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Abstract 34 
 35 
The critical role of the intestinal microbiota in human health and disease is well 36 
recognized. Nevertheless, there are still large gaps in our understanding of the 37 
functions and mechanisms encoded in the genomes of most members of the gut 38 
microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help 39 
us address this gap. Recent advances in barcoded transposon mutagenesis have 40 
dramatically lowered the cost of mutant fitness determination in hundreds of in vitro 41 
and in vivo experimental conditions. In an accompanying review, we discuss recent 42 
advances and caveats for the construction of pooled and arrayed barcoded 43 
transposon mutant libraries in human gut commensals. In this review, we discuss 44 
how these libraries can be applied across a wide range of applications, the technical 45 
aspects involved, and expectations for such screens.   46 



Introduction 47 
 48 
The human intestinal tract harbors an enormous diversity of microbial genes, many of 49 
whose functions remain completely unexplored1-7. Harnessing the full potential of the 50 
gut microbiome to improve health and counter disease will heavily depend on better 51 
understanding the function of (de-orphanizing) these microbial genes and how they 52 
link to other genes in the cellular network8,9. Exploration of the vast space of microbial 53 
genes demands the application of high-throughput systems biology approaches to a 54 
wide variety of organisms. For organisms that are genetically tractable, random 55 
transposon mutagenesis offers a robust and relatively inexpensive approach to 56 
uncovering genotype-phenotype relationships at genomic scale10-16. Transposon 57 
mutant libraries have proven powerful tools for rapidly screening genetic perturbations 58 
for phenotypes under various environmental conditions11,17, and thus often form the 59 
basis for mechanistic discovery of gene functions. Up to this point, such libraries have 60 
typically been constructed in model organisms and pathogens10,14,18-22, but the 61 
expansion and maturation of the underlying genetic tools to phylogenetically diverse 62 
microbes enables their broader application to gut microbes. 63 
 64 
Transposon mutagenesis is typically used to create dense libraries with insertions in 65 
most (if not all) non-essential genes in the target organism. In a pooled format, these 66 
mutant libraries are coupled with sequencing methods to quantify the relative fitness 67 
of each mutant in the pool across a set of environments10,11,17,23. Such pooled libraries 68 
can also be used to construct non-redundant arrayed libraries10,24,25, which requires 69 
considerable effort but provides an invaluable tool for easily accessing mutant strains. 70 
Such access facilitates validation of results from pooled screens and further molecular 71 
investigation of the underlying mechanism. It also enables studying single-cell and/or 72 
fitness-independent phenotypes, such as cell morphology, biofilm formation, 73 
extracellular metabolism, adhesion, metabolite secretion, and many others26,27. In 74 
random barcode transposon-site sequencing (RB-TnSeq12), each transposon carries 75 
a random DNA barcode linked to its genomic insertion position. Once the barcode-76 
insertion linkages are mapped via sequencing of the initial library, mutant fitness can 77 
be estimated simply from relative barcode abundance as determined by sequencing 78 
of the barcodes (Bar-Seq)12. As a result, barcoding greatly reduces the time, effort, 79 
and cost of pooled library sequencing12. Moreover, the location of barcoded 80 
transposon mutants in an arrayed library can be determined more easily and with 81 
greater accuracy through barcode amplification28. 82 
 83 
Pooled or arrayed mutant libraries enable rapid genome-scale in vitro screening 84 
across a wide variety of conditions, providing phenotype profiles for each gene in a 85 
strategy known as “forward genetics”11,12,14,29,30. Such profiles can link genes to 86 
phenotypes, and grouping genes with similar phenotypic profiles reveals gene-gene 87 
links and higher order genetic networks. Since in vitro screening of mutant libraries is 88 
reasonably scalable, a large number of conditions can be tested to broadly probe the 89 
phenotypic landscape. For example, two decades of work with the Escherichia coli 90 



KEIO collection18, an arrayed library of deletion mutants that covers the non-essential 91 
genome, has provided the first phenotypes for hundreds of genes29,31-35 and served 92 
as a basis for dissecting gene function. Similar success has been achieved in the 93 
budding yeast Saccharomyces cerevisiae7. Yet, even for well-studied model 94 
organisms such as E. coli and Bacillus subtilis, a substantial fraction of genes (>25%) 95 
have no clear functions or phenotypes36,37, suggesting the need to expand the space 96 
of screening conditions and explore more unorthodox perturbations. 97 
 98 
Ultimately, the goal of genotype-phenotype mapping is to understand the role of each 99 
gene in the natural habitat and context in which the organism lives. Transposon mutant 100 
libraries of pathogens have been used to identify key genes important for virulence in 101 
animal infection models38-40. Other in vivo studies have identified genes in gut 102 
commensals involved in animal host colonization and nutrient utilization, within a 103 
community of other microbiome members or when colonizing germ-free mice 104 
alone10,14,23. However, the inherent complexity of the gut ecosystem, involving a large 105 
number of species and interspecies interactions as well as contributions of host factors 106 
(e.g., diet, immune status, spatial localization within the gut), means that more 107 
conditions must be studied to reveal the phenotypes and functions of genes in gut 108 
commensals. Further in vitro and in vivo experimentation, with transposon mutant 109 
libraries that represent a broader range of gut commensals, will be needed to 110 
understand key representative gene functionalities in the gut environment. 111 
 112 
In an accompanying review41, we discuss important considerations and strategies for 113 
constructing and arraying barcoded transposon mutant libraries, as well as 114 
prioritization of organisms for future library construction. In this review, we discuss the 115 
design and structuring of in vitro and in vivo functional genetic experiments with pooled 116 
and arrayed barcoded transposon mutant libraries. We propose testing conditions that 117 
will broaden and maximize the power of chemical genomics. We then focus on the 118 
translation from in vitro data to in vivo phenotypes in popular model animal hosts. 119 
Finally, we discuss how to facilitate global knowledge dissemination of phenotypic 120 
screening data, to accelerate gene function discovery in the gut microbiome. 121 
  122 



Technical aspects of in vitro screening of mutant libraries 123 
In vitro screening of mutant libraries is reasonably high throughput and cost effective, 124 
hence screens typically involve measurements of phenotypes across hundreds of 125 
conditions11,14,29. These fitness measurements can directly link the phenotype of a 126 
given gene disruption to a condition (e.g., a glycan transporter mutant does not grow 127 
in media with only that glycan as a carbon source), and indirectly link genes that share 128 
the same phenotypes across conditions (a strong indication of genes operating as part 129 
of the same functional unit). While screening libraries in vitro (Figure 1) is almost 130 
always faster and cheaper than in vivo screens, enabling the exploration of more 131 
diverse conditions, the relevance and translatability of phenotypes observed in vitro to 132 
in vivo systems should be considered. 133 
 134 
Libraries can be screened in two modes. Positive selection employs conditions such 135 
as phage predation, toxins, and chemicals that have large negative impact on the wild-136 
type strain42, enabling outgrowth of a small number of mutants with higher fitness in 137 
these conditions (e.g., resistance). Negative selection employs conditions such as 138 
growth on carbon and nitrogen sources, pH, osmolarity, and sublethal concentrations 139 
of toxins and antibiotics that deplete a small subset of mutants due to their lower fitness 140 
compared to the large fraction of unaffected mutants. Positive-selection screens 141 
require fewer reads than negative-selection screens (depending on the condition, 142 
sequencing depth can be at least four times lower), as the pool of remaining mutants 143 
is less complex and thus easier to sequence. Yet, in positive-selection screens only 144 
the strongest phenotypes are selected and identified. Negative selection requires deep 145 
sequencing to accurately quantify mutant abundance and thus is more costly, but the 146 
higher resolution reveals mutants with more subtle fitness defects. 147 
 148 
Growth medium 149 
The selection of (species-specific) growth media can strongly influence phenotypes. 150 
For example, screening of a Bacteroides thetaiotaomicron mutant library revealed 151 
genes whose disruption provides a fitness advantage during treatment with the 152 
antibiotic vancomycin when grown in the complex, undefined Brain Heart Infusion 153 
(BHI) medium but not in a minimal, defined medium14. Although many of the known 154 
microbial phyla do not have a single cultured representative43, most members of the 155 
gut microbiota can be cultured in complex, undefined media such as GMM, Mega 156 
medium, BHI, and GAM44. These media can be used as a robust base for screening 157 
a library against numerous conditions (e.g., drugs, pH, osmolarity), but their complexity 158 
is prohibitive for screening metabolism-related functions. The use of rich, undefined 159 
media can also obscure phenotypes due to transcriptional feedback on physiological 160 
systems such as carbon catabolite repression35,45. 161 
 162 
If the target organism can be grown in a defined medium such as Varel Bryant minimal 163 
media designed for Bacteroides species46 or other recipes (see e.g., refs. 44,47) that 164 
support robust growth, then medium compositional changes can be used to identify 165 
pathways relevant to carbon/nitrogen utilization, breakdown of complex substrates, 166 



and biosynthesis of amino acids, nucleotides, vitamins, and co-factors. Typically, 167 
phenotypes are stronger under nutrient-limited conditions such as minimal media, 168 
especially for metabolism, import, and core physiology48. It may be preferential to 169 
screen mutant libraries of distantly related organisms in the same medium to shed 170 
light on their potential functions in a community. While it may be difficult to establish a 171 
“one-size-fits-all” medium applicable across phyla, recent efforts have identified a few 172 
minimal media that can be used to culture most gut commensals44. 173 
 174 
Inoculum size and culture volume 175 
The experimental setup for library screening can influence the robustness and 176 
resolution limit of fitness measurements. It is critical to inoculate cultures with a 177 
sufficiently large population to avoid bottlenecks and sampling artifacts that may bias 178 
library growth; for a library with 105 mutants, the inoculum should ideally be about 107 179 
cells (which corresponds to a standard cuvette optical density of ~0.01 for bacteria 180 
with similar size as E. coli). For the same starting number of cells, larger culture 181 
volumes support more generations of growth than smaller volumes, making subtle 182 
fitness defects more apparent, but running the risk that mutants with moderate or 183 
stronger fitness effects will decrease in abundance below the limit of detection. For 184 
example, the fraction M of any mutant in the total pool P of mutants at a given time t 185 
is M(t)/(M(t)+P(t)) = 2fg/(2fg+2g), where f is the fitness of the mutant relative to that of 186 
the pool of mutants (which will typically respond like wild type and thus have a relative 187 
fitness of 1) and g is the number of generations. Over the course of 7 generations 188 
(128-fold expansion of the inoculum), the fraction of a mutant with a growth rate 10% 189 
lower than the rest of the pool (relative fitness = 0.9), would be 38% of that of an 190 
unaffected mutant, while over 10 generations (1024-fold expansion) the mutant 191 
fraction would decrease to 33%. In contrast, a mutant with a 50% growth defect 192 
(relative fitness = 0.5) will decrease to 8% compared to an unaffected mutant after 7 193 
generations and to 3% after 10 generations, and thus would be much harder to detect. 194 
 195 
Ultimately, the choice of inoculum size and growth format/volume (e.g., 96-well versus 196 
24-well plate) for screening will depend on the diversity of the library and on the 197 
conditions tested, and should be balanced against other limitations such as scaling 198 
factors (e.g., larger culture volumes require more compound, which increases costs). 199 
As a general guideline, typical in vitro screening for growth of a library on specific 200 
nutrients or in the presence of chemicals can be performed in deep 96-well plates with 201 
2 mL of media for about 6-8 generations (64- to 256-fold expansion)11,12,14. 202 
 203 
Timing of library experiments and DNA extraction 204 
Differences in the growth lag time among mutants may skew library dynamics and the 205 
final results. These effects can be minimized by growing the library under standard 206 
conditions (e.g., the condition under which the library was generated) to early log 207 
phase before exposing the library to screening conditions. A sample of the library 208 
should be collected before exposure to the screening conditions to enable comparison 209 
of mutant abundances after exposure. For convenience, libraries are typically grown 210 



