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Abstract

At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food
security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges.
Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials,
including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop pro-
duction and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics,
improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not
only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concur-
rently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops
with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified
by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while
avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents
a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health
monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop
productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines
the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against
biotic and abiotic factors, environmental sustainability, and genetic engineering.

Keywords Nanobiotechnology - Nanoparticles - Genetic engineering - Genome editing - Sustainable development - Smart
agriculture

Introduction

Over the last six decades, the Green Revolution remarkably
tripled the global food production worldwide (The State
of Food Security and Nutrition in the World 2019) which
delayed the expected feminine in late 1970s. For provid-
ing sustainable food supply, to humans and animals, it is
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important to expand the crop productivity per unit area by
70% to meet the food demand of population beyond 2050
(Adisa et al. 2019). Notably, over 50-90% population of
most developing countries residing in rural areas rely on
agriculture to earn their livelihood (Munaweera et al. 2022).

Naturally, plants are surrounded by a set of complex envi-
ronments making crops vulnerable to many stresses which
have tremendous impact on crop production (Prakash et al.
2023; Sheri et al. 2023). Nanomaterials can be utilized as
a strong weapon to lower environmental footprints thereby
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complementing crop husbandry and production (Khan et al.
2019b; Ur Rahim et al. 2021; Salama et al. 2021). Nano fer-
tilizers and nano pesticides offer increased active ingredients
and tunability in targeted delivery in crop production and
protection (Rajput et al. 2021b; Chen et al. 2022; Zhi et al.
2022). Nano micronutrients enlighten innovations by impart-
ing positive impacts on seed germination and crop improve-
ment (Dulta et al. 2021). In short, nano inputs pave the way
for possibilities of beneficial doses and research on plants
along with revolutionary solutions to traditional issues.

In this context, the integration of nanotechnology with
agriculture holds tremendous potential for addressing mul-
tiple facets of agriculture and food industry. Nanotechnology
promises a paradigm shift by leveraging innovations such
as enhanced disease diagnostics, improved plant nutrient
uptake capacity, and other innovative domains. The emer-
gence of nano-based crystals, currently under development,
increases the efficacy of herbicides and insecticides even at
substantially lower dosages. Moreover, the introduction of
intelligent delivery systems and advanced sensors holds the
potential to enhance agriculture’s resilience against viruses
and diseases (Khan et al. 2019b; Gondal and Tayyiba 2022).
Nanotechnology has the potential to contribute in various
ways to improve agriculture (Fig. 1) (Sharma 2023).

Nanotechnology, with its ability to manipulate matter at
nanoscale, high efficiency, robustness, and adaptable surface
chemistry, can revolutionize various aspects of agriculture
(Khan et al. 2019b; Lowry et al. 2019). Its transformative
applications are illustrated by precision delivery systems
for fertilizers and pesticides, nanomaterials for enhanced
nutrient uptake by plants, and nanosensors for real-time
monitoring (Hofmann et al. 2020). This precision-driven
approach has the potential to not only optimize the utiliza-
tion of resources but also minimize environmental impact,
thus effectively addressing issues related to sustainability
and ecological balance (War et al. 2020). Nanotechnology
has revolutionized the era of precise farming by improving

Fig. 1 Potential applications of
nanotechnology in agriculture.
[Adapted from (Sharma 2023)].
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agricultural output, crop production, nutritional needs, and
environmental protection (Malik et al. 2023).

In the nanotechnology field, about 2356 companies from
60 different countries have developed 8918 products. Out
of these, 226 products of agriculture sector were applied as
fertilizer, plant breeding, crop husbandry, and plant breed-
ing from 71 companies in 26 countries (StatNano 2022).
The illustration of research progress in the application of
nanoformulations for soil improvement, plant growth and
development as well as to cope the biotic and abiotic stresses
is depicted in Fig. 2.

