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AbstractÐThe increased installation of renewable grid-edge as-
sets into an already complex power distribution system has driven
extensive development of distributed optimal power flow (OPF)
methods to coordinate such assets. However, existing distributed
optimization algorithms applied to unbalanced systems require
many communication rounds among the distributed agents and
may pose convergence challenges. Besides, the communication
network parameters also significantly impact the algorithm’s
performance. In this paper, we propose a scalable, equivalent
network approximation-based, distributed OPF method that
employs a communication infrastructure using cyber-physical co-
simulation platform to coordinate grid-edge renewable assets for
three-phase unbalanced distribution systems. Additionally, the
robustness of the proposed approach is validated under stressed
communication scenarios. The results are thoroughly compared
with the state-of-the-art algorithms and equivalent centralized
optimal power flow (C-OPF) problems for medium IEEE-123 bus
test system and large-scale PNNL R3-12.47-2 feeder distribution
test systems.

Index TermsÐDistributed OPF, unbalanced distribution sys-
tem, distributed energy resources, renewable energy coordina-
tion, co-simulation.

I. INTRODUCTION

To efficiently coordinate the growing numbers of grid-

edge assets, such as distributed energy resources (DERs) and

photovoltaics (PVs), optimal power flow (OPF) problems for

power distribution systems have gained significant attention

recently [1], [2]. Traditionally, the distribution system is

centrally managed to coordinate DERs and other grid-edge

technologies. With the increasing number of such controllable

assets and growing system complexity, such a system suf-

fers from several challenges including poor scalability, and

susceptibility to single-point failures [3], [4]. The additional

complexities introduced by the three-phase, unbalanced power

distribution systems may pose convergence issues for the

centralized optimization problems and may result in failure

to attain the optimal solution within a reasonable time [4].

Besides, a centrally managed system is impractical for emerg-

ing distribution systems typically composed of several geo-

graphically separated areas controlled by different entities that

may not want to share models and/or data. Thus, as modern

distribution grids evolve, decentralized data and distributed

control architecture are becoming essential [5].

The existing literature has shown the applicability of the

distributed optimization paradigm in reducing the compu-

tational requirements for OPF problems and in mitigating
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other challenges including ownership boundaries and avoiding

single-point failures [4], [6]. To this end, general distributed

optimization techniques, such as, alternating direction method

of multipliers (ADMM), Auxiliary Problem Principle (APP),

etc. have been adopted to solve distributed OPF (D-OPF)

problems for power distribution systems [6]±[11]. Gener-

ally, D-OPF algorithms involve two iterative processes: (i)

sub-problem optimization involving micro-iterations, where

distributed agents individually solve optimization problems

specific to their areas; the nature of the optimization prob-

lems, such as nonlinear vs. convex, etc., dictates the number

of micro-iterations needed. And (ii) distributed coordination

requiring macro-iterations, where distributed agents exchange

the boundary variables with their neighbors; also referred to as

communication-rounds. The overall compute complexity of the

algorithm depends on the total number of micro- and macro-

iterations required to achieve network-level convergence. Tra-

ditional algorithms suffer from the convergence issues at

the boundaries, experiencing slow or no convergence for the

macro-iteration steps [4], [8], [12]. This calls for algorithmic

advances in D-OPF algorithms to realistically apply them to

the real-world power distribution systems.

Furthermore, traditional D-OPF methods either neglect the

impact of communication networks, limiting their practical

use, or are too slow for effective implementation. These

methods necessitate an expensive communication infrastruc-

ture characterized by high bandwidth and low communication

delays. This is attributed to the requirements of substantial

number of macro-iterations to converge for relatively small

and/or balanced systems [4], [6], [8], [13], [14]. Although

real-time feedback-based online distributed algorithms address

some of the challenges [12], [15]±[17], they still require

thousands of time-steps to track the optimal solution, resulting

in a sub-optimal system operation and constraint violations.

Recently, authors proposed an algorithm based on the structure

of the power flow problem for a balanced radial distribution

system that drastically reduces the number of macro-iterations

[18]. However, the performance of the D-OPF algorithm has

not been evaluated in a realistic cyber-physical environment

with appropriate models for communication systems for scaled

unbalanced distribution systems with detailed system models.

Thus, the objective of this paper is to develop a fast, com-

putationally tractable, and communication-efficient offline D-

OPF algorithm for coordinating grid-edge assets in unbalanced

active power distribution systems, incorporating comprehen-

sive system models to represent realistic network conditions.

The developed method aligns with the distributed control

architecture essential for modern, evolving power distribution

systems. The unbalanced nature of the system increases OPF
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challenges due to the scale of the problem and added power

flow model complexities, stemming from the mutual coupling

in the unbalanced network. Our approach leverages the radial

operation of distribution systems in North America [19] and

employs a distributed coordination algorithm to achieve a

computationally efficient and near-optimal D-OPF solution

that requires low fidelity communication infrastructure prop-

erties. Additionally, we have implemented the algorithm in

a realistic communication network to emphasize the critical

role of communication in distributed OPF methods. This

implementation, previously lacking in literature, highlights the

method’s practical viability. Specifically, our contributions are:

• Development of a decomposition-based D-OPF method

for 3-phase unbalanced distribution system

• Demonstration of scalability of the proposed method

using larger 3-phase unbalanced system, showcasing the

relevance of complex and real-world distribution net-

works.

• Integration of a communication network through co-

simulation to demonstrate the feasibility with realistic

constraints.

• Through comparison with state-of-the-art offline ADMM-

based D-OPF and online feedback-based D-OPF method.

• Demonstration of the effectiveness of our proposed

method when faced with increased complexity, including

the addition of controllable legacy devices that adds

nonlinearity (integer variables) in the OPF problem.

II. NETWORK MODELING & PROBLEM FORMULATION

In this paper, (·)T represents matrix transpose; (·)∗ rep-

resents the complex-conjugate; (·) & (·) denotes the max

and min of a variable; (·)(n) represents the nth iteration;

R, I denotes the real, imaginary part of the complex number,

respectively; the superscript p (without parenthesis) denotes

the three-phases, i.e., {a, b, c} of the system.

A. Power Flow Model

This section details the power flow models to formulate

the OPF problems for an unbalanced power distribution sys-

tem. The unbalanced power flow equations are based on our

prior work [20]. Let us consider an unbalanced radial power

distribution network of n buses where, N denotes the set of

buses in that system and E denotes the set of edges identifying

distribution lines that connect the ordered pair of buses {ij},

∀ i, j ∈ N . Here, ϕj denotes the set of phases in the bus j.