to saturation (stationary phase) in the presence of the perturbation before cells are 211 
collected for DNA extraction. However, large fitness differences during stationary 212 
phase or survival differences may obscure subtle fitness effects during log phase 213 
specific to the perturbation of interest, which may be the primary focus. To avoid such 214 
cases, it may be preferable to first determine the growth rate of the wild-type strain in 215 
the conditions of interest and based on this information, to grow the library for a fixed 216 
number of generations below saturation and harvest DNA before stationary phase is 217 
reached (although such a practice would substantially increase the effort of screening). 218 
Knowing the growth rate in each condition can also be used to cluster conditions with 219 
similar growth rates on the same assay plate for better timing and more straightforward 220 
handling. After growth of the library for the desired amount of time, cells are pelleted 221 
and DNA extraction can be simplified by the use of commercial kits designed for 222 
microbial communities in multi-well plates. However, these kits are expensive (several 223 
dollars per well), in part justified by their ability to evenly lyse a broad phylogenetic 224 
range of species49. For screening a single strain, simpler commercial kits or custom 225 
methods exploiting liquid handling robotics can lower the costs. 226 
 227 
Sequencing depth and cost 228 
The appropriate number of reads per condition will depend on the number of barcoded 229 
strains in the library (diversity) as well as the fraction of unique barcodes. If sequencing 230 
results in too few reads, estimates of the relative abundance of mutants will be noisy 231 
and hence unreliable. Conversely, very high read counts are unnecessary and the 232 
sequencing depth could instead be spread over more conditions. Rough estimates of 233 
the appropriate sequencing depth can be calculated using a naive power analysis, as 234 
was recently described for CRISPRi-based sequencing of guide RNAs50, yet to 235 
determine the optimal sequencing depth that balances these considerations, intrinsic 236 
biases in the distribution of mutants across genes should be taken into account, as 237 
these biases may necessitate increased sequencing depth to accurately measure the 238 
fitness of less abundant barcodes. Moreover, fluctuations in depth per condition for a 239 
given sequencing flow cell are an inevitable bias that either requires resequencing of 240 
the conditions that had below average reads by chance or a reduction in the number 241 
of conditions per flow cell. 242 
 243 
As a rough estimate, an Illumina NextSeq500 Mid-Output flow cell generates ~120 244 
million reads, which is typically sufficient for ~40 samples screening a library of 245 
300,000 mutants representing ~5,000 ORFs. Such a library will on average have ~36 246 
insertions in the central 20-80% of each ORF (ignoring intergenic insertions). With 3 247 
million reads per sample mapping to unique barcodes, each insertion would be 248 
represented by ~10 reads on average. Ten reads are not sufficient to analyze fitness 249 
for each mutant individually, hence reads mapping to insertions in the same gene must 250 
be summed to accurately quantify gene-level fitness. In this case, with ~360 reads per 251 
gene on average, the effects of a 40% growth defect (relative fitness = 0.6) 252 
accumulated over 7 generations will lower the abundance of this gene to ~5% and its 253 
cumulative read count to ~18. Such estimations can be useful for designing sample 254 



multiplexing with the required sequencing depth, but it should be noted that library-255 
specific biases (that must be determined empirically) can considerably skew the actual 256 
numbers. With increased reads per sample (greater sequencing depth or fewer 257 
samples multiplexed), it may not be necessary to sum counts of all mutants on a per-258 
gene basis and instead quantify fitness on a mutant-by-mutant basis. Such a strategy 259 
could provide more statistical power since each mutant is treated independently and 260 
thus aberrant mutants (e.g., that acquired a secondary mutation driving the phenotype 261 
rather than the transposon insertion) can be identified and removed from calculation 262 
of the median fitness across mutants in a gene). 263 
 264 
Starting with libraries with more controlled population size (e.g. re-pooled, non-265 
redundant arrayed libraries) can increase dramatically the throughput. The total cost 266 
of screening consists of plastic ware, media, chemicals/nutrients for testing, DNA 267 
extraction, library preparation, and sequencing, which all scale linearly with the 268 
number of technical replicates. Of these factors, plastic ware and media are relatively 269 
inexpensive when screens are performed in a 96-well format. As sequencing costs 270 
continue to decrease, a large fraction of the expense will typically be represented by 271 
certain conditions (e.g., antineoplastic drugs or host-relevant molecules, such as 272 
mucin) and library preparation. Thus, users should increasingly avoid economizing on 273 
sequencing and instead aim for more reads per sample than necessary as compared 274 
to maximizing multiplexing of samples. 275 
 276 
In vitro screening conditions relevant to gut bacterial physiology 277 
Intestinal bacteria are exposed to a wide variety of conditions and stresses in vivo, 278 
some of which can be mimicked in vitro. While the relevance of some conditions is 279 
more specific to certain target organisms, it is likely worthwhile to screen a broad range 280 
of common conditions/perturbations to maximize the chances of discovering 281 
phenotypes for genes of unknown function. 282 
 283 
Nutrients and metabolism 284 
To identify genes involved in catabolic or anabolic pathways, the library should be 285 
grown in a defined medium in which molecules of interest are left out or added in 286 
excess. Basic molecules to screen include amino acids, nucleotides, short chain fatty 287 
acids, and trace elements like metals (which cannot be synthesized) and vitamins. For 288 
some organisms, certain nutrient classes are natural candidates for screening; for 289 
example, many Bacteroides species forage on host mucus or degrade complex 290 
carbohydrates47, thus screening Bacteroides libraries on a diverse panel of glycans 291 
can identify genes involved in their complex carbohydrate catabolic capacities. 292 
Identifying microbiome genes involved in prebiotic carbohydrate utilization has strong 293 
relevance to health51-53. Carbohydrates of interest include human and animal milk 294 
oligosaccharides, complex polysaccharides from diverse plant sources such as inulin 295 
from chicory54 and glucosinolates from broccoli55, and beta-glucans from fungal cell 296 
walls56. 297 
 298 



Environmental/abiotic factors 299 
The gastrointestinal tract poses a range of physical challenges that force microbes to 300 
adapt. Variation in pH along the intestines motivates screening of growth at starting 301 
pH ranging from 4-1057,58, with and without a buffer to counteract the ability of some 302 
organisms to modify the environmental pH59,60. Sensitivity of growth to high osmolarity 303 
may explain the effects of osmotic diarrhea on the gut microbiota61, motivating library 304 
screening across concentrations of non-metabolizable osmolytes; while salt has often 305 
been used as an osmolyte, its indirect electrostatic effects are not optimal62 and thus 306 
sugar alcohols such as sorbitol may be more appropriate63. The gut lumen can exhibit 307 
variable viscosity, for instance due to mucus release, which may impact microbial 308 
growth, localization, and transit64. The effects of viscosity on growth in vitro can be 309 
studied by adding various concentrations of polyethylene glycol or glycerol. Finally, an 310 
obvious environmental feature of the gut lumen is anoxia; screening libraries in various 311 
oxygen concentrations may reveal genes involved in oxygen sensitivity14. 312 
 313 
Host factors 314 
Intestinal bacteria interact intimately with the host, and identifying phenotypes related 315 
to host-derived signals can provide insight into host-microbe relationships. Bacteria 316 
can acquire nutrients from the host, for example by foraging on mucus. Mucus is a 317 
complex mixture of glycosylated proteins that are secreted by goblet cells and can be 318 
tethered to the epithelial membrane65. Porcine gastric mucus is often used for in vitro 319 
microbiota studies as it is relatively inexpensive, although it should be noted that 320 
mucus composition and properties vary along the gastrointestinal tract and gastric 321 
mucus may be a poor model of mucus from the small or large intestine66. Enterocytes 322 
shed from intestinal villi may also provide a highly complex source of nutrients to 323 
intestinal microbes67 that can be mimicked in vitro. Host immune factors such as 324 
antimicrobial peptides10, bile salts68, immunoglobulins (in particular secretory IgA)69, 325 
and hormones play a key role in shaping the microbiota, and the genes that allow gut 326 
bacteria to sense and cope with these factors largely remain to be elucidated. 327 
 328 
Other microbiota members 329 
Bacteria in the gut are exposed to many other microbial species, with some of which 330 
they interact directly; these interactions may be particularly important in the presence 331 
of species whose niche overlaps highly with the target organism70. Screening a library 332 
for phenotypes at various levels of complexity of the surrounding microbial community, 333 
including phages, protists, and fungi as well as other bacterial species, can elucidate 334 
the genetic basis for key questions such as microbiome stability, colonization, and use 335 
of and defense against antagonisms. To probe these questions, a library can be grown 336 
in either co-culture or in the spent supernatant of other microbes to identify phenotypes 337 
involved in cross-feeding or sensitivity to released molecules. One disadvantage of 338 
screening libraries in a pooled format is that mutants in cell-autonomous phenotypes 339 
(e.g., secretion of an autocrine signal) can be complemented by other mutants or 340 
strains in the pool and thus their fitness will not be compromised. As with host-derived 341 
nutrients, microbe-derived nutrients are usually complex mixtures that may result in 342 



multiple phenotypes, making interpretation challenging. One way to address this issue 343 
can be through fractionation of such complex mixtures coupled to metabolomics data 344 
to enable linking phenotypes to specific metabolites. Even in the absence of clearly 345 
interpretable phenotypes, the ability to quantify fitness across many conditions 346 
provides the power to link genes together. The impacts of a natural gut microbiota can 347 
be studied by co-culturing libraries with highly diverse synthetic10,71 or stool-derived 348 
communities72, which have been shown to recapitulate many aspects of the gut 349 
microbiota in vivo. Such assays have the potential to reveal phenotypes involved in 350 
direct cell-cell interactions or ones that emerge from a given community context. The 351 
increased complexity of community assays requires consideration of several potential 352 
issues: other species may create a severe bottleneck for the focal library species, 353 
decreasing its growth rate and yield. In this case, the initial inoculum of the focal 354 
species and the assay time would need to be adjusted. 355 
 356 
Xenobiotics 357 
Gut bacteria are exposed to diverse xenobiotics (compounds foreign to the body) 358 
ingested by the host or released in bile. Such compounds can impact microbial fitness 359 
and community composition, and may drive the evolution of resistance 360 
mechanisms73,74. Xenobiotics relevant for the gut microbiome include antibiotics, 361 
human-targeting drugs, food additives, toxins, and excipients (support substances that 362 
serve as the vehicle for a drug). Screening of libraries can enable associations 363 
between xenobiotics and other conditions based on a common phenotypic profile 364 
across mutants. Many companies now sell standard or custom-arrayed compound 365 
libraries that can be used for library screening. Prescreening of these compounds on 366 
the wild-type strain is important, as the target organism will not be affected by some 367 
(potentially most) compounds, and those compounds are less interesting for further 368 
screening. A target concentration for screening is the IC50, the concentration at which 369 
wild-type growth is reduced by 50%, which enables the identification of both more 370 
sensitive and more resistant mutants. Alternatively, the library can be grown across a 371 
range of compound concentrations to determine the concentration at which library 372 
growth is partially hampered and hence is appropriate for fitness measurements, 373 
avoiding the time required for prescreening, at the cost of re-arraying the appropriate 374 
samples for sequencing preparation. To obtain a more targeted selection of 375 
xenobiotics for screening, recent studies on the impact of medication on the 376 
microbiota73 can be mined to identify compounds that affect the abundance of the 377 
target organism. 378 
 379 
Applications of arrayed libraries 380 
In pooled form, mutant libraries can be used to mostly screen for conditions that affect 381 
fitness, in which change in relative abundance measures the impact of the condition 382 
on each mutant’s genotype. While such screens have generated powerful insights into 383 
bacterial physiology, certain conditions and behaviors are difficult if not impossible to 384 
probe in a pooled library format due to trans-complementation of cell-autonomous 385 
deleterious phenotypes by other mutants in the pool. Such conditions and behaviors 386 



include: cross-feeding, in which degradation of nutrients and/or the release of waste 387 
products by conspecific or heterospecific cells alleviates genetic defects; degradation 388 
of drugs (including antibiotics), which lowers the effective concentration and hence 389 
modifies the interpretation of mutant sensitivity; and secretion of toxins, enzymes, 390 
vesicles, or signaling molecules that end up as community property. Droplet TnSeq 391 
(dTnSeq75,76), which uses microfluidics-based encapsulation of single cells, has been 392 
developed to expand measurable phenotypes beyond fitness using pooled libraries. 393 
Moreover, arrayed libraries enable the study of non-growth-related phenotypes and/or 394 
single-cell phenotypes such as changes in cell morphology, biofilm formation, and the 395 
intracellular and extracellular metabolome and proteome. These and other key 396 
aspects of bacterial physiology can justify the effort required to array the pool into a 397 
non-redundant collection of mutants. 398 
 399 
In the accompanying review, we discuss recent advances that have dramatically 400 
lowered the barriers to arrayed library construction. With an arrayed library, single-cell 401 
readouts, such as shape defects27,77,78 or protein stability and abundance79, or non-402 
growth-related phenotypes, such as biofilm formation80 or survival in stationary 403 
phase81, have been probed. In addition, an arrayed library can be used to create 404 
smaller sub-libraries that focus on mutants related to a specific process, such as 405 
metabolism or stress responses. Moreover, due to their lower complexity and/or more 406 
balanced coverage of the genome, sub-libraries enable higher throughput and avoid 407 
population size bottlenecks, and hence allow for testing of more conditions. 408 
Importantly, for many bacterial species (particularly gut commensals), genetic tools 409 
are still lacking. Transposon vectors do not require maintenance in the cell (and thus 410 
knowledge about maintenance systems is not necessary) so for many organisms 411 
transposon vectors are currently the only accessible starting tools for genetic 412 
manipulation82,83. Thus, arrayed transposon mutant libraries in otherwise genetically 413 
intractable microbes provide a highly valuable resource for mechanistic investigation 414 
of genotype-phenotype relationships. 415 
 416 
Screening of a standard panel of conditions may elucidate strain/species-specific 417 
versus conserved genotype-phenotype relations. Yet, even for just the classes of 418 
perturbations and conditions mentioned above, the chemical space is enormous and 419 
trade-offs between relevance, coverage, and feasibility/costs will be necessary. 420 
Moreover, our list is by no means exhaustive for probing gene functions in gut bacteria 421 
using mutant libraries. Depending on the target organism, specific screening 422 
conditions relevant to microbe-specific lifestyles should be considered. 423 
 424 
Expected results from in vitro screening 425 
In vitro screening of pooled or arrayed libraries will typically enable identification of 426 
phenotypes for many (although not all) genes. General expected behaviors would be 427 
lower relative abundance for required/beneficial genes and higher relative abundance 428 
for detrimental/toxic genes under the probed condition. For example, when only one 429 
of several transporter mutants has a fitness defect in minimal media with glucose as 430 



