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ABSTRACT

The deviations from linearity of the energy as a function of the number of electrons that arise with current approximations to the
exchange-correlation (XC) energy functional have important consequences for the frontier eigenvalues of molecules and the corresponding
valence-band maxima for solids. In this work, we present an analysis of the exact theory that allows one to infer the effects of such approx-
imations on the highest occupied and lowest unoccupied molecular orbital eigenvalues. Then, we show the importance of the asymptotic
behavior of the XC potential in the generalized gradient approximation (GGA) in the case of the NCAPR functional (nearly correct asymp-
totic potential revised) for determining the shift of the frontier orbital eigenvalues toward the exact values. Thereby we establish a procedure
at the GGA level of refinement that allows one to make a single calculation to determine the ionization potential, the electron affinity, and
the hardness of molecules (and its solid counterpart, the bandgap) with an accuracy equivalent to that obtained for those properties through
energy differences, a procedure that requires three calculations. For solids, the accuracy achieved for the bandgap lies rather close to that
which is obtained through hybrid XC energy functionals, but those also demand much greater computational effort than what is required
with the simple NCAPR GGA calculation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096678

I. INTRODUCTION

The Kohn-Sham (KS) realization of density functional
theory' * (DFT) has by now come to be recognized as an extraor-
dinarily valuable tool for determining the electronic structure of
molecules and solids. However, despite the success in describing
charge distributions, total energy differences, and structural prop-
erties with KS-DFT and carefully developed approximations to
the exchange-correlation (XC) energy functional, there remains

a category of shortcomings attributable to a limitation of such
approximations. Some of these problems come from the devia-
tions from the exact behavior of the energy as a function of the
number of electrons," N. In particular, the accurate determina-
tion of the hardness of molecules or its counterpart in solids,
the bandgap, remains as one of the important challenges in the
KS approach with conventional XC approximations. For a neu-
tral Ny-electron system (Np is an integer) in an external poten-
tial v(r), the fundamental gap is given by the difference between
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the vertical ionization potential (I) and electron affinity (A),
that is,

E,=1-A, (1
with
I=E(No-1)-E(No) and A = E(No) —E(No +1),  (2)

which implies that the energy gap is calculated through the energies
of the No — 1, No, and Ny + 1 integer electron systems. The hard-
ness of molecules” together with the chemical potential,® the Fukui
function,” and the dual descriptor®” are fundamental concepts in the
theory of chemical reactivity.'”'' The bandgap of solids is a very
important property for the development of many applications. In
principle, at least, determination of E, through Eq. (1) can be done
for solids by calculation of increasing finite size clusters or finite
number of primitive unit cells, to extrapolate to infinite size.'> Thus,
with present approximations to the XC functional, Exc[p], one can
obtain reasonable values of I and A from appropriate energy dif-
ferences for small size systems, but the results deteriorate as the
system size increases. Even on molecular systems, the evaluation
of Eg from Eq. (1) requires three calculations, the ground state of
the Ny electron system, and the corresponding No — 1 and Ny + 1
electron species at the ground state geometry of the Ng electron
system.

Thus, an alternative approach is to approximate the hardness
or bandgap by what is known as the KS gap, Egs, namely the differ-
ence between the energies of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO), ex
and ¢, respectively, of the Ny electron system, that is,

Eg%E§s=€L(NO)_5H(NO)- (3)

For this procedure, one only needs to perform the calculation of the
reference system ground state. However, as has been well-known for
decades, the usual result with common XC functional approxima-
tions is a rather severe underestimation of the molecular hardness.
Similarly, in solids, there is an improvement in going from the local
density approximation (LDA), to the generalized gradient approx-
imation (GGA), and the meta-GGA XC energy functionals, that
reaches a rather reasonable accuracy with global and range sepa-
rated hybrids.u'lj However, the explicit orbital dependence in Exc
of the latter three types of approximate functionals means that the
KS scheme is no longer computationally feasible in many cases.
Instead, generalized-KS must be used, i.e., the XC potential is non-
local, which raises both issues of interpretability and computational
costs.

