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Abstract: Dense aggregations of serpulid worms were encountered in the Daymaniyat Islands (Gulf 17 

of Oman) during January–March 2021. The species responsible for these aggregations belongs to the 18 

Filograna/Salmacina-complex (Annelida: Serpulidae). This species has been present in the area and 19 

observed along the Oman coastline, but high-density aggregates like this have not been reported 20 

before. The most probable cause of the aggregations, supported by field observations and Aqua- 21 

MODIS satellite data, was natural eutrophication with a subsequent algal bloom linked to the local 22 

winter monsoon. This observation emphasises the importance of documenting biodiversity and dy- 23 

namics of reef communities along the Oman coastline.  24 
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 27 

As sedentary filter-feeders in coastal waters, tube-dwelling polychaetes of the fami- 28 

lies Sabellidae and Serpulidae are often considered bioindicators owing to potential in- 29 

creases in their abundance in relation to eutrophication [1–3]. Some serpulids occur in 30 

clusters and are considered habitat formers, especially as fouling organisms on manmade 31 

substrates [4,5]. Furthermore, serpulid worms account for 15% of the alien polychaetes 32 

species recognized worldwide [6–8].  33 

Dense aggregations and outbreaks of Serpulidae can be opportunistic responses to 34 

changes in environmental conditions [9], specially to nutrient pollution [10]. These worms 35 

may thrive in conditions that are unfavourable to many other marine fauna [11,12]. The 36 

aggregations often develop in sheltered areas, sometimes at salinity levels outside the 37 

normal oceanic range [9,13], and with limited water movement facilitating larval disper- 38 

sion [14].  39 

In January–March 2021, dense aggregations of serpulid worms were observed in reef 40 

communities of Jabal Al Kabir Island (also known as D3 Island) in the Daymaniyat Islands 41 

Nature Reserve, north of Oman (Figure 1). The worms were mainly overgrowing hard 42 

substrates in the sheltered bays and seaward cliffs, forming fragile, branching clusters up 43 

to 20 cm in diameter (Figure 2). The aggregations occurred during a phytoplankton bloom 44 

and were relatively short-lived. By the end of April, the density of the worms had 45 
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decreased, and only remnants of the tube clusters remained. They were no longer evident 46 

in February 2022 when we revisited the area. 47 

This species, although uncommon, has been present in the area and observed along 48 

the Oman coastline (Figures 2c, 4), as individuals or in small clusters. However, high den- 49 

sity aggregates and outbreaks of the species have not been reported until now and we do 50 

not have field observations to confirm the formation of high-density aggregations in other 51 

locations.  52 

 53 

The observed species can be attributed to the Filograna/Salmacina-complex. While 788 54 

polychaete species, including 48 serpulids have been recorded from the waters around 55 

the Arabian Peninsula, only two nominal species have been reported in this complex: Fil- 56 

ograna implexa Berkeley, 1835 and Salmacina dysteri Huxley, 1855 [16]. Filograna implexa is 57 

the only valid species in that genus [17], characterised by two spoon-shaped opercula. The 58 

genus Salmacina, which comes closest to our specimens, includes nine species and one 59 

uncertain attribution, all non-operculate, some with inflated radiole tips (Figure 2c). Poor 60 

descriptions of most species in this group and lack of assessment of intra-specific varia- 61 

bility make it currently impossible to confidently identify the specimens.  62 

Molecular studies have shown that some of the previously reported serpulids with 63 

wide, almost circumtropical distributions are actually a mix of several taxa, each with 64 

restricted regional distributions [18–20]. For example, the widespread taxa Spirobranchus 65 

kraussii and S. tetraceros (both recorded from Arabian Seas), appear each to consist of more 66 

than six species, all with geographically limited distributions [18,19]. The same is likely 67 

true for the taxa Filograna implexa and Salmacina dysteri, both originally described from the 68 

temperate coasts of the south-eastern United Kingdom and later reported from around 69 

the globe, including the Arabian Seas [16,17,21]. Although it is likely that the worms 70 

encountered in Oman represent a new species, any further identification will require 71 

genetic studies and a taxonomic revision to establish diversity and relationship within the 72 

Filograna/Salmacina complex [21,22]. 73 

Filograna/Salmacina species construct calcareous tubes attached to hard substrates. 74 

The individual adults are small, usually less than 350 µm in diameter, and a length of only 75 

a few millimetres [11,23]. They reproduce sexually, and asexually by scissiparity. Alt- 76 

hough sexual reproduction can contribute to the growth of aggregates [23], the branching 77 

tube pattern is a consequence of asexual reproduction [24]. Although, the worms and ag- 78 

gregates observed in the Daymaniyat Islands show signs of both sexual and asexual re- 79 

production, the asexual reproduction is likely the main mode of pseudo-colony formation 80 

[24], followed by settlement of larvae on conspecific tubes [9,25]. The tube accretion rate 81 

depends on environmental parameters, such as water temperature, salinity, food availa- 82 

bility, and can reach up to several millimetres per day in S. dysteri [24]. As a result, 83 

“pseudo-colonies” are formed from numerous joined branching tubes, protruding from 84 

the seabed [21,26]. Similar aggregations of tubes (Figures 2a, b) were illustrated by Dalyell 85 

[27] (for Salmacina dysteri, as Filipora filograna), Pernet [24] (for Salmacina amphidentata), and 86 

Bianchi [28] (for Filograna sp.). The fragile structures of this group often do not accrete to 87 

form reefs and are sensitive to physical disturbances [29,30], unlike some other serpulid 88 

species that can grow larger than 1 m in diameter and make extensive bioherms [26,31– 89 

