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Abstract—The increased installation of renewable grid-edge as-
sets into an already complex power distribution system has driven
extensive development of distributed optimal power flow (OPF)
methods to coordinate such assets. However, existing distributed
optimization algorithms applied to unbalanced systems require
many communication rounds among the distributed agents and
may pose convergence challenges. Besides, the communication
network parameters also significantly impact the algorithm’s
performance. In this paper, we propose a scalable, equivalent
network approximation-based, distributed OPF method that
employs a communication infrastructure using cyber-physical co-
simulation platform to coordinate grid-edge renewable assets for
three-phase unbalanced distribution systems. Additionally, the
robustness of the proposed approach is validated under stressed
communication scenarios. The results are thoroughly compared
with the state-of-the-art algorithms and equivalent centralized
optimal power flow (C-OPF) problems for medium IEEE-123 bus
test system and large-scale PNNL R3-12.47-2 feeder distribution
test systems.

Index Terms—Distributed OPF, unbalanced distribution sys-
tem, distributed energy resources, renewable energy coordina-
tion, co-simulation.

I. INTRODUCTION

To efficiently coordinate the growing numbers of grid-
edge assets, such as distributed energy resources (DERs) and
photovoltaics (PVs), optimal power flow (OPF) problems for
power distribution systems have gained significant attention
recently [1], [2]. Traditionally, the distribution system is
centrally managed to coordinate DERs and other grid-edge
technologies. With the increasing number of such controllable
assets and growing system complexity, such a system suf-
fers from several challenges including poor scalability, and
susceptibility to single-point failures [3], [4]. The additional
complexities introduced by the three-phase, unbalanced power
distribution systems may pose convergence issues for the
centralized optimization problems and may result in failure
to attain the optimal solution within a reasonable time [4].
Besides, a centrally managed system is impractical for emerg-
ing distribution systems typically composed of several geo-
graphically separated areas controlled by different entities that
may not want to share models and/or data. Thus, as modern
distribution grids evolve, decentralized data and distributed
control architecture are becoming essential [5].

The existing literature has shown the applicability of the
distributed optimization paradigm in reducing the compu-
tational requirements for OPF problems and in mitigating
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other challenges including ownership boundaries and avoiding
single-point failures [4], [6]. To this end, general distributed
optimization techniques, such as, alternating direction method
of multipliers (ADMM), Auxiliary Problem Principle (APP),
etc. have been adopted to solve distributed OPF (D-OPF)
problems for power distribution systems [6]-[11]. Gener-
ally, D-OPF algorithms involve two iterative processes: (i)
sub-problem optimization involving micro-iterations, where
distributed agents individually solve optimization problems
specific to their areas; the nature of the optimization prob-
lems, such as nonlinear vs. convex, etc., dictates the number
of micro-iterations needed. And (ii) distributed coordination
requiring macro-iterations, where distributed agents exchange
the boundary variables with their neighbors; also referred to as
communication-rounds. The overall compute complexity of the
algorithm depends on the total number of micro- and macro-
iterations required to achieve network-level convergence. Tra-
ditional algorithms suffer from the convergence issues at
the boundaries, experiencing slow or no convergence for the
macro-iteration steps [4], [8], [12]. This calls for algorithmic
advances in D-OPF algorithms to realistically apply them to
the real-world power distribution systems.

Furthermore, traditional D-OPF methods either neglect the
impact of communication networks, limiting their practical
use, or are too slow for effective implementation. These
methods necessitate an expensive communication infrastruc-
ture characterized by high bandwidth and low communication
delays. This is attributed to the requirements of substantial
number of macro-iterations to converge for relatively small
and/or balanced systems [4], [6], [8], [13], [14]. Although
real-time feedback-based online distributed algorithms address
some of the challenges [12], [15]-[17], they still require
thousands of time-steps to track the optimal solution, resulting
in a sub-optimal system operation and constraint violations.
Recently, authors proposed an algorithm based on the structure
of the power flow problem for a balanced radial distribution
system that drastically reduces the number of macro-iterations
[18]. However, the performance of the D-OPF algorithm has
not been evaluated in a realistic cyber-physical environment
with appropriate models for communication systems for scaled
unbalanced distribution systems with detailed system models.

Thus, the objective of this paper is to develop a fast, com-
putationally tractable, and communication-efficient offline D-
OPF algorithm for coordinating grid-edge assets in unbalanced
active power distribution systems, incorporating comprehen-
sive system models to represent realistic network conditions.
The developed method aligns with the distributed control
architecture essential for modern, evolving power distribution
systems. The unbalanced nature of the system increases OPF
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challenges due to the scale of the problem and added power
flow model complexities, stemming from the mutual coupling
in the unbalanced network. Our approach leverages the radial
operation of distribution systems in North America [19] and
employs a distributed coordination algorithm to achieve a
computationally efficient and near-optimal D-OPF solution
that requires low fidelity communication infrastructure prop-
erties. Additionally, we have implemented the algorithm in
a realistic communication network to emphasize the critical
role of communication in distributed OPF methods. This
implementation, previously lacking in literature, highlights the
method’s practical viability. Specifically, our contributions are:

o Development of a decomposition-based D-OPF method
for 3-phase unbalanced distribution system

o Demonstration of scalability of the proposed method
using larger 3-phase unbalanced system, showcasing the
relevance of complex and real-world distribution net-
works.

o Integration of a communication network through co-
simulation to demonstrate the feasibility with realistic
constraints.

e Through comparison with state-of-the-art offline ADMM-
based D-OPF and online feedback-based D-OPF method.

o Demonstration of the effectiveness of our proposed
method when faced with increased complexity, including
the addition of controllable legacy devices that adds
nonlinearity (integer variables) in the OPF problem.

