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Abstract—Enhancing the resilience of power distribution sys-
tems to extreme weather events is of critical concern. Upgrading
the distribution system infrastructure by system hardening and
investing in smart grid technologies effectively enhances grid re-
silience. Existing distribution system planning methods primarily
consider the persistent cost of the expected events (such as faults
and outages likely to occur) and aim at improving system reliability.
The resilience to extreme weather events requires reducing the
impacts of the high impact low probability (HILP) events that are
characterized by the tail probability of the event impact distribu-
tion. Thus, the resilience-oriented system upgrades solutions need
to be driven by the risks imposed by extreme weather events on
the power grid infrastructure rather than persistent costs. This
paper aims to develop a risk-based approach for the long-term
resilience planning of active power distribution systems against
extreme weather events. The proposed approach explicitly mod-
els (1) the impacts of HILP events using a two-stage risk-averse
stochastic optimization framework, thus, explicitly incorporating
the risks of HILP events in long-term planning decisions, and (2)
the advanced distribution grid operations (in the aftermath of the
event) such as intentional islanding into infrastructure planning
problem. The inclusion of risk in the planning objective provides
additional flexibility to the grid planners to analyze the trade-off
between risk-neutral and risk-averse planning strategies.

Index Terms—Conditional value-at-risk, long-term planning,
power distribution resilience, stochastic optimization.

NOMENCLATURE

Parameters

α Confidence level for VAR and CVaR.

CDG
max Maximum budget for total DG installation.

PLi + jQLi Three-phase complex load demand at bus i ∈ B.

re/xe Resistance/Reactance matrix of a line e :
(i, j) ∈ L.

|Lc| Number of switches in a cycle c.
Ξ Total number of scenarios.

cDG
i DG siting and sizing cost at bus i ∈ BDG.
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PD Total power demand.

pξ Probability of realizing scenario ξ ∈ E .

Pmax
DG Maximum active power capacity of a DG.

Pφ
Li + jQφ

Li Complex power demand at i ∈ B for phase

φ ∈ Φ.

Sets

Lc Switches in a cycle c.
Lv
S Virtual edges for DGs connection.

B Physical system buses.

BS Remotely switchable buses.

BDG Potential DG locations.

E Potential scenarios.

L Physical lines.

LF Faulted or tripped switches.

LS Switchable lines. i.e. Ls
S ∪ Lt

S .

Ls
S Normally-closed sectionalizing switches.

Lt
S Normally-open tie switches.

Φ = {a, b, c} Phases of a bus.

Variables

βDG
i Size of DG at location i ∈ BDG.

δDG
i DG location variable i ∈ BDG.

δe Line or switch decision variable.

η Value-at-risk.

ν Excess variable for CVaR.

P e + jQe Three-phase complex power flow from i to j.

U i Three-phase voltage magnitude square vector.

V i Three-phase voltage vector for bus i.
Pφ
e + jQφ

e Complex power flow from i to j for φ ∈ Φ.

si Load pick-up variable.

vi Bus energization variable.

I. INTRODUCTION

A. Background

Extreme weather events result in an extended disruption of

the electric power supply and severely affect personal safety and

national security, thus posing serious concerns for the nation’s

electric power grid infrastructures. Between 2003–2012, in the

US, extreme weather events accounted for almost 700 power

outages, each affecting more than 50,000 customers, with 80–

90% of outages resulting from the failure in power distribution

systems [1]. In 2021 alone, in the US, there were 20 natural

disaster events with losses exceeding $1 billion each [2]. The
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TABLE I
SUMMARY OF EXISTING LITERATURE FOR RESILIENCE-ORIENTED PLANNING OF POWER DISTRIBUTION SYSTEMS

resulting socio-economic losses and the power grid’s vulnera-

bility to extreme weather events necessitate the incorporation

of resilience in system planning to account for not only the

expected events but also the extreme events that are less likely to

occur. Towards this goal, different utilities have spent millions of

dollars in deploying smart grid technologies such as distribution

automation with automated feeder switching, intentional island-

ing (microgrid), as well as upgrading vulnerable feeders and

substations [3]. With the increasing frequency and severity of

weather-related events, a more systematic approach to smart grid

expenditures is required to identify appropriate system upgrade

solutions for strengthening system resilience.

B. Literature Review

Strategies for enhancing the resilience of power distribution

systems can be classified into short-term (operational) planning

and long-term (infrastructure) planning phases. The operational

planning aims at making the best use of the existing distribution

grid resources (e.g., switches, DGs) to minimize the impacts

of an anticipated event in the near term [4]. On the contrary,

the infrastructure planning phase targets to optimally upgrade

the power systems infrastructure by strategically deploying new

resources (e.g., DGs, switches, distribution lines) to improve the

system response against possible HILP events [5].

The existing literature on power distribution resilience in-

cludes numerous articles on operational planning to mitigate

or reduce the impact of an imminent threat such as an upcom-

ing storm [6]. Such solutions build resilience via operational

response rather than infrastructural upgrades. In operational

planning, the decisions are to be made for an upcoming event that

is known with a high level of certainty and thus requires consider-

ing only a limited number of scenarios for decision-making. On

the contrary, long-term planning requires a probabilistic analysis

over a wider range of scenarios with a higher level of uncertainty

for decisions related to system hardening, infrastructure up-

grades, resource allocation, and sizing [7]. These decisions must

also connect to the operational problem if and when the events

are realized in practice. Thus, the problem is further complicated

by additional stages of operational decision-making leading to

an explosion of state space to be considered for decision-making.

In general, hardening the distribution grid and investing in

smart grid technologies are effective resilience-oriented designs

that need to be adopted in the utilities’ portfolio for long-term

infrastructure planning to improve grid’s response to extreme

weather events. However, infrastructure planning for resilience

is challenging mainly as it requires a) to include several differ-

ent uncertainties (e.g., fault location, load profiles, nature and

severity of extreme events, and so forth) in the decision-making

process, b) ensure the validity of the planning decisions for

the entire profile of weather events, and c) mitigate the crit-

ical challenge of achieving a balance between computational

cost and accuracy. Thus, long-term infrastructure planning for

resilience is conceptually a different problem than the prevalent

methods for operational planning solutions [8]. This calls for

new methods and contributions to systematically build resilience

in active power distribution grid infrastructures against the HILP

events [9].