Let v
p
j = |V p

j |
2 be the squared magnitude of voltage at bus

j ∈ N for phase p ∈ ϕj . Define ϕij = {pq : p ∈ ϕi and q ∈ ϕj

∀{ij} ∈ E}. Let l
pq
ij = (|Ippij ||I

qq
ij |) be the squared magnitude

of the line current flowing in the phase pq ∈ ϕij of line (i, j);
i.e., the term l

pq
ij is a mathematical abstraction representing

the product of the magnitudes of branch currents in phases p

and q. Also, S
pq
ij = P

pq
ij + jQ

pq
ij and z

pq
ij = r

pq
ij + jx

pq
ij , where

pq ∈ ϕij . Variable p
p
L,j and q

p
L,j denote the active and reactive

load (respectively) connected at node j of phase p ∈ ϕj .

Similarly, subscript D, j denotes the DER generation at node

j; e.g., p
p
D,j denotes the active power generation at node j

for phase p. δ
pq
ij is the angle difference between the phase

currents. First, we define the nonlinear power flow model and

then the linearized model is detailed.

1) Nonlinear Model: With the approximated phase voltage

and branch current angles, [20] developed the nonlinear power

flow model for an unbalanced radial power distribution system.

The model is defined below in (1). The loads can be modeled

as voltage dependent loads as formulated in the Appendix.

P
pp
ij −

∑

q∈φj

l
pq
ij

(

r
pq
ij cos(δpqij )− x

pq
ij sin(δpqij )

)

=
∑

k:j→k

P
pp

jk + p
p
L,j − p

p
D,j (1a)

Q
pp
ij −

∑

q∈φj

l
pq
ij

(

x
pq
ij cos(δpqij ) + r

pq
ij sin(δpqij )

)

=
∑

k:j→k

Q
pp

jk + q
p
L,j − q

p
D,j − q

p
C,j (1b)

v
p
j = v

p
i −

∑

q∈φj

2R
[

S
pq
ij (z

pq
ij )

∗]+
∑

q∈φj

z
pq
ij l

qq
ij

+
∑

q1,q2∈φj ,q1̸=q2

2R
[

z
pq1
ij l

q1q2
ij

(

̸ (δq1q2ij )
)

(zpq2ij )∗
]

(1c)

(P pp
ij )2 + (Qpp

ij )
2 = v

p
i l

pp
ij (1d)

(lpqij )
2 = l

pp
ij l

qq
ij (1e)

2) Linear-approximated Model: The computational com-

plexity augmented by the nonlinear power flow models to

the existing scalability issues associated with large-scale OPF

problems can be reduced using the approximated linearized

power flow models. In equation (2), a linear-approximated

power flow model ± known as the three-phase LinDistFlow

model is defined. The assumption is that the line loses are

negligible compared to the power flow in the system; however,

line impedances are included in the formulation to compute

the voltage drops across the lines. [20], [21].

P
pp
ij =

∑

k:j→k

P
pp

jk + p
p
L,j − p

p
D,j (2a)

Q
pp
ij =

∑

k:j→k

Q
pp

jk + q
p
L,j − q

p
D,j − q

p
C,j (2b)

v
p
j = v

p
i −

∑

q∈φj

2R
[

S
pq
ij (z

pq
ij )

∗]
(2c)

B. DER Modeling

We define a general DER model for different network

objectives in equation (3)-(5). This DERs are designed as a

general model, and can accommodate any renewable energy

resources, such as rooftop PVs; thus in this paper, DER and PV

models are used interchangeably. The general DER model is

defined by equation (3) at node j for phase p ∈ ϕj . If S
p
DR,j is

defined as the nominal rating of the DER at node j for phase

p ∈ ϕj , then the reactive power generation (q
p
D,j) and the

active power generation (p
p
D,j) of the DER are constrained by

the nominal rating of the DER. When q
p
D,j is modeled as the

decision variable, p
p
D,j is assumed to measured and known. For

this case, the DER model evolves from a quadratic inequality

(3) to a linear inequality (4) constraint. On the contrary, when

the active power generation, p
p
D,j is set as decision variables,

we assume q
p
D,j = 0, and the DER model is defined by the

linear inequality (5). However, for both real and reactive power
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control, DERs can be linearly approximated, as shown in the

Appendix.

(

p
p
D,j

)2
+

(

q
p
D,j

)2 ≤
(

S
p
DR,j

)2
(3)

−
√

(Sp
DR,j)

2 − (ppD,j)
2 ≤ q

p
D,j ≤

√

(Sp
DR,j)

2 − (ppD,j)
2 (4)

0 ≤ p
p
D,j ≤ S

p
DR,j (5)

C. Centralized OPF (C-OPF) Problem

In this section, we define the C-OPF problems for an

unbalanced radial distribution system, that can be solved

using a central controller; both nonlinear and linear power

flow models have been used for such OPF problems for the

unbalanced distribution system.

1) Loss Minimization: First, the active power loss min-

imization problem has been formulated where the line

loss is reduced by generating optimal q
p
D,j , without violat-

ing operational limits. The optimization variable is X =
[P pp

ij , Q
pp
ij , v

p
j , l

pq
ij , q

p
D,j ]

T , ∀j ∈ N & ∀{ij} ∈ E . The OPF

problem (C1) is defined in (6) using nonlinear power flow

models. Here,
(

Iratedij

)2
is the thermal limit for the line

{ij} ∈ E , and v & v denote the limits on the squared

magnitude of the nodal voltages.

(C1) min
∑

p∈φj ,j:i→j

l
pp
ij r

pp
ij (6a)

s.t. equation (1) & (4) (6b)

l
p
ij ≤

(

I
rated
ij

)2

& v ≤ v
p
j ≤ v (6c)

By substituting the nonlinear power flow model with the lin-

ear approximated model, a tractable convex C-OPF model for

the equivalent optimization problem can be devised (Problem

(C2) in (7)). Additionally, all the nodal voltages are assumed

as 1.00 p.u. to approximate the objective function (active

power line loss) by a convex cost function:
∑

(

(

P
pp
ij

)2
+

(

Q
pp
ij

)2
)

r
pp
ij for all edges {ij} ∈ E . Here the optimization

variable is X = [P pp
ij , Q

pp
ij , v

p
j , q

p
D,j ]

T , ∀j ∈ N & ∀{ij} ∈ E .

