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Risk-Based Active Distribution System Planning for
Resilience Against Extreme Weather Events
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and Anamika Dubey

Abstract—Enhancing the resilience of power distribution sys-
tems to extreme weather events is of critical concern. Upgrading
the distribution system infrastructure by system hardening and
investing in smart grid technologies effectively enhances grid re-
silience. Existing distribution system planning methods primarily
consider the persistent cost of the expected events (such as faults
and outages likely to occur) and aim at improving system reliability.
The resilience to extreme weather events requires reducing the
impacts of the high impact low probability (HILP) events that are
characterized by the tail probability of the event impact distribu-
tion. Thus, the resilience-oriented system upgrades solutions need
to be driven by the risks imposed by extreme weather events on
the power grid infrastructure rather than persistent costs. This
paper aims to develop a risk-based approach for the long-term
resilience planning of active power distribution systems against
extreme weather events. The proposed approach explicitly mod-
els (1) the impacts of HILP events using a two-stage risk-averse
stochastic optimization framework, thus, explicitly incorporating
the risks of HILP events in long-term planning decisions, and (2)
the advanced distribution grid operations (in the aftermath of the
event) such as intentional islanding into infrastructure planning
problem. The inclusion of risk in the planning objective provides
additional flexibility to the grid planners to analyze the trade-off
between risk-neutral and risk-averse planning strategies.

Index Terms—Conditional value-at-risk, long-term planning,
power distribution resilience, stochastic optimization.

NOMENCLATURE
Parameters
@ Confidence level for VAR and CVaR.
chbe Maximum budget for total DG installation.
Pr;+jQ;; Three-phase complex load demand atbusi € B.
re/Xe Resistance/Reactance matrix of a line e:
(1,7) € L.
|L.] Number of switches in a cycle c.
= Total number of scenarios.
ch¢ DG siting and sizing cost at bus i € Bpg.
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Pp Total power demand.
De Probability of realizing scenario £ € £.
PR&x Maximum active power capacity of a DG.
PY +jQ},  Complex power demand at i € B for phase
¢ e .
Sets
L. Switches in a cycle c.
% Virtual edges for DGs connection.
B Physical system buses.
Bs Remotely switchable buses.
Bpa Potential DG locations.
& Potential scenarios.
L Physical lines.
Lp Faulted or tripped switches.
Ls Switchable lines. i.e. £ U LY.
LS Normally-closed sectionalizing switches.
LY Normally-open tie switches.
® = {a,b,c} Phases of abus.
Variables
BPRE Size of DG at location i € Bpc.
§be DG location variable i € Bp.
e Line or switch decision variable.
n Value-at-risk.
v Excess variable for CVaR.
P.+jqQ, Three-phase complex power flow from ¢ to j.
U, Three-phase voltage magnitude square vector.
\ 4 Three-phase voltage vector for bus .
P? +jQ? Complex power flow from i to j for ¢ € .
S; Load pick-up variable.
v; Bus energization variable.

I. INTRODUCTION
A. Background

Extreme weather events result in an extended disruption of
the electric power supply and severely affect personal safety and
national security, thus posing serious concerns for the nation’s
electric power grid infrastructures. Between 2003-2012, in the
US, extreme weather events accounted for almost 700 power
outages, each affecting more than 50,000 customers, with 80—
90% of outages resulting from the failure in power distribution
systems [1]. In 2021 alone, in the US, there were 20 natural
disaster events with losses exceeding $1 billion each [2]. The
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TABLE I
SUMMARY OF EXISTING LITERATURE FOR RESILIENCE-ORIENTED PLANNING OF POWER DISTRIBUTION SYSTEMS

Planning decision References Objective Formulation Approach
. . [10] Max. (Expected benefit - cost) Stochastic NLP Heuristic search
Resource location . ; . . . .
[11] Min. Cost (operation, action) Two-stage stochastic MILP Progressive hedging
[7] Min. Load shedding cost and planning cost  Tri-level robust optimization CCG decomposition

[12]
[13]
[14]

Line hardening & DG siting

Min. (planning and expected operating cost)
Min. Cost (Planning + load shedding)
Min. Load shedding cost and planning cost

Two-stage stochastic
Tri-level robust optimization
Two-stage stochastic

Progressive hedging
Greedy search
Dual decomposition

[15]
[16]

Remote controlled switch siting

Min. Number of RCS
Min. (Expected loss)

Weighted set cover (WSC)
Two-stage stochastic

Greedy algorithm
Scenario decomposition

DG siting & sizing [17]

Min. (planning and expected operating cost)

Two-stage stochastic Progressive hedging

resulting socio-economic losses and the power grid’s vulnera-
bility to extreme weather events necessitate the incorporation
of resilience in system planning to account for not only the
expected events but also the extreme events that are less likely to
occur. Towards this goal, different utilities have spent millions of
dollars in deploying smart grid technologies such as distribution
automation with automated feeder switching, intentional island-
ing (microgrid), as well as upgrading vulnerable feeders and
substations [3]. With the increasing frequency and severity of
weather-related events, a more systematic approach to smart grid
expenditures is required to identify appropriate system upgrade
solutions for strengthening system resilience.

B. Literature Review

Strategies for enhancing the resilience of power distribution
systems can be classified into short-term (operational) planning
and long-term (infrastructure) planning phases. The operational
planning aims at making the best use of the existing distribution
grid resources (e.g., switches, DGs) to minimize the impacts
of an anticipated event in the near term [4]. On the contrary,
the infrastructure planning phase targets to optimally upgrade
the power systems infrastructure by strategically deploying new
resources (e.g., DGs, switches, distribution lines) to improve the
system response against possible HILP events [5].

The existing literature on power distribution resilience in-
cludes numerous articles on operational planning to mitigate
or reduce the impact of an imminent threat such as an upcom-
ing storm [6]. Such solutions build resilience via operational
response rather than infrastructural upgrades. In operational
planning, the decisions are to be made for an upcoming event that
is known with a high level of certainty and thus requires consider-
ing only a limited number of scenarios for decision-making. On
the contrary, long-term planning requires a probabilistic analysis
over a wider range of scenarios with a higher level of uncertainty
for decisions related to system hardening, infrastructure up-
grades, resource allocation, and sizing [7]. These decisions must
also connect to the operational problem if and when the events
are realized in practice. Thus, the problem is further complicated
by additional stages of operational decision-making leading to
an explosion of state space to be considered for decision-making.

In general, hardening the distribution grid and investing in
smart grid technologies are effective resilience-oriented designs
that need to be adopted in the utilities’ portfolio for long-term

infrastructure planning to improve grid’s response to extreme
weather events. However, infrastructure planning for resilience
is challenging mainly as it requires a) to include several differ-
ent uncertainties (e.g., fault location, load profiles, nature and
severity of extreme events, and so forth) in the decision-making
process, b) ensure the validity of the planning decisions for
the entire profile of weather events, and c¢) mitigate the crit-
ical challenge of achieving a balance between computational
cost and accuracy. Thus, long-term infrastructure planning for
resilience is conceptually a different problem than the prevalent
methods for operational planning solutions [8]. This calls for
new methods and contributions to systematically build resilience
in active power distribution grid infrastructures against the HILP
events [9].