Nano-based technologies encompass nano fertilizer,
nano pesticides and nanosensors. These innovations have
primarily found applications in agricultural practices and
food quality enhancement (Ahmad et al. 2022). Chemical
fertilizers have been considered an essential component for
boosting crop yields since the green revolution, but their use
has been linked with adverse environmental and ecological
impacts. The leaching and gaseous emissions caused by the
loss of nutrients from agricultural fields are major contribu-
tors to environmental pollution and climate change. How-
ever, nano fertilizers have emerged as a potential solution,
helping to enhance the plant nutrients (Chandra et al. 2021).
Application of nano zinc oxide (ZnO), iron oxide (FeO),
and magnesium oxide (MgO) fertilizers in Caesalpinia
bonducella enhanced the growth, chlorophyll contents, and
nutrients by applying the dose of 100 ppm for Zn and 40
ppm for Fe and Mg (Khalid et al. 2022). Nano pesticides
are useful in reducing environmental pollution, as well as
controlled release and delivery of organic and inorganic
ingredients to plants (Sharma et al. 2022b). Nanosensors
have vast applications in numerous ways as diagnostic tools
for pest identification, crop protection, soil condition detec-
tion, nutrient concentration, and water contents assessment
(Thakur et al. 2022).

In addition to the alteration, identification, and detection
process, nanosensors also have contributed to the precise
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farming by measuring seed viability and quantity of nutrients
required for crops that may lead to maximizing yield with
correct decisions (Mittal et al. 2022). The field of biotech-
nology has undergone a revolution owing to the introduction
of tiny tools and gadgets with immense potential for a vari-
ety of uses. Nanotechnology has innovation in the biosensor
field as nanoscale sensors provide remarkable sensitivity for
the detection and quantification of pathogens, biomolecules,
and environmental pollutants. Additionally, the development
of quick and accurate DNA sequencing methods has been
assisted by nanotechnology. Nanopore-based sequencing
technology having the capability for single-molecule DNA
analysis has enabled cost-effective high-throughput sequenc-
ing (Laszlo et al. 2014). The major limitation of Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)
genetic engineering in plants includes the simultaneous
insertion of CRISPR elements and donor template through
homology-directed repair (HDR), cell wall that hinders the
delivery of CRISPR reagents and time-consuming somatic
transformation in plants that are not plausible for genetic
engineering (Demirer et al. 2021).

Integration of nanotechnology with biotechnology has
facilitated favourable miniature tools needed to modify
plants for crop improvement compared to traditional tools
and methods (Yan et al. 2022). Nanotechnologies have the
potential to create safe and sustainable crops with improved
stress tolerance, enhanced growth, nutritional quality, and

2017 2018 2019 2020 2021 2022 2023
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Nano fungicide Nano bactericide

® Nano herbicide m Nanoparticles in drought

m Nanoparticles in flooding ~ ® Nanoparticles in heat stress

yield (Zhao et al. 2022b). The NPs have greater efficiency,
the ability to transfer various biomolecules, a positive corre-
lation with the delivered genes, and suborganelle localization
(Demirer et al. 2019b, c¢). Nanomaterials and devices have
enabled characterization and precise manipulation of bio-
logical materials thereby revolutionizing the field of genetic
engineering. The objective of this review is to explore the
potential of nanotechnology and genomics in revolutioniz-
ing agriculture and promoting the sustainable development.
Specifically, it aims to assess the impact of nanomaterials
on crop growth, production, soil health improvement, coping
with abiotic and biotic stresses, and nutrition. The innova-
tions in genetic engineering for precise genome editing in
plants and genomics with the integration of nanotechnology
are also discussed.

Role of nanotechnology in precision
agriculture

Around the world, plant diseases lead to the annual loss of
20-40% of crops (Neme et al. 2021). Scientists have aimed
to develop crop varieties with desirable traits in terms of
both quality and quantity. Nanotechnology has offered inno-
vative concepts in the field of pesticides, resulting in reduced
environmental harm, longer shelf life, and improved water
solubility (Chand Mali et al. 2020). Modern nanotechnology
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has demonstrated its capacity to alter the genetic makeup
of crop plants, thereby aiding in the advancement of crop
improvement over a substantial period (Squire et al. 2023).
Throughout the course of agricultural revolution, natural
and induced mutations have played a significant role in
enhancing crop development (Al-Ebaidy et al. 2022; Sha-
bani et al. 2022). The role of nanotechnology in minimizing
postharvest losses and improving food processing is signifi-
cant. Nanotechnology’s application to enhance shelf life,
minimize spoilage, and improve food security is a critical
trend that can address global food demands. The future of
postharvest technologies is likely to focus on nano-enabled
solutions for smarter packaging, real-time monitoring, and
controlled release of preservatives (Neme et al. 2021).
Nanotechnology has introduced a new perspective to
induced mutation research, replacing the utilization of con-
ventional chemical agents, such as Ethyl methanesulfonate
(EMS) and Methyl methanesulfonate (MMS), as well as
physical mutagens like x-rays, gamma rays. The Nuclear
Physics Laboratory (NPL) at Chiang Mai University in
Thailand has harnessed nanotechnology to create a new