The related literature on resilience-oriented design and pre-

disaster resource allocation usually employ a stochastic pro-

gramming model to minimize the expected cost of the future

operational scenarios [10], [11]. For example, in [10], a heuristic

search is employed to identify the optimal restoration path and

obtain a resource allocation plan. These solutions, however,

consider short-term operational requirements for a known HILP

event and are not suitable for infrastructure planning. The re-

lated work on resilience-oriented distribution system long-term

planning also employs stochastic optimization formulations,

including a tri-level robust optimization model [7], [13], and

a two-stage stochastic optimization model [12], [14], [16]. The

tri-level optimization model formulates the resulting problem

in a defender-attacker-defender model that is then converted

into an equivalent bi-level model and solved using iterative

approaches such as CCG or greedy search algorithms [7]. The

tri-level approach optimizes for the worst possible outcomes and

hence is not suitable for a probabilistic analysis for infrastructure

planning that needs to be cost-effective and optimal for a large

range of future scenarios. Alternatively, the two-stage stochastic

programming method considers the overall impact of stochastic

fault scenarios in planning decisions rather than just the worst-

case scenarios [12], [17]. The existing two-stage stochastic

optimization formulations used in resilience-oriented distribu-

tion grid design either assume that all scenarios are observed

with equal probability or perform the planning based on only a

targeted set of scenarios [12], [18], [19]. While such methods

are generally applicable, other approaches such as importance

sampling and stratified sampling techniques can be more effec-

tive in representing HILP events and their impact probabilities in
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the optimization process [20], [21]. These techniques are widely

adopted in power systems reliability studies [22], [23]. Another

approach includes network interdiction models that plan for

the worst-case scenarios [7]. However, given the emphasis on

the worst-case scenario, these methods may lead to extremely

conservative and expensive planning solutions as the worst-case

scenario usually occurs with a very small probability. Addition-

ally, related literature obtains planning solutions for persistent

costs; they do not explicitly include the risks of extreme events.

For a resilience-oriented long-term planning problem, the goal

is to determine optimal investments to reduce the consequences

(here, customer outages) of the HILP events. Mathematically,

this amounts to minimizing the mean of consequences and, more

importantly, reducing the tail of the consequence of the HILP

events [3]. Table I summarizes the existing work in this domain

and highlights the problem formulation and solution approaches.

C. Contributions

To appropriately incorporate the effects of HILP events, the

infrastructure planning for resilience needs to be driven by

risk rather than pertinent or expected cost [24]. This paper

proposes a risk-based approach for infrastructure planning in

active power distribution systems for resilience against extreme

weather events. We employ conditional value-at-risk, CVaRα,

to quantify the risks of system outages imposed by the HILP

events [25], [26]. Related works include using CVaR-metric for

robust power grid operations [27], [28], [29]. Here, we employ

CVaR-metric for long-term distribution planning, where the goal

is to reduce the risks of outages on power distribution systems

due to HILP events. A two-stage stochastic optimization frame-

work is proposed to optimize smart grid investments, specifi-

cally DG siting and sizing, to enable advanced systems such as

DG-assisted restoration and intentional islanding. The proposed

model also helps evaluate the trade-off between risk-averse and

risk-neutral planning decisions. To the authors’ knowledge, the

proposed framework for resilience is first to introduce risk-based

metrics for infrastructure planning in power distribution systems

with probabilistic extreme event scenarios. Note that although

in [30], CVaR optimization is used for resilience enhancement,

their focus is on reducing the variance of the optimization

solution and not on reducing the outage risks of HILP events.

The major contributions of this paper are as follows:
� Risk-averse Two-stage Stochastic Programming for dis-

tribution grid resilience: Existing literature on resilience-

driven planning includes risk-neutral formulations assum-

ing equal probability events. We introduce a risk-based

planning approach that appropriately samples the event

probabilities and their impacts on the power grid com-

ponents and system. The two-stage stochastic program-

ming problem is formulated as a MILP problem where

Stage-1 decisions are the infrastructure planning decisions

optimized to reduce the risks of outages due to HILP

events assuming optional operational phase decisions. The

Stage-2 problem models the operational phase and solves

the optimal system response (restoration strategy) for the

Fig. 1. Two-stage planning framework example for a specific scenario.

specified resource allocation (from stage-1) and a given

event realization.
� Probabilistic scenario generation and smart scenario re-

duction strategy: We propose a scenario generation ap-

proach using Monte-Carlo simulations that appropriately

models a given regional wind profile and its impacts on

the distribution system. Next, for scenario reduction, we

propose a smart scenario selection strategy based on the av-

erage loss of load representing several Monte-Carlo trials.

We also extensively validate the robustness of the proposed

scenario generation and reduction approach using multiple

out-of-sample scenario sets for different simulation case

studies.
� Trade-off analysis on risk minimization vs. expected loss

minimization: Different case studies are presented to iden-

tify the trade-off of adopting risk-neutral vs. risk-averse

policies in the planning decisions. The analysis can pro-

vide insights into adopting risk-driven solutions when the

utmost priority is to maintain an uninterruptible power

supply to critical customers during extreme weather events.

The results suggest that risk-averse planning tends to in-

cur higher costs to meet the resilience objectives during

HILP events; however, they are more likely to restore the

critical loads during the HILP events. On the other hand,

risk-neutral planning decisions, while more cost-efficient,

end up restoring fewer critical loads during HILP events.

D. Manuscript Organization

The remainder of the paper is as follows. Section II highlights

the mathematical details for a general two-stage risk-averse

stochastic problem along with the general representation of the

long-term planning model. Section III describes the overall risk-

averse stochastic planning framework with modeling details.

Results and analysis are presented in Section IV followed by

conclusions in Section V.

II. MATHEMATICAL BACKGROUND

A. Long-Term Planning Model Representation

A power distribution network can be graphically represented

as G(V,E), where the vertices V represent the buses or nodes

while the distribution lines are represented by the edgesE. Fig. 1
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shows a general representation of the two-stage planning frame-

work. The overall objective of the two-stage framework is to

identify the first-stage optimal planning decisions that minimize

the expected operational cost in the second stage. In this work,

DG siting and sizing are the planning decisions whereas the

second stage objective is to minimize the prioritized load loss

once a scenario is realized. DGs with grid-forming inverters are

assumed in this work. Such grid-forming DGs can be used for

intentional islanding when some area of the distribution grid gets

disconnected from the system due to an extreme event.

