proofs and their efficiency
benefits, in R. Safavi-Naini, R. Canetti (eds.) CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg,
2012), pp. 255–272. https://doi.org/10.1007/978-3-642-32009-5_16

[9] Block, A.R., Garman, C.: Honest majority multi-prover interactive arguments. Cryptology ePrint
Archive, Report 2022/557 (2022), https://eprint.iacr.org/2022/557

[10] A.R. Block, J. Holmgren, A. Rosen, R.D. Rothblum, P. Soni, Public-coin zero-knowledge arguments
with (almost) minimal time and space overheads, in R. Pass, K. Pietrzak (eds.) TCC 2020, Part II. LNCS,
vol. 12551 (Springer, Heidelberg, 2020), pp. 168–197. https://doi.org/10.1007/978-3-030-64378-2_7

[11] A.R. Block, J. Holmgren, A. Rosen, R.D. Rothblum, P. Soni, Time- and space-efficient arguments from
groups of unknown order, in T. Malkin, C. Peikert (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828
(Springer, Heidelberg, Virtual Event, 2021), pp. 123–152. https://doi.org/10.1007/978-3-030-84259-8_
5

[12] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, Y. Ishai, Zero-knowledge proofs on secret-shared
data via fully linear PCPs, in A. Boldyreva, D. Micciancio (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694 (Springer, Heidelberg, 2019), pp. 67–97. https://doi.org/10.1007/978-3-030-26954-8_3

[13] J. Bootle, A. Chiesa, Y. Hu, M. Orrù, Gemini: Elastic SNARKs for diverse environments, in O. Dunkel-
man, S. Dziembowski (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276 (Springer, Heidelberg,
2022), pp. 427–457. https://doi.org/10.1007/978-3-031-07085-3_15

[14] S. Bowe, J. Grigg, D. Hopwood, Halo: recursive proof composition without a trusted setup. Cryptology
ePrint Archive, Report 2019/1021 (2019). https://eprint.iacr.org/2019/1021

[15] E. Boyle, N. Gilboa, Y. Ishai, A. Nof, Sublinear GMW-style compiler for MPC with preprocessing, in
T. Malkin, C. Peikert (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826 (Springer, Heidelberg, Virtual
Event, 2021), pp. 457–485. https://doi.org/10.1007/978-3-030-84245-1_16

[16] B. Bünz, A. Chiesa, W. Lin, P. Mishra, N. Spooner, Proof-carrying data without succinct arguments,
in T. Malkin, C. Peikert (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825 (Springer, Heidelberg, Virtual
Event, 2021), pp. 681–710. https://doi.org/10.1007/978-3-030-84242-0_24

[17] M. Campanelli, A. Faonio, D. Fiore, A. Querol, H. Rodríguez, Lunar: A toolbox for more efficient
universal and updatable zkSNARKs and commit-and-prove extensions. in M. Tibouchi, H. Wang (eds.)
ASIACRYPT 2021, Part III. LNCS, vol. 13092 (Springer, Heidelberg, 2021), pp. 3–33. https://doi.org/
10.1007/978-3-030-92078-4_1

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-32009-5_16
https://eprint.iacr.org/2022/557
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-031-07085-3_15
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1

 10 Page 30 of 31 D. Bui et al.

[18] M. Campanelli, D. Fiore, A. Querol, LegoSNARK: modular design and composition of succinct zero-
knowledge proofs, in L. Cavallaro, J. Kinder, X. Wang, J. Katz (eds.) ACM CCS 2019 (ACM Press,
2019). pp. 2075–2092. https://doi.org/10.1145/3319535.3339820

[19] B. Chen, B. Bünz, D. Boneh, Z. Zhang, HyperPlonk: plonk with linear-time prover and high-degree
custom gates, in EUROCRYPT 2023, Part II. LNCS (Springer, Heidelberg, 2023), pp. 499–530. https://
doi.org/10.1007/978-3-031-30617-4_17

[20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, N.P. Ward, Marlin: preprocessing zkSNARKs with
universal and updatable SRS, in A. Canteaut, Y. Ishai (eds.) EUROCRYPT 2020, Part I. LNCS, vol.
12105 (Springer, Heidelberg, 2020), pp. 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[21] I. Damgård, V. Pastro, N.P. Smart, S. Zakarias, Multiparty computation from somewhat homomorphic
encryption. in R. Safavi-Naini, R. Canetti (eds.) CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg,
2012), pp. 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

[22] C. Delpech de Saint Guilhem, E. Orsini, T. Tanguy, Limbo: efficient zero-knowledge MPCitH-based
arguments, in G. Vigna, E. Shi (eds.) ACM CCS 2021 (ACM Press, 2021), pp. 3022–3036. https://doi.
org/10.1145/3460120.3484595