Table 1 Role of NPs in plant growth

white-grained rice variety derived from the traditional,
purple-colored rice variety known as Khao Kam (Ganesh
2016). This entails the utilization of mutation breeding
by Chiang Mai researchers. Their efforts are centered on
determining the optimal route through a plant’s membrane
and cell wall so that the nanoparticles (NPs) can penetrate
the cell and induce a targeted alteration in the genetic
makeup without interfering with other vital functions of
cell wall and membrane (Pramanik et al. 2020). Since the
inception of this technology, the United Nations, Food and
Agriculture Organization (FAO) and International Atomic
Energy Agency (IAEA) Programme in Vienna have made
substantial contributions through mutation breeding and
nuclear physics (Kharkwal 2023). The NPs play a role
in plant improvement, as outlined in the comprehensive
Table 1 (Gangwar et al. 2023). Conclusively, integration
of nanotechnology into agriculture holds a solution for
plant growth and development, and offers precise genetic
modifications and sustainable crop enhancement. These
efforts lead to improved agricultural practices and creation
of novel crop varieties.

NPs Application for Plant Growth

References

Al O, Enhanced the root length of plants

(Farooqui et al. 2016)

Ag Increased growth of the plant (Sadak 2019)

Ag Promoted growth and N fixation in chickpea (Cicer arietinum) (Sambangi and Gopalakrishnan 2023)

Au Increased the germination seed of Arabidopsis thaliana (Kaushal 2018)

CaO Significantly enhanced germination, seedling vigour, and root/shoot length in rice (Oryza (Gopinath et al. 2023)
sativa)

CeO Enhanced fresh weight, dry weight and length of roots in cotton (Gossypium hirsutum) (An et al. 2020)

CeO, Induced oxidative stress in cucumber (Cucumis sativus) roots (Xie et al. 2022)

CNTs Improved germination and seedling biomass in mustard (Brassica juncae) and black gram (Ghodake et al. 2010)
(Phaseolus mungo)

CNTs Increased vegetative growth by 1.5-fold and enhanced root length up to 202% at 20 pg/ml in  (Mondal et al. 2011)
Brassica juncae

CNTs Separated soil contaminants from water, boosted seedling growth, and extended root length ~ (Kaushal 2018)

CNTs Improved germination index, germination percentage, number of leaves, and biomass in (Kothari Chhajer 2018)
brinjal (Solanum melongena) and wheat (Triticum aestivum)

Cu Enhanced plant growth and yield (Van Nguyen et al. 2022)

Fe Improved the growth including leaf length, number of leaves, and shoots (Arafaa et al. 2023)

FeO Separate heavy metals from pollutants in soil (Zhou et al. 2021)

GO Germination of plants (Sanzari et al. 2019)

Sio, Elongated internodes by 27.4% and enhanced tillers by 66.7% in wheat (Triticum aestivum)  (Li et al. 2023)

ZnO Enhanced phosphorous supplementation in cotton (Gossypium hirsutum) crop (Venkatachalam et al. 2017)

ZnO Synergic effect of PGPR improved plant growth and rescued from heat and drought stress in  (Azmat et al. 2022)
wheat (Triticum aestivum)

ZnOrods Increased growth of broccoli (Brassica oleracea) plant (Kaushal 2018)

7Zn0O + Improved chlorophyll contents, Cd, Fe uptake, and growth in wheat (Triticum aestivum) (Chen et al. 2023)

Melatonin

Aluminum oxide, Al,05; Cadmium, Cd; Calcium oxide, CaO; Carbon nanotubes, CNTs; Ceric oxide, CeO,; Cerium oxide, CeO; Copper, Cu;
Gold, Au; Graphene oxide, GO; Iron, Fe; Iron(II) oxide, FeO; Plant growth promoting rhizobacteria, PGPR; Silicon dioxide, SiO, ; Silver, Ag;