It is important to understand that the two stages are not de-

coupled but rather solved as a single optimization problem. The

second stage problem minimizes the operational cost for each

scenario and hence its objective function. Note that the two-stage

objective function is a random variable. Thus, determining the

optimal planning decision is the problem of comparing random

cost variables as a function of the planning cost and the opera-

tional cost. Furthermore, it is assumed that the uncertain scenario

realizations in the second stage have some form of a probability

distribution. Here, we use regional wind profiles to demonstrate

uncertain fault scenarios. The overall framework should provide

planning decisions that remain optimal for every realization of

scenarios in the second stage. In Fig. 1 it can be seen that once

faults occur in the system, the tie switches, and sectionalizing

switches are toggled to isolate the faulted sections i.e., Island

3 and Island 4. Furthermore, DGs form two islands i.e., Island

1 and Island 2, and continuously supply the loads inside the

island. The connection of DGs is represented by a virtual switch

as discussed in [31].

The two-stage problem is formulated as a risk-averse stochas-

tic optimization problem in which the first stage problem mini-

mizes the cost of planning and the weighted combination of the

expected value and the CV aR of the second stage problem. The

second stage problem is the operational stage that minimizes the

total prioritized loss of load for every scenario realization.

B. Two-Stage Stochastic Optimization

A general two-stage stochastic integer programming model

can be formulated as [32]:

f(x) := min
x

cTx+ EP [Q(x, E)] (1)

subject to,

Ax = b, x ∈ R
+
m1 × Z

+
n1

where

Q(x, E) := min
y

qT y (2)

subject to,

Wy = h− Tx y ∈ R
+
m2 × Z

+
n2

where x is the first stage decision variable and y is the second

stage decision variable, E refers to the set of uncertain data

(or scenarios) with a known probability distribution P , and

(q, h, T,W ) are scenario-dependent variables which vary for

each ξ ∈ E . The objective in a general two-stage stochastic

Fig. 2. VaR and CVaR representation for a discrete loss function. HILP events
are the ones with (1− α) probability of occurrence.

optimization is to solve (1) which seeks a first-stage decision

x that minimizes the first stage cost and the expected cost of

the second stage, Q(x, E). The second stage decisions are also

known as the recourse decisions and are scenario-dependent.

The algorithms and model formulation in two-stage stochastic

optimization depends on the stage variable types.

C. Optimization of Conditional Value-at-Risk

The general stochastic optimization model considers only the

expected cost of the second stage as shown in (1) and does

not directly incorporate the tail of the probability distribution.

Unlike routine outages caused by known and credible threats,

adequately anticipating and predicting system performance dur-

ing HILP events is inherently difficult as they are rare [33].

While resilience metrics similar to reliability measures such

as expected energy not served (EENS), loss of load expec-

tation (LOLE), and service availability [34], [35], [36] have

been investigated, these measures mostly provide a reliability-

oriented view and do not explicitly quantify expected system

performance under unseen HILP events. Thus, it is desired to

include tail probability events when planning for resilience to

reduce the impacts of HILP events on system outages. There are

several metrics used to quantify the tail probabilities or risks;

VaR and CVaR are commonly used risk metrics in the domain

of financial risk management. Fig. 2 shows a discrete distribution

of a loss function L(X) along with its VaR and CVaR. VaR is

the α-quantile of the distribution function whereas CVaR is the

expected value of the remaining 1− α region that represents

the HILP events. Interestingly, CVaR can be formulated as an

optimization problem if the random variable under consideration

is discrete [37]. The CVaR optimization problem is shown in (3).

CV aRα(X) = min

{

η +
1

1− α
E([(X − η)]+ : η ∈ R

}

(3)

where, X is a random variable with N discrete scenarios

x1, x2, . . ., xn each having a probability of p1, p2, . . ., pn re-

spectively, α ∈ [0, 1) is the confidence level which gives the

VaR of X (V aRα), and η be the V aRα of X . Here, η is

independent of probability and is the same for each realization of

X . Here, [(X − η)]+ = max{X − η, 0} which represents the

Authorized licensed use limited to: Washington State University. Downloaded on January 20,2025 at 20:49:31 UTC from IEEE Xplore.  Restrictions apply. 



1182 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 14, NO. 2, APRIL 2023

Fig. 3. Overall architecture of risk-averse two-stage planning problem. The first stage seeks the optimal planning decisions that minimize the expectation and
risk of the recourse cost in the second stage for several scenario realizations. The scenarios are generated using Monte-Carlo simulation and reduced based on
average loss for each scenario.

point-wise maximum of convex functions and hence, (3) can be

reformulated using its epigraph form as:

CV aRα(X) = min

§

¨

©

η +
1

1− α

∑

ξ∈E

pξνξ

«

¬

­

(4)

subject to,

νξ ≥ xξ − η η ∈ R, ν ∈ R
n
+ (5)

where, pξ is the discrete probability of each scenario ξ, and νξ
is an excess variable which ensures that CV aRα is calculated

only for realizations beyond V aRα for each scenario ξ. Here,

(4) is linear and can be solved using existing linear programming

techniques.

D. Risk-Based Stochastic Optimization

As discussed earlier, the general two-stage stochastic opti-

mization framework neglects the tail events of the probability

distribution that tend to have higher risks in terms of loss in the

system. CV aRα is the coherent risk metric that can quantify

the associated risks given the probability distribution of the

losses associated with an event. In (4), CV aRα is formulated

as an optimization problem and hence can be introduced in a

general two-stage stochastic optimization framework given in

(6)–(7) [38].

min
x

cTx+ (1− λ)E[Q(x, E)] + λCV aRα(Q(x, E)) (6)

where

E(Q(x, E)) =
∑

ξ∈E

pξQ(x, ξ)

CV aR(Q(x, E)) = η +
1

1− α

∑

ξ∈E

pξνξ (7)

where λ ∈ [0, 1] is the risk multiplier or factor that defines the

trade-off between E[·] and CV aRα(·). By selecting different

values of λ, the first stage decisions are termed as either risk-

averse (λ = 1), risk-seeking/mean-risk (λ = 0.5), or risk-neutral

(λ = 0). The formulation in (6) not only minimizes the expected

loss but also the CV aRα of those loss distributions depending

on the value of λ. Hence, with this formulation, one can identify

how planning decisions vary with the risk avoidance potential.

III. RISK-BASED RESILIENCE-ORIENTED DISTRIBUTION

SYSTEM PLANNING

The overall architecture of the proposed method is shown in

Fig. 3. Only wind-related events are used in this work and the

probability distribution of extreme wind events is considered

to generate the scenarios. Monte Carlo simulations (MCS) are

conducted to identify the impact of probabilistic events, and

an appropriate scenario reduction method is implemented to

identify representative scenarios. Finally, the long-term planning

problem is solved in a two-stage stochastic optimization setting

based on a selected number of scenarios. This section details

the overall optimization process along with detailed problem

formulations.