(C2) min
∑

p∈φj ,j:i→j

(

(

P
pp
ij

)2
+

(

Q
pp
ij

)2
)

r
pp
ij (7a)

s.t. equation (2) & (4) (7b)

v ≤ v
p
j ≤ v (7c)

2) DER Curtailment Minimization: In the DER curtail-

ment minimization problem, active power generations from

the DERs are expressed as control variables. Specifically,

the network objective is to maximize active power genera-

tions from each individual DERs, or equivalently, minimize

the power curtailments from all the DERs in all of the

phases, without exceeding any operational limits. For the DER

curtailment minimization OPF, the optimization variable is

X = [P pp
ij , Q

pp
ij , v

p
j , l

pq
ij , p

p
D,j ]

T , ∀j ∈ N & ∀{ij} ∈ E . The

OPF problem (C3) is defined in (8) using the nonlinear power

flow models. Here, p
p
D,j denotes the maximum available power

generation at node j for phase p

(C3) min
∑

∀j∈N

∑

p∈φj

(ppD,j − p
p
D,j)

2
(8a)

s.t. equation (1) & (5) (8b)

l
p
ij ≤

(

I
rated
ij

)2

& v ≤ v
p
j ≤ v (8c)

Further, the DER curtailment minimization problem can be

formulated as a convex OPF problem with linear-approximated

power flow model (eqn. (2)). The optimization problem is

detailed in (9) and referred as problem (C4). The optimization

variable for (C4) is X = [P pp
ij , Q

pp
ij , v

p
j , p

p
D,j ]

T , ∀j ∈ N &

∀{ij} ∈ E .

(C4) min
∑

∀j∈N

∑

p∈φj

(ppD,j − p
p
D,j)

2
(9a)

s.t. equation (2) & (5) (9b)

v ≤ v
p
j ≤ v (9c)

III. DISTRIBUTED COORDINATION ALGORITHM

The optimization problem for radial power distribution

networks ± composed of several connected areas, are nat-

urally decomposable into multiple sub-problems defined for

the areas. In this section, first we detail the decomposition

approach for the OPF problems of three-phase unbalanced

systems, and then the local sub-problems are defined. The

proposed distributed optimization method utilizes the equiv-

alent network approximation (ENApp) model for the radial

distribution system. Later, we briefly discuss the developed

cyber-physical co-simulation platform, where both the physical

and the communication layer are simulated to study the impact

of the developed ENApp D-OPF algorithm on a real life

distribution network.

A. Decomposition Method & Network Approximations

Let the distribution system be composed of N connected

areas, and A = {A1, A2, . . . , AN} be the set of all areas.

Any Area Am ∈ A is defined as the directed radial graph

Am = G(Nm, Em); Nm and Em defines the set of nodes and

lines in the system. The set of central optimization variables

is defined as X =
⋃N

m=1 Xm, where Xm represents the set of

all local optimization variables for Area Am. Similarly S =
⋃N

m=1 Sm represent the set of constraints for overall problem,

and Sm represents the local constraints. If central objective

f(X) is a decomposable cost function, then the problem can

be decomposed into several local sub-problems and written as

(10). Here, fm is defined as the local objective function for

Area Am. The complicating variables, ym′ are shared by the

neighboring areas of Am, and are kept constant for solving the

local optimization problem in this primal decomposition-based

method.

min
X∈S

f(X) =
N
∑

m=1

min
Xm∈Sm

fm(Xm, y
m

′ ) (10)

As the overall system topology was radial to begin with,

the decomposed areas of the networks are also connected

radially and have unique upstream & downstream sections.

This specific structure of the system helps to identify the
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Fig. 1. Pictorial description of the proposed three-phase unbalanced distributed coordination algorithm ± ENApp D-OPF.

Fig. 2. Network Approximation Model: Each area is sending (i) nodal
voltage of the shared bus to the respective downstream area, and (ii) branch
power flow incoming from the shared bus with upstream area.

unique parent area and the child areas for any area Am, which

in turns associates the complicating/shared variables, ym′ for

the local sub-problems ± exchanged among the neighboring

computing agents to solve the overall problem. For the pro-

posed decomposition approach, the complicating variables are

the voltages and the power flows at the shared buses.

First the shared bus is duplicated, and each duplicated bus

is assigned for neighboring areas for computing purposes; it

is assumed that the duplicated nodes are connected through a

low impedance line, which yields negligible voltage drop and

power loss in the line. Let for any Area Am, Area Au and Area

Ad is its parent/Upstream Area (UA) and child/Downstream

Area (DA), respectively (Fig. 2). The shared bus between

Area Am and Au is duplicated and assigned for each area

(bus m0 and bus uk). Similarly, the shared bus between Area

Am and Ad is duplicated and assigned for each area (bus mk

and bus d0). Thus the complicating variable for Area Am is

ym′ = [ydnu , y
up
d ]. In this representation, we have employed

the notation where the subscript of shared variable, y, denotes

which area computed the variable, while the superscript de-

notes the variable sharing direction ± ‘up’ means shared with

UA, and ‘dn’ means shared with DA. Specifically, ydnu = vuk

and y
up
d =

∑

di:d0→di
Sdodi

; Sdodi
= Pdodi

+ jQdodi
is the

sum of power flows coming out of bus d0 in Area Ad. For

readability purpose, the phase notations are omitted here.

Each area solves related local sub-problems in parallel

by assuming the constant complicating variable, i.e., a fixed

voltage at the shared bus with the unique UA and constant

loads at the shared buses with DAs. Specifically for Area

Am, the voltage at bus mo is set equal to ydnu , and the

line between bus mk and bus d0 is replaced by a constant

load with values equal to y
up
d at bus mk. In terms of power

system’s physics, this approximates the whole upstream and

downstream network segments of an Area Am for radial

power distribution systems. After that, the local sub-problem

is solved.

After solving local sub-problems, the respective complicat-

ing variables, i.e., the total power requirements in the Area

Am (yupm =
∑

mi:m0→mi
Smomi

) is shared with UA Au, and

the voltage at bus mk, i.e., ydnm = vmk
is shared with DA Ad.