The related literature on resilience-oriented design and pre-
disaster resource allocation usually employ a stochastic pro-
gramming model to minimize the expected cost of the future
operational scenarios [10], [11]. For example, in [ 10], a heuristic
search is employed to identify the optimal restoration path and
obtain a resource allocation plan. These solutions, however,
consider short-term operational requirements for a known HILP
event and are not suitable for infrastructure planning. The re-
lated work on resilience-oriented distribution system long-term
planning also employs stochastic optimization formulations,
including a tri-level robust optimization model [7], [13], and
a two-stage stochastic optimization model [12], [14], [16]. The
tri-level optimization model formulates the resulting problem
in a defender-attacker-defender model that is then converted
into an equivalent bi-level model and solved using iterative
approaches such as CCG or greedy search algorithms [7]. The
tri-level approach optimizes for the worst possible outcomes and
hence is not suitable for a probabilistic analysis for infrastructure
planning that needs to be cost-effective and optimal for a large
range of future scenarios. Alternatively, the two-stage stochastic
programming method considers the overall impact of stochastic
fault scenarios in planning decisions rather than just the worst-
case scenarios [12], [17]. The existing two-stage stochastic
optimization formulations used in resilience-oriented distribu-
tion grid design either assume that all scenarios are observed
with equal probability or perform the planning based on only a
targeted set of scenarios [12], [18], [19]. While such methods
are generally applicable, other approaches such as importance
sampling and stratified sampling techniques can be more effec-
tive in representing HILP events and their impact probabilities in
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the optimization process [20], [21]. These techniques are widely
adopted in power systems reliability studies [22], [23]. Another
approach includes network interdiction models that plan for
the worst-case scenarios [7]. However, given the emphasis on
the worst-case scenario, these methods may lead to extremely
conservative and expensive planning solutions as the worst-case
scenario usually occurs with a very small probability. Addition-
ally, related literature obtains planning solutions for persistent
costs; they do not explicitly include the risks of extreme events.
For a resilience-oriented long-term planning problem, the goal
is to determine optimal investments to reduce the consequences
(here, customer outages) of the HILP events. Mathematically,
this amounts to minimizing the mean of consequences and, more
importantly, reducing the tail of the consequence of the HILP
events [3]. Table I summarizes the existing work in this domain
and highlights the problem formulation and solution approaches.

C. Contributions

To appropriately incorporate the effects of HILP events, the
infrastructure planning for resilience needs to be driven by
risk rather than pertinent or expected cost [24]. This paper
proposes a risk-based approach for infrastructure planning in
active power distribution systems for resilience against extreme
weather events. We employ conditional value-at-risk, CVaR,,
to quantify the risks of system outages imposed by the HILP
events [25], [26]. Related works include using CVaR-metric for
robust power grid operations [27], [28], [29]. Here, we employ
CVaR-metric for long-term distribution planning, where the goal
is to reduce the risks of outages on power distribution systems
due to HILP events. A two-stage stochastic optimization frame-
work is proposed to optimize smart grid investments, specifi-
cally DG siting and sizing, to enable advanced systems such as
DG-assisted restoration and intentional islanding. The proposed
model also helps evaluate the trade-off between risk-averse and
risk-neutral planning decisions. To the authors’ knowledge, the
proposed framework for resilience is first to introduce risk-based
metrics for infrastructure planning in power distribution systems
with probabilistic extreme event scenarios. Note that although
in [30], CVaR optimization is used for resilience enhancement,
their focus is on reducing the variance of the optimization
solution and not on reducing the outage risks of HILP events.
The major contributions of this paper are as follows:

e Risk-averse Two-stage Stochastic Programming for dis-
tribution grid resilience: Existing literature on resilience-
driven planning includes risk-neutral formulations assum-
ing equal probability events. We introduce a risk-based
planning approach that appropriately samples the event
probabilities and their impacts on the power grid com-
ponents and system. The two-stage stochastic program-
ming problem is formulated as a MILP problem where
Stage-1 decisions are the infrastructure planning decisions
optimized to reduce the risks of outages due to HILP
events assuming optional operational phase decisions. The
Stage-2 problem models the operational phase and solves
the optimal system response (restoration strategy) for the
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Second-stage: Recourse
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Fig. 1. Two-stage planning framework example for a specific scenario.

specified resource allocation (from stage-1) and a given
event realization.

® Probabilistic scenario generation and smart scenario re-
duction strategy: We propose a scenario generation ap-
proach using Monte-Carlo simulations that appropriately
models a given regional wind profile and its impacts on
the distribution system. Next, for scenario reduction, we
propose a smart scenario selection strategy based on the av-
erage loss of load representing several Monte-Carlo trials.
We also extensively validate the robustness of the proposed
scenario generation and reduction approach using multiple
out-of-sample scenario sets for different simulation case
studies.

o Trade-off analysis on risk minimization vs. expected loss
minimization: Different case studies are presented to iden-
tify the trade-off of adopting risk-neutral vs. risk-averse
policies in the planning decisions. The analysis can pro-
vide insights into adopting risk-driven solutions when the
utmost priority is to maintain an uninterruptible power
supply to critical customers during extreme weather events.
The results suggest that risk-averse planning tends to in-
cur higher costs to meet the resilience objectives during
HILP events; however, they are more likely to restore the
critical loads during the HILP events. On the other hand,
risk-neutral planning decisions, while more cost-efficient,
end up restoring fewer critical loads during HILP events.

D. Manuscript Organization

The remainder of the paper is as follows. Section II highlights
the mathematical details for a general two-stage risk-averse
stochastic problem along with the general representation of the
long-term planning model. Section III describes the overall risk-
averse stochastic planning framework with modeling details.
Results and analysis are presented in Section IV followed by
conclusions in Section V.

II. MATHEMATICAL BACKGROUND
A. Long-Term Planning Model Representation

A power distribution network can be graphically represented
as G(V, E), where the vertices V' represent the buses or nodes
while the distribution lines are represented by the edges E. Fig. 1
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shows a general representation of the two-stage planning frame-
work. The overall objective of the two-stage framework is to
identify the first-stage optimal planning decisions that minimize
the expected operational cost in the second stage. In this work,
DG siting and sizing are the planning decisions whereas the
second stage objective is to minimize the prioritized load loss
once a scenario is realized. DGs with grid-forming inverters are
assumed in this work. Such grid-forming DGs can be used for
intentional islanding when some area of the distribution grid gets
disconnected from the system due to an extreme event.