Zinc oxide, ZnO
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Improvement of soil health

One of the main sustainable development objectives of the
century is to ensure nutrient security, food availability, and
sustainable agriculture. Therefore, it is crucial to utilize
the benefits of nanotechnology to accomplish the feat by
increasing the availability of nutrients to plants and reduc-
ing their losses on agricultural soils (Elemike et al. 2019).
Application of nanotechnology in soil health includes crop
protection and production, focusing on nano biosensors,
nano pesticides, nano fertilizers, as well as nano-enabled soil
remediation techniques (Usman et al. 2020). The soil health
improved by utilizing NPs is described in Table 2 (Gangwar
et al. 2023). The NPs have the potential to enhance soil reme-
diation, microbial activity, water absorption, nutrient uptake,
and plant growth (Predoi et al. 2020). For example, carbon
nanoparticles (CNPs) improved the nutrient use efficiency
(NUE), uptake, soil fertility and crop growth in corn (Zhao
et al. 2021). Another study reported the enhanced growth of
Trifolium repens resulted in promoted phytoremediation in
cadmium (Cd) polluted soil by the co-application of titanium
dioxide (TiO,) NPs and plant growth promoting rhizobacte-
ria (PGPR) (Zand et al. 2020a). Similarly, co-application of
TiO, and biochar to Sorghum bicolor positively affected the

Table 2 Role of NPs in soil improvement

plant growth and development of antimony (Sb) contami-
nated soil (Zand et al. 2020b). The use of carbon nanoma-
terials improved seed water uptake and absorption from the
cell, reaching the leaves and shoot after passing through the
seed coat (Omar et al. 2019). Furthermore, SiO, enhanced
water absorption leading to improved seed germination,
growth, and yield in potato (Ali et al. 2021a).

The NPs in soil health management have promising role
in nutrient security and agricultural sustainability. Nano-
enabled approaches showcase their potential to positively
impact microbial activity, soil health, and nutrient availabil-
ity thereby offering innovative solutions to mitigate environ-
mental challenges.

Nano fertilizer

Small molecules with a size range of 1-100 nm are called
NPs and have physiochemical properties different from those
of bulk materials (El-Saadony et al. 2020). Some nutrients
are provided by nano fertilizer in a nano form, enhancing
plant growth and productivity. Nano fertilizers give proper
nutrients for promoting plant growth and soil applications,
provide sustainable sources of plant nutrients, and high fer-
tilization efficiency (El-Saadony et al. 2021).

NPs Application for Soil Fertility

References

Ag Mobility of NPs in soil along with the clay particles

Ag Negatively influences mutual interaction between fungi and plants and deteriorates arbuscular
rhizospheric soil

Ag Improvement in the microbial community composition

Ag Soil fertility enhancement

CeO, Impacts organic matter in soil

CeO,
CuO  Improvement in soil N fixation

Soil nutrient retention

FeO  Impacts soil properties
FeO Deterioration of chlorpyrifos

(Servin et al. 2015)
(Cao et al. 2017)

(Montes de Oca-Vasquez et al. 2020)
(Ameen et al. 2021)

(Majumdar et al. 2016)

(Servin and White 2016)

(Guan et al. 2020)

(Claudio et al. 2017)

(Das et al. 2020)

MNPs Affects soil properties (Dimkpa and Bindraban 2018)
Se Promotes poly-microbial biofilms ultimately leading to improved soil fertility (Gudkov et al. 2020)

SiO Seed germination improvement (Fayiga and Saha 2017)

Si Rhizospheric microbiome improvement (Rajput et al. 2021a)

TiO,  Promotes RuBisCO activity and improves photosynthesis

ZnO  Cultivation of wheat (Triticum aestivum) in acidic and alkaline soils improves Zn content by

20-fold

ZnO  Improvement in soil properties such as distribution of moisture, evaporation, and water permea-

tion

Zn+N Increase in macronutrient (N, P, K) and micronutrient (Mn, Cu, Fe, Zn), availability as well as

microbial population

ZV1 Actively eliminate hexavalent Cr metal from pollutant land

(Servin et al. 2015)
(Servin et al. 2015)