the carbon source, that transporter can be linked to primary glucose metabolism. 431 
However, interpretation of phenotypes may be more difficult if there is redundancy 432 
involving two transporters; in this case, more complex conditions may be required to 433 
dissect function. For an antibiotic, the exporter or efflux pump transposon mutant 434 
would show lower relative abundance due to increased cellular drug concentration14 435 
and the transposon mutant of the porin used for drug uptake would show higher 436 
relative abundance due to decreased cellular drug concentration.Error! Bookmark 437 
not defined. 438 
 439 
A major benefit of high-throughput library screening is the ability to reveal mutants in 440 
different genes that exhibit the same behavior across conditions11. Results from in vitro 441 
screening may lead to reannotation of certain genes14. Even genes without any known 442 
function can be implicated in a genetic network due to their association with other 443 
genes of known function with similar fitness in the same conditions (“co-fitness”). The 444 
strength of the gene co-fitness metric depends on both the number and orthogonality 445 
of conditions tested. Care should be taken to avoid undue bias in the distribution of 446 
conditions (e.g., due to screening a large number of antibiotics with the same target), 447 
as such bias can emphasize certain conditions in phenotypic correlations and thus 448 
discount signal from other conditions. A metric that systematically clusters and 449 
normalizes results from diverse conditions to enable high confidence correlation 450 
estimates would substantially improve detection of gene-gene linkages. 451 
 452 
Screening libraries for phenotypes from a “gene-centric” viewpoint can be an 453 
overwhelming endeavor since it is unclear whether useful estimates of practical 454 
screening scale (i.e. the number of conditions) can be derived from features such as 455 
behavior (e.g., growth capacity across different media), genome size (gene count), 456 
genetic network complexity, or predicted enzymatic capacity. Yet, automated 457 
microbiology platforms powered by artificial intelligence show promise for easing this 458 
challenge84.	 Alternatively, library screening can also be approached from a “condition-459 
centric” perspective, in which specific conditions of interest are probed for any mutant 460 
phenotypes. This design inherently constrains the number of conditions, making library 461 
screening more feasible, at the cost of ignoring the unknown unknowns. Ideally, at 462 
some point a consistent framework for future in vitro screening will emerge (be it gene-463 
centric or condition-centric) following the analysis of screening many phylogenetically 464 
diverse organisms. Ultimately, for gut microbes a major consideration is how to 465 
position in vitro screening results to aid interpretation of in vivo experiments. 466 
 467 
In vivo screening of mutant libraries 468 
Although in vitro experiments with barcoded transposon mutant libraries can be carried 469 
out at a throughput, relatively low cost, and scale that are typically inaccessible using 470 
in vivo models, when studying gut bacteria it can be difficult to sufficiently model the 471 
intestinal environment in vitro. Thus, in vivo experimentation is a critical complement 472 
to fully understand the physiological role of bacterial genes, including nutrient 473 
acquisition through diet and competition, direct agonism/antagonism with other 474 



organisms and phages, and the impact of the host (e.g., inflammation) and xenobiotics 475 
on bacterial fitness (Figure 2). Hosts that can be made germ-free enable library 476 
screening in a wide range of controlled colonization conditions, in particular to ensure 477 
that the library can colonize at high density and not be outcompeted by other species. 478 
 479 
Pre-colonization 480 
For a typical in vivo experiment, the library is grown to saturation prior to colonization 481 
of the host animal14. Care should be taken not to grow the library for too long after 482 
saturation, since the degree of starvation can affect in vivo fitness85. Alternatively, to 483 
prevent loss of mutants with severe fitness defects, the library can be grown for a 484 
limited number of generations into early logarithmic phase and then be immediately 485 
introduced into the host. It is generally advisable to colonize with as large a population 486 
as possible to prevent bottlenecks, and at least to ensure that the inoculum is 487 
substantially larger than the diversity of the library. The inoculum should be sequenced 488 
for use as the reference to which animal (fecal) samples are compared. Less complex 489 
and more balanced libraries are less prone to bottleneck effects. 490 
 491 
Mono-colonization 492 
Mono-colonization of germ-free animals with a mutant library enables analysis of 493 
bacterial phenotypes driven by the host environment rather than confounding 494 
interspecies interactions with residential microbiota members. The host diet is a major 495 
environmental factor that can influence bacterial fitness14,23,86, and dietary variations 496 
are relevant for host health and straightforward to implement. In addition, different host 497 
genotypes can be used to interrogate host-microbe genetic interactions87. For 498 
example, colonization of Rag1-/- or Myd88-/- mice can highlight bacterial genes that are 499 
influenced by the host adaptive or innate immune system, respectively10. Other models 500 
such as TGR5 (bile acid receptor) knockout mice may provide the ability to probe the 501 
host-microbe-metabolism axis. Animal models for colorectal cancer, inflammation 502 
(induced by chemicals such as DSS88), diarrhea61, and viral infections can provide 503 
insight into bacterial genes specifically required for survival in a diseased host. 504 
 505 
Colonization with other microbes 506 
While mono-colonization provides a focused view on specific host-microbe 507 
interactions, other microbiota members play an intrinsic role in the life cycle of the 508 
library organism in vivo by influencing its fitness10,23. Germ-free animals form powerful 509 
model systems that enable careful design of the host-microbial ecosystem in which to 510 
probe the target organism. For example, germ-free animals can be colonized with a 511 
synthetic community of microbes that either lacks or has an excess of members of the 512 
same species/genus/family to investigate the impact of competition or support on the 513 
target organism phenotypes10. 514 
 515 
Use of well characterized, standard synthetic communities that contain a breadth of 516 
functionalities can expedite comparisons across labs. One prime example of such a 517 
community is the oligo mouse microbiota (OMM12), a widely used 12-member 518 



community of mouse gut commensals89. More recently, synthetic communities of 519 
human gut species have been used to stably colonize mice, and a highly diverse (>100 520 
member) community of human gut commensals was shown to reproducibly colonize 521 
germ-freemice71. Yet, whether such rich communities pose bottlenecks for testing 522 
colonization of pooled libraries remains to be tested; prior examples of pathogen 523 
colonization in mice90 suggest that bottlenecking may be an issue. Of note, as most 524 
synthetic communities are composed of strains that share no evolutionary history (i.e., 525 
not isolated from the same host in which the strains co-evolved) phenotypes of the 526 
target organism related to important interspecies interactions may be missed. As an 527 
interesting possibility, strains that have co-evolved can be introduced in germ-free 528 
hosts as a stool-derived in vitro community72, a synthetic community of isolates from 529 
a single individual, or a human fecal sample (“humanized”). In these cases, one would 530 
construct a library in a strain from a particular individual, and then test the fitness of 531 
this library in a host animal that is colonized with the community or fecal sample, also 532 
called a bacterial xenograft. It is probably best to first colonize the host with the 533 
community without the target organism (if possible) to allow the host and the 534 
community to adapt and stabilize, and afterwards introduce the library organism. 535 
  536 
Novel behaviors may emerge as community complexity is increased, including nutrient 537 
competition, beneficial cross-feeding, and non-nutrient competition-based interactions 538 
(e.g., for spatial niches and direct antagonisms). When such interactions have 539 
previously been identified, transposon mutant library screens can identify the genetic 540 
basis of the interaction as long as the interaction of interest can be separated from 541 
other interactions. 542 
 543 
Ultimately, it is unclear how much the phenotypic landscape will be affected by the 544 
presence of other commensals. If resource competition is the major driver of 545 
community composition91, then the phenotypic impact of the community may be subtle 546 
(e.g., altering the relative strength of a phenotype). However, nutrient competition 547 
could also lead to metabolic reprogramming such that a gene for processing a certain 548 
carbon source becomes dispensable in the community context. Thus, investigating the 549 
library organism in hosts colonized with different communities can provide the 550 
opportunity to uncover emergent and general principles behind adaptation, 551 
colonization, and colonization resistance. 552 
 553 
From a technical standpoint, the abundance of the library organism (which is 554 
influenced by competition and cooperation with the other community members and 555 
host factors such as immune system pressure) will influence barcode diversity and 556 
thus the capacity to quantify gene fitness. Some species, such as those in the 557 
Bacteroides genus, are typically at high enough abundance to avoid these issues 558 
(especially in the absence of competition with closely related species), but in other 559 
cases choosing a community and/or host environment that increases the abundance 560 
of the library organism (e.g., MAC-deficient diets promote Akkermansia muciniphila92) 561 
may be necessary to retain enough barcode diversity. An arrayed library may provide 562 



a remedy for bottlenecking via the construction of a re-pooled library with lower 563 
diversity and thus higher numbers of each mutant for a given population size. 564 
However, re-pooling has the trade-off of fewer mutants in each gene, and with the 565 
limitation of very few mutants per gene it may be difficult to discern when de novo 566 
mutations are the driver of a high-fitness strain rather than the transposon insertion. 567 
One way to counter this issue is to sequence more replicates of the same library 568 
across all conditions, which enables more consistent determination of mutant 569 
behavior. 570 
 571 
Potential animal hosts for in vivo experimentation 572 
In vivo experimentation with mutant libraries can be performed in a variety of model 573 
and non-model host organisms, each with pros and cons. The choice of host organism 574 
may depend on biologically relevant considerations such as the aspect(s) of bacterial 575 
physiology of interest and the colonization capacity of the host, as well as practical 576 
factors such as availability, cost, and ethical considerations. 577 
 578 
Mice 579 
Due to powerful genetics, relatively easy husbandry (including germ-free), and 580 
extensive development of disease models, mice have served as the predominant host 581 
for in vivo experimentation with transposon mutant libraries of human gut 582 
bacteria10,14,23,55. In addition to the contexts of disease and diet switches, the 583 
knowledgebase regarding inbred laboratory mice also forms an excellent baseline to 584 
study host-microbe co-evolution using outbred mouse lines, wild mice, or other 585 
species in the Mus genus. Mice have a microbiome that is largely distinct from 586 
humans93 and many mouse gut microbes are commercially available, including the 587 
OMM12 synthetic community. This convenience, in combination with the ability to 588 
humanize germ-free mice through colonization with human stool samples71, enables 589 
detailed studies about host-microbiome interactions with transposon mutant libraries 590 
that can identify the conserved and unique factors influencing human gut commensal 591 
fitness during host colonization. 592 
 593 
Other animal hosts 594 
While other mammals such as germ-free miniature pigs are better suited as models 595 
for humans compared with mice in terms of natural diet, diurnal activity, and disease 596 
translatability, the costs of raising and maintaining germ-free pigs are considerably 597 
higher than for rodent model animals94. By contrast, gnotobiotic chickens provide 598 
certain benefits: they are easy to work with (egg shell sterilization prevents 599 
colonization of the chick) and inexpensive, and chickens have a relatively similar gut 600 
microbiota composition to mice95, although their physiology is markedly different (e.g., 601 
the body temperature of birds is substantially higher than mammals). It is unknown to 602 
what extent bacterial fitness landscapes vary across hosts, although comparisons 603 
between colonization of germ-free mice and chicks with a Bifidobacterium breve 604 
transposon mutant library revealed surprisingly similar phenotypic landscapes given 605 
similar diets96; in such cases, outlier phenotypes provide insight into host-related 606 