II. NETWORK MODELING & PROBLEM FORMULATION

In this paper, (-)7" represents matrix transpose; (-)* rep-
resents the complex-conjugate; () & (-) denotes the max
and min of a variable; (-)(") represents the n'" iteration;
R, T denotes the real, imaginary part of the complex number,
respectively; the superscript p (without parenthesis) denotes
the three-phases, i.e., {a,b,c} of the system.

A. Power Flow Model

This section details the power flow models to formulate
the OPF problems for an unbalanced power distribution sys-
tem. The unbalanced power flow equations are based on our
prior work [20]. Let us consider an unbalanced radial power
distribution network of n buses where, A/ denotes the set of
buses in that system and £ denotes the set of edges identifying
distribution lines that connect the ordered pair of buses {ij},
V i,j € N. Here, ¢; denotes the set of phases in the bus j.
Let v = [V} |2 be the squared magnitude of voltage at bus
j € N for phase p € ¢;. Define ¢;; = {pg:p € ¢; and q € ¢;
V{ij} € €} Let 17} = (|I77[|I}']) be the squared magnitude
of the line current flowing in the phase pg € ¢;; of line (3, j);
i.e., the term lqu is a mathematical abstraction representing
the product of the magnitudes of branch currents in phases p
and ¢. Also, S}/ = P} +]Q and 2" = r} + jxi, where
Pq € Pij. Varlable pji and ¢¥ L. denote the actlve and reactive
load (respectively) connected at node j of phase p € ¢;.
Similarly, subscript D, j denotes the DER generation at node
7; e.g., pD denotes the active power generation at node j
for phase p. 5 is the angle difference between the phase

currents. First, we define the nonlinear power flow model and
then the linearized model is detailed.

1) Nonlinear Model: With the approximated phase voltage
and branch current angles, [20] developed the nonlinear power
flow model for an unbalanced radial power distribution system.
The model is defined below in (1). The loads can be modeled
as voltage dependent loads as formulated in the Appendix.

PP — 3718 (rPd cos(07) — abd sin(677))
qEP;
= > PP, -ph, (1a)
k:j—k
Z 12 (2 cos(877) + rif sin(677))
qEP;
=D Qu+d,—dp, —dby, (Ib)
k:ij—k
- S s+ LAy
a€d; qE€P;
+ ST R (L65) (5] o)
q1,q2€¢;,q1#q2
2 2
(PP +(Q7)" = v} (1d)
= ur (le)

2) Linear-approximated Model: The computational com-
plexity augmented by the nonlinear power flow models to
the existing scalability issues associated with large-scale OPF
problems can be reduced using the approximated linearized
power flow models. In equation (2), a linear-approximated
power flow model — known as the three-phase LinDistFlow
model is defined. The assumption is that the line loses are
negligible compared to the power flow in the system; however,
line impedances are included in the formulation to compute
the voltage drops across the lines. [20], [21].

Ppp Z Pm? +pL y p%,j (2a)
k:j—k
QW= > Q44 —dh,;— b, (2b)
k:j—k
of =P = > 2R [SH(20)"] (20)
9€d;

B. DER Modeling

We define a general DER model for different network
objectives in equation (3)-(5). This DERs are designed as a
general model, and can accommodate any renewable energy
resources, such as rooftop PVs; thus in this paper, DER and PV
models are used interchangeably. The general DER model is
defined by equation (3) at node j for phase p € ¢;. If ST, R,; 1S
defined as the nominal rating of the DER at node j for phase
p € ¢;, then the reactive power generation (q%) ;) and the
active power generation (p’, ;) of the DER are constrained by
the nominal rating of the DER When qD . is modeled as the
decision variable, p’, g is assumed to measured and known. For
this case, the DER model evolves from a quadratic inequality
(3) to a linear inequality (4) constraint. On the contrary, when
the active power generation, pY p,; 18 set as decision variables,
we assume qD = 0, and the DER model is defined by the
linear 1nequahty (5). However, for both real and reactive power
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control, DERs can be linearly approximated, as shown in the
Appendix.

2 2 2
(Ph,)" + (@b;)" < (Shr,) 3
—/(Shry)2 = Wb )2 by <\/(Shry)? - ) @
0< p%,j < S%R,j (%)

C. Centralized OPF (C-OPF) Problem

In this section, we define the C-OPF problems for an
unbalanced radial distribution system, that can be solved
using a central controller; both nonlinear and linear power
flow models have been used for such OPF problems for the
unbalanced distribution system.

1) Loss Minimization: First, the active power loss min-
imization problem has been formulated where the line
loss is reduced by generating optimal qg ;» without violat-
ing operational limits. The optimization variable is X =
[Pf;p, ”, wlqu,qDJ] , Vi € N & V{ij} € £ The OPF
problem (C1) is defined in (6) using nonlinear power flow
models. Here, (I7**4)” is the thermal limit for the line
{ij} € &, and ¥ & v denote the limits on the squared
magnitude of the nodal voltages.

(C) min > 1PPpl? (6a)
PEP;,jri—]
s.t. equation (1) & (4) (6b)
2
< (1) & vt <w (60)

By substituting the nonlinear power flow model with the lin-
ear approximated model, a tractable convex C-OPF model for
the equivalent optimization problem can be devised (Problem
(C2) in (7)). Additionally, all the nodal voltages are assumed
as 1.00 p.u. to approximate the objective function (active

power line loss) by a convex cost function: > ( (Pf'}p )2
(7 )Z)Tf’f for all edges {ij} € £. Here the optimization

ij
variable is X = [P/", Q77 J,qD]] Vi eN & Vij} € €.

