
Hurricane and Storm Surges-Induced Power System
Vulnerabilities and their Socioeconomic Impact

Abodh Poudyal†, Shishir Lamichhane, Charlotte Wertz, Sajjad Uddin Mahmud, Anamika Dubey
Washington State University, Pullman, Washington, USA

Email: †abodh.poudyal@wsu.edu

Abstract—This paper introduces a probabilistic framework
to quantify community vulnerability towards power losses due
to extreme weather events. To analyze the impact of weather
events on the power grid, the wind fields of historical hurricanes
from 2000–2018 on the Texas coast are modeled using their
available parameters, and probabilistic storm surge scenarios are
constructed utilizing the hurricane characteristics. The vulner-
ability of hurricanes and storm surges is evaluated on a 2000-
bus synthetic power grid model on the geographical footprint
of Texas. The load losses, obtained via branch and substation
outages, are then geographically represented at the county level
and integrated with the publicly available Social Vulnerability
Index to evaluate the Integrated Community Vulnerability Index
(ICVI), which reflects the impacts of these extreme weather
events on the socioeconomic and community power systems. The
analysis concludes that the compounded impact of power outages
due to extreme weather events can amplify the vulnerability of
affected communities. Such analysis can help the system planners
and operators make an informed decision.

Index Terms—Extreme weather events, power system re-
silience, social vulnerability, community vulnerability assessment

I. INTRODUCTION

Over the past several years, there has been a rise in the
severity and occurrence of extreme weather events such as
hurricanes and floods. Hurricanes have accounted for trillions
of dollars in damages, and the power grid frequently bears
the majority of these losses [1]. The consequences of these
hurricanes originate from the combination of high-intensity
wind and the large-scale flooding generated by storm surges
in coastal areas. For example, in 2023, hurricane Idalia, a
category 3 storm, caused a power outage for more than
300,000 customers over the U.S. East Coast, from Florida to
North Carolina [2]. Hurricane Ian incurred a total cost of 112.9
billion dollars in damages in 2022 and inflicted power outages
on around 2.7 million consumers [3].

Unfortunately, the communities at the forefront of these
natural disasters are often the most vulnerable. Outages that
are 8+ hours - often caused by these high-impact, low-
probability (HILP) events - are experienced mostly by highly
vulnerable communities [4]. During Hurricane Harvey in 2007,
it was found that households with a lower socioeconomic
status faced more extensive flooding than those of higher
incomes [5]. Additionally, the Federal Emergency Manage-
ment Administration (FEMA) has been criticized for having
regressive policies regarding restoration allocation after major
power outages [6].
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Existing studies have analyzed power system impact from
hurricane-flood events [7], [8]. There is minimal literature that
combines community impact evaluation with power system
impact. Energy equity metrics are still underdeveloped [9],
despite it being well-documented that inequities are apparent
in outages from HILP events.In [10] analysis regarding the
infrastructure losses due to Hurricane Harvey is investigated
and identifies impacted communities. However, the work is
based on critical infrastructural information, affecting the
extension of the work to other regions.

This framework analyzes historical hurricane tracks and
their associated coastal flooding. The impact of these events
on the power grid is modeled using component fragility curves
of transmission line segments and substations. We leverage a
2000-bus synthetic power grid model based on non-proprietary
data but realistic grid parameters [11]. The probabilistic loss
metric is evaluated using Monte Carlo Simulations (MCS), and
the outage data is mapped to the county level to evaluate the
community impact of these hurricanes, looking at both outage
and social vulnerability. This study can be easily referenced or
modified when investigating the impact a future HILP event
can have on not only a power system but also the communities
that rely on it.

II. EXTREME WEATHER EVENTS AND IMPACT MODEL

A. Hurricane Wind Field and Storm Surges

We use a statistical model to determine the hurricane wind
field at each time step (t) as described in [12]. The wind
field model of a hurricane at each t is dependent on three
different parameters – namely max sustained wind speed
(vmax), radius from the hurricane eye to vmax (Rvmax

), and
radius of the hurricane (Rs), known as the radius of the
outermost closest isobar (roci). These parameters are available
from the International Best Archive for Climate Stewardship
(IBTrACS) for historical hurricanes and are recorded every 3
hours [13]. These parameters form the hurricane’s wind field
at each t. The distribution of the hurricane’s wind field at any
fixed time is shown in Fig. 1. Here, β refers to the decrement
factor of vmax at Rs.