Then, the sub-problems are solved again with updated shared

variables from the neighbors. When a consensus is attained

at all the shared boundaries, then the decision variables are

dispatched within the area. The consensus at the boundary

can be achieved using Fixed Point Iteration methods (11). The

variable Y can be the power flow requirements, yup, or the

voltage at the parent node, ydn; (n) denotes the nth iterations.

Fig. 1 showcases a pictorial description of the overall D-OPF

for a sample 3-Area system.

Y (n) :=
Y (n) + αY (n−1)

1 + α
(11)

Please note, the proposed decomposition method creates

duplicated shared buses between neighbors. However, the de-

composition can be done at the sectionalizer switch locations,

as those lines also have very low impedances; duplicated

shared nodes are not necessary for such decomposition pro-

cess. Besides, if any area has multiple child/DAs, similar

approach can be taken for each DAs. The workflow of the

method is described in Algorithm 1.

B. Local Distributed OPF Model

In this section, for Area Am in Fig. 2, the decomposed

local sub-problems at nth macro-iteration, (D1)-(D4), of the

corresponding C-OPFs, (C1)-(C4) are defined. In the proposed

method, each local computing agents solves the corresponding

distributed sub-problems, and over macro-iterations, conver-

gence is achieved when all the boundary/shared variables

attains consensus.

1) Loss Minimization: The OPF problem (C1)-(C2) rep-

resent the central formulation of the loss minimization prob-

lem using nonlinear and approximated problem, respectively,

where the active power line losses are minimized by control-

ling the reactive power generations from the DERs. We have

assumed that the active power is known and controlled by an

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2024.3492976

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on January 20,2025 at 20:17:45 UTC from IEEE Xplore.  Restrictions apply. 



5

Algorithm 1: ENApp Distributed OPF for Unbalanced

Distribution System

Initialize: Boundary variable values, Y (0); set iteration
count n to 0, and ϵ as the tolerance for
convergence

Steps :

1 Solve local sub-problem for Area Am(∀Am ∈ A) in parallel
with approximated boundary values.

2 Exchange the solved/calculated boundary variable values for
all the phases with the neighboring areas, i.e., send power
flow values to the upstream area (UA) and bus voltage
magnitude to the downstream areas (DAs).

3 Evaluate the maximum residual at all the boundaries:

R(n) = max
(

|Y (n)
m − Y

(n−1)
m |

)

; ∀Am ∈ A.

4 If R(n) ≤ ϵ then consensus is obtained and the optimal
decisions are dispatched.

5 else, update the boundary variables using equation (11), set
iteration count n = n+ 1 and go to step 1.

MPPT algorithm to maximize the power output. The corre-

sponding decomposed sub-problems for Area Am, ∀{ij} ∈
Em and ∀j ∈ Nm are defined in (12)-(13), respectively.

Constraint (12c) and (13c) represents the approximated UA

and DA with the help of complicating/shared variables, as

described in the previous section.

(D1) min fm(X(n)
m ) =

∑

p∈φj ,j:i→j

l
pp
ij r

pp
ij (12a)

s.t. equation (6b) & (6c) (12b)

v
p (n)
m0

= y
dn,
u

p (n−1);

p
p (n)
mk

= R[yup,

d

pp (n−1)]; q
p (n)
mk

= I[yup,

d

pp (n−1)] (12c)

(D2) min fm(X(n)
m ) =

∑

p∈φj ,j:i→j

(

(

P
pp
ij

)2
+

(

Q
pp
ij

)2
)

r
pp
ij (13a)

s.t. equation (7b) & (7c) (13b)

v
p (n)
m0

= y
dn,
u

p (n−1);

p
p (n)
mk

= R[yup,

d

pp (n−1)]; q
p (n)
mk

= I[yup,

d

pp (n−1)] (13c)

2) DER Curtailment Minimization: The OPF problem

(C3)-(C4) represent the C-OPF formulation of the DER cur-

tailment minimization problem using nonlinear and approx-

imated models, respectively, where the real power genera-

tions for all the phases are maximized within the maximum

power point output limits - without violating the operational

constraints. Similar to loss minimization objective, the corre-

sponding decomposed sub-problems for Area Am are defined

in (14)-(15), respectively.

(D3) min fm(X(n)
m ) =

∑

∀j∈Nm

∑

p∈φj

(ppD,j − p
p
D,j)

2
(14a)

s.t. equation (8b) & (8c) (14b)

v
p (n)
m0

= y
dn,
u

p (n−1);

p
p (n)
mk

= R[yup,

d

pp (n−1)]; q
p (n)
mk

= I[yup,

d

pp (n−1)] (14c)

Fig. 3. Co-Simulation structure for Cyber-Physical system

(D4) min fm(X(n)
m ) =

∑

∀j∈Nm

∑

p∈φj

(ppD,j − p
p
D,j)

2
(15a)

s.t. equation (9b) & (9c) (15b)

v
p (n)
m0

= y
dn,
u

p (n−1);

p
p (n)
mk

= R[yup,

d

pp (n−1)]; q
p (n)
mk

= I[yup,

d

pp (n−1)] (15c)

C. Co-simulation Platform

A realistic evaluation of distributed algorithms requires

modeling the associated communication system. To this end,

we developed a multi-agent cyber-physical co-simulation

package using HELICS (Hierarchical Engine for Large-scale

Infrastructure Co-Simulation), a generic co-simulation plat-

form [22]. Our cyber-physical co-simulation package is com-

posed of the following software: Python 3, GridLAB-D [23],

NS-3 [24], which are used to simulate the computing agents,

the power distribution networks, the communication networks,

respectively. HELICS [22] is then employed to synchronize the

simulations and facilitates message passing among the three

simulation software (see Fig. 3). Each area has a controller

agent shown at the top which has a single connection, via

HELICS, to the communication network simulated in NS-3.

In this way, the controllers are able to communicate with each

other and with the device agents in the local area. The device

agents each have a connection, via HELICS, to the physical

device simulated in GridLAB-D and to the communication

network. The purpose of the device agent is twofold. It formats

the raw data it receives from GridLAB-D so the control agent

can understand it and it parses commands received from the

control agent to the GridLAB-D.

IV. NUMERICAL SIMULATIONS

In this section, a detailed evaluation of the proposed ENApp

D-OPF algorithm to coordinate grid-edge assets, such as PVs,

in three-phase unbalanced distribution systems is presented.

First, we have validated our D-OPF approach by comparing the

solutions with the equivalent central formulations, and then a

comparison is with state-of-the-art ADMM method is detailed.