Now, the exact behavior of the energy as a function of the num-
ber of electrons (at zero temperature) is found to be given'* " by
lines connecting the integer values of N. This behavior implies that
for a neutral reference system with No electrons, (OE/ON) ) = -1,
and (OE/ON ):(r) = —A, where the minus and plus superscript signs
are used to indicate that the derivatives are evaluated from the
electron deficient and the electron abundant sides of Ny, respec-
tively. Thus, one can see that the hardness or bandgap may also be
expressed as' '
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OE\* OE\~
E,=|— == =I-A 4
& (8N)V(r) (8N)v(r) @

Although this expression holds for the exact Kohn-Sham energy and
derivatives evaluated at N = Ny, when those derivatives are evalu-
ated with an approximate XC functional, the results may differ (and
typically do differ substantially) from those exact values. The devia-
tions from the exact values have been identified as fractional charge
errors,”””" which may be of two types. When the deviation from
strict linearity is a convex curve, it is identified as a delocalization
error. In the case of a concave curve, the deviation is identified as a
localization error.

For molecules, it has been found that LDA, GGA, and meta-
GGA XC functionals yield a rather large convex curve for fractional
charges” that leads to substantial errors in the hardness when deter-
mined through Eq. (4). On the other hand, since global hybrids
and range-separated hybrids compensate for the spurious convexity
partially through the concave component introduced by the frac-
tion of single-determinant exchange,” those more complicated XC
functionals provide, generally, a better description of the values of
E,; determined from Eq. (4). Additional improvement to practically
reach the linear behavior is obtained through long-range corrected
functionals” like MCY3,” but the results deteriorate as the size
of the system increases. For solids, it has been found through the
analysis of the fractional charge error that although the piecewise
linearity of the energy is practically recovered in very large and
bulk systems, " for any XC functional, it is quantitatively differ-
ent from the exact linearity because of the delocalization error that
characterizes convex functionals.”’ Notice also that there is a cru-
cial difference between Eq. (1) and the analysis in Ref. 26. Eq. (1),
applied to any finite system, involves one neutral system and two
charged ones. The analysis by which Ref. 26 arrives at the con-
clusion of piecewise linearity for a solid with any XC functional
is for three neutral systems, differing in electron population per
cell by one. That neutrality is required for convergence of the rel-
evant lattice sums. Thus, the analysis of Ref. 26 is not equivalent
to the infinite system limit of finite clusters mentioned in Ref. 12.
This ambiguity about the infinite system limit is another motivation
for seeking a systematic way to calculate and correct KS eigenval-
ues to give Eg ~ Eg to acceptable accuracy in both molecules or
solids.

To improve the values of the left and right derivatives of Eq. (4)
of approximate XC energy functionals, one can make use of correc-
tions to impose the linear behavior of the energy.'””’ Alternatively,
one can take into account the effects of the discontinuity implied
in the functionals as N crosses an integer value. Pursuing this
latter approach, Gorling”® has shown that the derivative disconti-
nuity (DD) is directly measurable by the non-zero constant needed
to make the XC potential vanish asymptotically. In this direction,
recently we proposed a GGA XC energy functional, NCAP (nearly
correct asymptotic potential)’’ whose functional derivative tends
asymptotically to a constant that depends on the HOMO eigenvalue.
Through that relationship, one®” can identify the discontinuity con-
tained in Eq. (4). That work did not exploit fully the opportunity
provided by a good estimate of the discontinuity contribution. Thus,
the objective of the present work is to make a mild revision of
NCAP, which we will call nearly correct asymptotic potential revised
(NCAPR), to determine the hardness of molecules and bandgaps of
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solids through just one reasonably accurate, computationally very
simple, and inexpensive GGA calculation of the ground state.