It is important to understand that the two stages are not de-
coupled but rather solved as a single optimization problem. The
second stage problem minimizes the operational cost for each
scenario and hence its objective function. Note that the two-stage
objective function is a random variable. Thus, determining the
optimal planning decision is the problem of comparing random
cost variables as a function of the planning cost and the opera-
tional cost. Furthermore, it is assumed that the uncertain scenario
realizations in the second stage have some form of a probability
distribution. Here, we use regional wind profiles to demonstrate
uncertain fault scenarios. The overall framework should provide
planning decisions that remain optimal for every realization of
scenarios in the second stage. In Fig. 1 it can be seen that once
faults occur in the system, the tie switches, and sectionalizing
switches are toggled to isolate the faulted sections i.e., Island
3 and Island 4. Furthermore, DGs form two islands i.e., Island
1 and Island 2, and continuously supply the loads inside the
island. The connection of DGs is represented by a virtual switch
as discussed in [31].

The two-stage problem is formulated as a risk-averse stochas-
tic optimization problem in which the first stage problem mini-
mizes the cost of planning and the weighted combination of the
expected value and the C'V a R of the second stage problem. The
second stage problem is the operational stage that minimizes the
total prioritized loss of load for every scenario realization.

B. Two-Stage Stochastic Optimization

A general two-stage stochastic integer programming model
can be formulated as [32]:

f(z) = mwinch—i—Ep[Q(x,E)] ()
subject to,
Ar=b, zeR}, xZ
where
Q(x,€) :=ming"y )
subject to,

Wy=h-Tx yER:;QXZZQ

where x is the first stage decision variable and y is the second
stage decision variable, £ refers to the set of uncertain data
(or scenarios) with a known probability distribution P, and
(¢, h,T,W) are scenario-dependent variables which vary for
each £ € £. The objective in a general two-stage stochastic
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Fig.2.  VaR and CVaR representation for a discrete loss function. HILP events
are the ones with (1 — ) probability of occurrence.

optimization is to solve (1) which seeks a first-stage decision
x that minimizes the first stage cost and the expected cost of
the second stage, Q(z, £). The second stage decisions are also
known as the recourse decisions and are scenario-dependent.
The algorithms and model formulation in two-stage stochastic
optimization depends on the stage variable types.

C. Optimization of Conditional Value-at-Risk

The general stochastic optimization model considers only the
expected cost of the second stage as shown in (1) and does
not directly incorporate the tail of the probability distribution.
Unlike routine outages caused by known and credible threats,
adequately anticipating and predicting system performance dur-
ing HILP events is inherently difficult as they are rare [33].
While resilience metrics similar to reliability measures such
as expected energy not served (EENS), loss of load expec-
tation (LOLE), and service availability [34], [35], [36] have
been investigated, these measures mostly provide a reliability-
oriented view and do not explicitly quantify expected system
performance under unseen HILP events. Thus, it is desired to
include tail probability events when planning for resilience to
reduce the impacts of HILP events on system outages. There are
several metrics used to quantify the tail probabilities or risks;
VaR and CVaR are commonly used risk metrics in the domain
of financial risk management. Fig. 2 shows a discrete distribution
of a loss function L(X) along with its VaR and CVaR. VaR is
the a-quantile of the distribution function whereas CVaR is the
expected value of the remaining 1 — « region that represents
the HILP events. Interestingly, CVaR can be formulated as an
optimization problem if the random variable under consideration
is discrete [37]. The CVaR optimization problem is shown in (3).

CVaRy(X) = min {77 + ﬁE([(X -]y :n € R}
3)

where, X is a random variable with /N discrete scenarios
r1,Ts,..., T, €ach having a probability of pi,po,...,p, re-
spectively, « € [0,1) is the confidence level which gives the
VaR of X (VaR,), and n be the VaR, of X. Here, 1 is
independent of probability and is the same for each realization of
X. Here, [(X —n)]+ = max{X — 7,0} which represents the
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Fig. 3. Overall architecture of risk-averse two-stage planning problem. The first stage seeks the optimal planning decisions that minimize the expectation and

risk of the recourse cost in the second stage for several scenario realizations. The scenarios are generated using Monte-Carlo simulation and reduced based on

average loss for each scenario.

point-wise maximum of convex functions and hence, (3) can be
reformulated using its epigraph form as:

. 1
CVaRy(X) =min<g n+ T a pry5 “4)
gee
subject to,
ve>xe—n neRveRy 5)

where, p¢ is the discrete probability of each scenario &, and v¢
is an excess variable which ensures that C'VaR,, is calculated
only for realizations beyond VaR, for each scenario £. Here,
(4)is linear and can be solved using existing linear programming
techniques.

D. Risk-Based Stochastic Optimization

As discussed earlier, the general two-stage stochastic opti-
mization framework neglects the tail events of the probability
distribution that tend to have higher risks in terms of loss in the
system. C'VaR,, is the coherent risk metric that can quantify
the associated risks given the probability distribution of the
losses associated with an event. In (4), CVaR,, is formulated
as an optimization problem and hence can be introduced in a
general two-stage stochastic optimization framework given in
(6)—(7) [38].

min 'z + (1 - VE[Q(z,8)] + ACVaR,(Q(x,E))  (6)

where

E(Q(x,€)) =Y peQ(x,¢)

3=

1

CVaR(Q(x, &) = 1+ ——

3 pi

cee

(M

where A € [0, 1] is the risk multiplier or factor that defines the
trade-off between E[-] and CVaR, (). By selecting different
values of A, the first stage decisions are termed as either risk-
averse (A = 1), risk-seeking/mean-risk (A = 0.5), or risk-neutral
(A = 0). The formulation in (6) not only minimizes the expected
loss but also the CVaR,, of those loss distributions depending
on the value of L. Hence, with this formulation, one can identify
how planning decisions vary with the risk avoidance potential.

III. RiSK-BASED RESILIENCE-ORIENTED DISTRIBUTION
SYSTEM PLANNING

The overall architecture of the proposed method is shown in
Fig. 3. Only wind-related events are used in this work and the
probability distribution of extreme wind events is considered
to generate the scenarios. Monte Carlo simulations (MCS) are
conducted to identify the impact of probabilistic events, and
an appropriate scenario reduction method is implemented to
identify representative scenarios. Finally, the long-term planning
problem is solved in a two-stage stochastic optimization setting
based on a selected number of scenarios. This section details
the overall optimization process along with detailed problem
formulations.