Later, different stressed communication network topologies

have been tested to demonstrate the efficacy and robustness of

the proposed method. Lastly, a time-series simulation has been

performed to showcase the overall usefulness of the proposed

method. The simulations were performed on a Core i7-1165G7
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TABLE I. Test Systems: Case Parameters

IEEE-123 Bus Test System

Case VSub
DER Details (per phase)

Rating (kVA) Active Power (kW)

Loss Min. 1.035 48 20
DER Curt. Min. 1.050 72 60

PNNL R3-12.47-2 Feeder Test System

Case VSub
Inverter Details (% of load)

Rating Active Power

Loss Min. 1.035 100% 50%
DER Curt. Min. 1.049 175% 175%

CPU (16 GB RAM) where the approximated problems were

solved using OSQP solver; the nonlinear OPFs were solved

using fmincon solver on a Core i7-8550U CPU (16 GB RAM).

A. Simulated System

To test and validate our proposed method, we have run sim-

ulations on two different test systems - (i) unbalanced IEEE-

123 bus test system, and (ii) unbalanced PNNL R3-12.47-2

feeder [25], each for two optimization objective functions - (i)

loss minimization, and (ii) DER curtailment minimization.

The three-phase unbalanced IEEE-123 bus test system has

been modified with 30 three-phase DERs (total of 90 DERs);

the test system has overall 261 nodes. The network is split into

four distinct control areas (Fig. 4(a)). All DERs in the IEEE-

123 bus test system are simulated with uniform apparent power

rating and active power output. For the loss minimization

objective, DERs have a rating of 48 kVA per phase and an

active power output of 20 kW per phase. On the other hand,

since the goal of the DER curtailment minimization problem is

to produce the maximum amount of active power from each

DERs ± without violating the voltage constraints, the DER

ratings are increased to 72 KVA with a maximum real power

output of 60kW per phase (see Table I).

The second system is the larger three-phase unbalanced

PNNL R3-12.47-2 feeder, and it has more than 870 nodes

in the system. This system has been selected to highlight the

convergence of the proposed method for a scaled network.

Like the IEEE-123 bus test system, it has been split into 4

distinct control areas (Fig. 4(b)). DERs have been added in

proportion to the load on each bus. In the loss minimization

objective, DERs have a kVA rating equivalent in value to

the kW load on the same bus for each phase. The actual

active power generation is set at 50% of the nominal value.

In the DER curtailment minimization scenario, the maximum

active power generation capacity of the DERs are set to 175%

of the rated load at the adjacent node on each phase. For

simulations of the PNNL R3-12.47-2 feeder, the substation

voltage was set a little lower, at 1.049 for better simulation

stability. Unless otherwise specified, all loads were assumed

to follow a constant load model.

B. Validation of the Decomposition Method

This section showcases the validation of the proposed dis-

tributed OPFs for electric power distribution systems. Specif-

ically, the developed co-simulation platform for distributed

OPFs that uses the approximate models, is validated by

TABLE II. Loss minimization Result Comparison

Method

Loss (kW) Communication-round

IEEE-123 PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder

Nonlinear Problem

No OPF 53.338 18.884 - -
C-OPF 26.305 DNC∗ - -

ENApp D-OPF 26.502 14.2 5 6

Approximated Problem

C-OPF 26.507 13.646 - -
ENApp D-OPF 26.546 13.646 5 4
ADMM D-OPF 38.954 DNC∗ 12 DNC∗

comparing the resulting objective values for equivalent ap-

proximated C-OPF problem and equivalent nonlinear OPF

problems (both centralized and distributed). Table II and Table

III, show the comparisons between D-OPF and C-OPF results

for different cases.

1) Optimality: Table II shows the loss minimization case

for both test systems for various methods. Both the nonlinear

and approximated D-OPF method (ENApp) for unbalanced

cases matches the objective values from the equivalent C-OPF

objective values. For example, for IEEE-123 bus test system,

the nonlinear and approximated ENApp D-OPF solution (line

loss) are 26.5 kW and 26.54 kW, which is close to the

equivalent nonlinear C-OPF solution (26.3 kW). Please note

that, without the optimization, the line loss is 53.338 kW.

Moreover, the approximated C-OPF result also matches with

the equivalent nonlinear C-OPF solution.

The significance of the proposed method in terms of speed

and computational advantages may not be readily apparent for

smaller or medium-sized test systems. However, for the larger

systems, such as, PNNL R3-12.47-2 feeder, the proposed

method showcases significantly better results than the nonlin-

ear centralized method; the nonlinear C-OPF problem failed to

solve the loss minimization OPF problem (denoted as ’DNC∗’

- Did not converged) due to the scale of the OPF problem.

On the contrary, both the nonlinear and approximated ENApp

D-OPF method was able to solve the optimization problem

with 5 communication rounds among neighboring area agents.

The solutions are then verified by comparing the result with

equivalent approximated C-OPF solution. This validates both

the proposed approximated D-OPF and the proposed nonlinear

D-OPF method, highlighting the advantage of the proposed

distributed computation process.

Similarly, Table III validates the algorithm on the co-

simulation platform for DER curtailment minimization prob-

lem for both the test systems. When no OPF is performed,

there were voltage limit violation in the system. However,

if operational limits are considered, the optimal generations

are 5.166, 5.17, and 5.18 MW for approximated ENApp D-

OPF, nonlinear ENApp D-OPF, and nonlinear C-OPF, respec-

tively for the IEEE-123 bus test system. Similar to the loss

minimization objective, the nonlinear C-OPF problem for the

larger PNNL R3-12.47-2 feeder failed to solve; however, the

proposed ENApp D-OPF method solved the DER curtailment

minimization optimization problem (both approximated and

the nonlinear problem) within 7 macro-iterations.
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(a) Sectioned IEEE-123 Bus System (b) Sectioned PNNL R3-12.47-2 feeder

Fig. 4. Simulated test systems to validate and compare the developed D-OPF algorithm

TABLE III. DER Curtailment Minimization Results Comparison

Method

Generation (MW) Communication-round

IEEE-123 PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder

Nonlinear Problem

No OPF 5.400 7.642 - -
C-OPF 5.180 DNC∗ - -

ENApp D-OPF 5.17 7.113 4 7

Approximated Problem

C-OPF 5.102 7.065 - -
ENApp D-OPF 5.166 6.946 6 4
ADMM D-OPF 5.140 7.642 6 54

Fig. 5. Voltage Error Fig. 6. ρ tuning for IEEE-123 bus

2) Feasibility: In addition to comparing the optimality of

the solutions obtained from the proposed ENApp D-OPF

methods, the feasibility of the solutions is also assessed. After

implementing the optimal control decisions in a three-phase

nonlinear power flow model (here using GridLAB-D), the

derived node voltages are compared with the node voltage

obtained from the OPF solution. Fig. 5 illustrates the distri-

bution of the voltage differences between the approximated

OPF solutions and the nonlinear power flow solutions upon

applying the optimal control variables. For all the systems, and

all the OPF objectives, the voltage differences are not higher

than 10−3, which translates to less than 0.15% difference

in the node voltages. This demonstrates that all the power

flow constraints have been satisfied, and thus validates the

feasibility of the solution attained from the proposed ENApp

D-OPF method.