Il. THEORETICAL DEVELOPMENT

The discontinuity contained in Eq. (4) implies that the XC
potential vxc(r), which is given by the functional derivative of the
XC energy, Exc[p], with respect to the electron density, p(r), also
presents a discontinuity as the number of electrons N crosses an
integer value,”' **

Axc = vxe(r) — vxe(r), 5)

where Axc is the magnitude of the derivative discontinuity (DD),
which is assumed to be constant.’” For the exact Kohn-Sham theory,
the ionization potential theorem indicates that™*

&y = -1 (6)
and
& = —A, (7)

where e is the HOMO eigenvalue of the N electron system deter-
mined with vy (r), and ¢ is the LUMO eigenvalue determined with
vxc(r). Combining these expressions with Eq. (1), one obtains

Eg=I1-A=¢f — ¢ (8)
On the other hand, since Axc is constant, one finds via Eq. (5) that
Axc=¢ — €L, )]

where ¢ is the eigenvalue of the LUMO determined with vyc(r).
Therefore, substituting this last expression in Eq. (8) and using
Eq. (3) gives

E;=¢ —eg +Axc = E?S + Axc. (10)

This confirms that, indeed, the KS gap obtained through XC func-
tionals that do not incorporate the derivative discontinuity of the
corresponding XC potential underestimate the true gap.

Now, it has been shown?’ that the derivatives in Eq. (4) may be
expressed in terms of the eigenvalues of the frontier orbitals (valence
band maxima, conduction band minima in solids), that is,

OE \~ OE \~ _
= = == = 11
(aN)v(r) (anH )VS(,) e (D
and
OE\* OE \* +
OEN _(9E — 12
(3N )v<r> (3"L)vs(r) * 12

where vs(r) is the total Kohn-Sham potential given by the sum of
the external, the Columbic and the XC potentials, ny is the HOMO
occupation, and #ny, is the LUMO occupation.

Thus, it is important to note that either the analysis based on
the derivative discontinuity of the XC potential or the one based on
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the derivatives of the energy with respect to the number of electrons
leads to the same result. However, the latter approach has the advan-
tage of showing that the error in the calculation of the bandgap with
approximate XC potentials comes from the fractional charge error
associated with the evaluation of the derivative of the energy with
respect to the number of electrons in the limit when N — Nj. As
noted, it has been identified as a delocalization error for XC func-
tionals that have a convex E(N) curve in the case of finite systems.
The error persists in solids despite their linear behavior because of
having incorrect slopes.

Now, the DD may be decomposed® through the following
analysis. First, rewrite Eqs. (6) and (7) in the form

eg=-T=eq—(eg+I)andef = -A=¢ — (e +4A), (13)

where ey and ¢; are obtained through a Kohn-Sham calculation
of the reference system with the exact or with an approximate
exchange-correlation potential. The terms in parenthesis may be
interpreted as the shifts one has to perform on the eigenvalues to
obtain the exact I and A. Thus, one can define these shifts as

Axc = —(eg +1) and A} = —(ef +A), (14)
and from these two expressions and Eq. (10), one can see that
Axc = Axc — Axc. (15)

For the exact Kohn-Sham XC functional, Axc = 0 because of Eq. (6),
and A}c = Axc because of Eqgs. (7) and (9). However, for an approx-
imate XC energy functional, e.g., a GGA, then Ay # 0, A;}C + 0, and
the corresponding non-zero Axc is given by Eq. (15).

A GGA exchange energy functional typically is expressed in
terms of an enhancement factor Fx(s) where the reduced density

gradient s(r) = |Vp(r)|/2kep(r), with kr = (37%p(x))/>, that is,

B ) = [ p(r) e (p(x)) Fx(s) dr, (16)
where eX”(p(r)) = Ax(p(r))'/? is the local density approxima-

tion per particle and Ay = —3(37%)'/? /4. Our recent’” NCAP X
functional has the enhancement factor

I1+a((1-¢)sln(l+s)+¢s)
1 + B tanh(s) sinh ™' (s)
17)

Its parameters y, o, 8, and ¢ are determined through the fulfillment
of constraints associated with the physically important region that
lies in the interval 0 <s <3 and through the imposition of con-
straints corresponding to the limit when s — oo. In that limit, the
enhancement factor goes to

FY““’(s) = 1 + y tanh(s) sinh ™" (s)

B = —— T ((-9sh1+9)+9), (8

which corresponds to a linear combination of the term sln(1 + s)
and the term s. The former type leads to an X potential
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contribution that goes asymptotically to a constant plus a term that
decays as r!, while the second type leads to an X potential that
decays as r~'. A crucial point is that NCAP includes both types;
hence, its intrinsic X potential goes asymptotically to a non-zero
constant.