In this work we only consider coastal flood scenarios and
leverage the SLOSH (Sea, Lake, and Overland Surge from
Hurricanes) model developed by the National Oceanic and
Atmospheric Administration (NOAA) [14]. SLOSH covers the
entire U.S. Atlantic and Gulf of Mexico coastlines subdivided
into 32 basins (B). Based on the SLOSH model, the National
Hurricane Center (NHC) developed a SLOSH Display Package
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Fig. 1. Distribution of wind field of a hurricane at a fixed time.

(SDP) application [15], which allows users to create storm
surge scenarios in each B by specifying several of the hurri-
cane parameters. In this study, we utilize Maximum Envelope
of Water (MEOW) data generated from SDP to assess storm
surge scenarios and identify substations at risk of flooding.
The MEOW dataset consists of the maximum recorded surge
depth at each grid location within a basin for a given hurricane
category, translational speed, and direction of motion but
with varying landfall points. If the MEOW value obtained
from SDP is DS at a substation S located at a geographical
coordinate XS for a specific B, then the inundation level of S
within its 0.5 mile radius is referred to as XB

S,DS
.

B. Power Systems Impact Model

Fragility curves are proposed to assess the impact of ex-
treme weather events on the power grid [16]. The compo-
nent fragility models provide the probability of failure of a
component as a function of hazard intensity. In this work, we
use the fragility of line segments, as a combined fragility of
line and tower, as a function of vmax experienced by the line
segment in a power grid. The value of vtmax experienced by
each line segment is obtained by a method discussed in [12].
The structure and strength of lines and towers differ by voltage
level in a transmission grid. Hence, we modify the fragility of
each line segment based on its voltage level, V .

Pt,ζ
out(lV) =


0 Γt,ζ

lV
< vlVcri

Γt,ζ
lV

− vlVcri

vlVcol − vlVcri
vlVcri ≤ Γt,ζ

lV
< vlVcol

1 Γt,ζ
lV

≥ vlVcol

(1)

where, Pt,ζ
out(lV) is the outage probability of line l with voltage

level V for hurricane ζ at time step t, and Γt,ζ
lV

is the maximum
sustained wind speed experienced by lV due to ζ at t. Here,
vlVcri is the wind speed beyond which a branch is affected, and
vlVcol is the wind speed above which a branch collapses. The
values of vlVcri and vlVcol differ for each lV .

The substation failure probability depends on the corre-
sponding inundation level. The storm surge impact on the
substation is determined using the following Weibull stretched
exponential function [12].

PS
out(XB

S,DS ) = 1− exp

−(XB
S,DS

a

)b
 (2)

where PS
out(XB

S,DS
) is the probability of experiencing the in-

undation level around 0.5 miles of S having inundation of DS
for any B. The fragility model includes two constants a ∈ R+

and b > 2 with known values. If a substation experiences
an outage due to flooding, the transmission lines linked to
that substation, inward or outward, are also considered out-of-
service for the rest of the storm period. Let Lt

Total = Lt
W∪Lt

F
be a set of lines that are out of service due to the combined
effect of hurricane wind and flood damage at every time step
t. Here, Lt

W and Lt
F refer to the set of outage lines due to

hurricane wind damage and flood-induced substation outages,
respectively.

Due to the disruption of branches, several buses are islanded
from the grid either without generators (offline buses) or
with generators that can fully or partially meet the demand
of the islanded grid. Islands with more generation than load
require generation curtailment, while those with loads higher
than generation require load curtailment. The load shed from
each bus is based on priorities set by the operators on load
criticality. If information on load criticality is missing, then
the load in each bus will be curtailed by a uniform percentage,
reflected by the load deficit relative to the total load demand
on the corresponding island.