C. Comparison with other methods

Besides providing the validation of the proposed D-OPF

method, it is crucial to compare the results and convergence

speed with other state-of-the-art D-OPF method. In this paper,

the ADMM method has been compared with the proposed D-

OPF method; approximated distributed problems have been

solved to avoid convergence issues with ADMM algorithms.

For the ADMM method, both the voltage and the complex

power of the shared boundaries have been shared with both UA

agent and DA agent. Specifically, in the implemented ADMM

algorithm, each area solves the local problem and shares the

solved variables for the shared nodes with the corresponding

neighbor area. Those shared variables are real and reactive

power and voltage. The two-norm difference between these

shared boundary values is added to the objective function

as in [4]. The penalty parameter ρ is set to be the same

for all boundary values. Besides, generally the convergence

of the ADMM method depends significantly on the tuning

of the penalty parameter. The convergence of the nonlinear

distributed problems are not guaranteed, and thus in this paper,

the equivalent approximated (convex) problems are solved

using the ADMM and the result is then compared with ENApp

D-OPF method. Additionally, we have compared our method

with state-of-the-art 3-phase feedback-based online D-OPF

algorithm [26], [27].

1) Tuning of the ADMM: To ensure that the ADMM

algorithm was fairly compared, each case was carefully tuned;

the penalty parameters, ρ, are varied from 1 to 1000 for the

OPF problems described above for both the test systems.

For the loss minimization OPF objective for the simulated

IEEE-123 bus test system case, only ρ values of 40, 50, or 60,

resulted in convergence. Fig. 6 demonstrates the convergence

properties of the ADMM method for different ρ values. For

this case different substation voltage, vsub, values were also

tested and ultimately ρ = 50 was chosen for further analysis

since it had good performance and converged in all voltage

cases. The substation voltage was chosen to be 1.05 p.u. for

consistency with other cases. Similarly for the DER curtail-

ment minimization OPF objective for the simulated IEEE-123

bus test system case, any value of ρ greater than about 40 was

found to result in convergence. Values of 80 <= ρ <= 460
resulted in the fastest convergence of six rounds, but ρ values

lower than 200 yields voltage upper bound violation upon

implementing the control variables in the nonlinear power

flow solver of the model. Larger ρ values generally resulted in
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(a) Loss Minimization (b) DER Curtailment Minimization

Fig. 7. Voltage distribution for IEEE-123 bus test system.

(a) Loss Minimization (b) DER Curtailment Minimization

Fig. 8. Voltage distributions for PNNL R3-12.47-2 feeder test system.

lower constraint violation but lower DER utilization as well.

Ultimately ρ = 460 was chosen for further analyses since it

only required 6 rounds and had no voltage violation (see Fig.

6). On the other hand, for the second (larger) test system, i.e.,

PNNL R3-12.47-2 feeder, the loss minimization OPF objective

problem did not converge for any value of ρ for ADMM.

However, for DER curtailment minimization OPF objective,

ADMM converges for ρ ≥ 50. Please note that, while the local

sub-problems were solved successfully, the consensus was not

attained at the boundaries of these sub-problems, leading to

DNC condition.

2) Comparison with ADMM: While the state-of-the-art

ADMM D-OPF has been tuned for the best performance of

the algorithm, the process fails to converge to a meaningful

solution for a medium/large-scale three-phase OPF problems.

For the loss minimization OPF problem for the IEEE-123 bus

test system, it took 12 macro-iterations to converge to a sub-

optimal solution ± objective value (line loss) is 38.954 kW

compared to 26.546 kW of the ENApp D-OPF solution. For

the large PNNL R3-12.47-2 feeder, ADMM failed to converge

to any solution. For the DER curtailment minimization OPF

objective, ADMM D-OPF converges to the solution after 6

macro-iterations for IEEE-123 bus test system, however fails

to converge to a meaningful solution for the large PNNL R3-

12.47-2 feeder after 54 macro-iterations. While this case does

have boundary convergence after 54 rounds (table III), it does

not actually reduce any DER output and therefore has no

effect, and numerous voltage violations remain.

Briefly, given the best tuning for the ADMM algorithm for

different objectives and test systems, the ADMM algorithm

performs poorly compared to the proposed ENApp D-OPF

method for medium systems, and fails completely for larger

feeders. On the contrary, proposed ENApp D-OPF method

solves both the approximated and the nonlinear distributed

OPF problems for both the test systems.

In addition to the solution quality and speed of the process,

the node voltage distribution of the whole system has been

compared for both the ADMM method and the unbalanced

ENApp D-OPF method. Specifically, the voltage distribution

of the above mentioned two methods have been compared

against the approximated C-OPF solution. Fig. 7 and 8 demon-

strates the node voltage distribution of the overall network for

different optimization methods. From Fig. 7, it is observed that

for both the OPF objectives, the voltage distribution for the C-

OPF and ENApp D-OPF is similar. However, for the ADMM

method, only the DER curtailment minimization objective

case has similar voltage distribution to the equivalent central

problem; the voltage distribution for the loss minimization

objective for IEEE-123 bus test system has more similarities

to the case without any OPF than the C-OPF solution. Kindly

refer to Table II for a comparison of the objective function

values for different OPF methods. This trend can also be

seen for the larger PNNL R3-12.47-2 feeder test case. Fig.

8 showcases the voltage distribution of the overall system for

different optimization methods for PNNL R3-12.47-2 feeder.