A. Probabilistic Scenario Generation and Reduction

An event is characterized by its intensity and probability of

occurrence. Fig. 4 shows the event probability distribution for

a windfall in three different regions observing extreme, high,

and normal wind profiles. The extreme regional wind profile
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Fig. 4. Regional wind profile.

Fig. 5. Component level impact assessment for an extreme event: (a) fragility
curve for a wind profile [43], (b) prototype curve fit models for a percentage of
equipment damaged as a function of wind speed [41].

is used to model extreme events in this work. For simplicity,

only distribution lines are assumed to be affected by wind in

this work. Although wind-related events have spatiotemporal

dynamics [39], we assume that for a distribution system, that

covers a small region, the wind speed for the entire region is

the same. MCS is performed for each wind speed case so as to

also include the extreme tail probability events.This process is

represented by block 2 in Fig. 3. For each wind speed scenario

u, the component level failure probability pf (u) determines the

operational state of a particular component in the distribution

grid. Component level fragility curves [40] or prototype curve fit

models [41] can be used to model the impacts of extreme events

such as hurricanes or other high-speed wind events on power

systems. In this work, we have used the component fragility

curve that maps the probability of failure of distribution system

components conditioned on the intensity of the hazard (e.g., a

wind speed). An example of the fragility curve is shown in Figs. 5

a and 5 b. The fragility curve values are randomly selected for

simulation purposes; however, if available, empirical data can

be used to adjust the parameters [42].

pf (u) =

§

⎪

¨

⎪

©

Pn
f , if u < ucritical

Pf (u), if ucritical < u < ucollapse

1, if u > ucollapse

where, Pf (u) is the failure probability of a component as

a function of wind speed, u; Pn
f is the failure rate at nor-

mal weather conditions; ucritical is the wind speed at which

the failure probability rapidly increases. The equipment has

a negligible probability of survival at ucollapse. In the prob-

lem formulation, the failures due to an extreme event are

modeled as open or faulted line/switch variables as discussed

later in this section. The location of these faults is deter-

mined based on the fragility curve for wind speed greater

than ucritical.

Several MCS are conducted to obtain the system loss as-

sociated with the failure probability of a component in the

distribution grid. In this work, the amount of active prioritized

load (kW ) disconnected from the system following an event is

considered the system loss for a particular wind speed scenario.

The critical loads (CL) should always be prioritized in any

restoration methods. Hence, higher weights are assigned to the

CLs that reflect a higher value of prioritized load loss if any

CLs are disconnected and not restored. The average prioritized

load loss is then mapped onto the regional wind profile PDF to

get a probabilistic representation of the loss in the system when

subjected to a given weather event.

MCS provides an extremely large number of scenarios. One

major challenge in any stochastic optimization setting is han-

dling many scenarios within the optimization framework. Fur-

thermore, the solution should be optimal for all scenarios that

make the stochastic problem computationally intractable. Ex-

isting works use special sampling techniques such as stratified

sampling [44] or importance sampling [45] to include the tail

probability scenarios in the optimization model appropriately.

Distance-based scenario reduction methods have also been used

where a probabilistic distance measure is minimized to obtain a

reduced scenario distribution that closely represents the overall

scenario distribution [46]. We introduce a new approach to

scenario reduction inspired by stratified sampling and distance

reduction methods. The proposed approach uses stratification

to sample representative scenarios for each wind speed and

generates a reduced scenario distribution that closely matches

the original scenario distribution.

In this work, the overall number of scenarios is reduced by

selecting a representative scenario for each wind speed based

on the average Monte-Carlo loss. This process is represented

by block 3 in Fig. 3. Let Nu be the total discrete wind speeds

under consideration, Nξ,u be the number of scenarios obtained

from MCS for each wind speed u, and Lu
avg = E(Lξ,u) be

the average prioritized load loss in kW corresponding to Nξ,u

scenarios. Let Ξ = Nξ,u ×Nu be the total number of scenarios

for the entire MCS. Note that we cannot randomly select a subset

of these scenarios as it significantly degrades the accuracy of

the optimization solutions. Here, we use a unique sampling

technique to drastically reduce the number of scenarios while

maintaining the representation of the overall scenarios described

next. If ξu is a representative scenario for all Nξ,u scenarios

corresponding to u, then ξu is selected such that the prioritized

load loss in the system due to ξu (Lu
ξu

) is the one nearest toLu
avg .

In the case of multiple scenarios with losses nearing Lu
avg , one

of the scenarios is randomly selected as ξu from the identical

scenario representations. The proposed scenario reduction tech-

nique reduces the total number of scenarios to Nu from Ξ such
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Fig. 6. A set of 49 representative scenarios with respective probabilities.

that pξ corresponds to the wind speed profile. Fig. 6 shows a set

of Nu = 49 representative scenarios obtained from the overall

Monte-Carlo scenarios based on the abovementioned methods.

This smart scenario selection strategy ensures the practical re-

alization of the second stage problem while incorporating HILP

events within the scenarios. The overall scenario generation and

reduction process is detailed in Algorithm 1. This work does

not apply the restoration schemes in the scenario generation and

reduction phase. Hence, the obtained scenarios are base case

scenarios that only give information on the amount of prioritized

load loss in the network based on each of wind scenario.

B. Two-Stage Stochastic Optimization Problem Formulation

We detail the two-stage stochastic optimization problem for

resilient distribution system planning.

1) Objective Function: In this paper, the resilience-driven

distribution system planning problem is formulated as a two-

stage stochastic optimization problem where the overall objec-

tive function can be defined as:

min(1− λ)E(Q(δ, E)) + λCV aRα(Q(δ, E)) (8)

where,

E(Q(δ, E)) :=

⎛

¿

∑

ξ∈E

∑

i∈BS

∑

φ∈{a,b,c}

(1− sξi ) wi P
φ,ξ
Li

À

⎠

CV aRα(Q(δ, E)) :=

⎛

¿η +
1

1− α

∑

ξ∈E

pξνξ

À

⎠

The problem objective in the first stage is to minimize the

weighted sum of expected value and CV aRα of the second

stage cost, represented by Q(δ, E). To analyze the trade-offs,

this formulation has not used minimization of planning cost.

Instead, we use a budget constraint and observe the associated

trade-offs for risk-averse and risk-neutral decisions when system

planners have a limited investment budget. The objective of

the second stage of the problem, Q(δ, E), is to minimize the

prioritized load loss or maximize the restoration of prioritized

loads for each ξ ∈ E . The second stage costs correspond to the

optimal restoration decisions once a scenario has been realized.