]

©) mn 3 ((B)+@QD))
PES;.Jii—]

s.t. equation (2) & (4) (7b)

v<of <7 (7o)

2) DER Curtailment Minimization: In the DER -curtail-
ment minimization problem, active power generations from
the DERs are expressed as control variables. Specifically,
the network objective is to maximize active power genera-
tions from each individual DERs, or equivalently, minimize
the power curtailments from all the DERs in all of the
phases, without exceeding any operational limits. For the DER
curtailment minimization OPF, the optimization variable is
X = [PI”’,QJ7 ],lqu,pD]] , Vi e N & V{ij} € £ The
OPF problem (C3) is defined in (8) using the nonlinear power
flow models. Here, p%ﬁ ; denotes the maximum available power
generation at node j for phase p

(€3 min Y N —ph,)° (8a)
ViEN pEP;
s.t. equation (1) & (5) (8b)
P o< rated 2 <P <7
lij < (Iij ) & v< v; <O (8c)

Further, the DER curtailment minimization problem can be
formulated as a convex OPF problem with linear-approximated
power flow model (eqn. (2)). The optimization problem is
detailed in (9) and referred as problem (C4). The optimization

variable for (C4) is X = [P/, Q}7, ?,p%]} , Vi eN &
V{ij} € €.
(€4 min > " (ph - ph ;) (9a)
ViEN pEP;
s.t. equation (2) & (5) (9b)
v<l <7 %¢)

III. DISTRIBUTED COORDINATION ALGORITHM

The optimization problem for radial power distribution
networks — composed of several connected areas, are nat-
urally decomposable into multiple sub-problems defined for
the areas. In this section, first we detail the decomposition
approach for the OPF problems of three-phase unbalanced
systems, and then the local sub-problems are defined. The
proposed distributed optimization method utilizes the equiv-
alent network approximation (ENApp) model for the radial
distribution system. Later, we briefly discuss the developed
cyber-physical co-simulation platform, where both the physical
and the communication layer are simulated to study the impact
of the developed ENApp D-OPF algorithm on a real life
distribution network.

A. Decomposition Method & Network Approximations

Let the distribution system be composed of N connected
areas, and A = {A;, Ay,..., Anx} be the set of all areas.
Any Area A,, € A is defined as the directed radial graph

A =GN, En); Ny, and &, defines the set of nodes and
lines in the system. The set of central optimization variables
is defined as X = Um 1 Xm,» where X, represents the set of
all local optimization variables for Area A,,. Similarly S =
ngl S, represent the set of constraints for overall problem,
and S, represents the local constraints. If central objective
f(X) is a decomposable cost function, then the problem can
be decomposed into several local sub-problems and written as
(10). Here, f,, is defined as the local objective function for
Area A,,. The complicating variables, y,,,/ are shared by the
neighboring areas of A,,, and are kept constant for solving the
local optimization problem in this primal decomposition-based
method.

min f(X

Xes (10)

Z:l o (X, 1)

As the overall system topology was radial to begin with,
the decomposed areas of the networks are also connected
radially and have unique upstream & downstream sections.
This specific structure of the system helps to identify the
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Fig. 2. Network Approximation Model: Each area is sending (i) nodal
voltage of the shared bus to the respective downstream area, and (ii) branch
power flow incoming from the shared bus with upstream area.

unique parent area and the child areas for any area A,,,, which
in turns associates the complicating/shared variables, y, ./ for
the local sub-problems — exchanged among the neighboring
computing agents to solve the overall problem. For the pro-
posed decomposition approach, the complicating variables are
the voltages and the power flows at the shared buses.

First the shared bus is duplicated, and each duplicated bus
is assigned for neighboring areas for computing purposes; it
is assumed that the duplicated nodes are connected through a
low impedance line, which yields negligible voltage drop and
power loss in the line. Let for any Area A,,, Area A, and Area
Ayg is its parent/Upstream Area (UA) and child/Downstream
Area (DA), respectively (Fig. 2). The shared bus between
Area A,, and A, is duplicated and assigned for each area
(bus mq and bus uyg). Similarly, the shared bus between Area
A,, and Ay is duplicated and assigned for each area (bus my
and bus dg). Thus the complicating variable for Area A,, is
Yy = [yd", y4?]. In this representation, we have employed
the notation where the subscript of shared variable, y, denotes
which area computed the variable, while the superscript de-
notes the variable sharing direction — ‘up’ means shared with
UA, and ‘dn’ means shared with DA. Specifically, y@" = v,,,
and y;” =37 4 a, Sauais Sa,a = Pa,a; + §Qd,a; is the
sum of power flows coming out of bus dy in Area A,4. For
readability purpose, the phase notations are omitted here.

Each area solves related local sub-problems in parallel
by assuming the constant complicating variable, i.e., a fixed
voltage at the shared bus with the unique UA and constant
loads at the shared buses with DAs. Specifically for Area
A,,, the voltage at bus m, is set equal to y9", and the
line between bus my and bus dy is replaced by a constant
load with values equal to y,” at bus my,. In terms of power

Pictorial description of the proposed three-phase unbalanced distributed coordination algorithm — ENApp D-OPF.

system’s physics, this approximates the whole upstream and
downstream network segments of an Area A,, for radial
power distribution systems. After that, the local sub-problem
is solved.

After solving local sub-problems, the respective complicat-
ing variables, i.e., the total power requirements in the Area
Am U =2 mo—sm, Smom;) is shared with UA A, and
the voltage at bus my, i.e., y" = v,,, is shared with DA A,.
Then, the sub-problems are solved again with updated shared
variables from the neighbors. When a consensus is attained
at all the shared boundaries, then the decision variables are
dispatched within the area. The consensus at the boundary
can be achieved using Fixed Point Iteration methods (11). The
variable Y can be the power flow requirements, y“?, or the
voltage at the parent node, yd”; (n) denotes the nth iterations.
Fig. 1 showcases a pictorial description of the overall D-OPF
for a sample 3-Area system.