A. Probabilistic Scenario Generation and Reduction

An event is characterized by its intensity and probability of
occurrence. Fig. 4 shows the event probability distribution for
a windfall in three different regions observing extreme, high,
and normal wind profiles. The extreme regional wind profile
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Fig.5. Component level impact assessment for an extreme event: (a) fragility
curve for a wind profile [43], (b) prototype curve fit models for a percentage of
equipment damaged as a function of wind speed [41].

is used to model extreme events in this work. For simplicity,
only distribution lines are assumed to be affected by wind in
this work. Although wind-related events have spatiotemporal
dynamics [39], we assume that for a distribution system, that
covers a small region, the wind speed for the entire region is
the same. MCS is performed for each wind speed case so as to
also include the extreme tail probability events.This process is
represented by block 2 in Fig. 3. For each wind speed scenario
u, the component level failure probability p¢(u) determines the
operational state of a particular component in the distribution
grid. Component level fragility curves [40] or prototype curve fit
models [41] can be used to model the impacts of extreme events
such as hurricanes or other high-speed wind events on power
systems. In this work, we have used the component fragility
curve that maps the probability of failure of distribution system
components conditioned on the intensity of the hazard (e.g., a
wind speed). An example of the fragility curve is shown in Figs. 5
a and 5 b. The fragility curve values are randomly selected for
simulation purposes; however, if available, empirical data can
be used to adjust the parameters [42].

P}l7 if u< Ucritical
ps (u) = Pf (u)a if Ucritical < U < Ucollapse
1, if u> Ucollapse

where, Py(u) is the failure probability of a component as
a function of wind speed, u; P}L is the failure rate at nor-
mal weather conditions; v,y ;ticq; 1S the wind speed at which
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the failure probability rapidly increases. The equipment has
a negligible probability of survival at uceqpse. In the prob-
lem formulation, the failures due to an extreme event are
modeled as open or faulted line/switch variables as discussed
later in this section. The location of these faults is deter-
mined based on the fragility curve for wind speed greater
than Ucritical -

Several MCS are conducted to obtain the system loss as-
sociated with the failure probability of a component in the
distribution grid. In this work, the amount of active prioritized
load (kW) disconnected from the system following an event is
considered the system loss for a particular wind speed scenario.
The critical loads (CL) should always be prioritized in any
restoration methods. Hence, higher weights are assigned to the
CLs that reflect a higher value of prioritized load loss if any
CLs are disconnected and not restored. The average prioritized
load loss is then mapped onto the regional wind profile PDF to
get a probabilistic representation of the loss in the system when
subjected to a given weather event.

MCS provides an extremely large number of scenarios. One
major challenge in any stochastic optimization setting is han-
dling many scenarios within the optimization framework. Fur-
thermore, the solution should be optimal for all scenarios that
make the stochastic problem computationally intractable. Ex-
isting works use special sampling techniques such as stratified
sampling [44] or importance sampling [45] to include the tail
probability scenarios in the optimization model appropriately.
Distance-based scenario reduction methods have also been used
where a probabilistic distance measure is minimized to obtain a
reduced scenario distribution that closely represents the overall
scenario distribution [46]. We introduce a new approach to
scenario reduction inspired by stratified sampling and distance
reduction methods. The proposed approach uses stratification
to sample representative scenarios for each wind speed and
generates a reduced scenario distribution that closely matches
the original scenario distribution.

In this work, the overall number of scenarios is reduced by
selecting a representative scenario for each wind speed based
on the average Monte-Carlo loss. This process is represented
by block 3 in Fig. 3. Let N,, be the total discrete wind speeds
under consideration, V¢ ,, be the number of scenarios obtained
from MCS for each wind speed u, and Lf,, = E(L¢ ) be
the average prioritized load loss in kW corresponding to N¢ ,,
scenarios. Let = = N¢ ,, X N, be the total number of scenarios
for the entire MCS. Note that we cannot randomly select a subset
of these scenarios as it significantly degrades the accuracy of
the optimization solutions. Here, we use a unique sampling
technique to drastically reduce the number of scenarios while
maintaining the representation of the overall scenarios described
next. If &, is a representative scenario for all N¢ , scenarios
corresponding to u, then &, is selected such that the prioritized
load loss in the system due to &, (L};fu) is the one nearest to L, g
In the case of multiple scenarios with losses nearing Ly, , one
of the scenarios is randomly selected as &, from the identical
scenario representations. The proposed scenario reduction tech-
nique reduces the total number of scenarios to /N, from = such
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Fig. 6. A set of 49 representative scenarios with respective probabilities.

that p¢ corresponds to the wind speed profile. Fig. 6 shows a set
of N, = 49 representative scenarios obtained from the overall
Monte-Carlo scenarios based on the abovementioned methods.
This smart scenario selection strategy ensures the practical re-
alization of the second stage problem while incorporating HILP
events within the scenarios. The overall scenario generation and
reduction process is detailed in Algorithm 1. This work does
not apply the restoration schemes in the scenario generation and
reduction phase. Hence, the obtained scenarios are base case
scenarios that only give information on the amount of prioritized
load loss in the network based on each of wind scenario.

B. Two-Stage Stochastic Optimization Problem Formulation

We detail the two-stage stochastic optimization problem for
resilient distribution system planning.

1) Objective Function: In this paper, the resilience-driven
distribution system planning problem is formulated as a two-
stage stochastic optimization problem where the overall objec-
tive function can be defined as:

min(1 — MEQ(5,€)) + A\CVaRa(QG.€) ()

where,

E(Q(6,8)) := ) w; PO*

2.2 > (

§e€ i€Bs ¢pefa,b,c}

N+ Zpgvg

@ et

OVaR.(Q(5,8)) :=

The problem objective in the first stage is to minimize the
weighted sum of expected value and CVaR, of the second
stage cost, represented by Q(d, ). To analyze the trade-offs,
this formulation has not used minimization of planning cost.
Instead, we use a budget constraint and observe the associated
trade-offs for risk-averse and risk-neutral decisions when system
planners have a limited investment budget. The objective of
the second stage of the problem, Q(4, &), is to minimize the
prioritized load loss or maximize the restoration of prioritized
loads for each ¢ € £. The second stage costs correspond to the
optimal restoration decisions once a scenario has been realized.
Hence, each variable corresponding to the second stage of the
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Algorithm 1: Probabilistic Approach for Scenario Gen-
eration and Reduction.

1 Available information and initialization:

2 regional wind-speed profile, distribution system model,
component fragility curve with py(u), line failure
status Lp, representative scenario &,

3 MCS for Scenario Generation:

4 foru=1,2,.. N, do

5 N&u =0

6 while enough convergence trials do
7 N&u = Ng’u +1

8 if py(u) > rand [U(0,1)] then
9 | Lp =1 (True)

10 else

11 ‘ Lp = 0 (False)

12 end

13 update distribution system topology using Lp
14 calculate L¢ ,,(Ng.o,)

15 end

16 Lgvg ]E[L&u}

17 end

18 map Ly, with the respective u to create a loss PDF

19 Scenario Reduction:

20 for w=1,2,...., N, do

21 for £ =1,2,...,N¢,, do

22 /I temporary variable

2 &, =¢

24 if [Lg,, — L¢, | ~ min(|Lg,, — Lg |) then
" | ta g,

26 end

27 end

28 /I randomly sample one representative scenario
29 &y, < rand (&y, 1)

30 end

problem is scenario-dependent. Here, DG location (5Z-D &) and
size of the DG (Bl-D &) are the first stage decision variables. Pff
represents the active power demand at node 7 for phase ¢ and
scenario & and sf € 0,1 is the load pick-up status variable that
determines whether the load at node ¢ is picked up or not. The
CLs are prioritized by a weight variable w;. Since the CLs are
critical for any scenario, w; remains the same for all scenarios.
Furthermore, the scenarios have a specific probability, pe, as-
sociated with them, which comes from the scenario reduction
method discussed before. The parameters for CVaR,(Q(4,E))
are defined similarly as discussed in Section. II.