Hence, each variable corresponding to the second stage of the

problem is scenario-dependent. Here, DG location (δDG
i ) and

size of the DG (βDG
i ) are the first stage decision variables. Pφ,ξ

Li

represents the active power demand at node i for phase φ and

scenario ξ and sξi ∈ 0, 1 is the load pick-up status variable that

determines whether the load at node i is picked up or not. The

CLs are prioritized by a weight variable wi. Since the CLs are

critical for any scenario, wi remains the same for all scenarios.

Furthermore, the scenarios have a specific probability, pξ, as-

sociated with them, which comes from the scenario reduction

method discussed before. The parameters for CV aRα(Q(δ, E))
are defined similarly as discussed in Section. II.

2) First Stage Constraints: The first stage constraints corre-

spond to the planning decisions made in the first stage. In this

work, the per unit cost for DG installation and sizing is assumed

to be the same for each location; these assumptions can be easily

relaxed. Constraint (9a) ensures that the total cost of DGs should

be between $[0, CDG
max] regardless of the cost of installation

in an individual location. This gives the freedom of utilizing

the overall budget for a single big-sized DG or distributing the

budget to multiple smaller-sized DGs. Constraint (9a) contains

a non-linear term δDG
i × βDG

i which is linearized using big-M

method as discussed in [47]. Constraint (9b) restricts the DG
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location variable to binary. The DG location variable δDG
i is 1

if a DG is located in node i, else 0. Furthermore, constraint (9c)

ensures that V aRα for the distribution of load loss in the second

stage is a real number. Furthermore, V aRα is independent of

scenarios and is obtained with the solution of the first stage.
∑

i∈BDG

cDG
i δDG

i βDG
i ≤ CDG

max (9a)

δDG
i ∈ {0, 1} (9b)

η ∈ R (9c)

3) Second Stage Constraints: The second stage of the

stochastic optimization problem is the operational stage in which

DG-assisted restoration is performed for each ξ. The inner-loop

operational stage consists of several constraints corresponding

to the restoration problem [31]. Since the second-stage variables

change with respect to each scenario, each of these variables has

ξ to differentiate them from the first-stage variables.

Connectivity constraints:
� Constraint (10a) ensures that a load is picked up if and only

if it is connected to an energized bus, vi. Similarly, based

on the constraint (10b) loads connected to non-switchable

buses will also be picked up if the corresponding bus is

energized.
� The line energization status can be observed through

the constraints set (11). According to constraint (11a), a

switchable line without fault is energized if any of the

buses connecting the line is energized. On the other hand,

(11b) ensures that a non-switchable line connected to any

energized bus is also energized. Finally, constraint (11c)

ensures that a line experiencing a fault is disconnected from

the grid.

sξi ≤ vξi , ∀i ∈ BS (10a)

sξi = vξi , ∀i ∈ B\BS (10b)

δξe ≤ vξi , δ
ξ
e ≤ vξj , ∀e ∈ LS\L

ξ
F (11a)

δξe = vξi = vξj , ∀e ∈ L\(LS ∪ Lξ
F ) (11b)

δξe = 0, ∀e ∈ Lξ
F (11c)

Power Flow Constraints: In this work, a three-phase unbal-

anced linearized power flow model is used in the optimization

framework [48]. Since we are solving a long-term planning

model with CL restoration in the second stage, the linearized

model is sufficiently accurate and applicable for our prob-

lem [31]. Furthermore, the power flow will only be valid for

the energized section of the system. Hence, the power flow

equations are coupled with line and bus energization variables

to appropriately represent them in the second stage problem.
� Constraints (12a)–(12d) represent the three-phase unbal-

anced linearized power flow equations. The equations are

coupled with the line decision variable δe and load-pick

variable si. Constraints (12a) and (12b) represent the active

and reactive power flow for each of the energized lines.

Constraint (12c) is the voltage equation for non-switchable

lines whereas (12d) represents the voltage equation for a

set of lines that are switchable. Constraint (12d) is coupled

with δe to ensure that the voltage drop applies only if

the switch is closed. The non-linear terms associated with

the power flow equations are linearized using the big-M

method [47].

∑

e:(i,j)∈L

P ξ
e = sξj P

ξ
Lj +

∑

e:(j,i)∈L

P ξ
e (12a)

∑

e:(i,j)∈L

Qξ
e = sj Q

ξ
Lj +

∑

e:(j,i)∈L

Qξ
e (12b)

U
ξ
i −U

ξ
j = 2

(

r̃eP
ξ
e + x̃eQ

ξ
e

)

, ∀e ∈ Lξ\Lξ
S (12c)

δξe (U ξ
i −U

ξ
j) = 2

(

r̃eP
ξ
e + x̃eQ

ξ
e

)

, ∀e ∈ Lξ
S . (12d)

where r̃e = Real{ααH} ⊗ re + Im{ααH} ⊗ xe, x̃e =
Real{ααH} ⊗ xe + Im{ααH} ⊗ re,α = [1 e−j2π/3 ej2π/3]T

Operational Constraints: The operational constraints of the

second stage problem are related to the distribution system

topology and voltage limits. The distribution system operates

in a radial fashion. Hence, the topology of the distribution grid

should be radial at all times. Furthermore, the nodal voltages

should be within the specified limits at all times.
� A radial configuration in any distribution system consists

of several sectionalizing and tie-line switches. In this work,

virtual edges are assumed to supply the power from DGs

in case of an islanded mode of operation. In any faulted

network, a radial configuration is maintained by toggling

any of the switches to avoid the formation of loops or

cycles. Constraint (13a) ensures that at least one of the

switches is open in a cycle. In this work, a brute-force

approach is applied to count and store the number of cycles

in the distribution system and Constraint (13a) is enforced

on each of the cycles so that the system operates in a

radial fashion. The process of counting and storing cycles

is completely offline and does not affect the computational

complexity of the stochastic optimization procedure.
� The voltage limit on each of the buses should be within

the ANSI C84.1 standard is ensured by (13b). In this work,

Umin andUmax are set as (0.95)2 and (1.05)2 respectively

for each of the phases. Since the limits make sense only for

the buses that are energized, the limits are coupled with vξi .
� For the purpose of reconfiguration, it is required that the

power flow through an open switch is zero. If δξe = 0 for

any e : i → j then constraint (14) ensures that the power

flow through that line is zero. If not, box constraints on the

power flow are enforced where Mp = −Mp and Mq =

−Mq .