Yy 4 qy(r=1)
1+ o

ym .= (11)

Please note, the proposed decomposition method creates
duplicated shared buses between neighbors. However, the de-
composition can be done at the sectionalizer switch locations,
as those lines also have very low impedances; duplicated
shared nodes are not necessary for such decomposition pro-
cess. Besides, if any area has multiple child/DAs, similar
approach can be taken for each DAs. The workflow of the
method is described in Algorithm 1.

B. Local Distributed OPF Model

In this section, for Area A,, in Fig. 2, the decomposed
local sub-problems at nt" macro-iteration, (D1)-(D4), of the
corresponding C-OPFs, (C1)-(C4) are defined. In the proposed
method, each local computing agents solves the corresponding
distributed sub-problems, and over macro-iterations, conver-
gence is achieved when all the boundary/shared variables
attains consensus.

1) Loss Minimization: The OPF problem (C1)-(C2) rep-
resent the central formulation of the loss minimization prob-
lem using nonlinear and approximated problem, respectively,
where the active power line losses are minimized by control-
ling the reactive power generations from the DERs. We have
assumed that the active power is known and controlled by an
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Algorithm 1: ENApp Distributed OPF for Unbalanced
Distribution System

Initialize: Boundary variable values, Y(O); set iteration
count n to 0, and € as the tolerance for

convergence
Steps  :

[

Solve local sub-problem for Area A,,(VA,, € A) in parallel
with approximated boundary values.

2 Exchange the solved/calculated boundary variable values for

all the phases with the neighboring areas, i.e., send power

flow values to the upstream area (UA) and bus voltage

magnitude to the downstream areas (DAs).

3 Evaluate the maximum residual at all the boundaries:
R(n) = max (\Y,;") — Y,&”‘l)|) VA, € A.

4 If R(n) < € then consensus is obtained and the optimal
decisions are dispatched.

5 else, update the boundary variables using equation (11), set
iteration count n = n + 1 and go to step 1.

MPPT algorithm to maximize the power output. The corre-
sponding decomposed sub-problems for Area A,,, V{ij} €
En and Vj € N, are defined in (12)-(13), respectively.
Constraint (12¢) and (13c) represents the approximated UA
and DA with the help of complicating/shared variables, as
described in the previous section.

DD min fn(X3)) = > 1FPrt? (12a)
P€¢>_7 Jri—g
s.t. equation (6b) & (6¢) (12b)
Urp;l(on) ydn, p(nfl);
Pm(:> _ R[ysp’ pp (n— 1)] q (kn) _ ]I[ygp’ pp(nfl)} (12¢)

2 min fu(X3) =3 ((P)?

PED; jri—j

+(QI)?) rir (13)

s.t. equation (7b) & (7¢) (13b)
Um(on) ydn, p(nfl).
pfn(:) R[y;m pp(n— 1)] an(:) H[yzp, pp(n—l)} (13¢)

2) DER Curtailment Minimization: The OPF problem
(C3)-(C4) represent the C-OPF formulation of the DER cur-
tailment minimization problem using nonlinear and approx-
imated models, respectively, where the real power genera-
tions for all the phases are maximized within the maximum
power point output limits - without violating the operational
constraints. Similar to loss minimization objective, the corre-
sponding decomposed sub-problems for Area A,, are defined
in (14)-(15), respectively.

M3) min fu(X3) =" > ), —1ph,)? (4a)
VjENm pED;

s.t. equation (8b) & (8c) (14b)
wh =y P,

P = Rlgs™ 70V ghl) =T ) (14

5
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(n) 2
D4) min fu(X5)=>" > (5, —ph ;)7 (15)
ViENm PEP;
s.t. equation (9b) & (9c¢) (15b)
p(n dn, p(n—1),
W = gl P,
p(n) _ up, pp(n—1) p(n) _ up, pp(n—1)
Py, = Rlyy I @y =Ty, ] (15¢)

C. Co-simulation Platform

A realistic evaluation of distributed algorithms requires
modeling the associated communication system. To this end,
we developed a multi-agent cyber-physical co-simulation
package using HELICS (Hierarchical Engine for Large-scale
Infrastructure Co-Simulation), a generic co-simulation plat-
form [22]. Our cyber-physical co-simulation package is com-
posed of the following software: Python 3, GridLAB-D [23],
NS-3 [24], which are used to simulate the computing agents,
the power distribution networks, the communication networks,
respectively. HELICS [22] is then employed to synchronize the
simulations and facilitates message passing among the three
simulation software (see Fig. 3). Each area has a controller
agent shown at the top which has a single connection, via
HELICS, to the communication network simulated in NS-3.
In this way, the controllers are able to communicate with each
other and with the device agents in the local area. The device
agents each have a connection, via HELICS, to the physical
device simulated in GridLAB-D and to the communication
network. The purpose of the device agent is twofold. It formats
the raw data it receives from GridLAB-D so the control agent
can understand it and it parses commands received from the
control agent to the GridLAB-D.

IV. NUMERICAL SIMULATIONS

In this section, a detailed evaluation of the proposed ENApp
D-OPF algorithm to coordinate grid-edge assets, such as PVs,
in three-phase unbalanced distribution systems is presented.
First, we have validated our D-OPF approach by comparing the
solutions with the equivalent central formulations, and then a
comparison is with state-of-the-art ADMM method is detailed.
Later, different stressed communication network topologies
have been tested to demonstrate the efficacy and robustness of
the proposed method. Lastly, a time-series simulation has been
performed to showcase the overall usefulness of the proposed
method. The simulations were performed on a Core i7-1165G7
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TABLE I. Test Systems: Case Parameters
IEEE-123 Bus Test System
DER Details (per phase)
Case Vsub Rating (kVA)  Active Power (kW)
Loss Min. 1.035 48 20
DER Curt. Min.  1.050 72 60

PNNL R3-12.47-2 Feeder Test System
Inverter Details (% of load)

Case Vsub

Rating Active Power
Loss Min. 1.035 100% 50%
DER Curt. Min.  1.049 175% 175%

CPU (16 GB RAM) where the approximated problems were
solved using OSQP solver; the nonlinear OPFs were solved
using fmincon solver on a Core i17-8550U CPU (16 GB RAM).