C. Community Impact Assessment

In order to assess the impact on the community, it is
essential to know the geographical distribution of load losses
due to hurricanes. The synthetic test cases identify the buses
and substations based on zip codes [11]. This work correlates
bus load loss with zip code locations. Multiple substations
may exist in cities with greater load density. The losses at the
zip code level are aggregated into city load loss by summing
the losses from all zip codes belonging to the same city.
Furthermore, a county-level analysis is proposed to alleviate
the concern of loads being served from the buses in one city
to the neighboring cities. After identifying cities and their
associated load loss, cities within the same county, as indicated
by United States Postal Service data [17], are aggregated to
find the county-level load loss. Cities that reside in multiple
counties have their load distributed based on the percentage of
the city’s population residing in each county. Let PD

C be the
total load demand in each county (C) and the load loss in C at
each time step t due to corresponding ζ is represented by P̂t,ζ

C .
If T ζ is the total time step of each ζ, then the corresponding
load loss associated with every C is obtained as,

P̂ζ
C = max{P̂t,ζ

C } ∀t ∈ T ζ (3)

III. VULNERABILITY ASSESSMENT

A. Power System Vulnerability

In this work, we assess the power system’s vulnerability
as the vulnerability of the branches and substations due to
hurricanes and storm surge scenarios. Although hurricane
tracks are obtained from IBTrACS, the storm surge scenarios
are probabilistic, which considers several hurricane scenarios
with similar characteristics. Due to a lack of surge data for
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Fig. 2. Overall framework of assessing hurricane and storm surge-induced power system vulnerabilities and their socioeconomic impact

hurricanes with lower intensity, we assume that such scenarios
do not trigger any surge, and the impact is due to the hurricane
alone. The spatiotemporal outage probabilities of branches and
substations are obtained for all the hurricanes and storm surges
using the model described in Section II. The maximum outage
probability experienced by each branch for each hurricane is
observed to determine the vulnerability of these components.
For substations, we observe the maximum outage probabil-
ity averaged over all basins. Finally, the percentile rank is
computed for each branch and substation to obtain the branch
vulnerability index (BVI) and substation vulnerability index
(SSVI).

B. Community Vulnerability
To observe the community vulnerability due to the impact

of hurricanes and storm surges on the power grid, we obtain
the value of P̂ζ

C and normalize the load loss using PD
C to get

the vulnerability of the community in each C for each ζ. We
then define expected vulnerability of each C based on all ζ

as P̂C = Eζ

(
P̂ζC
PD

C

)
and term the outage vulnerability index

(OVI) as
OV I = percentile.rank

(
P̂C

)
(4)

Although OVI defines the propagating impact of hurricanes
and storm surges on the community through their grid impact,
it does not incorporate a socioeconomic impact. To address
this concern, we leverage the Centers for Disease Control
and Prevention (CDC)’s Social Vulnerability Index (SVI) for
socioeconomic analysis [18], see Fig. 3. The SVI metric aggre-
gates vulnerability based on four major themes: socioeconomic
status, racial/ethnic minority, household characteristics, and
housing/transportation type. These themes are then normalized
and ranked by percentile into an encompassing index, SVI, that
ranges between 0 and 1 (1 being the highest vulnerability). SVI
has been widely adopted in relating infrastructure losses due
to HILP events to their associated socioeconomic vulnerabili-
ties [19]. Further documentation on SVI can be found at [18].
Each of SVI’s four themes are comprised of socioeconomic
variables in sum of percentile Si, where i denotes each theme.
All four themes are summed together to create S, then finally
percentile-ranked again to achieve the Social Vulnerability
Index seen in (5).

SV I = percentile.rank(

4∑
i=1

Si) (5)

The social and outage vulnerability metrics are compounded
to create a new measurement, named Integrated Community

Fig. 3. CDC’s social vulnerability index

Vulnerability Index (ICVI), which is a modified SVI that
accounts for power system losses. The percentage of county
population without power is treated as a 5th theme to SVI;
therefore, it is min-max normalized and added to the min-
max normalized Si, then percentile ranked between 0 and 1.
This adjusts the original SVI with sensitivity to the outage
analysis obtained.

ICV I = percentile.rank(∥
4∑

i=1

Si∥+ ∥P̂C∥) (6)

Finally, with (6), we can simultaneously analyze the socioe-
conomic and power system impacts.