34]. All the aggregates encountered in our study site were also fragile and did not accrete 90 

to form reef, but grew on the rocky surfaces (Figures 2–4). 91 

Nutrient levels in coastal waters of Oman are mostly linked to monsoonal cycles. A 92 

strong, moist, summer southwest monsoon, and a weaker, dry, winter northeast mon- 93 

soon, both result in upwelling and advection of nutrients to the surface in coastal water 94 

[35,36]. These are reflected in the algal bloom patterns, with two annual peaks in January– 95 

April and August–September along the northern Oman coastline [37]. 96 

Increase in nutrient concentrations create a cascade of effects: shifts in phytoplankton 97 

composition and biomass, increase in the abundance of phytoplankton grazers, followed 98 

by phytoplankton die-off, decomposition, and oxygen depletion [38,39] particularly 99 
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below the thermocline, occasionally accompanied by mass mortalities of other organisms 100 

[40–43]. These natural cycles in productivity contribute to ocean acidification and special- 101 

ized shallow-water communities [44].  102 

Our field observations together with Chlorophyll–a data obtained from Aqua– 103 

MODIS satellite confirms an algal bloom during February–March 2021 in the Daymaniyat 104 

Islands, with monthly averages of 11.17 mg/m3 and 4.65 mg/m3 [45] (23.8° N, 58.1° E; 0.1°– 105 

pixel), presumably driven by elevated high nutrients levels in the water column. The tem- 106 

poral correlation between the high abundance of Filograna/Salmacina and the phytoplank- 107 

ton bloom, the rapid growth rate of these animals, and tendency of serpulids to respond 108 

to elevated food levels all suggest that the bloom could be partly responsible for the out- 109 

break.  110 

During field work in the Arabian Sea coast of Oman around Mirbat in January 2022 111 

we encountered smaller aggregations of what appeared to be the same species (Figure 4, 112 

vouchers deposited at Florida Museum of Natural History, UF Annelida 10242, 10255, 113 

10456). This coast undergoes much more intense upwelling than the Gulf of Oman, and 114 

therefore these worms may regularly bloom in that area, lending support to phytoplank- 115 

ton productivity driving these population increases. 116 

Although serpulid outbreaks can be a sign of environmental degradation, it seems 117 

that they responded indirectly here to a natural increase in planktonic productivity driven 118 

by upwelling-enhanced nutrient levels. It is unknown how these serpulids affected the 119 

benthic communities in the Daymaniyat Islands, but they can potentially increase water 120 

clarity through their suspension feeding [46] and affect their habitat by providing shelter, 121 

food, and substrate for epibiont organisms [9,47–49]. We did not observe any sign of 122 

smothering or overgrowth on corals, unlike serpulid infestations in the Persian Gulf [50] 123 

and later in the Gulf of Oman following the 2008–2009 Cochlodinium polykrikoides bloom 124 

[41] and high densities of Spirobranchus in the Caribbean [49].  125 

These observations illustrate the need for a better taxonomic coverage of invertebrate 126 

biodiversity in the region and the importance of long-term monitoring of benthic commu- 127 

nities.  128 

 129 
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 130 

Figure 1. (a) Coastline of Oman with the Daymaniyat Islands in the north (inset). (b)The inset shows 131 
Jabal Al Kabir (D3) bathymetric data around the islands. Daymaniyat Islands made of nine unin- 132 
habited islands (also called as D1-D9 islands), composed of Miocene limestones uplifted by Pliocene 133 
folding [15]. The northern shores are small cliffs and narrow embayments, whereas sandy beaches 134 
line most of the southern side of the islands. (c) Image series of monthly average concentration of 135 
Chlorophyll data from the Aqua/MODIS satellite, notice the high concentration in February–March 136 
2021 representing algal blooms.  137 
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 138 

Figure 2. Serpulid aggregations of Filograna/Salmacina-complex. (a–b) pseudo-colonies forming 139 
fragile constructions, Jabal Al Kabir (D3). (c) Individual polyps covered by algae. Green arrows: 140 
inflated tips of the radioles. Square outline: a worm with 16 radioles showing asexual reproduction, 141 
with offspring and parent sharing the same tube. Pinnately branched radioles resemble octocoral 142 
polyps with eight tentacles and pinnules, Bandar Al Khiran. (d) Aggregations over hard surfaces 143 
and crustose coralline algae, Daymaniyat islands, D3 (photos a,b,d J. Al Asfoor; c, M. Claereboudt).  144 

 145 

 146 
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 147 

Figure 3. Rocky walls in the seaward side of the Daymaniyat Islands reaching about 30 m depth, 148 
covered with species that prefer dark areas, usually gorgonians, scleractinians, covered with serpu- 149 
lid aggregations of Filograna/Salmacina (a) Aggregations starting with tubes overgrowing surfaces, 150 
then joining up, and building thicker branches. White arrow: overgrowth on a sponge. (b) Aggre- 151 
gations on overhangs, in between gorgonians such as Bebryce stellata (white arrow), and Astrogorgia 152 
sp. (square outline) slowly getting smothered by the overgrowing worms. (c) worms growing over 153 
rocks, crustose coralline algae, and sponges (d) View of the wall in upward direction, with worm 154 
pseudo-colonies up to 20 cm in diameter. (photos J. J. Al Asfoor) 155 

 156 

 157 
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 159 

 160 

 161 

 162 

 163 
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 164 

Figure 4. Aggregations of Filograna/Salmacina from south of Oman, Dhofar region. (a) worm clusters 165 
over growing black coral stem. (b–e) Aggregations growing over rocks, crustose coralline algae, and 166 
sponges. (f) Square outline in figure c, showing the branching asexual pattern as described by Pernet 167 
[24]) (photos M. Claereboudt).  168 

 169 

 170 
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