A. Simulated System

To test and validate our proposed method, we have run sim-
ulations on two different test systems - (i) unbalanced IEEE-
123 bus test system, and (ii) unbalanced PNNL R3-12.47-2
feeder [25], each for two optimization objective functions - (i)
loss minimization, and (ii) DER curtailment minimization.

The three-phase unbalanced IEEE-123 bus test system has
been modified with 30 three-phase DERs (total of 90 DERs);
the test system has overall 261 nodes. The network is split into
four distinct control areas (Fig. 4(a)). All DERs in the IEEE-
123 bus test system are simulated with uniform apparent power
rating and active power output. For the loss minimization
objective, DERs have a rating of 48 kVA per phase and an
active power output of 20 kW per phase. On the other hand,
since the goal of the DER curtailment minimization problem is
to produce the maximum amount of active power from each
DERs — without violating the voltage constraints, the DER
ratings are increased to 72 KVA with a maximum real power
output of 60kW per phase (see Table I).

The second system is the larger three-phase unbalanced
PNNL R3-12.47-2 feeder, and it has more than 870 nodes
in the system. This system has been selected to highlight the
convergence of the proposed method for a scaled network.
Like the IEEE-123 bus test system, it has been split into 4
distinct control areas (Fig. 4(b)). DERs have been added in
proportion to the load on each bus. In the loss minimization
objective, DERs have a kVA rating equivalent in value to
the kW load on the same bus for each phase. The actual
active power generation is set at 50% of the nominal value.
In the DER curtailment minimization scenario, the maximum
active power generation capacity of the DERs are set to 175%
of the rated load at the adjacent node on each phase. For
simulations of the PNNL R3-12.47-2 feeder, the substation
voltage was set a little lower, at 1.049 for better simulation
stability. Unless otherwise specified, all loads were assumed
to follow a constant load model.

B. Validation of the Decomposition Method

This section showcases the validation of the proposed dis-
tributed OPFs for electric power distribution systems. Specif-
ically, the developed co-simulation platform for distributed
OPFs that uses the approximate models, is validated by

TABLE II. Loss minimization Result Comparison
Loss (kW) Communication-round
Method 1IEEE-123 PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder
Nonlinear Problem
No OPF 53.338 18.884 - -
C-OPF 26.305 DNC* - -
ENApp D-OPF  26.502 14.2 5 6
Approximated Problem
C-OPF 26.507 13.646 - -
ENApp D-OPF  26.546 13.646 5 4
ADMM D-OPF  38.954 DNC* 12 DNC*

comparing the resulting objective values for equivalent ap-
proximated C-OPF problem and equivalent nonlinear OPF
problems (both centralized and distributed). Table II and Table
III, show the comparisons between D-OPF and C-OPF results
for different cases.

1) Optimality: Table II shows the loss minimization case
for both test systems for various methods. Both the nonlinear
and approximated D-OPF method (ENApp) for unbalanced
cases matches the objective values from the equivalent C-OPF
objective values. For example, for IEEE-123 bus test system,
the nonlinear and approximated ENApp D-OPF solution (line
loss) are 26.5 kW and 26.54 kW, which is close to the
equivalent nonlinear C-OPF solution (26.3 kW). Please note
that, without the optimization, the line loss is 53.338 kW.
Moreover, the approximated C-OPF result also matches with
the equivalent nonlinear C-OPF solution.

The significance of the proposed method in terms of speed
and computational advantages may not be readily apparent for
smaller or medium-sized test systems. However, for the larger
systems, such as, PNNL R3-12.47-2 feeder, the proposed
method showcases significantly better results than the nonlin-
ear centralized method; the nonlinear C-OPF problem failed to
solve the loss minimization OPF problem (denoted as "'DNC*’
- Did not converged) due to the scale of the OPF problem.
On the contrary, both the nonlinear and approximated ENApp
D-OPF method was able to solve the optimization problem
with 5 communication rounds among neighboring area agents.
The solutions are then verified by comparing the result with
equivalent approximated C-OPF solution. This validates both
the proposed approximated D-OPF and the proposed nonlinear
D-OPF method, highlighting the advantage of the proposed
distributed computation process.

Similarly, Table III validates the algorithm on the co-
simulation platform for DER curtailment minimization prob-
lem for both the test systems. When no OPF is performed,
there were voltage limit violation in the system. However,
if operational limits are considered, the optimal generations
are 5.166, 5.17, and 5.18 MW for approximated ENApp D-
OPF, nonlinear ENApp D-OPF, and nonlinear C-OPF, respec-
tively for the IEEE-123 bus test system. Similar to the loss
minimization objective, the nonlinear C-OPF problem for the
larger PNNL R3-12.47-2 feeder failed to solve; however, the
proposed ENApp D-OPF method solved the DER curtailment
minimization optimization problem (both approximated and
the nonlinear problem) within 7 macro-iterations.
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Fig. 4. Simulated test systems to validate and compare the developed D-OPF algorithm