(Sheteiwy et al. 2021)
(Sharma et al. 2023)

(Su et al. 2016)

Ceric oxide, CeO,; Chlorpyrifos, CPS; Chromium, Cr; Copper, Cu; Copper(Il) oxide, CuO; Iron, Fe; Iron(Il) oxide, FeO; Manganese, Mn;
Metal-based nanoparticles, MNPs; Nitrogen, N; Phosphorous, P; Potassium, K; Ribulose bisphosphate carboxylase/oxygenase, RuBisCO; Sele-
nium, Se; Silicon, Si; Silicon monoxide, SiO; Silver, Ag; Titanium dioxide, TiO, ; Zerovalent iron, ZVI; Zinc, Zn; Zinc oxide, ZnO
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One of the highly designed inputs that have been identi-
fied and shown to be reliable is nano fertilizers (Dutta and
Bera 2021). Nano fertilizers are synthesized or modified ver-
sions of conventional fertilizers, bulk materials, or extracted
from various vegetative or reproductive parts of the plants
by various chemicals, physicals, mechanical, or biological
methods empowered by nanotechnology. They are used to
improve soil fertility, productivity, and the quality of agricul-
ture yields. Notably, the bulk materials can be harnessed to
synthesize NPs (Qureshi et al. 2018). The vast surface area
of nano fertilizer coupled with particle sizes (1-100 nm)
smaller than the pores in the plant’s leaves and roots allow
for more penetration into the plant from point of application,
leading to increased uptake of nutrients and improved effi-
ciency in nutrient utilization (Singh 2017). Some nutrients
have been provided by nano fertilizers at nanoscale, promot-
ing plant growth and overall productivity (Gangwar et al.
2022; Singh et al. 2023c,). In addition to its nutrient delivery
advantages, nano fertilizer offers many other benefits such
as increasing crop yield, improving soil quality, reducing
the use of chemical fertilizers and pesticides, increasing the
water retention capacity of the soil, inhibiting weed growth,
and enhancing biodegradability of organic waste (Yadav
et al. 2023). Nanomaterial-coated fertilizer particles show
higher surface tension than conventional fertilizer particles,
resulting in more robust and efficient regulation of nutrient
release (Bratovcic 2022).

Nano fertilizer is divided into three distinct groups based
on the nutrient requirements of plants macro nano fertilizer,
micro nano fertilizer, and nanoparticulate fertilizers (Sahu
et al. 2022). Macronutrient nanoformulations including N,
phosphorus (P), potassium (K), calcium (Ca), and magne-
sium (Mg) are considered macro-nutrients and are coated
on NPs to supply the exact amount of fertilizer to plants
when needed (Basavegowda and Baek 2021; Khatri and
Bhateria 2023). The efficiency and amount of macro nano
fertilizer are reduced due to the high volume-to-surface ratio

of NPs compared to conventional fertilizer. Many scientists
have synthesized macro nano fertilizers and utilized them
for healthy plant growth. In mungbean, MgONPs enhanced
seed germination compared to conventional hydroprim-
ing (Anand et al. 2020). The N nano fertilizer reduced the
nitrate leaching and improved sugar production in sugar-
cane (Alimohammadi et al. 2020). Nanoform of micronutri-
ents that contain many of the minerals, such as magnesium
(Mn), boron (B), silicon (Si), copper (Cu), Fe and Zn, but
also include vitamins (C and B) improves the biomass and
bioavailability of nutrients to plants (Khatri and Bhateria
2023). In squash, foliar application of manganese zinc ferrite
(Mn sZn,, sFe,0,) enhanced the growth, biomass, number
of rootlets, root and shoot length (Shebl et al. 2019). Appli-
cation of CuNPs priming enhanced the response in maize
under drought stress with the improvement in growth and
yield (Van Nguyen et al. 2022). Similarly, chitosan-silicon
NPs resulted in steady release and enhanced the growth and
yield in addition to antioxidant defense enzyme mechanism
in maize (Kumaraswamy et al. 2021). Moreover, ZnO nano
fertilizer increased number of leaves, surface area, seed ger-
mination, root/shoot length, and seedling weight in broc-
coli (Awan et al. 2021). Nanoparticulate fertilizers, other
than macro/macro nano ferttilizers, TiO,, SiO,, and CNTs
also promote the germination and growth (Basavegowda
and Baek 2021). The foliar application of fabricated TiO,
enhanced disease resistance and yield in Capsicum annuum
(Prakashraj et al. 2021). Additionally, foliar application of
Si0,, Se, ZnO and graphene nano fertilizers reduced the
freezing injury in sugarcane (Elsheery et al. 2020b). The
differential features of conventional and nano fertilizers are
listed in Table 3; Fig. 3 [Modified from (Avila-Quezada
et al. 2022)].