Now, Ehe asymptotic behavior of the electronic density is
36-38

given by’
p(r) ——po eV A= 2/ -2¢;. (19)

It is important to mention that this expression is valid only when
the exchange-correlation potential goes asymptotically to zero.
Thus ¢ must corresponds to a shifted vy (r) satisfying this con-
dition. Now, replacing this behavior in the expression that results
from the functional derivative of the exchan%e energy with respect
to the electron density, v{“"(r) = SEY““*[p(r)]/dp(r) means
that the variationally determined X potential, therefore, behaves
asymptotically as

WA (r) —— — Ax Qx\/—¢5; — ¢/, (20)

r—>00

where Ax is defined in Eq. (16), Qx = (v/2/3(37%)"/%)y with
y=4m(1-¢)/3 and c is a constant whose value”” is expected to
be around 0.3, instead of 1. For this reason, the exchange energy
functional was named NCAP (nearly correct asymptotic potential).
Because Ay is negative, the constant in Eq. (20) is positive [as
corroborated by numerical values of v{“**(r)] and one can define

the quantity

ViD= Ax Qu/~¢5 (21)

Thus, since the fulfillment of Eq. (19) and the ionization potential
theorem require that the exchange potential must be realigned to
zero asymptotically, one needs to add the constant in Eq. (21) to the
NCAP exchange potential, that is,

NCAP DD

vx(r) =vx o (x) + vy (22)

so that
e = encAP L R (23)
where eNA" is the eigenvalue directly obtained in the SCF

Kohn-Sham calculation with the unshifted NCAP exchange poten-
tial associated with the highest occupied molecular orbital. It must
be shifted according to Eq. (23), to obtain the value &, which is the
one that satisfies the ionization potential theorem, which one expects
to be closer to the exact —I.

Clearly, it is more convenient to express the constant given in
Eq. (21) in terms of ep*" instead of ef, since it is the eigenvalue
obtained directly in the SCF Kohn-Sham calculation. Therefore,
substituting ey from Eq. (21) in Eq. (23) leads to a quadratic
equation in V)I?D, whose solutions are’””’

ARTICLE scitation.org/journalljcp

DDF 12 2 eNeAP
vx = —-Ax Qx| l1xy|1-4F—=| (24)
2 A} Q%

Consequently, given that Ay should be a negative quantity and that
vRP~ satisfies this condition, we make the identification v~ ~ Axc
so that

e = —I = AP 4 RD=, (25)

and similarly, since A should be a positive quantity, a condition
satisfied by v72, we also make the identification vi* ~ A%, which
implies that

e = A= R (26)

Using that ef = e “AF + yRP~, together with Eq. (26) in Eq. (9), leads
to the relation

Axc = vl;?m - v)[()D_. (27)

This argument establishes that the difference between the two roots
of Eq. (24) provides an estimate of the DD magnitude. Verification
of the validity of the two identifications is provided by the quality
of the results presented in Sec. III, together with the fact that the
analysis that led to Eqs. (14) and (15) indicates that for an approx-

imate exchange-correlation energy functional the shift for el“*?

required to get closer to —I is different from the shift for e“*?
required to get closer to —A, and the numerical evidence shows that
the shift for 3" must be negative, while the shift for NP must be
positive.