∑

e∈Lc

δξe ≤ |Lc| − 1, ∀e ∈ Lc (13a)

vξiU
min ≤ U

ξ
i ≤ vξiU

max, ∀i ∈ B (13b)

δξe
[

Mp Mq

]

≤
[

P ξ
e Qξ

e

]

≤ δξe
[

Mp Mq

]

, ∀e ∈ Lξ
S (14)
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DG Constraints:
� Virtual switches represent the connection of DGs in is-

landed mode. The virtual edge should only be connected

if a DG is located at the specific node which is ensured by

(15a).
� The two stages in any stochastic optimization framework

are bound by the non-anticipativity constraints [32]. This

means that the location and size of the DGs should be the

same for every scenario realized in the second stage of the

problem. This non-anticipativity nature of the first stage

decision variables is presented in (15b).
� The in-flow power of each of the DGs should be less than or

equal to the size of the DG. Since the DGs are connected

using virtual edges, δξe is coupled with this constraint as

given in (15c).

δξe ≤ δDG
i , ∀e ∈ Lv

S , ∀i ∈ BDG (15a)

δDG
i = δDG,ξ

i , δDG
i βDG

i = δDG,ξ
i βDG,ξ

i

∀i ∈ BDG, ∀ξ ∈ E
(15b)

∑

φ∈{a,b,c}

Pφ,ξ
e ≤ δξeδ

DG
i βDG

i , ∀e ∈ Lv
S , ∀i ∈ BDG (15c)

CV aRα Constraints: The V aRα is obtained as a solution

in the first stage and is represented by η. V aRα and CV aRα

correspond to the distribution of optimal solutions obtained in

the second stage of the problem. CV aRα represents 1− α
part of distribution beyond V aRα. Hence, as discussed in (4)

an excess variable is obtained for each scenario νξ such that

it corresponds 1− α part of the distribution beyond V aRα.

Furthermore, this excess variable must be a positive real number.

These constraints are represented by (16).

νξ ≥ xξ − η, ν ∈ R
n
+ (16)

IV. RESULTS AND ANALYSIS

The effectiveness of the proposed risk-based long-term plan-

ning model is verified on a modified IEEE 123-bus case, see

Fig. 7. Several case studies with multiple DG locations, variable

numbers of DGs, and varying risk preferences are presented

with detailed analyses of the results. The two-stage problem

without DG-based restoration is referred to as the base case

which is then compared with other case studies. Furthermore,

to analyze the planning decisions better, we create a new test

case upon hardening 15 randomly selected lines, as shown in

Fig. 7. The fragility curves of hardened lines are adjusted so that

their outage probability for any extreme event is less than the

case when they are not hardened. For CLs,wi = 10whereas, for

non-critical loads, wi = 1. Thus the second stage cost reflects

the total amount of prioritized loss of load (in kW). The total

non-prioritized demand of the system is PD = 4485 kW and the

prioritized demand is
∑

i∈V wiPLi = 20775 kW. In this paper,

we use prioritized demand to analyze the results for different

cases.

Fig. 7. Modified IEEE 123-bus test case.

Fig. 8. Moving average of loss of load obtained for 1000 Monte-Carlo trials
(a) without hardening when u = 15 m/s and pf (u) = 0.002 and (b) with line
hardening whenu = 40 m/s and pf (u) = 0.915. For each wind speed scenario,
it can be guaranteed that the prioritized load loss converges after 1000 Monte-
Carlo trials.

The two-stage stochastic integer programming model is for-

mulated using PySP package in Pyomo [49]. Scenario gener-

ation and reduction using the Monte-Carlo method are imple-

mented in MATLAB2020a. The entire simulations are carried

out on a PC with a 3.4 GHz Intel i7-6700 CPU and 16 GB

RAM. The proposed two-stage stochastic problem is solved as a

single large mixed-integer linear programming problem for each

presented case study.

A. Scenario Generation and Reduction

The wind event scenarios are generated and reduced using

methods discussed in Section III-A. Using the wind speed profile

for extreme wind events and failure probability of distribution

lines, several trials of MCS simulation are conducted for sampled

wind speeds [42]. For this experiment,Nu = 49wind speeds are

sampled from the wind speed profile and it was experimentally

verified that 1000 Monte-Carlo trials are enough to obtain a

converged value of prioritized loss of load in the distribution

grid corresponding to each u. Fig. 8 shows the moving average

of prioritized loss of load for 1000 Monte-Carlo trials for the

base case without hardening and with hardening. It can be seen

that the value of the loss is fairly converged in 1000 trials for both
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Fig. 9. Comparison of prioritized load loss obtained for two sets of reduced
scenarios a) without hardening b) with hardening.

TABLE II
BASE CASE EXPECTED VALUE AND CV aRα OF PRIORITIZED LOAD LOSS

cases. Since 1000 trials are conducted for each u, Nξ,u = 1000.

Hence, the total number of scenarios generated through MCS,

Ξ = 49× 1000 = 49000.

Fig. 9 represents the comparison between Lu
avg and Lu

ξ for

the test case without hardening and with line hardening. The

loss due to reduced scenarios is very close to that of the actual

representative scenarios for each u. The y-axis on the right

represents the value of |Lu
avg − Lu

ξ |. It can be seen that the

maximum difference occurs at u = 31 m/s in Fig. 9(a) and has

a value of about 78 kW which is <0.5% of total prioritized

demand. The difference in their values comes from the fact the

Lu
avg is obtained by averaging 1000 different realizations of ξ for

a specific u whereas Lu
ξ is the prioritized load loss for a specific

failure scenario ξ corresponding the same u. Furthermore, it

should be noted that HILP events (tail events) are also sampled in

this reduction method which makes this approach highly suitable

for resilience planning problems.

B. Risk-Averse Long-Term Planning

The reduced scenarios from the method mentioned above

represent several scenarios that can occur on the distribution

grid. Each scenario represents the line failure status due to a

particular wind speed (u). In this long-term planning problem,

6 DG locations are pre-selected as potential locations for the

placement of DG units. It is to be noted that the candidate

locations are not the final DG locations. They are potential

locations that can be used to install a DG as per the solution of the

proposed optimization framework. The selected potential DG

locations are nodes 95, 122, 39, 85, 56, and 66. However, the DG

locations are decided by the optimization model and δDG
i = 1 if

and only if βDG
i > 0. From the operator’s perspective, it is often

practical to have a limited budget while planning the siting and

sizing strategies for DGs. The total budget is constrained so

that the sum of the DG units is less than or equal to 900 kW.

For risk-driven problems, α is set at 0.95, meaning that 5% tail

scenarios (HILP) are considered to have greater risks.