Conventional fertilizers have low efficiency, for example,
application of N fertilizer in soil results in a loss of up to
50-80% by the emission of nitrogen oxides and ammonia in
gaseous form as well as leaching of nitrates (Yaseen et al.

Table 3 The difference between nano fertilizers and conventional fertilizers

Properties Nano fertilizers

Conventional fertilizers

Nutrient loss rate Reduced fertilizer nutrient loss

Controlled release

accurately
Solubility High
Bioavailability High

Mineral micronutrients dispersion Enhanced dispersion of insoluble nutrients disper-

sion
Effective period of release Effective and prolonged period
Nutrients uptake efficiency

Soil adsorption and fixation Reduced

Saves fertilizer via improved uptake ratio

More loss rate through leaching, run-off, and drifting

The release of pattern and release rate are controlled Nutrient release imparts soil toxicity

Low
Low

Large-size particles lead to reduced solubility

Utilized at the time and site of application; leftover is
converted into an insoluble form

Nutrient uptake efficiency is low due to the non-
availability to roots

High
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Fig. 3 Effect of nano fertilizers and conventional fertilizers on plant and soil. [Modified from (Avila-Quezada et al. 2022)].

2020). Additionally, the application of fertilizer decreased
N by 40-70%, P by 80-90% and K by 50-90%, resulting
in huge monetary losses (Dutta and Bera 2021). With the
ability of greater efficiency, slow release of nutrients, pro-
viding crops with the exact amounts of nutrients, and reduc-
ing toxicity in soil, nano fertilizers can increase yield while
maintaining environmental safety (Mejias et al. 2021). The
application of nano fertilizer enhanced N utilization effi-
ciency by up to 45% (Dutta and Bera 2021). Remarkably,
improvement in the yield has been reported across various
crops by utilizing the nano fertilizers (Table 4) (Igbal 2019).

Revolution of agriculture with nano fertilizers offers
controlled nutrient release, enhanced nutrient uptake, and
improved solubility. Nano fertilizers dominate over con-
ventional fertilizers by lowering toxicity in soil, reducing
nutrient loss and availability of exact nutrient requirements
thus highlighting their transformative impact on modern
agriculture.

Role of nanotechnology in conferring
resilience to biotic and abiotic stress

Nanomaterials perform different mechanisms for the pro-
tection of plants but are challenged by several environmen-
tal stresses. Both biotic and abiotic stressors contribute to

reduced product quality, plant growth, yields, and shelf life
ultimately leading to economic losses. To counter these
effects, the incorporation of beneficial insects, bacteria, and
fungi onto seeds can enhance plant growth. Furthermore,
the nano-formulations of insecticides, pesticides, bacteri-
cides, and fungicides, collectively known as agrochemicals,
provide long-term plant protection effects which can reduce
the use of chemicals on plants. These agrochemicals dem-
onstrated low ecotoxicity and better yield and ecological
balance (Gahukar and Das 2020). Another approach for
protecting plants involves the introduction of NPs with
insecticides, pesticides, bactericides, and fungicides, thus
effectively protecting plants from various threats (Hazarika
et al. 2022). Moreover, NPs can boost the secondary metabo-
lism of plants, reinforcing their resilience against biotic and
abiotic stresses (Garcia-Ovando et al. 2022). However, the
response of plants to these approaches relies on the factors
such as the type of NP employed, plant species, and growth
and development of the plants (Zulfigar et al. 2019).