In the original NCAP,” we fixed p = 0.219 515, which corre-
sponds to the PBE value.”” We used f3 = 0.018 086 that comes from
the exact cancellation via the X term of the Coulomb self-repulsion
for the exact hydrogen atom density. In NCAP, we also fixed
¢ =0.304121 by imposing the specific value of vi°~ in Eq. (25)
that gives the exact ionization potential of the hydrogen atom.
The parameter « = 473/3 p = 0.345 112 was fixed by the asymptotic
conditions. We found that this X energy functional, when com-
bined with the Perdew-86 correlation energy functional,*’ provides
a description of thermodynamic, kinetic, and structural properties
of molecules close to the accuracy obtained through meta-GGA
and global hybrid XC functionals. Moreover, because of the asymp-
totic behavior imposed, it also leads to a rather good description of
response properties and excitation energies. It was also found that
although the eigenvalues obtained from NCAP by itself are similar
to those obtained from any other GGA, the corrections introduced
in Egs. (25) and (26) provide a better description of the ionization
potential’® and the electron affinity”” of molecules. However, in gen-
eral, NCAP values of those quantities tend to be overestimated. This
overestimation can be traced, in part, to the value ¢ = 0.304 121. As
can be seen in Eq. (18), this value gives more weight to the term
sIn(1 + s) than the term s. However, one may adopt a different view-
point. Although both terms lead to a —constant/r behavior, they do
have a different dependence on the reduced density gradient s. In the
absence of any rigorous result that compels a value of , it is a matter
of design choice. The choice in NCAP was an “appropriate norm.”
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However, that turns out to bias the functional unhelpfully. An alter-
native design choice is the plausible criterion to give the same weight
to both terms, by setting the value to ¢ = 1/2. The parameter f3
can be determined by recalling the exact DFT result that, for the
hydrogen atom, the exchange energy cancels the classical Coulomb
repulsion. That gives 8 = 0.017983. All the other parameter values
are unchanged from NCAP. We designate this reparameterized
version as NCAPR. In the supplementary material, we show that the
effect of this parameter modification upon all the previously tested
thermochemical properties is very small so that the performance of
NCAPR is essentially the same as for NCAP on standard molecular
datasets in the calculation of energy differences and electronic densi-
ties. However, there are important differences in the shifts that need
to be applied in Egs. (25) and (26) to determine through them the
hardness of molecules and the bandgap of solids so that the quality
of the results presented in Sec. [1] also provides support for ¢ = 1/2.

It is important to note that with the value of ¢ = 1/2, the shifted
eigenvalue of the ground state of the hydrogen atom is —0.42 instead
of —0.5, and the asymptotic potential is given by

P ([p);r) ——0.15301 — 0.467 84/r. (28)
r—>00

Since it is estimated that the values for any finite system in this
limit will be close to those of the hydrogen atom, one can see that
this reparameterized version will lead to a nearly correct asymp-
totic potential (NCAP) since it decays as —c/r, with a value of ¢
around 0.5.

It is worth reiterating a point that may have been obscured
through the detail of analysis, namely, that by use of Egs. (25) and
(26), one may calculate the molecular hardness or the solid bandgap
with just one NCAPR calculation of the ground state of the neutral
reference system.

I1l. RESULTS AND DISCUSSION

To establish the comparative performance of NCAPR, we have
considered several XC energy functionals, PBE* at the GGA level
of refinement, SCAN** that belongs to the meta-GGA level, the
global hybrid PBEO,"""* and the range separated hybrid HSE06, "
together with a test set of 83 molecules with positive (45) and nega-
tive (38) electron affinities, and a test set of 70 solids for which the
band gaps range from small to large values.

For molecules, the test set contains 36 species with positive A
values taken from Ref. 13 whose geometries were optimized with
B3LYP" /6-31G**"" and 9 from Ref. 52 with geometries deter-
mined with B3LYP/6-31G(2df,p)* calculations. The group of 38
species with negative A values is the same as the one used in Refs.
27 and 30, with the geometries obtained with B3LYP/6-311+G™*.**
Those geometries were used to determine the energies of the refer-
ence system and its corresponding cation and anion, with the aug-
cc-pVTZ basis set.”” The calculations were done with a modified
version of NWChem 6.5.”

In Table I, we present the mean absolute deviations (MAD)
in the 83 molecules test set for the ionization potential I, the elec-
tron affinity A, and the hardness obtained from energy differences
(that require three calculations, the reference system and its corre-
sponding cation and anion). We also present in Table I the values
obtained for those three quantities through the frontier eigenvalues

ARTICLE scitation.org/journalljcp

TABLE I. Mean absolute deviations from the experimental values of the ionization
potential (/), the electron affinity (A) and the hardness (Eg) for several XC energy
functionals for a test set of 83 molecules in eV.