2) First Stage Constraints: The first stage constraints corre-
spond to the planning decisions made in the first stage. In this
work, the per unit cost for DG installation and sizing is assumed
to be the same for each location; these assumptions can be easily
relaxed. Constraint (9a) ensures that the total cost of DGs should
be between $[0, CPG ] regardless of the cost of installation
in an individual location. This gives the freedom of utilizing
the overall budget for a single big-sized DG or distributing the
budget to multiple smaller-sized DGs. Constraint (9a) contains
a non-linear term §°¢ x BP% which is linearized using big-M
method as discussed in [47]. Constraint (9b) restricts the DG
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location variable to binary. The DG location variable §7¢ is 1

if a DG is located in node 7, else 0. Furthermore, constraint (9¢)
ensures that VaR,, for the distribution of load loss in the second
stage is a real number. Furthermore, VaR,, is independent of
scenarios and is obtained with the solution of the first stage.

> eP9sPepPe <chs (9a)
iEBDG

57 €{0,1} (9b)

neR (9c)

3) Second Stage Constraints: The second stage of the
stochastic optimization problem is the operational stage in which
DG-assisted restoration is performed for each £. The inner-loop
operational stage consists of several constraints corresponding
to the restoration problem [31]. Since the second-stage variables
change with respect to each scenario, each of these variables has
£ to differentiate them from the first-stage variables.

Connectivity constraints:

¢ Constraint (10a) ensures that a load is picked up if and only
if it is connected to an energized bus, v;. Similarly, based
on the constraint (10b) loads connected to non-switchable
buses will also be picked up if the corresponding bus is
energized.

e The line energization status can be observed through
the constraints set (11). According to constraint (11a), a
switchable line without fault is energized if any of the
buses connecting the line is energized. On the other hand,
(11b) ensures that a non-switchable line connected to any
energized bus is also energized. Finally, constraint (11c)
ensures that a line experiencing a fault is disconnected from
the grid.

55 <05, Vi e Bs (10a)

sf = v? Vi € B\Bg (10b)

88 <wf, 0F < b, Ve € Ls\ LG (11a)
8¢ =vf =18, Vee L\(LsULY) (11b)
5 =0, Yee LS, (11¢)

Power Flow Constraints: In this work, a three-phase unbal-
anced linearized power flow model is used in the optimization
framework [48]. Since we are solving a long-term planning
model with CL restoration in the second stage, the linearized
model is sufficiently accurate and applicable for our prob-
lem [31]. Furthermore, the power flow will only be valid for
the energized section of the system. Hence, the power flow
equations are coupled with line and bus energization variables
to appropriately represent them in the second stage problem.

e Constraints (12a)—(12d) represent the three-phase unbal-
anced linearized power flow equations. The equations are
coupled with the line decision variable J. and load-pick
variable s;. Constraints (12a) and (12b) represent the active
and reactive power flow for each of the energized lines.
Constraint (12c) is the voltage equation for non-switchable
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lines whereas (12d) represents the voltage equation for a
set of lines that are switchable. Constraint (12d) is coupled
with J. to ensure that the voltage drop applies only if
the switch is closed. The non-linear terms associated with
the power flow equations are linearized using the big-M
method [47].

Y Pi=siPj+ > P (122)
e:(i,5)eL e:(j,0)eLl

Y Q=505+ Y Q& (12b)
e:(i,j)EL e:(ji)el

U; —US =2 (5. PS+%.Q%), Vee L\L (120)

8 (U —US) =2 (. PE+%.Q%), Yee Ly — (12d)

where T, = Real{aa”} @ r, + Im{aaf} @ x.,, %.=

Real{aa} ® x, + Im{aa™} @ r., a = [1 e727/3 ¢i27/3]T

Operational Constraints: The operational constraints of the
second stage problem are related to the distribution system
topology and voltage limits. The distribution system operates
in a radial fashion. Hence, the topology of the distribution grid
should be radial at all times. Furthermore, the nodal voltages
should be within the specified limits at all times.

¢ A radial configuration in any distribution system consists
of several sectionalizing and tie-line switches. In this work,
virtual edges are assumed to supply the power from DGs
in case of an islanded mode of operation. In any faulted
network, a radial configuration is maintained by toggling
any of the switches to avoid the formation of loops or
cycles. Constraint (13a) ensures that at least one of the
switches is open in a cycle. In this work, a brute-force
approach is applied to count and store the number of cycles
in the distribution system and Constraint (13a) is enforced
on each of the cycles so that the system operates in a
radial fashion. The process of counting and storing cycles
is completely offline and does not affect the computational
complexity of the stochastic optimization procedure.

e The voltage limit on each of the buses should be within
the ANSI C84.1 standard is ensured by (13b). In this work,
U™ and U™ are set as (0.95)2 and (1.05)? respectively
for each of the phases. Since the limits make sense only for
the buses that are energized, the limits are coupled with vf.

e For the purpose of reconfiguration, it is required that the
power flow through an open switch is zero. If §§ = 0 for
any e : ¢ — j then constraint (14) ensures that the power
flow through that line is zero. If not, box constraints on the

power flow are enforced where M, = —Mp and M, =
7,
<L) -1, VeelL, (13a)
eel.

UM < US <oSU™>, Vie B (13b)

8 [M, M) < [PS Q%] <o8[M, M,]|, Vec Ly (14)
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DG Constraints:

e Virtual switches represent the connection of DGs in is-
landed mode. The virtual edge should only be connected
if a DG is located at the specific node which is ensured by
(15a).

® The two stages in any stochastic optimization framework
are bound by the non-anticipativity constraints [32]. This
means that the location and size of the DGs should be the
same for every scenario realized in the second stage of the
problem. This non-anticipativity nature of the first stage
decision variables is presented in (15b).

® The in-flow power of each of the DGs should be less than or
equal to the size of the DG. Since the DGs are connected
using virtual edges, &5 is coupled with this constraint as
given in (15¢).