While ADMM method fails to solve for any OPF objectives,

the voltage distribution from the ENApp D-OPF solution

closely matches with the voltage distribution of the equivalent

C-OPF solutions. On the contrary, ADMM fails to solve,

and the voltage distribution for those cases remains similar

to the case for ªNo OPFº scenarios. A comparison of the

solution time for different OPF objectives for different D-OPF

algorithm is reported in Table IV. Please note that the average

time required to solve sub-problems is comparable for both

methods, indicating that the proposed ENApp D-OPF method

does not introduce additional complexity. However, ADMM

requires a higher number of iterations, resulting in greater total

computation time.

3) Comparison with Feedback-based Online Algorithm:

The DER Curtailment Minimization problem with the IEEE-

123 Bus test systems as described in Table I was run with

a feedback-based D-OPF algorithm [26], [27]. The algorithm

did not converge to an optimal solution after 1500 iterations.

The max voltage of the system was 1.065 p.u., indicating a

failure even after 1500 iterations.

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2024.3492976

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Washington State University. Downloaded on January 20,2025 at 20:17:45 UTC from IEEE Xplore.  Restrictions apply. 



9

(a) ENApp D-OPF: Loss Min. (b) ADMM D-OPF: Loss Min. (c) ENApp D-OPF: DER Curt. Min. (d) ADMM D-OPF: DER Curt. Min.

Fig. 9. Communication stress test and the convergence of the D-OPF methods for IEEE-123 bus test system

(a) IEEE-123 bus test system: without
DER Curtailment Minimization OPF

(b) IEEE-123 bus test system: with
DER Curtailment Minimization OPF

(c) PNNL R3-12.47-2 Feeder: without
DER Curtailment Minimization OPF

(d) PNNL R3-12.47-2 Feeder: with
DER Curtailment Minimization OPF

Fig. 10. All the node voltages for a 24-hour time-series simulation: without and with OPF for DER curtailment minimization problem

No OPF

C-OPF

ENApp D-OPF

(a) IEEE-123 bus test system: Loss
Minimization OPF.

No OPF

C-OPF

ENApp D-OPF

(b) IEEE-123 bus test system: DER
Curtailment Minimization OPF

No OPF

C-OPF

ENApp D-OPF

(c) PNNL R3-12.47-2 Feeder: Loss
Minimization OPF.

No OPF

C-OPF

ENApp D-OPF

(d) PNNL R3-12.47-2 Feeder: DER
Curtailment Minimization OPF

Fig. 11. Comparison of objective values for different optimization problems for different distribution systems

Fig. 12. Load shape and the PV irradiance for a 24-hour simulation

D. Effect of Communication

Next we test the robustness of the proposed algorithm, when

subjected to poor communication network conditions; it is

tested with two different communication network topologies

(ideal and ring topology) for both the loss minimization

problem and the DER curtailment minimization problem for

medium IEEE-123 bus test system. In the ideal topology, each

area controller has a direct link with its neighbors and with

TABLE IV. Computational time comparison ± Average solve time (s) per
iteration for slowest area (approximated problems).

Method

DER Curtailment Loss

Minimization Minimization

IEEE-123 PNNL R3- IEEE-123 PNNL R3-
Bus System 12.47-2 Feeder Bus System 12.47-2 Feeder

ENApp D-OPF 0.31s 0.99s 0.48s 1.53s
ADMM D-OPF 0.29s 0.93s 0.44s 1.46s

devices in its own area. In the ring topology all devices and

controllers are connected in a single large loop without regard

to physical location. Each link between network nodes is a

point-to-point link with a negligible delay and has different

bandwidths (3kbps, 2kbps, or 1kbps) to show the worst-case

performance of the algorithm (see Fig. 9). The lines marked

with circles indicate results run with the ring topology and

lines marked with a star indicate the ideal topology. The blue

line shows the results if no communication is allowed between

controllers and the controllers have perfect communication

links with local devices. There are several effects of poor

communications that we have observed:

• If a controller doesn’t receive data from either UA or DA
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because of data delays, it will falsely assume convergence

and dispatch the inverters prematurely. When the delayed

data does arrive it will continue iterating again.

• Delayed communication between areas does not prevent

convergence except in extreme cases.

• The quality of the resulting solution as measured after

convergence is not impacted by the communication delays.

E. Time-series Simulation

To showcase the practicality and efficiency of real-life

implementation, as well as the comprehensiveness of the

proposed method, a 24-hour simulation has been conducted

using 15-minute resolution data for both the OPF objective

(loss minimization and DER curtailment minimization) and

for both the IEEE-123 bus test system and PNNL R3-12.47-

2 feeder. Please note that while 15-minute resolution data is

standard for solving active power distribution system related

problems, the proposed method can solve OPF problems

within minutes. Therefore, the proposed method is capable of

addressing rapidly changing scenarios in distribution systems.

For the 24-hour simulation, same load shape and PV irra-

diance profile have been utilized to facilitate the replication

of results (see Fig. 12). Fig. 10 illustrates the node voltages

throughout the entire 24-hour simulation for DER curtailment

minimization OPFs conducted on both IEEE-123 bus test

system and PNNL R3-12.47-2 feeder. When no operational

constraints are applied, i.e., no OPF is activated, around 10 am

in the morning, the system voltage exceeds the ANSI limit of

1.05 p.u. for several nodes (Fig. 10(a), 10(c)). The over voltage

persists in the system until 2 pm in the afternoon, as during

this time window, the solar irradiance values are very high.

This trend of over voltage scenarios are consistent for both

the distribution systems. However, upon activation of the DER

curtailment minimization OPF using the proposed ENApp D-

OPF method, PV generations are minimally curtailed to ensure

the distribution system operates within the ANSI limit for

nodal voltages. Consequently, all node voltages in the system

become bounded by the upper limit (Fig. 10(b), 10(d)).

Fig. 11 compares the objectives values for different OPF

scenarios for both the distribution systems. Since the nonlinear

solutions are not available for the large test systems, the

approximated OPF problems have been solved, and upon

enacting the optimal controls in the nonlinear power flow

model, the objective values have been recorded. Also, the time

window between 10 am and 2 pm yields more significant re-

sults for the optimization problems applied to the test systems

throughout the day, thus the comparison of OPF objectives

has been focused on that specific time window. For the

loss minimization OPF problem, both the test systems attain

significantly lower active power losses in the system compared

to the base case where no OPF has been activated; further, the

proposed ENApp D-OPF method obtain same objective values

as the equivalent C-OPF method (Fig. 11(a), 11(c)). Similarly,

DER curtailment minimization OPF problem illustrates similar

results; the proposed ENApp D-OPF yields similar maximum

total distributed power generations (or minimum active power

curtailment) as the equivalent C-OPF solutions (Fig. 11(b),

11(d)), while maintaining the operation voltage limits (Fig.