differences. To study host colonization and microbial evolution, several other animals 607 
across the vertebrate subphylum could provide complementary insights. Screening 608 
libraries in a model fish (e.g., zebrafish97), amphibian, or reptilian in addition to a bird 609 
and mammal might enable charting the impact of 500 million years of host divergence 610 
on bacterial adaptation. Of course, such investigations would only be possible for 611 
target bacteria that are able to colonize many hosts and adapt to widely varying host 612 
diets. E. coli is the best-studied intestinal bacterium and has a very wide host range98, 613 
hence it may be appropriate for linking bacterial genes to host evolutionary divergence. 614 
Besides mice, zebrafish form a powerful model system due to their extensive genetics, 615 
ease in obtaining large population sizes, and the option to generate germ-free fish. 616 
 617 
From the standpoint of experimental ease, population numbers, and host genetics, the 618 
nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster presents 619 
intriguing models for studying basic principles of host-microbe interactions99,100. C. 620 
elegans can be used in combination with bacterial transposon mutant libraries to 621 
rapidly identify virulence factors and genes involved in host responses to 622 
therapeutics101-103 and for Drosophila, recent studies have also developed the capacity 623 
for in situ time-lapse imaging of the fly gut with single-cell resolution104. However, it is 624 
not clear whether human gut commensals can properly colonize C. elegans or 625 
Drosophila, as the physiology of these animals is very different from that of mammals 626 
in aspects such as body temperature, intestinal oxygen levels, diet, and more. 627 
Moreover, since the number of bacterial cells in the nematode and fly gut is much 628 
lower than in larger animals (~106 cells in the Drosophila gut105), bottleneck effects 629 
must be circumvented by using lower diversity libraries; when the library contains very 630 
few mutants representing each gene, it may be difficult to distinguish whether a fitness 631 
advantage is due to a particular transposon insertion or due to a de novo mutation that 632 
arose in that mutant without comparing fitness results across a large number of hosts 633 
(replicates). 634 
 635 
Insights that can be obtained from in vivo colonization 636 
The in vivo environment represents many environmental parameters such as chemical 637 
diversity and physical features that are not captured (and may be inaccessible) by 638 
typical in vitro experiments. As a result, in vivo colonization has the potential to reveal 639 
phenotypes for genes that would otherwise not exhibit any phenotypes in vitro, 640 
highlighting genes that may have evolved specifically for life in a host. For example, 641 
during mono-colonization of germ-free mice with B. breve, dozens of genes related to 642 
carbohydrate metabolism exhibited phenotypes in vivo but not in the hundreds of in 643 
vitro conditions screened; genes predicted to be responsible for nutrient uptake also 644 
exhibited specific phenotypes only in vivo96. 645 
 646 
Changes in the host environment can also affect fitness dramatically. Diet is a major 647 
determinant of the fitness of most gut commensals86, and hence represents a natural 648 
knob for tuning the host-microbe interface. Exploring a broad spectrum of diets (e.g., 649 
polysaccharide replete versus deficient, high fat/sugar, fasting, caloric restriction, time-650 



restricted eating) enables the generation of broad hypotheses about commensal 651 
metabolism, while careful tuning of diet (e.g., a particular polysaccharide such as 652 
inulin106) enables testing of mechanistic hypotheses. In this context, it could be 653 
interesting to quantify the fitness of each mutant in vitro after growth on ground-up 654 
mouse chow107 as a way to uncouple diet and host-diet interactions. Experiments with 655 
barcoded but otherwise genotypically identical lineages demonstrated that little to no 656 
contamination occurs between cages of gnotobiotic mice in the same isolator108. Co-657 
housing mice colonized with the same library and fed a cage-specific diet in the same 658 
isolator simplifies the process of exploring a broad range of diets. Moreover, the high 659 
rates of transmission in mono-colonized mice within a cage108 suggest that using >3 660 
mice per cage may have diminishing returns. Single housing maintains each animal 661 
as a distinct, independent biological unit, although it remains unclear whether the 662 
microbial phenotypic landscape is affected by host behavioral changes that may 663 
emerge upon isolating a social animal. Like diet, xenobiotics such as excipients and 664 
drugs can have large effects on the microbiota in terms of both composition109 and the 665 
fitness of individual strains73. Exposing mice colonized with a transposon mutant 666 
library to water-soluble drugs dissolved in drinking water is a straightforward way to 667 
determine the bacterial fitness determinants during treatment in hosts, and has the 668 
potential to reveal how host metabolism of the drug ends up protecting or sensitizing 669 
bacteria. 670 
 671 
Links between knowledge obtained from in vitro and in vivo screens 672 
An ultimate goal of gut commensal mutant library screening is to utilize information 673 
from in vitro fitness assays with carefully controlled conditions to shed light on the role 674 
of genes in the in vivo environment110,111. In general, nutrients, phage predation, 675 
survival in communities, and pressure from invasive (pathogenic) bacteria may be 676 
most robustly screened in high-throughput in vitro and the results are expected to be 677 
largely translatable to an in vivo setting. Certain conditions such as an antibiotic 678 
challenge translate straightforwardly in experimental design between the in vitro and 679 
in vivo contexts110, but the interpretation of in vivo fitness data will be more complex 680 
given the likely off-target impacts on community composition, which may then 681 
indirectly select for certain mutants in the library organism (especially since the impact 682 
of drugs can be very different across microbiotas112). 683 
 684 
Other conditions such as the influence of host immune responses and host 685 
behavior/physiology will be much harder to mimic in vitro. Probing these types of 686 
complex perturbations comes with a trade-off between throughput and translatability. 687 
For example, methods using immortalized (intestinal) cell lines to represent host 688 
factors can be easily scaled but such cells often poorly recapitulate healthy host 689 
functions. A more appropriate model would be intestinal organoids, which can closely 690 
mimic human physiology, but the costs to upscale organoid production and organoid 691 
heterogeneity may be prohibitive for testing highly diverse mutant libraries113. Other 692 
(larger) in vitro systems such as the Simulator of Human Intestinal Microbial 693 



Ecosystem (SHIME)114 may better capture host environmental parameters and are 694 
likely better suited for use with complex libraries. 695 
 696 
A less complex application that may be well suited for translation from in vitro to in vivo 697 
is the high-throughput screening of mutant libraries with specific perturbations to 698 
discover “biosensor” mutants. For instance, mutants of oxidative stress pathways 699 
identified in vitro may be used in vivo to indicate where/if in the host such stress occurs. 700 
Similarly, certain mutants may be used to sense early stages of pathogen invasion or 701 
dysbiosis. In the case of B. thetaiotaomicron, comparison of in vitro screens to in vivo 702 
fitness measurements revealed that diet affects ammonium levels115,116 and hence the 703 
utilization of ammonium-dependent alternative pathways14, indicating that mutants in 704 
such pathways can indeed act as biosensors for host diet-mediated environmental 705 
changes. Host colonization may also provide the ability to distinguish genes/pathways 706 
that appear redundant in vitro. 707 
 708 
Centralized collection of a broad data set of phenotypes from many diverse in vitro 709 
conditions (e.g., antibiotics, carbon sources, environmental perturbations, in the 710 
presence of other microbes) would enable comparisons across organisms, and 711 
hopefully the same will be true for in vivo fitness measurements (e.g., libraries in hosts 712 
with different diets, microbiotas, host genotypes). It remains to be seen whether 713 
genetic architecture and regulation will lead to general principles or species-specific 714 
solutions. For example, comparisons across libraries could shed light on the impact of 715 
host diet; in B. thetaiotaomicron, but not B. breve, lysine biosynthesis was critical for 716 
colonization on a standard diet96. These different requirements could be due to amino 717 
acids becoming limiting for B. thetaiotaomicron due to their higher abundance relative 718 
to B. breve. In that case, if another factor limits B. thetaiotaomicron abundance (for 719 
instance, the presence of other microbiota members), amino acid synthesis pathways 720 
could become non-essential even without any changes in amino acid concentrations 721 
within the gut. As a corollary, it is important to note (both in vitro and in vivo) that 722 
phenotypes may be concentration dependent. Such scenarios underscore the 723 
potential for the abundance of the library organism to impact mutant fitness96. 724 
 725 
The above points constitute a non-comprehensive set of links between in vitro and in 726 
vivo knowledge. Many outstanding questions related to in vivo experimentation 727 
remain. For example, should a “gold standard” set of in vivo conditions be established 728 
(e.g., diet, disease, xenobiotics) to screen and compare mutant libraries of diverse 729 
species? To what extent (and for what conditions) can in vitro screening, 730 
supplemented by field paradigms and literature, be used to formulate hypotheses 731 
about the in vivo function(s) of genes in commensal bacteria? And at what stage 732 
should efforts be made to delve deeper into phenotypes identified from in vivo 733 
experiments? Gaining a better understanding of the potential and limitations of in vitro 734 
data to inform in vivo experimentation will improve the design of future in vivo 735 
experiments with bacterial mutant libraries. 736 
 737 



Considerations for the design of in vivo experiments 738 
It is important to note that during the course of any colonization experiment, selection 739 
will take place on the entire genome, not just specific transposon mutants. Several 740 
studies have demonstrated rapid selection of de novo mutations when germ-free mice 741 
are colonized with a single species86,108. Within approximately one week (or even less) 742 
of colonization with barcoded transposon libraries of Bacteroides species, single 743 
mutants start to take over14,117, signifying a large fitness increase due to a de novo 744 
mutation rather than the transposon insertion itself (since none of the other insertion 745 
mutants in that gene expand significantly). Thus, there is only a short interval over 746 
which the fitness of the transposon library should be measured. The cumulative bias 747 
in a pooled library due to de novo mutations may be exacerbated for hyper-mutators 748 
such as mutants in genes involved in DNA damage repair. Such genes may show 749 
larger variation in mutant fitness level due to the larger number of advantageous or 750 
disadvantageous de novo mutations. 751 
 752 
To extend the time scale of the experiment while avoiding the impact of de novo 753 
mutations on in vivo screening, it may be useful to first allow the target organism to 754 
genetically adapt to the host and then isolate an evolved clone from which the 755 
barcoded insertion library is constructed. The adapted population is likely to be 756 
heterogeneous and multiple host-adapted colonies should be sequenced to determine 757 
the mutational diversity. Transposon libraries may then be constructed in several of 758 
these adapted backgrounds; methods for accelerating pooled library construction (see 759 
our accompanying review) could facilitate this process and allow for faster exploration 760 
of genetic interactions. However, it is important to note that de novo mutations with 761 
fitness benefits will likely continue to accumulate in these adapted-background 762 
libraries as well, and further adaptation will occur upon community or dietary changes. 763 
 764 
Indirect effects and/or selection may also lead to changes in the relative abundance 765 
of the library organism, which could alter all phenotypes. One potential general issue 766 
during colonization is bottlenecks associated with host physiology (e.g., the acidic 767 
environment of the stomach) that stochastically affect the initial pool, thereby making 768 
fitness quantification challenging or impossible. In such cases, it may be necessary to 769 
inject a library directly into the gut. Bottlenecks will likely not be apparent from 770 
quantification of CFUs in stool since rapid growth in mice can restore the population 771 
to maximal levels within a single day108. During mono-colonization of mice, bottlenecks 772 
are not an issue for B. thetaiotaomicron14 and B. breve96; in the latter case, most (if 773 
not all) barcodes colonize across mice even though Bifidobacterium species are 774 
sensitive to oxygen and cold (conditions they experience prior to inoculation and 775 
during migration between host individuals). 776 
 777 
Analysis and sharing of fitness data 778 
In most cases, pooled library experiments will generate large amounts of sequencing 779 
data, particularly since transposon barcoding enables screening of hundreds of 780 
conditions at reasonable cost (tens of dollars per condition). To analyze these data, 781 