Table II shows E(Q(δ, E)) and CV aRα(Q(δ, E)) when no

DG-based planning measures are used (base case). Since α =
0.95, the CV aRα represents the 5% of the tail probability

cases. This means that when those 5% scenarios are realized,

on average, the prioritized loss of load is 20601.58 kW (with

no line hardening measures in place). The losses improve to

19839.39 kW when a few lines are hardened, as shown in Fig. 7.

Furthermore, the expected values of prioritized load loss, calcu-

lated over the entire scenarios, are 5982.57 kW and 4541.76 kW

for the respective cases mentioned above. However, when an

operator is planning to enhance the grid’s resilience, the 5%

of those scenarios are extremely important because the system

needs to withstand or adapt to those events to maintain a constant

supply of power to the CLs. Hardening a few lines is already

proving to be a potential solution to minimize the expected and

CV aRα of the prioritized load loss. However, in the case of an

islanding situation when CLs are disconnected from the system

when a fault occurs, DG-based planning strategies have proven

to be successful in maintaining an uninterrupted power supply

to the CLs [5].

To identify the trade-off among different DG-based planning

strategies, 6 locations — 39, 56, 66, 85, 95, and 122 — are

selected as potential DG locations. The planning problem is

then solved as a two-stage stochastic problem as discussed in

Section III. First, we discuss the results for the risk-neutral case

(λ = 0). The existing resilience-based planning methods, [12],

[18], [19], are focused on the risk-neutral case and used as a

comparison for this work. The overall capacity of each of the

DGs is shown in Table III. For risk-neutral planning without line

hardening measures, no DGs are required to be placed on nodes

36 and 95. However, for mean-risk and risk-averse situations,

the planning strategies change significantly. For risk-involved

strategies, it is required to place DGs on nodes 39 and 95 while

reducing the DG sizes for the rest of the nodes as shown in

Table III. Hence, the trade-off of including risk minimization in

the objective is to increase the number of DG units in the system.

This can be fruitful for extreme event scenarios when picking

up some of the CLs is required, even though it increases the

expected value of prioritized load loss. Table III also shows the

expected value andCV aRα of prioritized CLs picked up by dif-

ferent planning strategies. It can be seen that the expected value

of prioritized CLs picked up does not change much regardless

of the risk preference. However, for risk-based strategies (both

mean risk and risk-averse), CV aRα of prioritized CLs picked

up increases by 200 kW compared to the risk-neutral case.

The effect of risk aversion is even more pronounced in the

case with the line-hardening strategy. Fig. 10 shows a restoration

and planning solution for a specific scenario of HILP nature,

u = 28 m/s (see Fig. 6). The lines and nodes with black color

are the energized section, whereas non-energized sections are

represented by gray. Similarly, red lines represent out-of-service

lines due to the particular outage scenario. Similar to the restora-

tion for cases without line hardening measures, the risk-neutral

solution does not include DGs in nodes 39 and 95. When the

objective is risk-neutral (λ = 0) some of the prioritized critical

loads are not picked up in this specific scenario as picking up

critical loads in this scenario would not affect the expected value
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TABLE III
EXPECTED VALUE AND CV aRα OF PRIORITIZED LOAD LOSS AND PRIORITIZED CRITICAL LOAD (PCL) PICKED UP FOR DIFFERENT VALUES OF λ. THE DG

PLANNING STRATEGY DIFFERS ALONG WITH THE RISK PREFERENCE DEFINED BY λ. ALL OF THE VALUES MENTIONED HERE ARE IN KW

Fig. 10. DG sizing and siting solution for a specific scenario with additional
hardening measures for (a) risk-neutral and (b) risk-averse planning strategy.

of load served for the overall scenarios. Since the objective

is to minimize the expected value of prioritized load loss for

entire scenarios, DG at location 95 is not selected. Note that

the probability of HILP scenarios is low. Since the expected

value contains the product of this probability with the objective

function in the restoration phase, the net value is significantly

low to affect the overall expected value. However, when the

objective is risk-averse, any prioritized load that the nearest

possible DG can pick up is given the top priority for any HILP

event. For instance, it can be seen that load at node 62 is picked up

by DG at node 95 through path 95-93-94-54-57-60-62. Hence,

this draws an important conclusion that risk-averse decisions

enhance long-term resilience planning by focusing the extreme

HILP events. Contrary to the existing methods in [12], [18],

[19], the prioritized CLs have a high chance of being picked up

when an HILP event is realized by including risk minimization

in the objective. However, when attempting to minimize the

risk-averse objective (i.e., the CV aRα), we incur an additional

DG cost in the overall planning budget to meet the requirements

for risk-averse planning. Thus, through the proposed approach

and by including CV aRα minimization in the objective func-

tion, prioritized critical loads can be properly restored in case of

HILP events. Furthermore, with the changing trade-off between

the expectation and the CV aRα of the prioritized load loss, the

expected value generally decreases with the increase in λ.

For the case without line hardening, the CV aRα does not

change when moving from mean-risk to risk-averse setting as

shown in Table III. It is important to note that tail probabil-

ity events are also a part of risk-neutral planning strategies.

However, the main focus is to minimize the expected loss over

the entire scenario, and hence the effect of those tail events is

less prominent. With risk-driven strategies, CV aRα of those

tail events are also minimized, and hence the value of CV aRα

decreases with an increase inλ. At some point,CV aRα saturates

as it is impossible to restore some prioritized loads regardless

of the planning strategies. On the other hand, for the case with

additional line hardening measures, CV aRα of prioritized load

loss further decreases with increasing risk-aversion. This is due

to the fact that with line hardening measures, the DGs can pick

up more CLs during HILP events, which ultimately reduces

the prioritized load loss in the system. Hence, it is clear and

obvious that with more number of resources, the CV aRα can

be improved further. However, the trade-off comes with the

budget and feasibility. Although it is tempting to harden each

and every line and install DGs in each and every location, it is

almost impossible for any system operator to allocate the budget

accordingly.
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Fig. 11. Comparison ofCV aRα of prioritized loss of load for different values
of α and risk preference.

C. Sensitivity Analysis

The value of CV aR depends on several factors such as

investment decisions, budget, risk preference, and scenarios

under consideration. Here, we present a few of the sensitivity

analyses and discuss their impacts on CV aR. For simplicity,

the analyses are performed only on the system with additional

hardening measures already in place.