TABLE III. DER Curtailment Minimization Results Comparison

Generation (MW) Communication-round

Method IEEE-123 PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder
Nonlinear Problem
No OPF 5.400 7.642 - -
C-OPF 5.180 DNC* - -
ENApp D-OPF 5.17 7.113 4 7
Approximated Problem
C-OPF 5.102 7.065 - -
ENApp D-OPF 5.166 6.946 6 4
ADMM D-OPF 5.140 7.642 6 54
x10~* y
20 PNNL . ILoss Min. Caso )
= ‘ R3-12479] E EDER Curt. Min. Case 1.054
él,, IEEE);E—.IQS IEEE-123 feeder é 15 ® Max Volt.age (iu) - %
p us Bus 0SS m. ase 052
g - Bur m z DNC 1.052 o
51 L0 =
] PNNL ﬁ - R 105 =
A5 R3-12.47-2 ] ”
gn Q feeder g 5 =
ST &= oo T8 Lo
- Loss Min. DER Curt. Min. 2 "
110 50 100 460 1000
OPF Objectives Value of p
Fig. 5. Voltage Error Fig. 6. p tuning for IEEE-123 bus

2) Feasibility: In addition to comparing the optimality of
the solutions obtained from the proposed ENApp D-OPF
methods, the feasibility of the solutions is also assessed. After
implementing the optimal control decisions in a three-phase
nonlinear power flow model (here using GridLAB-D), the
derived node voltages are compared with the node voltage
obtained from the OPF solution. Fig. 5 illustrates the distri-
bution of the voltage differences between the approximated
OPF solutions and the nonlinear power flow solutions upon
applying the optimal control variables. For all the systems, and
all the OPF objectives, the voltage differences are not higher
than 10~3, which translates to less than 0.15% difference
in the node voltages. This demonstrates that all the power
flow constraints have been satisfied, and thus validates the
feasibility of the solution attained from the proposed ENApp
D-OPF method.

C. Comparison with other methods

Besides providing the validation of the proposed D-OPF
method, it is crucial to compare the results and convergence
speed with other state-of-the-art D-OPF method. In this paper,

the ADMM method has been compared with the proposed D-
OPF method; approximated distributed problems have been
solved to avoid convergence issues with ADMM algorithms.
For the ADMM method, both the voltage and the complex
power of the shared boundaries have been shared with both UA
agent and DA agent. Specifically, in the implemented ADMM
algorithm, each area solves the local problem and shares the
solved variables for the shared nodes with the corresponding
neighbor area. Those shared variables are real and reactive
power and voltage. The two-norm difference between these
shared boundary values is added to the objective function
as in [4]. The penalty parameter p is set to be the same
for all boundary values. Besides, generally the convergence
of the ADMM method depends significantly on the tuning
of the penalty parameter. The convergence of the nonlinear
distributed problems are not guaranteed, and thus in this paper,
the equivalent approximated (convex) problems are solved
using the ADMM and the result is then compared with ENApp
D-OPF method. Additionally, we have compared our method
with state-of-the-art 3-phase feedback-based online D-OPF
algorithm [26], [27].

1) Tuning of the ADMM: To ensure that the ADMM
algorithm was fairly compared, each case was carefully tuned;
the penalty parameters, p, are varied from 1 to 1000 for the
OPF problems described above for both the test systems.

For the loss minimization OPF objective for the simulated
IEEE-123 bus test system case, only p values of 40, 50, or 60,
resulted in convergence. Fig. 6 demonstrates the convergence
properties of the ADMM method for different p values. For
this case different substation voltage, vs,p, values were also
tested and ultimately p = 50 was chosen for further analysis
since it had good performance and converged in all voltage
cases. The substation voltage was chosen to be 1.05 p.u. for
consistency with other cases. Similarly for the DER curtail-
ment minimization OPF objective for the simulated IEEE-123
bus test system case, any value of p greater than about 40 was
found to result in convergence. Values of 80 <= p <= 460
resulted in the fastest convergence of six rounds, but p values
lower than 200 yields voltage upper bound violation upon
implementing the control variables in the nonlinear power
flow solver of the model. Larger p values generally resulted in
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lower constraint violation but lower DER utilization as well.
Ultimately p = 460 was chosen for further analyses since it
only required 6 rounds and had no voltage violation (see Fig.
6). On the other hand, for the second (larger) test system, i.e.,
PNNL R3-12.47-2 feeder, the loss minimization OPF objective
problem did not converge for any value of p for ADMM.
However, for DER curtailment minimization OPF objective,
ADMM converges for p > 50. Please note that, while the local
sub-problems were solved successfully, the consensus was not
attained at the boundaries of these sub-problems, leading to
DNC condition.

2) Comparison with ADMM: While the state-of-the-art
ADMM D-OPF has been tuned for the best performance of
the algorithm, the process fails to converge to a meaningful
solution for a medium/large-scale three-phase OPF problems.
For the loss minimization OPF problem for the IEEE-123 bus
test system, it took 12 macro-iterations to converge to a sub-
optimal solution — objective value (line loss) is 38.954 kW

compared to 26.546 kW of the ENApp D-OPF solution. For
the large PNNL R3-12.47-2 feeder, ADMM failed to converge
to any solution. For the DER curtailment minimization OPF
objective, ADMM D-OPF converges to the solution after 6
macro-iterations for IEEE-123 bus test system, however fails
to converge to a meaningful solution for the large PNNL R3-
12.47-2 feeder after 54 macro-iterations. While this case does
have boundary convergence after 54 rounds (table III), it does
not actually reduce any DER output and therefore has no
effect, and numerous voltage violations remain.

Briefly, given the best tuning for the ADMM algorithm for
different objectives and test systems, the ADMM algorithm
performs poorly compared to the proposed ENApp D-OPF
method for medium systems, and fails completely for larger
feeders. On the contrary, proposed ENApp D-OPF method
solves both the approximated and the nonlinear distributed
OPF problems for both the test systems.