barcodes are typically quantified based on the number of assigned reads, grouped by 782 
gene (or other genomic feature) to average fitness variation across insertions, and the 783 
difference in cumulative barcode counts between the test and control conditions is 784 
used to infer the fitness effect of each gene in each condition11,12. Variability in 785 
phenotypic profiles across mutants in the same gene and calculation of the confidence 786 
in fitness estimates must be considered. Through this analysis, genes or groups of 787 
genes with fitness deviations under a particular set of conditions can be identified, 788 
enabling mapping of genetic networks and prioritization of interesting cases for follow-789 
up mechanistic studies. 790 
 791 
To maximally capitalize on these rich datasets, they must be made available to the 792 
scientific community at large. Adopting similar guidelines as the MIAME (Minimum 793 
Information About a Microarray Experiment)118 and MINSEQE (Minimum Information 794 
About a Next-generation Sequencing Experiment)119 for transposon library analysis, 795 
alongside a community-wide standardized pipeline to process raw data (e.g., how to 796 
handle barcode read quality, mismatches, alignment tolerance, etc.) will streamline 797 
communication and increase reproducibility, thereby enabling examination from 798 
diverse user perspectives and to empowering gene-specific investigations. Raw data 799 
can be deposited in online repositories120 800 
(https://journals.plos.org/ploscompbiol/s/recommended-repositories) that allow 801 
experienced users to use the data in custom manners, and processed data (e.g., 802 
calculated fitness values) can be made available through software or web-based 803 
platforms. Web-based platforms have the advantage of accommodating a wider 804 
network of researchers and thus increasing data distribution and application, as well 805 
as ease of updating. Usage of such tools can be stimulated by ensuring that data is 806 
easily browsable through a user-friendly interface supported by examples and tutorials 807 
and that the search input accepts cross-platform, stable feature identifiers (such as 808 
commonly used gene locus tags). The Fitness Browser (https://fit.genomics.lbl.gov/)11 809 
focuses on a single data type (gene-level fitness scores from pooled library screens) 810 
to enable fast comparison of gene fitness across diverse conditions and species, rapid 811 
incorporation of new datasets, and relatively straightforward maintenance. Users can 812 
browse fitness data by organism, gene, sequence, or condition, and the data base 813 
currently contains pre-computed fitness values from barcode sequencing of tens of 814 
thousands of in vitro and in vivo experiments involving dozens of bacterial mutant 815 
libraries. Moreover, linking to tools such as PaperBLAST, which mines the text of 816 
published papers for information about homologs, readily connects fitness data to 817 
other phenotypes121. 818 
 819 
Toward a general genotype-phenotype platform for bacteria 820 
With the construction of more libraries in diverse bacteria and their distribution among 821 
research groups, the resulting genome-wide phenotypic measurements using pooled 822 
or arrayed libraries will likely encompass data of a wide range of types beyond 823 
sequencing including microscopy images, mass spectra, colony features (size, 824 
morphology, color), and more. Ideally, data from these experiments will be centrally 825 



deposited and made accessible online, and other phenotype browsers may be worth 826 
developing using the Fitness Browser as a working model. The development of 827 
multiple phenotype browsers by different labs would ensure maximum flexibility and 828 
innovation with regards to data storage, analysis, and visualization. If such browsers 829 
provide the option to use standardized feature identifiers as queries, users can easily 830 
switch among phenotype browsers and platforms such as Uniprot and BLAST 831 
(preferentially through built-in linkages) with their feature of interest to assemble 832 
genotype-phenotype data and generate hypotheses. As researchers move on to new 833 
projects, there is always concern about the maintenance of modular browsers. A 834 
simple way to avoid issues with browser disappearance is to enable re-creation of the 835 
site by others from backups stored in a data repository (as is continually implemented 836 
for the Fitness Browser). 837 
 838 
Interconnected phenotype browsers linked by standardized feature nomenclature 839 
would provide synergism that may help fund their maintenance. Once a sufficiently 840 
large and diverse collection of data is accumulated for an organism of interest (which 841 
should be facilitated by strategies that increase the number of labs performing 842 
experiments on mutant libraries), it may be reasonable to construct an organism-843 
specific database similar to EcoCyc122 in which multiple types of phenotypic data are 844 
integrated and linked to genomic data. The development of additional phenotype 845 
browsers and/or species/genus-specific integrated genotype-phenotype databases 846 
focused on non-model organisms would be an exciting step forward in modern 847 
microbiology and promote the discovery of bacterial functions through systems 848 
biology. With this goal in mind, the scientific community focused on transposon 849 
libraries could learn from other large-scale, multi-omics data collection initiatives such 850 
as the Human Cell Atlas123		to collect, organize, share, and integrate data. To pave the 851 
way for these future advances, the research community should prioritize publication 852 
of raw data and the development of accessible, easy-to-use analytical pipelines to 853 
empower reproducibility and the development of novel analytical methods, reporting 854 
of technically correct but “negative” data to prevent unnecessary replication, and 855 
standardization of the implementation and frequent updating of genomic annotations 856 
to maintain correct inter-database communication. 857 
  858 



Concluding remarks 859 
Recent methodological advances such as RB-TnSeq have empowered mapping of 860 
phenotypic landscapes at massive scale, providing deeper insight into certain aspects 861 
of bacterial physiology. However, our comprehension of the host environment in which 862 
gut commensals coexist and evolve is still limited. Insight into host factors that impact 863 
microbiota physiology provides an opportunity to design conditions for in vitro 864 
screening that elucidate molecular mechanisms. For example, in the gut, host diet 865 
strongly affects gut microbiota composition and behavior, and the choice of medium 866 
can strongly affect in vitro phenotypes14. Future efforts that calibrate laboratory media 867 
to more closely mimic the nutrient environment in the mouse or human gut124,125, 868 
perhaps guided by comparisons between community composition in vitro and in vivo72 869 
or analyses of gut metabolomes126, could provide a sensible starting point for RB-870 
TnSeq in vitro screens. 871 
 872 
Simulation of other key aspects of the host environment can also be improved. Porcine 873 
gastric mucin is commercially available and hence is usually used as a proxy for 874 
intestinal mucus, but the structure of mucus varies throughout the gastrointestinal 875 
tract127 and hence methods to produce mucins more relevant to the small and large 876 
intestines could enhance our ability to mimic both the nutrient and the spatial/adhesive 877 
roles of mucus in the gut. We also lack precise measurements of host environmental 878 
parameters such as pH, salinity, viscosity, oxygen, and temperature (e.g., during fever 879 
and exercise128), which can vary (perhaps in correlated manners) across the gut129. 880 
Screening of transposon mutant libraries in animal hosts may be the most direct route 881 
toward inferring the most relevant variables in vivo. Environmental variables most 882 
strongly correlated with changes in community composition in the gut also provide 883 
clear focal points for in vitro screening. 884 
 885 
Another technical consideration is the stage of growth at which the pooled library is 886 
collected for in vitro fitness measurements. It is probably most expedient to continue 887 
collecting cultures in stationary phase, to avoid the undesired noise from differences 888 
in lag time across a plate or across experiments due to small environmental 889 
fluctuations. However, it is not clear which of log-phase growth, stationary phase, or 890 
deep starvation is the most relevant fitness determinant in a given condition, or 891 
whether compensatory effects mask fitness changes in a given mutant130. E. coli cells 892 
can adapt to long-term starvation131, and the phenotype of certain V. cholerae mutants 893 
in a rabbit infection model depends on whether cells are in log or stationary phase at 894 
the time of inoculation85. Finally, an outstanding question is the desired properties of 895 
the background community for screening in the presence of interspecies interactions, 896 
both in vitro and in vivo. Whether the community should be diverse, contain closely 897 
related species, and be composed of mouse versus human commensals may be 898 
question dependent; hopefully studies of a few focal species will help to establish 899 
general guidelines and principles, such as the extent to which a background 900 
community changes the phenotypic landscape of the focal species. 901 
 902 



Ultimately, achieving mechanistic understanding of gut microbiota function will require 903 
major leaps forward. Through many years of effort, functions or phenotypes have been 904 
uncovered for >75% of the genes in E. coli, establishing it as a preeminent model 905 
organism. By contrast, for virtually all gut commensals, only a minor fraction of their 906 
genes has known functions, and the low abundance of E. coli in healthy gut 907 
microbiotas132 suggests that it is a poor model for many gut functions. Efforts to build 908 
phenotypic landscapes of similar breadth in even a few representatives of the major 909 
gut phyla would likely represent a transformative advance given the probable synergy 910 
due to overlap in genetic content among closely related gut species. To achieve this 911 
goal, it will be desirable for as many screening conditions as possible to provide 912 
phenotypic information, which can be accomplished by acquiring more knowledge of 913 
the gut environment or through unbiased screening of a broad range of conditions 914 
such as media, toxins , human drugs73, or even non-Western chemicals such as herbal 915 
remedies. Fortunately, transposon barcoding facilitates high-throughput screening, 916 
and the increasingly low cost of sequencing means that it should be routine to screen 917 
thousands of conditions for each species. With robotics and rapid sequencing 918 
turnaround, it may even be feasible to construct a closed-loop system in which new 919 
conditions are selected and evaluated based on automated analysis of existing data84. 920 
We look forward to a near future in which data sets of hundreds of thousands of 921 
species/condition combinations can be systematically compared using user-friendly 922 
computational tools available to the global research community.  923 
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Figures 944 
 945 
Figure 1: In vitro library screening process and output. 946 
Barcoded transposon mutant libraries can be screened in high throughput using a vial 947 
of the pooled library diluted to an appropriate starting OD (dependent on the testing 948 
conditions and library diversity). The library is introduced in multi-well plates to various 949 
conditions such as diverse drugs. The library should be grown in the conditions for a 950 
limited number of generations, after which DNA is extracted from the pellet. A single 951 
PCR is performed (Bar-Seq) to amplify the barcode in each transposon and barcode 952 
amplicons are sequenced en masse and quantified. The barcodes are then linked to 953 
genes through the library-specific gene-barcode map, and barcode abundances can 954 
be used to quantify mutant fitness, to calculate co-fitness, and to reconstruct gene 955 
networks. 956 
 957 
Figure 2: Trade-offs and synergies between experimental platforms. Standard in 958 
vitro systems, particularly multi-well plates, provide the scalability for high-throughput 959 
screening of hundreds or thousands of conditions. The translatability of in vitro 960 
screening results may be unclear but can be established with other systems with 961 
higher complexity at the cost of lower scalability. Ultimately, in vitro screening results 962 
(lower left) can provide synergistic information to interpret in vivo experiments; for 963 
example, if the phenotypes of two semi-redundant enzymes differ between low and 964 
high ammonium conditions in vitro, their phenotypes in vivo suggest that the host 965 
environment is low in ammonium14. Blue and yellow indicate genes with low or high 966 
fitness, respectively, in a given condition. 967 

968 



References 969 
 970 
1. Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z.J., 971 

Pollard, K.S., Sakharova, E., Parks, D.H., Hugenholtz, P., et al. (2021). A 972 
unified catalog of 204,938 reference genomes from the human gut 973 
microbiome. Nature Biotechnology 39, 105-114. 10.1038/s41587-020-0603-3. 974 

2. Almeida, A., Mitchell, A.L., Boland, M., Forster, S.C., Gloor, G.B., Tarkowska, 975 
A., Lawley, T.D., and Finn, R.D. (2019). A new genomic blueprint of the 976 
human gut microbiota. Nature 568, 499-504. 977 

3. Forster, S.C., Kumar, N., Anonye, B.O., Almeida, A., Viciani, E., Stares, M.D., 978 
Dunn, M., Mkandawire, T.T., Zhu, A., Shao, Y., et al. (2019). A human gut 979 
bacterial genome and culture collection for improved metagenomic analyses. 980 
Nat Biotechnol 37, 186-192. 10.1038/s41587-018-0009-7. 981 

4. Zou, Y., Xue, W., Luo, G., Deng, Z., Qin, P., Guo, R., Sun, H., Xia, Y., Liang, 982 
S., and Dai, Y. (2019). 1,520 reference genomes from cultivated human gut 983 
bacteria enable functional microbiome analyses. Nature biotechnology 37, 984 
179-185. 985 

5. Kim, C.Y., Lee, M., Yang, S., Kim, K., Yong, D., Kim, H.R., and Lee, I. (2021). 986 
Human reference gut microbiome catalog including newly assembled 987 
genomes from under-represented Asian metagenomes. Genome Medicine 988 
13, 1-20. 989 

6. Heintz-Buschart, A., and Wilmes, P. (2018). Human gut microbiome: function 990 
matters. Trends in microbiology 26, 563-574. 991 

7. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., 992 
Beghini, F., Manghi, P., Tett, A., and Ghensi, P. (2019). Extensive unexplored 993 
human microbiome diversity revealed by over 150,000 genomes from 994 
metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662. 995 
e620. 996 

8. Fan, Y., and Pedersen, O. (2021). Gut microbiota in human metabolic health 997 
and disease. Nature Reviews Microbiology 19, 55-71. 998 

9. Lynch, S.V., and Pedersen, O. (2016). The human intestinal microbiome in 999 
health and disease. New England Journal of Medicine 375, 2369-2379. 1000 

10. Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, 1001 
C.A., Knight, R., and Gordon, J.I. (2009). Identifying genetic determinants 1002 
needed to establish a human gut symbiont in its habitat. Cell host & microbe 1003 
6, 279-289. 1004 

11. Price, M.N., Wetmore, K.M., Waters, R.J., Callaghan, M., Ray, J., Liu, H., 1005 
Kuehl, J.V., Melnyk, R.A., Lamson, J.S., and Suh, Y. (2018). Mutant 1006 
phenotypes for thousands of bacterial genes of unknown function. Nature 1007 
557, 503. 1008 