Property PBE96 NCAPR SCAN PBE0 HSE06 NCAPR*

Energy differences (three calculations)

I 0.39 0.40 0.38 0.32 0.33
A 0.49 0.54 0.55 0.58 0.55
E, 0.73 0.81 0.79 0.79 0.74

Frontier eigenvalues (one calculation)

I 3.65 3.62 3.37 2.34 2.73 0.58
A 2.86 2.83 2.52 1.79 2.16 0.64
E, 6.51 6.45 5.89 4.12 4.90 0.91

*With the frontier eigenvalues shifted according to Egs. (25) and (26).

ey and ¢ of the Ny electron system calculated with the various
XC approximations, and finally, we also report the results obtained
for NCAPR incorporating the frontier eigenvalue shifts indicated in
Egs. (25) and (26), with a single ordinary ground state calculation
for each system. One can see that, as anticipated in Eq. (10), the
unmodified frontier eigenvalue differences that corresponds to Egs
give a very poor description of I, A, and hardness for all the function-
als considered. It is noteworthy that even the hybrids perform only
slightly better than the rest. In marked contrast, the NCAPR shifted
values for I, A, and the hardness lie very close to the values calcu-
lated by total energy differences. In the supplementary material, we
report the results for each molecule of the test set, together with the
experimental values of I and A used to determine the MAD.

For solids, corresponding calculations were performed using a
modified version of the Vienna ab initio simulation package (VASP,
version 5.4.4),”" " within the projector augmented wave formalism
(PAW).%> We used the pseudopotentials with the version 3.3.5 of
VASP (this is common practice, as meta-GGA PAW datasets are not
available in VASP). The geometries were extracted from the experi-
mental information in the Materials Project database. We calculated
all bandgaps as the difference of the conduction band minimum and
valence band maximum, with the NCAP eigenvalue of the HOMO
referred to the Fermi level reported in VASP. We used grids with
densities ranging from 500 to 4000 k-points per atom and 600 eV
cut-off energy. The KS bandgap values for SCAN, PBEO, and HSE06
XC functionals were taken from the supplementary material of
Ref. 63.

The test set for solids consists of 70 species divided in four
groups determined by species and bandgap magnitude.®* There are
15 semiconductors with small Eg, between 0 and 2.0 eV, 29 semi-
conductors with intermediate E,, between 2.0 and 6.5 eV, 9 ionic
compounds with wide Eg, between 7.0 and 14.2 eV, 4 rare-gas crys-
tals insulators with large Eg, between 9.2 and 21.5 eV, and 9 layered
materials with Eg between 1.0 and 3.0 eV.

In Table II, we report the MAD for each of the groups and
the overall performance. Individual E; values for each one of the
solids in the test set are presented in the supplementary material.
One can see that, at the GGA (PBE and the unshifted NCAPR eigen-
values) and meta-GGA levels of refinement, the overall tendency is
the well-known bandgap underestimation. Because of it, for the sys-
tems with small bandgaps, namely the group of semiconductors with
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TABLE II. Mean absolute deviations from the experimental values of the bandgap (E ) for several XC energy functionals
for each group of solids in eV. The groups have increasing band gaps as one moves down and the number in parenthesis

indicates the number of solids in each group.

Group PBE96 NCAPR SCAN PBEO HSE06 NCAPR®
Frontier eigenvalues - Conduction and valence bands (one calculation)
Small (15) 0.65 0.55 0.50 0.61 0.12 1.02
Layered (11) 0.75 0.70 0.48 0.70 0.23 1.14
Intermediate (29) 1.61 1.56 1.24 0.38 0.49 0.50
Tonic (11) 3.47 3.47 2.75 1.34 191 1.81
Insulators (4) 5.67 5.27 4.82 3.34 3.95 3.67
Total (70) 1.79 1.72 1.40 0.80 0.79 1.10

*With the frontier eigenvalues shifted according to Eqgs. (25) and (26).