In addition to the solution quality and speed of the process,
the node voltage distribution of the whole system has been
compared for both the ADMM method and the unbalanced
ENApp D-OPF method. Specifically, the voltage distribution
of the above mentioned two methods have been compared
against the approximated C-OPF solution. Fig. 7 and 8 demon-
strates the node voltage distribution of the overall network for
different optimization methods. From Fig. 7, it is observed that
for both the OPF objectives, the voltage distribution for the C-
OPF and ENApp D-OPF is similar. However, for the ADMM
method, only the DER curtailment minimization objective
case has similar voltage distribution to the equivalent central
problem; the voltage distribution for the loss minimization
objective for IEEE-123 bus test system has more similarities
to the case without any OPF than the C-OPF solution. Kindly
refer to Table II for a comparison of the objective function
values for different OPF methods. This trend can also be
seen for the larger PNNL R3-12.47-2 feeder test case. Fig.
8 showecases the voltage distribution of the overall system for
different optimization methods for PNNL R3-12.47-2 feeder.
While ADMM method fails to solve for any OPF objectives,
the voltage distribution from the ENApp D-OPF solution
closely matches with the voltage distribution of the equivalent
C-OPF solutions. On the contrary, ADMM fails to solve,
and the voltage distribution for those cases remains similar
to the case for “No OPF” scenarios. A comparison of the
solution time for different OPF objectives for different D-OPF
algorithm is reported in Table IV. Please note that the average
time required to solve sub-problems is comparable for both
methods, indicating that the proposed ENApp D-OPF method
does not introduce additional complexity. However, ADMM
requires a higher number of iterations, resulting in greater total
computation time.

3) Comparison with Feedback-based Online Algorithm:
The DER Curtailment Minimization problem with the IEEE-
123 Bus test systems as described in Table I was run with
a feedback-based D-OPF algorithm [26], [27]. The algorithm
did not converge to an optimal solution after 1500 iterations.
The max voltage of the system was 1.065 p.u., indicating a
failure even after 1500 iterations.
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TABLE 1IV. Computational time comparison — Average solve time (s) per
iteration for slowest area (approximated problems).

DER Curtailment Loss
Method Minimization Minimization
IEEE-123  PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder
ENApp D-OPF  0.31s 0.99s 0.48s 1.53s
ADMM D-OPF  0.29s 0.93s 0.44s 1.46s

devices in its own area. In the ring topology all devices and
controllers are connected in a single large loop without regard

Fig. 11. Comparison of objective values for different optimization problems for different distribution systems
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Fig. 12. Load shape and the PV irradiance for a 24-hour simulation
D. Effect of Communication

Next we test the robustness of the proposed algorithm, when
subjected to poor communication network conditions; it is
tested with two different communication network topologies
(ideal and ring topology) for both the loss minimization
problem and the DER curtailment minimization problem for
medium IEEE-123 bus test system. In the ideal topology, each
area controller has a direct link with its neighbors and with

to physical location. Each link between network nodes is a
point-to-point link with a negligible delay and has different
bandwidths (3kbps, 2kbps, or 1kbps) to show the worst-case
performance of the algorithm (see Fig. 9). The lines marked
with circles indicate results run with the ring topology and
lines marked with a star indicate the ideal topology. The blue
line shows the results if no communication is allowed between
controllers and the controllers have perfect communication
links with local devices. There are several effects of poor
communications that we have observed:

o If a controller doesn’t receive data from either UA or DA
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because of data delays, it will falsely assume convergence
and dispatch the inverters prematurely. When the delayed
data does arrive it will continue iterating again.

o Delayed communication between areas does not prevent
convergence except in extreme cases.

o The quality of the resulting solution as measured after
convergence is not impacted by the communication delays.

E. Time-series Simulation

To showcase the practicality and efficiency of real-life
implementation, as well as the comprehensiveness of the
proposed method, a 24-hour simulation has been conducted
using 15-minute resolution data for both the OPF objective
(loss minimization and DER curtailment minimization) and
for both the IEEE-123 bus test system and PNNL R3-12.47-
2 feeder. Please note that while 15-minute resolution data is
standard for solving active power distribution system related
problems, the proposed method can solve OPF problems
within minutes. Therefore, the proposed method is capable of
addressing rapidly changing scenarios in distribution systems.

For the 24-hour simulation, same load shape and PV irra-
diance profile have been utilized to facilitate the replication
of results (see Fig. 12). Fig. 10 illustrates the node voltages
throughout the entire 24-hour simulation for DER curtailment
minimization OPFs conducted on both IEEE-123 bus test
system and PNNL R3-12.47-2 feeder. When no operational
constraints are applied, i.e., no OPF is activated, around 10 am
in the morning, the system voltage exceeds the ANSI limit of
1.05 p.u. for several nodes (Fig. 10(a), 10(c)). The over voltage
persists in the system until 2 pm in the afternoon, as during
this time window, the solar irradiance values are very high.
This trend of over voltage scenarios are consistent for both
the distribution systems. However, upon activation of the DER
curtailment minimization OPF using the proposed ENApp D-
OPF method, PV generations are minimally curtailed to ensure
the distribution system operates within the ANSI limit for
nodal voltages. Consequently, all node voltages in the system
become bounded by the upper limit (Fig. 10(b), 10(d)).

Fig. 11 compares the objectives values for different OPF
scenarios for both the distribution systems. Since the nonlinear
solutions are not available for the large test systems, the
approximated OPF problems have been solved, and upon
enacting the optimal controls in the nonlinear power flow
model, the objective values have been recorded. Also, the time
window between 10 am and 2 pm yields more significant re-
sults for the optimization problems applied to the test systems
throughout the day, thus the comparison of OPF objectives
has been focused on that specific time window. For the
loss minimization OPF problem, both the test systems attain
significantly lower active power losses in the system compared
to the base case where no OPF has been activated; further, the
proposed ENApp D-OPF method obtain same objective values
as the equivalent C-OPF method (Fig. 11(a), 11(c)). Similarly,
DER curtailment minimization OPF problem illustrates similar
results; the proposed ENApp D-OPF yields similar maximum
total distributed power generations (or minimum active power
curtailment) as the equivalent C-OPF solutions (Fig. 11(b),
11(d)), while maintaining the operation voltage limits (Fig.