12. Wetmore, K.M., Price, M.N., Waters, R.J., Lamson, J.S., He, J., Hoover, C.A., 1009 
Blow, M.J., Bristow, J., Butland, G., Arkin, A.P., and Deutschbauer, A. (2015). 1010 
Rapid quantification of mutant fitness in diverse bacteria by sequencing 1011 
randomly bar-coded transposons. mBio 6, e00306-00315. 1012 
10.1128/mBio.00306-15. 1013 

13. Rosconi, F., Rudmann, E., Li, J., Surujon, D., Anthony, J., Frank, M., Jones, 1014 
D.S., Rock, C., Rosch, J.W., Johnston, C.D., and van Opijnen, T. (2022). A 1015 
bacterial pan-genome makes gene essentiality strain-dependent and 1016 
evolvable. Nat Microbiol 7, 1580-1592. 10.1038/s41564-022-01208-7. 1017 



14. Liu, H., Shiver, A.L., Price, M.N., Carlson, H.K., Trotter, V.V., Chen, Y., 1018 
Escalante, V., Ray, J., Hern, K.E., Petzold, C.J., et al. (2021). Functional 1019 
genetics of human gut commensal Bacteroides thetaiotaomicron reveals 1020 
metabolic requirements for growth across environments. Cell Rep 34, 108789. 1021 
10.1016/j.celrep.2021.108789. 1022 

15. Goodman, A.L., Wu, M., and Gordon, J.I. (2011). Identifying microbial fitness 1023 
determinants by insertion sequencing using genome-wide transposon mutant 1024 
libraries. Nature protocols 6, 1969. 1025 

16. Cullen, T., Schofield, W., Barry, N., Putnam, E., Rundell, E., Trent, M., 1026 
Degnan, P., Booth, C., Yu, H., and Goodman, A. (2015). Antimicrobial peptide 1027 
resistance mediates resilience of prominent gut commensals during 1028 
inflammation. Science 347, 170-175. 1029 

17. Cain, A.K., Barquist, L., Goodman, A.L., Paulsen, I.T., Parkhill, J., and van 1030 
Opijnen, T. (2020). A decade of advances in transposon-insertion sequencing. 1031 
Nat Rev Genet 21, 526-540. 10.1038/s41576-020-0244-x. 1032 

18. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, 1033 
K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of 1034 
Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio 1035 
collection. Mol Syst Biol 2, 2006 0008. 10.1038/msb4100050. 1036 

19. Cameron, D.E., Urbach, J.M., and Mekalanos, J.J. (2008). A defined 1037 
transposon mutant library and its use in identifying motility genes in Vibrio 1038 
cholerae. Proceedings of the National Academy of Sciences 105, 8736-8741. 1039 

20. Koo, B.-M., Kritikos, G., Farelli, J.D., Todor, H., Tong, K., Kimsey, H., 1040 
Wapinski, I., Galardini, M., Cabal, A., and Peters, J.M. (2017). Construction 1041 
and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell 1042 
systems 4, 291-305. e297. 1043 

21. Van Opijnen, T., Bodi, K.L., and Camilli, A. (2009). Tn-seq: high-throughput 1044 
parallel sequencing for fitness and genetic interaction studies in 1045 
microorganisms. Nature methods 6, 767-772. 1046 

22. Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., 1047 
Charles, I., Maskell, D.J., Peters, S.E., Dougan, G., et al. (2009). 1048 
Simultaneous assay of every Salmonella Typhi gene using one million 1049 
transposon mutants. Genome Res 19, 2308-2316. 10.1101/gr.097097.109. 1050 

23. Wu, M., McNulty, N.P., Rodionov, D.A., Khoroshkin, M.S., Griffin, N.W., 1051 
Cheng, J., Latreille, P., Kerstetter, R.A., Terrapon, N., Henrissat, B., et al. 1052 
(2015). Genetic determinants of in vivo fitness and diet responsiveness in 1053 
multiple human gut Bacteroides. Science 350, aac5992. 1054 
10.1126/science.aac5992. 1055 

24. Arjes, H.A., Sun, J., Liu, H., Nguyen, T.H., Culver, R.N., Celis, A.I., Walton, 1056 
S.J., Vasquez, K.S., Yu, F.B., Xue, K.S., et al. (2022). Construction and 1057 
characterization of a genome-scale ordered mutant collection of Bacteroides 1058 
thetaiotaomicron. BMC Biol 20, 285. 10.1186/s12915-022-01481-2. 1059 

25. Baym, M., Shaket, L., Anzai, I.A., Adesina, O., and Barstow, B. (2016). Rapid 1060 
construction of a whole-genome transposon insertion collection for 1061 
Shewanella oneidensis by Knockout Sudoku. Nature communications 7, 1062 
13270. 1063 

26. Fuhrer, T., Zampieri, M., Sévin, D.C., Sauer, U., and Zamboni, N. (2017). 1064 
Genomewide landscape of gene–metabolome associations in Escherichia 1065 
coli. Molecular Systems Biology 13, 907. 1066 



27. Campos, M., Govers, S.K., Irnov, I., Dobihal, G.S., Cornet, F., and Jacobs-1067 
Wagner, C. (2018). Genomewide phenotypic analysis of growth, cell 1068 
morphogenesis, and cell cycle events in Escherichia coli. Molecular systems 1069 
biology 14, e7573. 1070 

28. Shiver, A.L., Culver, R., Deutschbauer, A.M., and Huang, K.C. (2021). Rapid 1071 
ordering of barcoded transposon insertion libraries of anaerobic bacteria. Nat 1072 
Protoc 16, 3049-3071. 10.1038/s41596-021-00531-3. 1073 

29. Nichols, R.J., Sen, S., Choo, Y.J., Beltrao, P., Zietek, M., Chaba, R., Lee, S., 1074 
Kazmierczak, K.M., Lee, K.J., Wong, A., et al. (2011). Phenotypic landscape 1075 
of a bacterial cell. Cell 144, 143-156. 10.1016/j.cell.2010.11.052. 1076 

30. French, S., Mangat, C., Bharat, A., Côté, J.-P., Mori, H., and Brown, E.D. 1077 
(2016). A robust platform for chemical genomics in bacterial systems. 1078 
Molecular biology of the cell 27, 1015-1025. 1079 

31. Chalabaev, S., Chauhan, A., Novikov, A., Iyer, P., Szczesny, M., Beloin, C., 1080 
Caroff, M., and Ghigo, J.-M. (2014). Biofilms formed by gram-negative 1081 
bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. 1082 
MBio 5, e01116-01114. 1083 

32. Orman, M.A., and Brynildsen, M.P. (2016). Persister formation in Escherichia 1084 
coli can be inhibited by treatment with nitric oxide. Free Radical Biology and 1085 
Medicine 93, 145-154. 1086 

33. Gray, A.N., Egan, A.J., Van't Veer, I.L., Verheul, J., Colavin, A., Koumoutsi, 1087 
A., Biboy, J., Altelaar, A.F., Damen, M.J., Huang, K.C., et al. (2015). 1088 
Coordination of peptidoglycan synthesis and outer membrane constriction 1089 
during Escherichia coli cell division. Elife 4. 10.7554/eLife.07118. 1090 

34. Typas, A., Banzhaf, M., van den Berg van Saparoea, B., Verheul, J., Biboy, 1091 
J., Nichols, R.J., Zietek, M., Beilharz, K., Kannenberg, K., von Rechenberg, 1092 
M., et al. (2010). Regulation of peptidoglycan synthesis by outer-membrane 1093 
proteins. Cell 143, 1097-1109. 10.1016/j.cell.2010.11.038. 1094 

35. Shiver, A.L., Osadnik, H., Kritikos, G., Li, B., Krogan, N., Typas, A., and 1095 
Gross, C.A. (2016). A chemical-genomic screen of neglected antibiotics 1096 
reveals illicit transport of kasugamycin and blasticidin S. PLoS genetics 12, 1097 
e1006124. 1098 

36. Ghatak, S., King, Z.A., Sastry, A., and Palsson, B.O. (2019). The y-ome 1099 
defines the 35% of Escherichia coli genes that lack experimental evidence of 1100 
function. Nucleic acids research 47, 2446-2454. 1101 

37. Wicke, D., Meißner, J., Warneke, R., Elfmann, C., and Stülke, J. (2023). 1102 
Understudied proteins and understudied functions in the model bacterium 1103 
Bacillus subtilis—A major challenge in current research. Molecular 1104 
Microbiology 120, 8-19. https://doi.org/10.1111/mmi.15053. 1105 

38. Le Breton, Y., Mistry, P., Valdes, K.M., Quigley, J., Kumar, N., Tettelin, H., 1106 
and McIver, K.S. (2013). Genome-wide identification of genes required for 1107 
fitness of group A Streptococcus in human blood. Infection and immunity 81, 1108 
862-875. 1109 

39. Hubbard, T.P., Chao, M.C., Abel, S., Blondel, C.J., Abel zur Wiesch, P., Zhou, 1110 
X., Davis, B.M., and Waldor, M.K. (2016). Genetic analysis of Vibrio 1111 
parahaemolyticus intestinal colonization. Proceedings of the National 1112 
Academy of Sciences 113, 6283-6288. 1113 

40. Weerdenburg, E.M., Abdallah, A.M., Rangkuti, F., Abd El Ghany, M., Otto, 1114 
T.D., Adroub, S.A., Molenaar, D., Ummels, R., Ter Veen, K., and van 1115 
Stempvoort, G. (2015). Genome-wide transposon mutagenesis indicates that 1116 



Mycobacterium marinum customizes its virulence mechanisms for survival 1117 
and replication in different hosts. Infection and immunity 83, 1778-1788. 1118 

41. Tripathi, S., Voogdt, C.G.P., Bassler, S.O., Anderson, M., Huang, P.-H., 1119 
Sakenova, N., Capraz, T., Jain, S., Koumoutsi, A., Bravo, A.M., et al. (2023). 1120 
Randomly barcoded transposon mutant libraries for gut commensals I: 1121 
strategies for efficient library construction. Cell Reports. 1122 

42. Park, S.Y., Rao, C., Coyte, K.Z., Kuziel, G.A., Zhang, Y., Huang, W., 1123 
Franzosa, E.A., Weng, J.K., Huttenhower, C., and Rakoff-Nahoum, S. (2022). 1124 
Strain-level fitness in the gut microbiome is an emergent property of glycans 1125 
and a single metabolite. Cell 185, 513-529 e521. 10.1016/j.cell.2022.01.002. 1126 

43. Baker, B.J., and Dick, G.J. (2013). Omic approaches in microbial ecology: 1127 
charting the unknown. Microbe 8, 353-359. 1128 

44. Tramontano, M., Andrejev, S., Pruteanu, M., Klünemann, M., Kuhn, M., 1129 
Galardini, M., Jouhten, P., Zelezniak, A., Zeller, G., and Bork, P. (2018). 1130 
Nutritional preferences of human gut bacteria reveal their metabolic 1131 
idiosyncrasies. Nature microbiology 3, 514-522. 1132 

45. Christensen, D.G., Orr, J.S., Rao, C.V., and Wolfe, A.J. (2017). Increasing 1133 
Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the 1134 
Carbon-to-Magnesium Ratio in Peptide-Based Media. Appl Environ Microbiol 1135 
83. 10.1128/AEM.03034-16. 1136 

46. Varel, V.H., and Bryant, M.P. (1974). Nutritional features of Bacteroides 1137 
fragilis subsp. fragilis. Applied microbiology 28, 251-257. 1138 

47. Pudlo, N.A., Urs, K., Crawford, R., Pirani, A., Atherly, T., Jimenez, R., 1139 
Terrapon, N., Henrissat, B., Peterson, D., and Ziemer, C. (2022). Phenotypic 1140 
and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut 1141 
Bacteria. Msystems 7, e00947-00921. 1142 

48. Tong, M., French, S., El Zahed, S.S., Ong, W.k., Karp, P.D., and Brown, E.D. 1143 
(2020). Gene dispensability in Escherichia coli grown in thirty different carbon 1144 
environments. MBio 11, e02259-02220. 1145 

49. Celis, A.I., Aranda-Diaz, A., Culver, R., Xue, K., Relman, D., Shi, H., and 1146 
Huang, K.C. (2022). Optimization of the 16S rRNA sequencing analysis 1147 
pipeline for studying in vitro communities of gut commensals. iScience 25, 1148 
103907. 10.1016/j.isci.2022.103907. 1149 