[23] S. Dittmer, Y. Ishai, R. Ostrovsky, Line-point zero knowledge and its applications. Cryptology ePrint
Archive, Report 2020/1446 (2020). https://eprint.iacr.org/2020/1446

[24] N. Ephraim, C. Freitag, I. Komargodski, R. Pass, SPARKs: succinct parallelizable arguments of knowl-
edge, in A. Canteaut, Y. Ishai (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105 (Springer, Heidelberg,
2020), pp. 707–737. https://doi.org/10.1007/978-3-030-45721-1_25

[25] M.K. Franklin, M. Yung, Communication complexity of secure computation (extended abstract), in 24th
ACM STOC (ACM Press, 1992). pp. 699–710. https://doi.org/10.1145/129712.129780

[26] A. Gabizon, Z.J. Williamson, O. Ciobotaru, PLONK: permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://
eprint.iacr.org/2019/953

[27] R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic span programs and succinct NIZKs without
PCPs, in T. Johansson, P.Q. Nguyen (eds.) EUROCRYPT 2013. LNCS, vol. 7881 (Springer, Heidelberg,
2013), pp. 626–645. https://doi.org/10.1007/978-3-642-38348-9_37

[28] V. Goyal, Y. Song, Malicious security comes free in honest-majority MPC. Cryptology ePrint Archive,
Report 2020/134 (2020). https://eprint.iacr.org/2020/134

[29] V. Goyal, Y. Song, C. Zhu, Guaranteed output delivery comes free in honest majority MPC, in D.
Micciancio, T. Ristenpart (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171 (Springer, Heidelberg, 2020),
pp. 618–646. https://doi.org/10.1007/978-3-030-56880-1_22

[30] J. Groth, Linear algebra with sub-linear zero-knowledge arguments, in S. Halevi (ed.) CRYPTO 2009.
LNCS, vol. 5677 (Springer, Heidelberg, 2009), pp. 192–208. https://doi.org/10.1007/978-3-642-03356-
8_12

[31] J. Holmgren, R. Rothblum, Delegating computations with (almost) minimal time and space overhead,
in M. Thorup (ed.) 59th FOCS (IEEE Computer Society Press, 2018). pp. 124–135. https://doi.org/10.
1109/FOCS.2018.00021

[32] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai, Zero-knowledge from secure multiparty computation,
in D.S. Johnson, U. Feige (eds.) 39th ACM STOC (ACM Press, 2007), pp. 21–30. https://doi.org/10.
1145/1250790.1250794

[33] S. Kanjalkar, Y. Zhang, S. Gandlur, A. Miller, Publicly auditable mpc-as-a-service with succinct verifi-
cation and universal setup. CoRR abs/2107.04248 (2021). https://arxiv.org/abs/2107.04248

[34] M. Keller, V. Pastro, D. Rotaru, Overdrive: making SPDZ great again, in J.B. Nielsen, V. Rijmen (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822 (Springer, Heidelberg, 2018), pp. 158–189. https://doi.
org/10.1007/978-3-319-78372-7_6

[35] A. Kothapalli, S. Setty, SuperNova: proving universal machine executions without universal circuits.
Cryptology ePrint Archive, Report 2022/1758 (2022). https://eprint.iacr.org/2022/1758

[36] A. Kothapalli, S. Setty, Hypernova: recursive arguments for customizable constraint systems. Cryptology
ePrint Archive (2023)

[37] A. Kothapalli, S. Setty, I. Tzialla, Nova: recursive zero-knowledge arguments from folding schemes, in
Y. Dodis, T. Shrimpton (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510 (Springer, Heidelberg, 2022),
pp. 359–388. https://doi.org/10.1007/978-3-031-15985-5_13

https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://eprint.iacr.org/2020/1446
https://doi.org/10.1007/978-3-030-45721-1_25
https://doi.org/10.1145/129712.129780
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1109/FOCS.2018.00021
https://doi.org/10.1109/FOCS.2018.00021
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://arxiv.org/abs/2107.04248
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13

An Efficient ZK Compiler from SIMD Circuits to General Circuits Page 31 of 31 10

[38] H. Lipmaa, Prover-efficient commit-and-prove zero-knowledge SNARKs, in D. Pointcheval, A. Nitaj, T.
Rachidi (eds.) AFRICACRYPT 16. LNCS, vol. 9646 (Springer, Heidelberg, 2016), pp. 185–206. https://
doi.org/10.1007/978-3-319-31517-1_10