10(b), 10(d)). These results demonstrates the real life appli-
cability of the proposed ENApp D-OPF method for scaled
unbalanced active power distribution systems.

F. Comprehensive System Model

In this section, we have extended the models for DERs
within the optimal power flow (OPF) problem formulation
to allow for both simultaneous real (P) and reactive (Q)
power control. This enhancement broadens the applicability
of our method by accommodating more complex and realistic
operational scenarios where DERs can adjust both real and
reactive power outputs concurrently to optimize system per-
formance. Moreover, we incorporated voltage-dependent loads
into the OPF formulation and added legacy device controls,
such as regulator taps and capacitor bank (see Appendix). This
integration improves the practicability of the OPF solution, and
demonstrates the robustness to the complex OPF problems.
The specific models are described below.

As a test system for the comprehensive system model, we
have simulated the IEEE-123 bus system for loss minimization
objective with voltage dependent loads, and legacy devices.
Specifically, we have added regulators between Area 3 and
Area 4 of the test system. The resulting MILP OPF problem
were solved using SCIP solver. From the simulation results,
it is observed that the D-OPF method converges within 54
seconds, and the total line losses in system is 28.75 kW.
The equivalent centralized problem attains 28.51 kW of active
power losses in the system which validates the optimality
of the D-OPF solution. Additionally, upon implementing the
D-OPF control variables in the nonlinear power flow model
(OpenDSS), the maximum node voltage deviation between
the linear model and the OpenDSS solution was 0.006 p.u.,
validating the feasibility of the D-OPF solution. This confirms
that both the optimality and feasibility of the ENApp D-
OPF problem, formulated with comprehensive system models,
including legacy devices, simultaneous real and reactive power
control, and voltage-dependent loads, have been thoroughly
validated.

V. CONCLUSIONS

In this paper, a novel distributed optimal power flow method
for radial three-phase, unbalanced power distribution system
has been proposed. The proposed approach leverages the radial
topology of the active distribution systems to improve the
scalability and reduce overall solution speed. The proposed
distributed coordination method for unbalanced power distri-
bution systems achieves a converged network-level optimal
solution using significantly fewer communication rounds for
both nonlinear and the convex-approximated OPF problems.
The performance of the proposed algorithm is evaluated using
a cyber-power co-simulation environment with various com-
munication network parameters, to validate the robustness of
the proposed D-OPF algorithm under stressed communication.
The proposed method is compared with traditional D-OPF
methods and demonstrated higher quality of the solution when
compared with equivalent central solutions. Additionally, the
proposed method is able to solve nonlinear D-OPF problems
within reasonable number of communication rounds for scaled
PNNL R3-12.47-2 feeder system, where C-OPF problem fails
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Fig. 13.  Visualization of inverter linearization using inscribed polygon.

to converge to the solution. For various cases, it is shown that
the proposed method successfully converges to the network-
level optimal solution within reasonable time, even when the
communication network is facing significant stress, such as,
communication delays and a low bandwidth communication
infrastructure. Furthermore, a 24-hour simulation case has
been provided to so illustrate the efficacy of the proposed
method for changing scenarios of the distribution system. In
summary, The D-OPF algorithm is specifically tailored to
meet the demands of these systems while also accounting
for the critical role of communication networks in distributed
control. Incorporating uncertainty in load profiles and other
network data into the D-OPF framework is currently under
consideration and is a part of our future work.

APPENDIX

This appendix summarizes the formulation of regulator tap
settings, voltage-dependent load models, and simultaneous real
and reactive power control models, that can be incorporated
in the D-OPF formulation.

A. Regulator Taps

Let af be the turn ratio for the voltage regulator on phase p
between node 7 and j. Let ufap’k)j €0,1Vk € {1,2,...,33} be
the binary variable for the regulator on phase p between node
¢ and j; let by € {0.9,0.90625, ...,1.1}. Then, the regulator
can be modeled in the OPF formulation as equation (16).

Bi = b}, Aj = ai, VP = VP b = AP (162)
33
AP =" Byl (16b)
k=1
33
p —
Sk, =1 (16¢c)
k=1

B. Capacitor switch

Let uf,, ; be the binary variable denoting the switch status
of the capacitor bank at phase p of node j; then the capacitor
can be modeled in the OPF formulation as equation (17).

P _ P rated,p_ p
dc,j = Yeap,j9eap,i Vi (172)

C. Voltage dependent loads

Let CVR, and C'V R, be the CVR factor that determines
the voltage dependencies of real and reactive power loads,
respectively; also, 0 subscript denotes the nominal load value
at 1 p.u. voltage. Then the voltage dependent loads can be
modeled in the OPF formulation as equation (18). For more
details of CVR factors, please refer to [20].

pf,o

PLy = Pho+ CVRy—=(v] = 1) (18a)
o

q7,; = 450+ CVRg—= (0] — 1) (18b)

D. Simultaneous P/Q control of DERs

The limits of active and reactive power injection of each
DER can be described as a circle with radius sgftj@d on the
complex plane. It may also be limited to only produce active
power and not absorb it, limiting its operation to the right
half plane. To create linear limits we inscribe a polygon in the
circle. In this instance we have used an octagon with vertices
on the real and imaginary axis and at £45°. This is described
by (19) and illustrated by Fig. 13.

Veph, s+ (V2= 2)dh ; < V2sE (192)
Vaph o — (V2= 2)gh ; < V2spl? (19b)
(—14+V2)ph ; + b ; < spi? (19¢)
(—1+V2)ph ; — b ; < s (19d)
p%yj >0 (19e)
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