50. de Bakker, V., Liu, X., Bravo, A.M., and Veening, J.-W. (2022). CRISPRi-seq 1150 
for genome-wide fitness quantification in bacteria. Nature Protocols 17, 252-1151 
281. 1152 

51. Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R., and Rastall, R.A. 1153 
(2019). Probiotics and prebiotics in intestinal health and disease: from biology 1154 
to the clinic. Nature reviews Gastroenterology & hepatology 16, 605-616. 1155 

52. Bedu-Ferrari, C., Biscarrat, P., Langella, P., and Cherbuy, C. (2022). 1156 
Prebiotics and the human gut microbiota: From breakdown mechanisms to 1157 
the impact on metabolic health. Nutrients 14, 2096. 1158 

53. Shepherd, E.S., DeLoache, W.C., Pruss, K.M., Whitaker, W.R., and 1159 
Sonnenburg, J.L. (2018). An exclusive metabolic niche enables strain 1160 
engraftment in the gut microbiota. Nature 557, 434-438. 1161 

54. Le Bastard, Q., Chapelet, G., Javaudin, F., Lepelletier, D., Batard, E., and 1162 
Montassier, E. (2020). The effects of inulin on gut microbial composition: a 1163 
systematic review of evidence from human studies. European Journal of 1164 
Clinical Microbiology & Infectious Diseases 39, 403-413. 1165 



55. Liou, C.S., Sirk, S.J., Diaz, C.A., Klein, A.P., Fischer, C.R., Higginbottom, 1166 
S.K., Erez, A., Donia, M.S., Sonnenburg, J.L., and Sattely, E.S. (2020). A 1167 
metabolic pathway for activation of dietary glucosinolates by a human gut 1168 
symbiont. Cell 180, 717-728. e719. 1169 

56. Jayachandran, M., Chen, J., Chung, S.S.M., and Xu, B. (2018). A critical 1170 
review on the impacts of β-glucans on gut microbiota and human health. The 1171 
Journal of nutritional biochemistry 61, 101-110. 1172 

57. Evans, D., Pye, G., Bramley, R., Clark, A., Dyson, T., and Hardcastle, J. 1173 
(1988). Measurement of gastrointestinal pH profiles in normal ambulant 1174 
human subjects. Gut 29, 1035-1041. 1175 

58. Firrman, J., Liu, L., Mahalak, K., Tanes, C., Bittinger, K., Tu, V., Bobokalonov, 1176 
J., Mattei, L., Zhang, H., and Van den Abbeele, P. (2022). The impact of 1177 
environmental pH on the gut microbiota community structure and short chain 1178 
fatty acid production. FEMS Microbiology Ecology 98, fiac038. 1179 

59. Ratzke, C., and Gore, J. (2018). Modifying and reacting to the environmental 1180 
pH can drive bacterial interactions. PLoS biology 16, e2004248. 1181 

60. Cremer, J., Arnoldini, M., and Hwa, T. (2017). Effect of water flow and 1182 
chemical environment on microbiota growth and composition in the human 1183 
colon. Proceedings of the National Academy of Sciences 114, 6438-6443. 1184 

61. Tropini, C., Moss, E.L., Merrill, B.D., Ng, K.M., Higginbottom, S.K., Casavant, 1185 
E.P., Gonzalez, C.G., Fremin, B., Bouley, D.M., Elias, J.E., et al. (2018). 1186 
Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut 1187 
Microbiota. Cell 173, 1742-1754 e1717. 10.1016/j.cell.2018.05.008. 1188 

62. Marquis, R.E. (1968). Salt-induced contraction of bacterial cell walls. Journal 1189 
of bacteriology 95, 775-781. 1190 

63. Rojas, E., Theriot, J.A., and Huang, K.C. (2014). Response of Escherichia coli 1191 
growth rate to osmotic shock. Proc Natl Acad Sci U S A 111, 7807-7812. 1192 
10.1073/pnas.1402591111. 1193 

64. Tamargo, A., Cueva, C., Álvarez, M.D., Herranz, B., Bartolomé, B., Moreno-1194 
Arribas, M.V., and Laguna, L. (2018). Influence of viscosity on the growth of 1195 
human gut microbiota. Food Hydrocolloids 77, 163-167. 1196 

65. Pelaseyed, T., Bergström, J.H., Gustafsson, J.K., Ermund, A., Birchenough, 1197 
G.M., Schütte, A., van der Post, S., Svensson, F., Rodríguez-Piñeiro, A.M., 1198 
and Nyström, E.E. (2014). The mucus and mucins of the goblet cells and 1199 
enterocytes provide the first defense line of the gastrointestinal tract and 1200 
interact with the immune system. Immunological reviews 260, 8-20. 1201 

66. Ermund, A., Schütte, A., Johansson, M.E., Gustafsson, J.K., and Hansson, 1202 
G.C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. 1203 
I. Gastrointestinal mucus layers have different properties depending on 1204 
location as well as over the Peyer's patches. American Journal of Physiology-1205 
Gastrointestinal and Liver Physiology 305, G341-G347. 1206 

67. Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., 1207 
Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., and Muller, A. (2016). A 1208 
dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and 1209 
enhances pathogen susceptibility. Cell 167, 1339-1353. e1321. 1210 

68. Collins, S.L., Stine, J.G., Bisanz, J.E., Okafor, C.D., and Patterson, A.D. 1211 
(2023). Bile acids and the gut microbiota: metabolic interactions and impacts 1212 
on disease. Nature Reviews Microbiology 21, 236-247. 1213 

69. Nakajima, A., Vogelzang, A., Maruya, M., Miyajima, M., Murata, M., Son, A., 1214 
Kuwahara, T., Tsuruyama, T., Yamada, S., and Matsuura, M. (2018). IgA 1215 



regulates the composition and metabolic function of gut microbiota by 1216 
promoting symbiosis between bacteria. Journal of Experimental Medicine 215, 1217 
2019-2034. 1218 

70. Foster, K.R., and Bell, T. (2012). Competition, not cooperation, dominates 1219 
interactions among culturable microbial species. Curr Biol 22, 1845-1850. 1220 
10.1016/j.cub.2012.08.005. 1221 

71. Cheng, A.G., Ho, P.-Y., Aranda-Díaz, A., Jain, S., Feiqiao, B.Y., Meng, X., 1222 
Wang, M., Iakiviak, M., Nagashima, K., and Zhao, A. (2022). Design, 1223 
construction, and in vivo augmentation of a complex gut microbiome. Cell 1224 
185, 3617-3636. 1225 

72. Aranda-Diaz, A., Ng, K.M., Thomsen, T., Real-Ramirez, I., Dahan, D., Dittmar, 1226 
S., Gonzalez, C.G., Chavez, T., Vasquez, K.S., Nguyen, T.H., et al. (2022). 1227 
Establishment and characterization of stable, diverse, fecal-derived in vitro 1228 
microbial communities that model the intestinal microbiota. Cell Host Microbe 1229 
30, 260-272 e265. 10.1016/j.chom.2021.12.008. 1230 

73. Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., 1231 
Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H., et al. (2018). Extensive 1232 
impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623-628. 1233 
10.1038/nature25979. 1234 

74. Maier, L., Goemans, C.V., Wirbel, J., Kuhn, M., Eberl, C., Pruteanu, M., 1235 
Muller, P., Garcia-Santamarina, S., Cacace, E., Zhang, B., et al. (2021). 1236 
Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 1237 
120-124. 10.1038/s41586-021-03986-2. 1238 

75. Price, S.L., Thibault, D., Garrison, T.M., Brady, A., Guo, H., Kehl-Fie, T.E., 1239 
Garneau-Tsodikova, S., Perry, R.D., van Opijnen, T., and Lawrenz, M.B. 1240 
(2023). Droplet Tn-Seq identifies the primary secretion mechanism for 1241 
yersiniabactin in Yersinia pestis. EMBO reports, e57369. 1242 

76. Thibault, D., Jensen, P.A., Wood, S., Qabar, C., Clark, S., Shainheit, M.G., 1243 
Isberg, R.R., and van Opijnen, T. (2019). Droplet Tn-Seq combines 1244 
microfluidics with Tn-Seq for identifying complex single-cell phenotypes. 1245 
Nature Communications 10, 5729. 1246 

77. Peters, J.M., Colavin, A., Shi, H., Czarny, T.L., Larson, M.H., Wong, S., 1247 
Hawkins, J.S., Lu, C.H., Koo, B.-M., and Marta, E. (2016). A comprehensive, 1248 
CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1249 
1493-1506. 1250 

78. Shi, H., Colavin, A., Lee, T.K., and Huang, K.C. (2017). Strain Library Imaging 1251 
Protocol for high-throughput, automated single-cell microscopy of large 1252 
bacterial collections arrayed on multiwell plates. Nat Protoc 12, 429-438. 1253 
10.1038/nprot.2016.181. 1254 

79. Mateus, A., Hevler, J., Bobonis, J., Kurzawa, N., Shah, M., Mitosch, K., 1255 
Goemans, C.V., Helm, D., Stein, F., and Typas, A. (2020). The functional 1256 
proteome landscape of Escherichia coli. Nature 588, 473-478. 1257 

80. Kritikos, G., Banzhaf, M., Herrera-Dominguez, L., Koumoutsi, A., Wartel, M., 1258 
Zietek, M., and Typas, A. (2017). A tool named Iris for versatile high-1259 
throughput phenotyping in microorganisms. Nature microbiology 2, 17014. 1260 

81. Silvis, M.R., Rajendram, M., Shi, H., Osadnik, H., Gray, A.N., Cesar, S., 1261 
Peters, J.M., Hearne, C.C., Kumar, P., Todor, H., et al. (2021). Morphological 1262 
and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in 1263 
Escherichia coli. mBio 12, e0256121. 10.1128/mBio.02561-21. 1264 



82. Ronda, C., Chen, S.P., Cabral, V., Yaung, S.J., and Wang, H.H. (2019). 1265 
Metagenomic engineering of the mammalian gut microbiome in situ. Nat 1266 
Methods 16, 167-170. 10.1038/s41592-018-0301-y. 1267 

83. Davey, L.E., Malkus, P.N., Villa, M., Dolat, L., Holmes, Z.C., Letourneau, J., 1268 
Ansaldo, E., David, L.A., Barton, G.M., and Valdivia, R.H. (2023). A genetic 1269 
system for Akkermansia muciniphila reveals a role for mucin foraging in gut 1270 
colonization and host sterol biosynthesis gene expression. Nat Microbiol. 1271 
10.1038/s41564-023-01407-w. 1272 

84. Dama, A.C., Kim, K.S., Leyva, D.M., Lunkes, A.P., Schmid, N.S., Jijakli, K., 1273 
and Jensen, P.A. (2023). BacterAI maps microbial metabolism without prior 1274 
knowledge. Nature Microbiology, 1-8. 1275 

85. Dörr, T., Möll, A., Chao, M.C., Cava, F., Lam, H., Davis, B.M., and Waldor, 1276 
M.K. (2014). Differential requirement for PBP1a and PBP1b in in vivo and in 1277 
vitro fitness of Vibrio cholerae. Infection and immunity 82, 2115-2124. 1278 

86. Dapa, T., Ramiro, R.S., Pedro, M.F., Gordo, I., and Xavier, K.B. (2022). Diet 1279 
leaves a genetic signature in a keystone member of the gut microbiota. Cell 1280 
Host Microbe 30, 183-199 e110. 10.1016/j.chom.2022.01.002. 1281 

87. Frazão, N., Sousa, A., Lässig, M., and Gordo, I. (2019). Horizontal gene 1282 
transfer overrides mutation in Escherichia coli colonizing the mammalian gut. 1283 
Proceedings of the National Academy of Sciences 116, 17906-17915. 1284 

88. Benoit, C., Jesse, D., Madhu, M., and Matam, V. (2014). Dextran sulfate 1285 
sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 25, 1-15. 1286 

89. Eberl, C., Ring, D., Münch, P.C., Beutler, M., Basic, M., Slack, E.C., 1287 
Schwarzer, M., Srutkova, D., Lange, A., and Frick, J.S. (2020). Reproducible 1288 
colonization of germ-free mice with the oligo-mouse-microbiota in different 1289 
animal facilities. Frontiers in microbiology 10, 2999. 1290 

90. Maier, L., Diard, M., Sellin, M.E., Chouffane, E.-S., Trautwein-Weidner, K., 1291 
Periaswamy, B., Slack, E., Dolowschiak, T., Stecher, B., and Loverdo, C. 1292 
(2014). Granulocytes impose a tight bottleneck upon the gut luminal pathogen 1293 
population during Salmonella typhimurium colitis. PLoS pathogens 10, 1294 
e1004557. 1295 