IV. SIMULATION FRAMEWORK

To observe the overall vulnerability due to the impact of
hurricanes and storm surges on the power grid, the parameters
for historical hurricanes are obtained from IBTrACS, and
storm surge scenarios are generated based on the hurricane
parameters in SDP. The time-varying outage probability for
each of the power system components is obtained using (1)
and (2). Several MCSs are conducted to obtain the P̂ζ

C based on
the methods described in Section II. Finally, the community-
level vulnerability due to the impact of extreme weather events
on the power grid is quantified as ICVI, using (6). This section
details the overall simulation framework, as shown in Fig. 2.

Initially, historical hurricanes that made landfall in the Texas
coastal area from 2000 to 2018 were obtained using IBTrACS.
There were a few hurricanes that did not affect the region
of interest. Hence, we set a boundary region and filter the
hurricanes that impact the boundary region at any point during
its occurrence. Within the investigation region, 97 storms
were identified within the Gulf of Mexico region, of which
26 showed activity within the boundary region. Furthermore,
there were a few hurricanes with missing information on
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Rvmax
and Rs. In such cases, the parameters were estimated

from their kernel density estimates as described in [20]. As
per NHC’s guidelines, all storms are labeled from category
-1 to 5 on the Saffir-Simpson hurricane wind scale, where
categories -1 and 0 refer to tropical depression and tropical
storm, respectively. SDP can only provide the storm surge
information for category 1 and higher. Hence, we identify 11
storms out of 26 that trigger storm surges on the coast and are
considered to have an inundation impact in this study. MEOW
data are generated from SDP for each of these 11 historic
hurricanes at five basins of Texas — namely Corpus, Galve-
ston, Laguna, Matagorda, and Sabine. Each basin’s inundation
level depends on the category, landfall direction, hurricane’s
translational speed, and mean to high tide conditions.

The wind and storm surge scenarios are then integrated into
the geographical footprint of Texas with a synthetic ERCOT
2000-bus system [11]. The power grid model comprises 1250
substations and 1918 transmission lines operating at different
voltage levels: 115kV, 161kV, 230kV, and 500kV, with a
total load of 67.11 GW and a generation capacity of 96.29
GW. The load substations are clustered based on geographical
and average load consumption, and the buses have additional
information on the zip code or the city name in Texas, which
we leverage to map the load associated with each county. The
value of P̂ζ

C is computed using MCS conducted on each ζ
and B. As discussed, only 11 out of 26 hurricanes instigate
storm surges. Hence, we only consider obtaining Lt

W for the
remaining 15 hurricanes. Since storm surges are static models,
we use a surge activation flag that gets triggered once the
hurricane is within 6 hours from landfall. We only consider
the impact of storm surge beyond this time frame for any ζ
with additional surge impact. It is assumed that substations
in the coastal regions are elevated at a height of 3 meters as
an additional planning measure. MCS provides several outage
scenarios corresponding to branch and substation outages. For
each MC scenario, DC optimal power flow is conducted to
obtain the load loss associated with that scenario at each t, and
the loss is then mapped back to the county using the method
described in Section II. The community-level vulnerability is
quantified as ICVI. Initially, OVI is calculated to assess the
outage vulnerability due to hurricanes and storm surges using
(4). We then blend outage likelihood with SVI to compute
ICVI based on (6).

V. RESULTS AND ANALYSIS

In this work, the hurricanes are extracted from IBTRaCS
and analyzed using CLIMate ADAptation (CLIMADA) pack-
age [21]. The synthetic 2000-bus ERCOT system [11] is
modeled in MATPOWER, which is further utilized for DC
power flow. The fragility model discussed in (1) is based on
the voltage level of the branches. Table. I presents the values
of vlVcri and vlVcol used in this work. These values are arbitrarily
selected for simulation and can be modified based on data
availability.