this characteristic and the layered materials, one obtains relatively
low MAD values. However, they increase significantly as the exper-
imental bandgap grows. In the case of the global hybrid PBEO, one
obtains a poor description of the layered compounds and the small
bandgap semiconductors in comparison with HSE06, which leads to
a very good description of these systems; however, the results are
similar for all the other groups. Finally, applying the shift indicated
by Egs. (25) and (26), one can see that in the case of the layered
systems and the small bandgap semiconductors, the NCAPR-based
procedure tends to overestimate the bandgap values. However, it
provides a very good description of the intermediate bandgap insu-
lators, and a reasonable one of the ionic species, with values that lie
between the PBE0 and HSEO06 values. The MAD value for the insula-
tors also lies in between the hybrid functionals. From the perspective
of overall performance, we note that the direct eigenvalues from
GGA XC functionals lead to the worst description that is improved
slightly with the meta-GGA SCAN (which involves generalized KS
calculations). The best description corresponds to the hybrids. How-
ever, the shifted NCAPR eigenvalues get very close to those obtained
from the hybrids. This is an important result because solid system
calculations with a fraction of single-determinant exchange are com-
putationally much more demanding than those done with GGA XC
energy functionals.

A comparison with other test sets is presented in the
supplementary material, where one can see similar results to the ones
obtained in Table II.

Additionally, since all the calculations for solids were done at
the experimental geometry, we did a geometry optimization with
NCAPR in a subset of ten solids, which cover a wide range of
bandgap values, and found that the difference between the cal-
culation with the experimental geometries and the one with the
NCAPR geometries in the mean absolute error is rather small,
around 0.25 eV, as can be seen in the supplementary material.

13,65,66

IV. CONCLUDING REMARKS

The physical insights provided by the analysis of the behavior
of the energy as a function of the number of electrons, specifically
the characterization of the deviations from linearity with electron
number that arise with current XC functional approximations, allow
one to get a better understanding of the impact that those deviations
have on the frontier eigenvalues of molecules or solids, especially

when those eigenvalues are used to determine the hardness and the
bandgap.””' By exploitation of this viewpoint, a natural procedure
to correct the situation has been proposed that uses global scaling
corrections on approximate XC energy functionals to impose the
correct linear behavior."”

On the other hand, the perspective provided by the DD of the
XC potential and its consequent effects on the frontier eigenvalues
and in the calculation of E, indicates that one can also proceed
through the incorporation of these effects in carefully designed,
constraint-based approximate XC energy functionals. This latter
approach is the one we have adopted in this work. We have pre-
sented a very modest revision of our NCAP GGA XC functional that
leads to an XC potential that in the asymptotic limit goes to a non-
zero constant. Since the DFT ionization potential theorem requires
that the potential should go to zero asymptotically, that non-zero
constant implies a potential shift. As we have shown, it is directly
related to the DD. In fact, we have demonstrated that, in an approx-
imate GGA, one needs to apply different shifts to the HOMO and
LUMO eigenvalue and that the sum of these two shifts leads to the
magnitude of the DD. The two shifts are determined through the
two roots of the quadratic equation that results when the asymp-
totic constant of the X potential is expressed in terms of the HOMO
eigenvalue of the NCAPR calculation.

Thus, we have established a procedure at the GGA level of
refinement that allows one to utilize a single calculation to obtain
the ionization potential, the electron affinity and the hardness of
molecules, and the bandgap of solids. The accuracy reached for
molecules is equivalent to that obtained for these properties through
energy differences, which require three calculations. For solids, the
accuracy achieved for the bandgap lies rather close to the accu-
racy obtained through hybrid XC energy functionals, which demand
great computational effort due to the presence of a fraction of single-
determinant exchange. It is important to mention that the accuracy
obtained in the present approach for bandgaps is also equivalent,
in general, to the one obtained with a meta-GGA that intro-
duces an approximate estimate of the DD through the generalized
Kohn-Sham formalism.”"’

The overall performance of NCAPR shows that indeed one can
obtain a rather good description of the hardness of molecules and
the bandgap of solids at the GGA level if one corrects the delocaliza-
tion error in the frontier eigenvalues by incorporating the derivative
discontinuity effects.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the values of all the indi-
vidual systems that conform the test sets for all the functionals and
quantities reported in Tables I and II. Additionally, one can find the
comparison between NCAP and NCAPR for all the test sets used

to validate the original NCAP”’ and the comparison in solids with
other test sets.
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