91. Ho, P.-Y., Nguyen, T.H., Sanchez, J.M., DeFelice, B.C., and Huang, K.C. 1296 
(2022). Resource competition predicts assembly of in vitro gut bacterial 1297 
communities. bioRxiv. 1298 

92. Earle, K.A., Billings, G., Sigal, M., Lichtman, J.S., Hansson, G.C., Elias, J.E., 1299 
Amieva, M.R., Huang, K.C., and Sonnenburg, J.L. (2015). Quantitative 1300 
Imaging of Gut Microbiota Spatial Organization. Cell Host Microbe 18, 478-1301 
488. 10.1016/j.chom.2015.09.002. 1302 

93. Kieser, S., Zdobnov, E.M., and Trajkovski, M. (2022). Comprehensive mouse 1303 
microbiota genome catalog reveals major difference to its human counterpart. 1304 
PLoS Comput Biol 18, e1009947. 10.1371/journal.pcbi.1009947. 1305 

94. Rose, E.C., Blikslager, A.T., and Ziegler, A.L. (2022). Porcine Models of the 1306 
Intestinal Microbiota: The Translational Key to Understanding How Gut 1307 
Commensals Contribute to Gastrointestinal Disease. Front Vet Sci 9, 834598. 1308 
10.3389/fvets.2022.834598. 1309 

95. Stanley, D., Hughes, R.J., and Moore, R.J. (2014). Microbiota of the chicken 1310 
gastrointestinal tract: influence on health, productivity and disease. Appl 1311 
Microbiol Biotechnol 98, 4301-4310. 10.1007/s00253-014-5646-2. 1312 

96. Shiver, A.L., Violette, A., Sun, J., Culver, R., Drescher, S.P.M., Sekhon, P.K., 1313 
Feissler, L., Carlson, H.K., Wong, D., Wynter, C., et al. (2023). An atlas of 1314 



gene function in Bifidobacterium breve reveals molecular determinants of 1315 
colonization and host-microbe interactions. bioRxiv. 1316 

97. Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., 1317 
Guillemin, K., and Rawls, J.F. (2011). Evidence for a core gut microbiota in 1318 
the zebrafish. ISME J 5, 1595-1608. 10.1038/ismej.2011.38. 1319 

98. Murphy, R., Palm, M., Mustonen, V., Warringer, J., Farewell, A., Parts, L., and 1320 
Moradigaravand, D. (2021). Genomic epidemiology and evolution of 1321 
Escherichia coli in wild animals in Mexico. Msphere 6, e00738-00720. 1322 

99. Zhang, J., Holdorf, A.D., and Walhout, A.J. (2017). C. elegans and its 1323 
bacterial diet as a model for systems-level understanding of host–microbiota 1324 
interactions. Current opinion in biotechnology 46, 74-80. 1325 

100. Ludington, W.B., and Ja, W.W. (2020). Drosophila as a model for the gut 1326 
microbiome. PLoS Pathogens 16, e1008398. 1327 

101. Garvis, S., Munder, A., Ball, G., de Bentzmann, S., Wiehlmann, L., Ewbank, 1328 
J.J., Tümmler, B., and Filloux, A. (2009). Caenorhabditis elegans semi-1329 
automated liquid screen reveals a specialized role for the chemotaxis gene 1330 
cheB2 in Pseudomonas aeruginosa virulence. PLoS pathogens 5, e1000540. 1331 

102. Lewenza, S., Charron-Mazenod, L., Giroux, L., and Zamponi, A.D. (2014). 1332 
Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas 1333 
aeruginosa PAO1 virulence. PeerJ 2, e521. 1334 

103. García-González, A.P., Ritter, A.D., Shrestha, S., Andersen, E.C., Yilmaz, 1335 
L.S., and Walhout, A.J. (2017). Bacterial metabolism affects the C. elegans 1336 
response to cancer chemotherapeutics. Cell 169, 431-441. e438. 1337 

104. Koyama, L.A.J., Aranda-Diaz, A., Su, Y.H., Balachandra, S., Martin, J.L., 1338 
Ludington, W.B., Huang, K.C., and O'Brien, L.E. (2020). Bellymount enables 1339 
longitudinal, intravital imaging of abdominal organs and the gut microbiota in 1340 
adult Drosophila. PLoS Biol 18, e3000567. 10.1371/journal.pbio.3000567. 1341 

105. Pais, I.S., Valente, R.S., Sporniak, M., and Teixeira, L. (2018). Drosophila 1342 
melanogaster establishes a species-specific mutualistic interaction with stable 1343 
gut-colonizing bacteria. PLoS Biol 16, e2005710. 1344 
10.1371/journal.pbio.2005710. 1345 

106. Hryckowian, A.J., Van Treuren, W., Smits, S.A., Davis, N.M., Gardner, J.O., 1346 
Bouley, D.M., and Sonnenburg, J.L. (2018). Microbiota-accessible 1347 
carbohydrates suppress Clostridium difficile infection in a murine model. Nat 1348 
Microbiol 3, 662-669. 10.1038/s41564-018-0150-6. 1349 

107. Maritan, E., Gallo, M., Srutkova, D., Jelinkova, A., Benada, O., Kofronova, O., 1350 
Silva-Soares, N.F., Hudcovic, T., Gifford, I., and Barrick, J.E. (2022). Gut 1351 
microbe Lactiplantiballus plantarum undergoes different evolutionary 1352 
trajectories between insects and mammals. bioRxiv. 1353 

108. Vasquez, K.S., Willis, L., Cira, N.J., Ng, K.M., Pedro, M.F., Aranda-Diaz, A., 1354 
Rajendram, M., Yu, F.B., Higginbottom, S.K., Neff, N., et al. (2021). 1355 
Quantifying rapid bacterial evolution and transmission within the mouse 1356 
intestine. Cell Host Microbe 29, 1454-1468 e1454. 1357 
10.1016/j.chom.2021.08.003. 1358 

109. Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., 1359 
Kurilshikov, A., Bonder, M.J., Valles-Colomer, M., Vandeputte, D., et al. 1360 
(2016). Population-level analysis of gut microbiome variation. Science 352, 1361 
560-564. 10.1126/science.aad3503. 1362 

110. Leshchiner, D., Rosconi, F., Sundaresh, B., Rudmann, E., Ramirez, L.M.N., 1363 
Nishimoto, A.T., Wood, S.J., Jana, B., Buján, N., and Li, K. (2022). A genome-1364 



wide atlas of antibiotic susceptibility targets and pathways to tolerance. Nature 1365 
Communications 13, 3165. 1366 

111. van Opijnen, T., and Camilli, A. (2012). A fine scale phenotype–genotype 1367 
virulence map of a bacterial pathogen. Genome research 22, 2541-2551. 1368 

112. Ng, K.M., Aranda-Diaz, A., Tropini, C., Frankel, M.R., Van Treuren, W., 1369 
O'Loughlin, C.T., Merrill, B.D., Yu, F.B., Pruss, K.M., Oliveira, R.A., et al. 1370 
(2019). Recovery of the Gut Microbiota after Antibiotics Depends on Host 1371 
Diet, Community Context, and Environmental Reservoirs. Cell Host Microbe 1372 
26, 650-665 e654. 10.1016/j.chom.2019.10.011. 1373 

113. Kim, J., Koo, B.-K., and Knoblich, J.A. (2020). Human organoids: model 1374 
systems for human biology and medicine. Nature Reviews Molecular Cell 1375 
Biology 21, 571-584. 1376 

114. Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S., and 1377 
Marzorati, M. (2015). The Simulator of the Human Intestinal Microbial 1378 
Ecosystem (SHIME((R))). In The Impact of Food Bioactives on Health: in vitro 1379 
and ex vivo models, K. Verhoeckx, P. Cotter, I. Lopez-Exposito, C. Kleiveland, 1380 
T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, eds. pp. 305-1381 
317. 10.1007/978-3-319-16104-4_27. 1382 

115. Birkett, A., Muir, J., Phillips, J., Jones, G., and O’Dea, K. (1996). Resistant 1383 
starch lowers fecal concentrations of ammonia and phenols in humans. The 1384 
American Journal of Clinical Nutrition 63, 766-772. 1385 

116. Mortensen, P.B. (1992). The effect of oral-administered lactulose on colonic 1386 
nitrogen metabolism and excretion. Hepatology 16, 1350-1356. 1387 

117. Wong, D.P., and Good, B.H. (2022). Quantifying the adaptive landscape of 1388 
commensal gut bacteria using high-resolution lineage tracking. bioRxiv. 1389 

118. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., 1390 
Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., and Causton, H.C. (2001). 1391 
Minimum information about a microarray experiment (MIAME)—toward 1392 
standards for microarray data. Nature genetics 29, 365-371. 1393 

119. Rustici, G., Williams, E., Barzine, M., Brazma, A., Bumgarner, R., Chierici, M., 1394 
Furlanello, C., Greger, L., Jurman, G., and Miller, M. (2021). Transcriptomics 1395 
data availability and reusability in the transition from microarray to next-1396 
generation sequencing. bioRxiv, 2020.2012. 2031.425022. 1397 

120. Goodman, A., Pepe, A., Blocker, A.W., Borgman, C.L., Cranmer, K., Crosas, 1398 
M., Di Stefano, R., Gil, Y., Groth, P., and Hedstrom, M. (2014). Ten simple 1399 
rules for the care and feeding of scientific data. PLoS computational biology 1400 
10, e1003542. 1401 

121. Price, M.N., and Arkin, A.P. (2017). PaperBLAST: text mining papers for 1402 
information about homologs. MSystems 2, e00039-00017. 1403 

122. Karp, P.D., Ong, W.K., Paley, S., Billington, R., Caspi, R., Fulcher, C., 1404 
Kothari, A., Krummenacker, M., Latendresse, M., Midford, P.E., et al. (2018). 1405 
The EcoCyc Database. EcoSal Plus 8. 10.1128/ecosalplus.ESP-0006-2018. 1406 

123. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., 1407 
Bodenmiller, B., Campbell, P., Carninci, P., and Clatworthy, M. (2017). The 1408 
human cell atlas. elife 6, e27041. 1409 

124. Javdan, B., Lopez, J.G., Chankhamjon, P., Lee, Y.J., Hull, R., Wu, Q., Wang, 1410 
X., Chatterjee, S., and Donia, M.S. (2020). Personalized Mapping of Drug 1411 
Metabolism by the Human Gut Microbiome. Cell 181, 1661-1679 e1622. 1412 
10.1016/j.cell.2020.05.001. 1413 



125. Ostrem Loss, E., Thompson, J., Cheung, P.L.K., Qian, Y., and Venturelli, O.S. 1414 
(2023). Carbohydrate complexity limits microbial growth and reduces the 1415 
sensitivity of human gut communities to perturbations. Nature Ecology & 1416 
Evolution, 1-16. 1417 

126. Han, S., Van Treuren, W., Fischer, C.R., Merrill, B.D., DeFelice, B.C., 1418 
Sanchez, J.M., Higginbottom, S.K., Guthrie, L., Fall, L.A., and Dodd, D. 1419 
(2021). A metabolomics pipeline for the mechanistic interrogation of the gut 1420 
microbiome. Nature 595, 415-420. 1421 

127. Johansson, M.E., Sjövall, H., and Hansson, G.C. (2013). The gastrointestinal 1422 
mucus system in health and disease. Nature reviews Gastroenterology & 1423 
hepatology 10, 352-361. 1424 

128. Huus, K.E., and Ley, R.E. (2021). Blowing hot and cold: body temperature 1425 
and the microbiome. Msystems 6, e00707-00721. 1426 

129. Shalon, D., Culver, R.N., Grembi, J.A., Folz, J., Treit, P.V., Shi, H., 1427 
Rosenberger, F.A., Dethlefsen, L., Meng, X., and Yaffe, E. (2023). Profiling 1428 
the human intestinal environment under physiological conditions. Nature, 1-1429 
11. 1430 

130. Li, Y., Petrov, D.A., and Sherlock, G. (2019). Single nucleotide mapping of 1431 
trait space reveals Pareto fronts that constrain adaptation. Nature ecology & 1432 
evolution 3, 1539-1551. 1433 

131. Finkel, S.E. (2006). Long-term survival during stationary phase: evolution and 1434 
the GASP phenotype. Nature Reviews Microbiology 4, 113-120. 1435 

132. Gevers, D., Knight, R., Petrosino, J.F., Huang, K., McGuire, A.L., Birren, 1436 
B.W., Nelson, K.E., White, O., Methe, B.A., and Huttenhower, C. (2012). The 1437 
Human Microbiome Project: a community resource for the healthy human 1438 
microbiome. PLoS Biol 10, e1001377. 10.1371/journal.pbio.1001377. 1439 

 1440 