Fig. 4 represents the branch and substation vulnerability
index for all ζ and B. Since hurricanes and storm surges

TABLE I
VOLTAGE LEVEL-BASED CRITICAL AND COLLAPSE SUSTAINED WIND
SPEED VALUES FOR EACH LINE SEGMENT FOR FRAGILITY ANALYSIS

Voltage level (kV) v
lV
cri (m/s) v

lV
col (m/s)

115 25 55
161 30 60
230 35 65
500 45 75

(a) (b)

Fig. 4. Vulnerability indices based on the percentile rank of the average
outage probability of a) branches and b) substations for all hurricanes.

have the highest impact on the coastlines, the most vulnerable
components lie around the coastal regions. The vulnerability of
inner coastal regions depends on the fragility of the branches.
It is to be noted that branch and substation vulnerabilities, in
Fig. 4, are based on outage probability rather than the load
loss they incur in the system if they are damaged.

Fig. 5 shows a bar chart illustrating the overall load loss
across the system attributed to historical hurricanes with
their respective category. It can be seen that hurricanes Rita,
Ike, and Harvey, with respective indices of 12, 4, and 26,
exhibit substantial impact on the system, resulting in losses
of 10.2 GW, 14.67 GW, and 15.2 GW. These are the three
most formidable hurricane events ever recorded in Texas [1].
Interestingly, it is observed that some hurricanes with lower
categories exhibit more significant effects, such as Hurricane
Allison (index=3), than those with higher categories, such as
Hurricane Ivan (index=9). This discrepancy is attributed to the
fact that hurricane Allison, despite its 0 category, generates
heavy flooding over coastal Texas. In contrast, by the time
Hurricane Ivan reached Texas, it had significantly weakened,
leading to a reduced load loss, while its substantial impact was
observed in a location other than Texas.

Fig. 6a shows the OVI obtained using (4). It is evident that
communities with higher outage vulnerability from hurricanes
and storm surges are predominantly situated along the coast-
line. However, because of the grid’s architecture, a hurricane-
induced outage can still be affected by communities farther
from the coastline, as seen in Fig. 6. The compounded effect of
their social vulnerability amplifies this impact, highlighting the
need for infrastructure improvement in these regions. This can
be useful knowledge for transmission planners when determin-
ing vulnerable components to future climate events. In Fig. 6b,
the ICVI can be compared to results of SVI in Fig. 3 and OVI
in Fig. 6a. ICVI reflects the socioeconomic disparities from
SVI and highlights communities disproportionately impacted
by hurricane and storm surge-induced outage events. There is
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Fig. 5. Bar chart depicting an overall load loss in the study area caused by
historical hurricanes

(a) (b)

Fig. 6. a) Outage Vulnerability Index (OVI) and b) Integrated Community
Vulnerability Index (ICVI) due to historical hurricanes in the ERCOT region.

a shift in vulnerability towards the coastline in ICVI compared
to SVI. This gives important insights to grid operators on
allocating resources during future hurricane events because
we know communities of different vulnerabilities respond
differently to outages. A limitation in this analysis is that some
counties with very low populations do not have outage data
as they are served from different regions; also, counties not
within ERCOT territory are not analyzed. However, most of
these counties are in regions further from the coastline and
less likely to be affected.

VI. CONCLUSION

This paper presents a probabilistic evaluation of the com-
bined effects of historical hurricanes and storm surges on the
synthetic power grid. It also introduces a community vulner-
ability metric that integrates the CDC’s SVI with the outage
factor derived from the results of the impact assessment. Sim-
ulation results show that a hurricane of a higher category does
not necessarily entail higher impacts on the system; it is also
influenced by the landfall location and associated storm surge.
The communities farther from the coast are not immediately
perceived as high-risk due to their distance from the coast
and often get less attention in storm management strategies.
However, the community could have higher socioeconomic
vulnerability exacerbated by the outage vulnerability. Hence,
ICVI provides a holistic assessment of vulnerable communities
by incorporating the effect of extreme weather events and their
impact on power outages and associated communities. The
proposed methodology can assist planners in identifying the
vulnerable system components and vulnerable communities,

enabling strategic planning to minimize outages or expedite the
restoration while considering energy equity as an additional
dimension. In the future, we aim to observe the impact of
changing climate on the extreme event scenarios, how other
HILP events impact disadvantaged communities, and evaluate
the underlying assumption that load and population are highly
correlated.
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