68 < 6PY Ve e LY, Vi€ Bpa (15a)

5iDG _ 5iDG7£’ @DG@DG _ 5iDG»EﬂiDG,§ (15b)
Vi € Bpg,Vé € €

E Pe‘z)’5 < (SgéiDGﬁiDG , Ve € Cg,Vi € Bpa (15¢)

pe{a,b,c}

CVaR, Constraints: The VaR, is obtained as a solution
in the first stage and is represented by 7. VaR, and CVaR,
correspond to the distribution of optimal solutions obtained in
the second stage of the problem. CVaR,, represents 1 — «
part of distribution beyond VaR,. Hence, as discussed in (4)
an excess variable is obtained for each scenario v¢ such that
it corresponds 1 — a part of the distribution beyond VaR,,.
Furthermore, this excess variable must be a positive real number.
These constraints are represented by (16).

ve>xe—1m, veRY (16)

IV. RESULTS AND ANALYSIS

The effectiveness of the proposed risk-based long-term plan-
ning model is verified on a modified IEEE 123-bus case, see
Fig. 7. Several case studies with multiple DG locations, variable
numbers of DGs, and varying risk preferences are presented
with detailed analyses of the results. The two-stage problem
without DG-based restoration is referred to as the base case
which is then compared with other case studies. Furthermore,
to analyze the planning decisions better, we create a new test
case upon hardening 15 randomly selected lines, as shown in
Fig. 7. The fragility curves of hardened lines are adjusted so that
their outage probability for any extreme event is less than the
case when they are not hardened. For CLs, w; = 10 whereas, for
non-critical loads, w; = 1. Thus the second stage cost reflects
the total amount of prioritized loss of load (in kW). The total
non-prioritized demand of the system is Pp = 4485 kW and the
prioritized demand is ) _,_,, w; Pr; = 20775kW. In this paper,
we use prioritized demand to analyze the results for different
cases.
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Fig. 8. Moving average of loss of load obtained for 1000 Monte-Carlo trials

(a) without hardening when v = 15m/s and p¢(u) = 0.002 and (b) with line
hardening when u = 40 m/s and p s (u) = 0.915. For each wind speed scenario,
it can be guaranteed that the prioritized load loss converges after 1000 Monte-
Carlo trials.

The two-stage stochastic integer programming model is for-
mulated using PySP package in Pyomo [49]. Scenario gener-
ation and reduction using the Monte-Carlo method are imple-
mented in MATLAB2020a. The entire simulations are carried
out on a PC with a 3.4 GHz Intel i7-6700 CPU and 16 GB
RAM. The proposed two-stage stochastic problem is solved as a
single large mixed-integer linear programming problem for each
presented case study.

A. Scenario Generation and Reduction

The wind event scenarios are generated and reduced using
methods discussed in Section III-A. Using the wind speed profile
for extreme wind events and failure probability of distribution
lines, several trials of MCS simulation are conducted for sampled
wind speeds [42]. For this experiment, N,, = 49 wind speeds are
sampled from the wind speed profile and it was experimentally
verified that 1000 Monte-Carlo trials are enough to obtain a
converged value of prioritized loss of load in the distribution
grid corresponding to each u. Fig. 8 shows the moving average
of prioritized loss of load for 1000 Monte-Carlo trials for the
base case without hardening and with hardening. It can be seen
that the value of the loss is fairly converged in 1000 trials for both
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Fig. 9. Comparison of prioritized load loss obtained for two sets of reduced

scenarios a) without hardening b) with hardening.

TABLE II
BASE CASE EXPECTED VALUE AND C'V a R, OF PRIORITIZED LOAD LOSS

line hardening | E(Q(4,€)) in kW
No 5982.57
Yes 4541.76

CVaRo(Q(5,&)) in kW
20601.58
19839.39

cases. Since 1000 trials are conducted for each u, N¢ ,, = 1000.
Hence, the total number of scenarios generated through MCS,
= =49 x 1000 = 49000.

Fig. 9 represents the comparison between Ly, and Lg for
the test case without hardening and with line hardening. The
loss due to reduced scenarios is very close to that of the actual
representative scenarios for each w. The y-axis on the right
represents the value of [Lg,, — L¢|. It can be seen that the
maximum difference occurs at u = 31 m/s in Fig. 9(a) and has
a value of about 78 kW which is <0.5% of total prioritized
demand. The difference in their values comes from the fact the
Lz, is obtained by averaging 1000 different realizations of § for
a specific u whereas Ly is the prioritized load loss for a specific
failure scenario ¢ corresponding the same w. Furthermore, it
should be noted that HILP events (tail events) are also sampled in
this reduction method which makes this approach highly suitable

for resilience planning problems.

B. Risk-Averse Long-Term Planning

The reduced scenarios from the method mentioned above
represent several scenarios that can occur on the distribution
grid. Each scenario represents the line failure status due to a
particular wind speed (u). In this long-term planning problem,
6 DG locations are pre-selected as potential locations for the
placement of DG units. It is to be noted that the candidate
locations are not the final DG locations. They are potential
locations that can be used to install a DG as per the solution of the
proposed optimization framework. The selected potential DG
locations are nodes 95, 122, 39, 85, 56, and 66. However, the DG
locations are decided by the optimization model and §°¢ = 1if
and only if 37 > 0. From the operator’s perspective, it is often
practical to have a limited budget while planning the siting and
sizing strategies for DGs. The total budget is constrained so
that the sum of the DG units is less than or equal to 900 kW.
For risk-driven problems, « is set at 0.95, meaning that 5% tail
scenarios (HILP) are considered to have greater risks.
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Table II shows E(Q(0,&)) and CVaR,(Q(4,E)) when no
DG-based planning measures are used (base case). Since o =
0.95, the C'VaR, represents the 5% of the tail probability
cases. This means that when those 5% scenarios are realized,
on average, the prioritized loss of load is 20601.58 kW (with
no line hardening measures in place). The losses improve to
19839.39 kW when a few lines are hardened, as shown in Fig. 7.
Furthermore, the expected values of prioritized load loss, calcu-
lated over the entire scenarios, are 5982.57 kW and 4541.76 kW
for the respective cases mentioned above. However, when an
operator is planning to enhance the grid’s resilience, the 5%
of those scenarios are extremely important because the system
needs to withstand or adapt to those events to maintain a constant
supply of power to the CLs. Hardening a few lines is already
proving to be a potential solution to minimize the expected and
CVaR, of the prioritized load loss. However, in the case of an
islanding situation when CLs are disconnected from the system
when a fault occurs, DG-based planning strategies have proven
to be successful in maintaining an uninterrupted power supply
to the CLs [5].