10(b), 10(d)). These results demonstrates the real life appli-

cability of the proposed ENApp D-OPF method for scaled

unbalanced active power distribution systems.

F. Comprehensive System Model

In this section, we have extended the models for DERs

within the optimal power flow (OPF) problem formulation

to allow for both simultaneous real (P) and reactive (Q)

power control. This enhancement broadens the applicability

of our method by accommodating more complex and realistic

operational scenarios where DERs can adjust both real and

reactive power outputs concurrently to optimize system per-

formance. Moreover, we incorporated voltage-dependent loads

into the OPF formulation and added legacy device controls,

such as regulator taps and capacitor bank (see Appendix). This

integration improves the practicability of the OPF solution, and

demonstrates the robustness to the complex OPF problems.

The specific models are described below.

As a test system for the comprehensive system model, we

have simulated the IEEE-123 bus system for loss minimization

objective with voltage dependent loads, and legacy devices.

Specifically, we have added regulators between Area 3 and

Area 4 of the test system. The resulting MILP OPF problem

were solved using SCIP solver. From the simulation results,

it is observed that the D-OPF method converges within 54
seconds, and the total line losses in system is 28.75 kW.

The equivalent centralized problem attains 28.51 kW of active

power losses in the system which validates the optimality

of the D-OPF solution. Additionally, upon implementing the

D-OPF control variables in the nonlinear power flow model

(OpenDSS), the maximum node voltage deviation between

the linear model and the OpenDSS solution was 0.006 p.u.,

validating the feasibility of the D-OPF solution. This confirms

that both the optimality and feasibility of the ENApp D-

OPF problem, formulated with comprehensive system models,

including legacy devices, simultaneous real and reactive power

control, and voltage-dependent loads, have been thoroughly

validated.

V. CONCLUSIONS

In this paper, a novel distributed optimal power flow method

for radial three-phase, unbalanced power distribution system

has been proposed. The proposed approach leverages the radial

topology of the active distribution systems to improve the

scalability and reduce overall solution speed. The proposed

distributed coordination method for unbalanced power distri-

bution systems achieves a converged network-level optimal

solution using significantly fewer communication rounds for

both nonlinear and the convex-approximated OPF problems.

The performance of the proposed algorithm is evaluated using

a cyber-power co-simulation environment with various com-

munication network parameters, to validate the robustness of

the proposed D-OPF algorithm under stressed communication.

The proposed method is compared with traditional D-OPF

methods and demonstrated higher quality of the solution when

compared with equivalent central solutions. Additionally, the

proposed method is able to solve nonlinear D-OPF problems

within reasonable number of communication rounds for scaled

PNNL R3-12.47-2 feeder system, where C-OPF problem fails
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Fig. 13. Visualization of inverter linearization using inscribed polygon.

to converge to the solution. For various cases, it is shown that

the proposed method successfully converges to the network-

level optimal solution within reasonable time, even when the

communication network is facing significant stress, such as,

communication delays and a low bandwidth communication

infrastructure. Furthermore, a 24-hour simulation case has

been provided to so illustrate the efficacy of the proposed

method for changing scenarios of the distribution system. In

summary, The D-OPF algorithm is specifically tailored to

meet the demands of these systems while also accounting

for the critical role of communication networks in distributed

control. Incorporating uncertainty in load profiles and other

network data into the D-OPF framework is currently under

consideration and is a part of our future work.

APPENDIX

This appendix summarizes the formulation of regulator tap

settings, voltage-dependent load models, and simultaneous real

and reactive power control models, that can be incorporated

in the D-OPF formulation.

A. Regulator Taps

Let a
p
j be the turn ratio for the voltage regulator on phase p

between node i and j. Let u
p
tap,k,j ∈ 0, 1∀k ∈ {1, 2, ..., 33} be

the binary variable for the regulator on phase p between node

i and j; let bk ∈ {0.9, 0.90625, ..., 1.1}. Then, the regulator

can be modeled in the OPF formulation as equation (16).

Bk = b
2
k, Aj = a

2
i , V

p
j = a

p
jV

p
i , v

p
j = A

p
jv

p
i (16a)

A
p
j =

33
∑

k=1

Bku
p

tap,k,j (16b)

33
∑

k=1

u
p

tap,k = 1 (16c)

B. Capacitor switch

Let u
p
cap,j be the binary variable denoting the switch status

of the capacitor bank at phase p of node j; then the capacitor
can be modeled in the OPF formulation as equation (17).

q
p
C,j = u

p
cap,jq

rated,p
cap,j v

p
j (17a)

C. Voltage dependent loads

Let CV Rp and CV Rq be the CVR factor that determines

the voltage dependencies of real and reactive power loads,

respectively; also, 0 subscript denotes the nominal load value

at 1 p.u. voltage. Then the voltage dependent loads can be

modeled in the OPF formulation as equation (18). For more

details of CVR factors, please refer to [20].

p
p
L,j = p

p
j,0 +CVRp

p
p
i,0

2
(vpj − 1) (18a)

q
p
L,j = q

p
j,0 +CVRq

q
p
i,0

2
(vpj − 1) (18b)

D. Simultaneous P/Q control of DERs

The limits of active and reactive power injection of each

DER can be described as a circle with radius sratedD,j on the

complex plane. It may also be limited to only produce active

power and not absorb it, limiting its operation to the right

half plane. To create linear limits we inscribe a polygon in the

circle. In this instance we have used an octagon with vertices

on the real and imaginary axis and at ±45◦. This is described

by (19) and illustrated by Fig. 13.

√
2ppD,j + (

√
2− 2)qpD,j ≤

√
2sratedD,j (19a)

√
2ppD,j − (

√
2− 2)qpD,j ≤

√
2sratedD,j (19b)

(−1 +
√
2)ppD,j + q

p
D,j ≤ s

rated
D,j (19c)

(−1 +
√
2)ppD,j − q

p
D,j ≤ s

rated
D,j (19d)

p
p
D,j ≥ 0 (19e)
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