[39] C. Lund, L. Fortnow, H.J. Karloff, N. Nisan, Algebraic methods for interactive proof systems, in 31st
FOCS (IEEE Computer Society Press, 1990), pp. 2–10. https://doi.org/10.1109/FSCS.1990.89518

[40] A. Ozdemir, D. Boneh, Experimenting with collaborative zk-SNARKs: zero-knowledge proofs for dis-
tributed secrets, in K.R.B. Butler, K. Thomas (eds.) USENIX Security 2022 (USENIX Association,
2022), pp. 4291–4308

[41] B. Patt-Shamir, A note on efficient aggregate queries in sensor networks, in S. Chaudhuri, S. Kutten
(eds.) 23rd ACM PODC (ACM, 2004), pp. 283–289. https://doi.org/10.1145/1011767.1011809

[42] T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in J. Feigen-
baum (ed.) CRYPTO’91. LNCS, vol. 576 (Springer, Heidelberg, 1992), pp. 129–140. https://doi.org/10.
1007/3-540-46766-1_9

[43] Y. Perl, M. Snir, Circuit partitioning with size and connection constraints. Networks 13(3), 365–375
(1983)

[44] R. Rohrer, Circuit partitioning simplified. IEEE Trans. Circuits Syst. 35(1), 2–5 (1988)
[45] B. Schoenmakers, M. Veeningen, N. de Vreede, Trinocchio: privacy-preserving outsourcing by dis-

tributed verifiable computation, in M. Manulis, A.R. Sadeghi, S. Schneider (eds.) ACNS 16. LNCS,
vol. 9696 (Springer, Heidelberg, 2016), pp. 346–366. https://doi.org/10.1007/978-3-319-39555-5_19

[46] A. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL (2022), microsoft Research, Red-
mond, WA.

[47] S. Setty, J. Thaler, R. Wahby, Customizable constraint systems for succinct arguments. Cryptology ePrint
Archive, Paper 2023/552 (2023). https://eprint.iacr.org/2023/552

[48] X. Wang, A.J. Malozemoff, J. Katz, EMP-toolkit: efficient MultiParty computation toolkit. https://github.
com/emp-toolkit (2016)

[49] C. Weng, K. Yang, J. Katz, X. Wang, Wolverine: fast, scalable, and communication-efficient zero-
knowledge proofs for Boolean and arithmetic circuits, in 2021 IEEE Symposium on Security and Privacy
(IEEE Computer Society Press, 2021), pp. 1074–1091. https://doi.org/10.1109/SP40001.2021.00056

[50] C. Weng, K. Yang, Z. Yang, X. Xie, X. Wang, AntMan: interactive zero-knowledge proofs with sublinear
communication, in H. Yin, A. Stavrou, C. Cremers, E. Shi (eds.) ACM CCS 2022 (ACM Press, 2022),
pp. 2901–2914. https://doi.org/10.1145/3548606.3560667

[51] H. Wu, W. Zheng, A. Chiesa, R.A. Popa, I. Stoica, DIZK: a distributed zero knowledge proof system,
in W. Enck, A.P. Felt (eds.) USENIX Security 2018 (USENIX Association, 2018), pp. 675–692

[52] K. Yang, P. Sarkar, C. Weng, X. Wang, QuickSilver: efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field, in G. Vigna, E. Shi (eds.) ACM CCS 2021 (ACM Press, 2021),
pp. 2986–3001. https://doi.org/10.1145/3460120.3484556

[53] K. Yang, X. Wang, Non-interactive zero-knowledge proofs to multiple verifiers, in S. Agrawal, D. Lin
(eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793 (Springer, Heidelberg, 2022), pp. 517–546. https://
doi.org/10.1007/978-3-031-22969-5_18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1145/1011767.1011809
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-39555-5_19
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2023/552
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18

	An Efficient ZK Compiler from SIMD Circuits to General Circuits
	1. Introduction
	1.1. Our Contributions
	1.2. Related Work
	1.3. Notation and Functionalities

	2. Technical Overview
	2.1. From SIMD to General Circuit in ZK
	2.2. Improved Commit-and-Prove ZK via SIMD Compiler

	3. Generic Compiler of ZK Proofs from SIMD Circuits to Arbitrary Circuits
	3.1. Extended SIMD-ZK
	3.2. Compiling Extended SIMD-ZK
	3.3. Generic ZK for Limited-Memory

	4. Efficient Instantiations of Our Compiler
	4.1. AntMan++: Sublinear Designated-Verifier ZK
	4.2. Constant-Round SIMD-ZK in the Discrete Logarithm setting
	4.3. Multi-Verifier ZK

	Acknowledgements
	References