To identify the trade-off among different DG-based planning
strategies, 6 locations — 39, 56, 66, 85, 95, and 122 — are
selected as potential DG locations. The planning problem is
then solved as a two-stage stochastic problem as discussed in
Section III. First, we discuss the results for the risk-neutral case
(A = 0). The existing resilience-based planning methods, [12],
[18], [19], are focused on the risk-neutral case and used as a
comparison for this work. The overall capacity of each of the
DGs is shown in Table III. For risk-neutral planning without line
hardening measures, no DGs are required to be placed on nodes
36 and 95. However, for mean-risk and risk-averse situations,
the planning strategies change significantly. For risk-involved
strategies, it is required to place DGs on nodes 39 and 95 while
reducing the DG sizes for the rest of the nodes as shown in
Table III. Hence, the trade-off of including risk minimization in
the objective is to increase the number of DG units in the system.
This can be fruitful for extreme event scenarios when picking
up some of the CLs is required, even though it increases the
expected value of prioritized load loss. Table III also shows the
expected value and C'V aR,, of prioritized CLs picked up by dif-
ferent planning strategies. It can be seen that the expected value
of prioritized CLs picked up does not change much regardless
of the risk preference. However, for risk-based strategies (both
mean risk and risk-averse), C'VaR,, of prioritized CLs picked
up increases by 200 kW compared to the risk-neutral case.

The effect of risk aversion is even more pronounced in the
case with the line-hardening strategy. Fig. 10 shows a restoration
and planning solution for a specific scenario of HILP nature,
u = 28 m/s (see Fig. 6). The lines and nodes with black color
are the energized section, whereas non-energized sections are
represented by gray. Similarly, red lines represent out-of-service
lines due to the particular outage scenario. Similar to the restora-
tion for cases without line hardening measures, the risk-neutral
solution does not include DGs in nodes 39 and 95. When the
objective is risk-neutral (A = 0) some of the prioritized critical
loads are not picked up in this specific scenario as picking up
critical loads in this scenario would not affect the expected value
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TABLE III
EXPECTED VALUE AND C'V aR,, OF PRIORITIZED LOAD LOSS AND PRIORITIZED CRITICAL LOAD (PCL) PICKED UP FOR DIFFERENT VALUES OF A. THE DG
PLANNING STRATEGY DIFFERS ALONG WITH THE RISK PREFERENCE DEFINED BY A. ALL OF THE VALUES MENTIONED HERE ARE IN KW

WITHOUT LINE HARDENING WITH LINE HARDENING
Existing methods . Existing methods )
[13], [18], [19] Proposed method [13], [18], [19] Proposed method
A=0 A=05 A=1 A=o0 A=05 A=1
E(Q(5,€)) 3567.12 3586.28 3595.51 2467.46 2463.95 2490.09
CVaRa(Q(5,8)) 19093.89 18885.92 18885.92 18415.04 18160.18 18119.1
Expc;’z&:zg ;’; PCL 15043.93 15016.64 15006.62 16065.76 16048.17 16026.12
CVaRa of PCL 3406.59 3603.06 3603.06 4953.65 5580.72 6295.33
picked up
DG DG DG DG DG DG DG DG DG DG DG DG DG DG DG DG DG DG
39 56 66 39 56 66 39 56 66 39 56 66 39 56 66 39 56 66
DG plannin 0 20 [ 370 | 20 | 20 | 340 | 20 | 20 | 370 0 |35 | 330 | 20 | 220 | 255 | 20 | 170 | 330
planning
slrategies DG DG DG DG DG 5DG DG DG DG DG DG DG DG DG DG DG DG DG
85 95 122 85 95 122 85 95 122 85 95 122 85 95 122 85 95 122
39 | 0 120 [ 100 | 300 | 120 | 100 [ 270 | 120 | 100 [ o | 120 | 100 | 305 | o 100 | 280 | 0
& AU 2 us e function in the restoration phase, the net value is significantly
33 50 —_— —_—
H S 123 17 T low to affect the overall expected value. However, when the
” 52 @ g, S @ objective is risk-averse, any prioritized load that the nearest
\—" § N % S possible DG can pick up is given the top priority for any HILP
| 101 9o . . ..
N R .ae . event. For instance, it can be seen that load at node 62 is picked up
36 - 9
35 e I o\ by DG at node 95 through path 95-93-94-54-57-60-62. Hence,
- o (Y ¢ this draws an important conclusion that risk-averse decisions
59 o . .
— . 56\6‘/120 g L enhance long-term resilience planning by focusing the extreme
7 . . .
o 2B e o8 HILP events. Contrary to the existing methods in [12], [18],
80 . .. . . .
}—/15—1 . \ s [19], the prioritized CLs have a high chance of being picked up
! 90 88 81 . . . . . e . .
Substation >’ \ BN 6 . when an HILP event is realized by including risk minimization
s T o 87 . . . . . .
3 P o ? in the objective. However, when attempting to minimize the
¢ risk-averse objective (i.e., the C'VaR,), we incur an additional
Non-energized section ~ e—e Energized section ®—® Fault

Critical loads
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Fig. 10. DG sizing and siting solution for a specific scenario with additional
hardening measures for (a) risk-neutral and (b) risk-averse planning strategy.

of load served for the overall scenarios. Since the objective
is to minimize the expected value of prioritized load loss for
entire scenarios, DG at location 95 is not selected. Note that
the probability of HILP scenarios is low. Since the expected
value contains the product of this probability with the objective

DG cost in the overall planning budget to meet the requirements
for risk-averse planning. Thus, through the proposed approach
and by including CVa R, minimization in the objective func-
tion, prioritized critical loads can be properly restored in case of
HILP events. Furthermore, with the changing trade-off between
the expectation and the C'V aR,, of the prioritized load loss, the
expected value generally decreases with the increase in A.

For the case without line hardening, the C'VaR, does not
change when moving from mean-risk to risk-averse setting as
shown in Table III. It is important to note that tail probabil-
ity events are also a part of risk-neutral planning strategies.
However, the main focus is to minimize the expected loss over
the entire scenario, and hence the effect of those tail events is
less prominent. With risk-driven strategies, C'VaR, of those
tail events are also minimized, and hence the value of CVaR,
decreases with an increase in A. At some point, C'V aR,, saturates
as it is impossible to restore some prioritized loads regardless
of the planning strategies. On the other hand, for the case with
additional line hardening measures, C'V aR,, of prioritized load
loss further decreases with increasing risk-aversion. This is due
to the fact that with line hardening measures, the DGs can pick
up more CLs during HILP events, which ultimately reduces
the prioritized load loss in the system. Hence, it is clear and
obvious that with more number of resources, the C'VaR, can
be improved further. However, the trade-off comes with the
budget and feasibility. Although it is tempting to harden each
and every line and install DGs in each and every location, it is
almost impossible for any system operator to allocate the budget
accordingly.
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Fig. 11.  Comparison of CV aR, of prioritized loss of load for different values
of «v and risk preference.

C. Sensitivity Analysis

The value of CVaR depends on several factors such as
investment decisions, budget, risk preference, and scenarios
under consideration. Here, we present a few of the sensitivity
analyses and discuss their impacts on C'VaR. For simplicity,
the analyses are performed only on the system with additional
hardening measures already in place.