1) Change in Confidence Level: The risk parameters α and

λ can affect the planning decisions. The value of CV aRα

highly depends on α as it defines the number of scenarios to

be considered in defining the risk. In other words, α can also be

defined as risk percentage. For a higher value of α, the value of

V ARα increases, and hence, CV aRα represents the scenarios

that create greater losses in the system. Similarly, for a smaller

α, CV aRα incorporates a larger number of scenarios with

lower losses in risk quantification. Furthermore, as discussed

above, an increasing value of λ denotes an increase in risk

aversion towards planning decisions. Fig. 11 shows the relation

of CV aRα for the prioritized loss of load for different values of

λ and α. As discussed, CV aRα decreases when more scenarios

are considered as risky (characterized by α). Furthermore, for a

fixed α, CV aRα decreases with the increase in the value of λ

as more importance are given to risk minimization. Appropriate

values for α and λ need to be selected based on planners’ risk

aversion criteria.

2) Change in Investment Strategies: Changing investment

strategies and allocating the budget properly can also affect

the overall planning cost. First, the overall budget for DG

sizing and installation is increased so that CDG
max corresponds

to Pmax
DG = 1500 kW for the same set of DGs and their potential

locations. Secondly, 3 additional DG locations (47, 27, and 114)

are identified as potential DG placement locations. Fig. 12(a)

and Fig. 12(b) show the distribution of prioritized loss of load

when different DG planning measures are taken for risk-neutral

and risk-averse cases, respectively. It is interesting to notice that

increasing the budget to increase the capacity of DGs has a lim-

ited effect on the CV aRα minimization. However, the expected

value of prioritized load loss decreases to 2222.43 kW from

2467.46 kW. The conclusion is consistent for the risk-averse

Fig. 12. CV aRα for different DG investment strategies for (a) risk-neutral
and (b) risk-averse planning. The value on the x-axis represents the prioritized
loss of load for each ξ with corresponding pξ represented on the y-axis.

case. However, increasing the number of potential DG locations

led to significant improvement in CV aRα minimization. The

change in expected loss is, however, insignificant. For the case

with 9 potential DG locations, the value of CV aRα decreases

from 18415.04 kW to 16385.51 kW, for the risk-neutral case,

and from 18119.1 kW to 15811.59 kW, for the risk-averse case.

Thus, with a limited budget, multiple DG sites with smaller DGs

are more effective in improving resilience.

3) Change in Number of Scenarios and Set of Scenarios:

Fig. 13 shows five case studies simulated to evaluate the impacts

of the number of scenarios (used in optimization) on solution

quality and solve time; (a) 7 scenarios, (b) 21 scenarios, (c)

49 scenarios, (d) 98 scenarios, (e) 147 scenarios. Hence, for

each case, different scenario sets are obtained using the method

discussed in Algorithm 1. Fig. 14 shows the objective function

value for the different number of scenarios (used in the opti-

mization problem) along with the corresponding solve times.

The result for each case is obtained by taking an average of 10
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Fig. 13. Different number of scenarios with respective probabilities of occurrence: (a) 7 scenarios, (b) 21 scenarios; (c) 49 scenarios, (d) 98 scenarios e) 147
scenarios.

Fig. 14. Comparison of objective value and solve time for a different number
of scenarios.

Fig. 15. Comparison of objective value on a different set of scenarios for each
number of scenarios sampled.

representative scenario sets closest to the average representative

scenario. We can clearly observe the trade-off between the

number of scenarios, solution quality, and solve time. When a

higher number of scenarios are used in optimization, the solution

quality improves; however, it also leads to a significant increase

in the solve time. It is also interesting to note that the solution

obtained for 49 scenarios (2719.17 kW) is very close to the one

obtained for 147 scenarios (2764.16 kW). However, the solve

time for the problem with 147 scenarios is 11 times greater than

that with 49 scenarios. Hence, 49 scenarios work well from the

point of view of solution as well as solve time as the additional

number of scenarios increases the computational complexity

with no significant improvement in the objective value.

Fig. 15 shows our simulation results for 10 unique sets of

scenarios sampled from the wind profile PDF. The simulations

are done for five cases by including a different number of

scenarios in the optimization problem, i.e., 7, 21, 48. 98, and

TABLE IV
95% CONFIDENCE INTERVAL OF THE SOLUTION OBTAINED USING DIFFERENT

SCENARIO SETS FOR EACH NUMBER OF SCENARIOS

147 (scenarios). For a specific case, it can be observed that

the objective function values are very close for all 10 unique

scenario sets. Each scenario set is selected based on the closest

average Monte-Carlo loss as detailed in Algorithm 1. Hence, the

differences in solutions for different scenario sets are not signif-

icant. The process is similar to the multiple replication method

(MRP) as discussed in [18]. In addition, for each case, Table IV

shows the 95% confidence interval for the objective function

value along with the average objective value. As expected, in-

cluding a larger number of scenarios in the optimization problem

increases the granularity of information regarding the event

and its impacts. As can be seen, the objective function values

are consistent with the number of scenarios being considered

in the optimization problem. It is interesting to note that the

solution quality improves drastically when additional scenarios

are considered in the optimization problem. Furthermore, the

variation in the optimal function values also reduces as we

consider a larger number of scenarios, see Table IV. For example,

for the simulation case with 147 scenarios, the lower and upper

limits of the optimal function values for all 10 unique scenario

sets are very close to each other than any other scenarios.

However, as shown by the results in Fig. 14, the solve time

increases drastically with a higher number of scenarios. Thus, as

expected, there is a tradeoff between computational complexity

and solution quality.

V. CONCLUSION

This paper presents a risk-based planning framework for

active power distribution systems to improve their resilience to

extreme weather events. Resilience is characterized in a proba-

bilistic sense to quantify the impacts of the HILP events on the

system outages. A two-stage stochastic optimization problem is

formulated to minimize the risk of system outages as a weighted

function of the expected value and CVaR of the probabilistic

system outages. The planning decisions include system upgrades
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by siting and sizing DGs capable of intentional islanding to

support CLs. A scenario reduction method is proposed based

on realized loss functions that generate representative scenarios

for HILP events for computational tractability. The proposed

formulation makes it conducive to evaluate the trade-offs be-

tween risk-neutral and risk-averse planning decisions. The pro-

posed risk-based planning framework is analyzed for different

scenarios. It was observed that the DG-based restoration method

with additional hardening measures could effectively minimize

both the expectation and CV aRα of the prioritized load loss.

Furthermore, risk-averse planning measures were highly effec-

tive in restoring CLs during HILP events which is generally

not the case for risk-neutral policy. It was also observed that

it is preferable to site variable-sized DGs at multiple locations

rather than a few large DGs under a limited budget. Based on

the observations, the proposed risk-based framework provides

distribution planners with the much-needed ability to evaluate

alternate planning measures for resilience.
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