1) Change in Confidence Level: The risk parameters o and
A can affect the planning decisions. The value of C'VaR,
highly depends on « as it defines the number of scenarios to
be considered in defining the risk. In other words, « can also be
defined as risk percentage. For a higher value of «, the value of
V AR, increases, and hence, C'V aR,, represents the scenarios
that create greater losses in the system. Similarly, for a smaller
a, CVaR, incorporates a larger number of scenarios with
lower losses in risk quantification. Furthermore, as discussed
above, an increasing value of A denotes an increase in risk
aversion towards planning decisions. Fig. 11 shows the relation
of C'VaR,, for the prioritized loss of load for different values of
A and a. As discussed, C'V aR, decreases when more scenarios
are considered as risky (characterized by «). Furthermore, for a
fixed oo, CVaR, decreases with the increase in the value of A
as more importance are given to risk minimization. Appropriate
values for o and A need to be selected based on planners’ risk
aversion criteria.

2) Change in Investment Strategies: Changing investment
strategies and allocating the budget properly can also affect
the overall planning cost. First, the overall budget for DG
sizing and installation is increased so that C2% corresponds
to P5&* = 1500k W for the same set of DGs and their potential
locations. Secondly, 3 additional DG locations (47,27, and 114)
are identified as potential DG placement locations. Fig. 12(a)
and Fig. 12(b) show the distribution of prioritized loss of load
when different DG planning measures are taken for risk-neutral
and risk-averse cases, respectively. It is interesting to notice that
increasing the budget to increase the capacity of DGs has a lim-
ited effect on the C'V a R,, minimization. However, the expected
value of prioritized load loss decreases to 2222.43kW from
2467.46kW. The conclusion is consistent for the risk-averse
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Fig. 12. CVaR,, for different DG investment strategies for (a) risk-neutral
and (b) risk-averse planning. The value on the x-axis represents the prioritized
loss of load for each £ with corresponding p¢ represented on the y-axis.

case. However, increasing the number of potential DG locations
led to significant improvement in C'VaR, minimization. The
change in expected loss is, however, insignificant. For the case
with 9 potential DG locations, the value of C'VaR,, decreases
from 18415.04kW to 16385.51 kW, for the risk-neutral case,
and from 18119.1 kW to 15811.59 kW, for the risk-averse case.
Thus, with a limited budget, multiple DG sites with smaller DGs
are more effective in improving resilience.

3) Change in Number of Scenarios and Set of Scenarios:
Fig. 13 shows five case studies simulated to evaluate the impacts
of the number of scenarios (used in optimization) on solution
quality and solve time; (a) 7 scenarios, (b) 21 scenarios, (c)
49 scenarios, (d) 98 scenarios, (e) 147 scenarios. Hence, for
each case, different scenario sets are obtained using the method
discussed in Algorithm 1. Fig. 14 shows the objective function
value for the different number of scenarios (used in the opti-
mization problem) along with the corresponding solve times.
The result for each case is obtained by taking an average of 10
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Fig. 15. Comparison of objective value on a different set of scenarios for each
number of scenarios sampled.

representative scenario sets closest to the average representative
scenario. We can clearly observe the trade-off between the
number of scenarios, solution quality, and solve time. When a
higher number of scenarios are used in optimization, the solution
quality improves; however, it also leads to a significant increase
in the solve time. It is also interesting to note that the solution
obtained for 49 scenarios (2719.17 kW) is very close to the one
obtained for 147 scenarios (2764.16 kW). However, the solve
time for the problem with 147 scenarios is 11 times greater than
that with 49 scenarios. Hence, 49 scenarios work well from the
point of view of solution as well as solve time as the additional
number of scenarios increases the computational complexity
with no significant improvement in the objective value.

Fig. 15 shows our simulation results for 10 unique sets of
scenarios sampled from the wind profile PDFE. The simulations
are done for five cases by including a different number of
scenarios in the optimization problem, i.e., 7, 21, 48. 98, and
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TABLE IV
95% CONFIDENCE INTERVAL OF THE SOLUTION OBTAINED USING DIFFERENT
SCENARIO SETS FOR EACH NUMBER OF SCENARIOS

Number of Average objective
scenarios 95% CI (kW) valgue (kJW)
7 6105.95,6393.99 6249.57
21 3764.35,4414.53 4089.44
49 2596.13,2842.21 2719.17
98 2721.20,2879.54 2800.37
147 2705.10, 2823.21 2764.16

147 (scenarios). For a specific case, it can be observed that
the objective function values are very close for all 10 unique
scenario sets. Each scenario set is selected based on the closest
average Monte-Carlo loss as detailed in Algorithm 1. Hence, the
differences in solutions for different scenario sets are not signif-
icant. The process is similar to the multiple replication method
(MRP) as discussed in [18]. In addition, for each case, Table IV
shows the 95% confidence interval for the objective function
value along with the average objective value. As expected, in-
cluding a larger number of scenarios in the optimization problem
increases the granularity of information regarding the event
and its impacts. As can be seen, the objective function values
are consistent with the number of scenarios being considered
in the optimization problem. It is interesting to note that the
solution quality improves drastically when additional scenarios
are considered in the optimization problem. Furthermore, the
variation in the optimal function values also reduces as we
consider alarger number of scenarios, see Table IV. For example,
for the simulation case with 147 scenarios, the lower and upper
limits of the optimal function values for all 10 unique scenario
sets are very close to each other than any other scenarios.
However, as shown by the results in Fig. 14, the solve time
increases drastically with a higher number of scenarios. Thus, as
expected, there is a tradeoff between computational complexity
and solution quality.

V. CONCLUSION

This paper presents a risk-based planning framework for
active power distribution systems to improve their resilience to
extreme weather events. Resilience is characterized in a proba-
bilistic sense to quantify the impacts of the HILP events on the
system outages. A two-stage stochastic optimization problem is
formulated to minimize the risk of system outages as a weighted
function of the expected value and CVaR of the probabilistic
system outages. The planning decisions include system upgrades
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by siting and sizing DGs capable of intentional islanding to
support CLs. A scenario reduction method is proposed based
on realized loss functions that generate representative scenarios
for HILP events for computational tractability. The proposed
formulation makes it conducive to evaluate the trade-offs be-
tween risk-neutral and risk-averse planning decisions. The pro-
posed risk-based planning framework is analyzed for different
scenarios. It was observed that the DG-based restoration method
with additional hardening measures could effectively minimize
both the expectation and C'VaR,, of the prioritized load loss.
Furthermore, risk-averse planning measures were highly effec-
tive in restoring CLs during HILP events which is generally
not the case for risk-neutral policy. It was also observed that
it is preferable to site variable-sized DGs at multiple locations
rather than a few large DGs under a limited budget. Based on
the observations, the proposed risk-based framework provides
distribution planners with the much-needed ability to evaluate
alternate planning measures for resilience.
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