Biotic stresses
Physical barriers, like stomatal pore closure and the waxy
cuticle, are a plant’s primary line of defense against biotic

stress and pathogens, but according to the type of patho-
gen including fungi, bacteria, and insects that may have
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Table 4 Effect of nano

o . Nano fertilizers Crop Species Increased Yield (%age)

fertilizers on the productivity

of crops Nano fertilizers + Urea Rice 10.2
Nano fertilizers + Urea Rice 8.5
Nano fertilizers + Urea Wheat 6.5
Nano fertilizers + Urea Wheat 73
Nano-encapsulated P Maize 10.9
Nano-encapsulated P Soybean 16.7
Nano-encapsulated P Wheat 28.8
Nano-encapsulated P Vegetables 12.0-19.7
Nano chitosan-NPK Wheat 14.6
Nano chitosan Tomato 20.0
Nano chitosan Cucumber 9.3
Nano chitosan Capsicum 11.5
Nano chitosan Beetroot 8.4
Nano chitosan Pea 20.0
Nano powder of cotton seed and ammonium Cotton 16.0
Aqueous solution on non-Fe Cereals 8.0-17.0
ZnONPs Cucumber 6.3
ZnONPs Peanut 4.8
ZnONPs Cabbage 9.1
ZnONPs Cauliflower 8.3
ZnONPs Chickpea 14.9
Rare earth oxides NPs Vegetables 7.0-45.0
AgNPs + Allicin Cereals 4.0-8.5
FeONPs + CaCO;NPs + Peat Cereals 14.8-23.1
S NPs +SiO,NPs + Synthetic fertilizer Cereals 3.4-45.0

Calcium carbonate nanoparticles, CaCO5; NPs; Iron, Fe; Iron(I) oxide nanoparticles, FeONPs; Nitrogen,
N; Phosphorous, P; Potassium, K; Silicon dioxide nanoparticles, SiO, NPs; Silver nanoparticles, AgNPs;
Sulfur nanoparticles, SNPs; Zinc oxide nanoparticles, ZnONPs

mechanisms to pass these barriers (Silva et al. 2018). The
PAMP-triggered immunity (PTI) is the first line response
of plants to identify the pathogen including Ca and reactive
oxygen bursts, transcriptional reprogramming, hormonal
response, and mitogen-activated protein kinase (MAPK)
signaling (Singh et al. 2022b). Various NPs have been devel-
oped that are beneficial for plant growth and development
as well as mitigating the impact of biotic stresses (Table 5).

Nano pesticides

Annually, almost four million tons of pesticides are
deployed in crops leaving behind a potential threat to the
environment and just a handful amount of 1-25% reach
the target organisms (Zhang 2018). Moreover, ineffective
pest and disease management is responsible for 20-40%
of crop losses, ultimately reducing the crop economy by
about US$220 billion annually (FAO 2019). The control
of widespread pests in agricultural areas by conventional
agriculture systems has induced increased pest resist-
ance, disturbed soil biodiversity, and bioaccumulation

@ Springer

of pesticides in the ecosystem. To address these environ-
mental concerns, nanocarriers, known as smart delivery
systems, can be utilized to achieve targeted delivery of
the optimal active ingredients (Zhao et al. 2017a). In the
pesticide sector, the main objective of nanotechnology is
to lower the volume of pesticides to foster the stability of
active ingredients, increase solubility, improve bioavail-
ability, and enhance adhesion (Vasseghian et al. 2022).
In 2018, the research on pest control effectiveness in the
laboratory and field demonstrated that targeted nano pes-
ticides are typically 24% more effective as compared to
conventional counterparts (Kah et al. 2018). Therefore,
one of the primary forces promoting sustainable agricul-
ture is targeted nano pesticides. Consequently, the targeted
nano pesticides are emerging as a catalyst for sustainable
agriculture. The development of nano pesticides revolves
around two methods: direct synthesis of nanosized pes-
ticides or loading of active ingredients in nanocarriers.
The loading procedure is carried out by different tech-
niques such as absorption, encapsulation, and entrapment
or attachment (Zhao et al. 2017a).
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Table 5 Impact of various NPs in biotic stress

NPs Target Crops Biotic Stresses  Responses/Roles References

Cu Tomato (Solanum lycopersicum) Bacterial Developed tolerance against Clavi-  (Cumplido-N4jera et al. 2019)
bacter michiganensis

MgO Tomato (Solanum lycopersicum) Bacterial Induced systemic resistance against (Imada et al. 2016)
bacterial wilt

MgO+MnO, Rice (Oryza sativa) Bacterial Application at primary growth stage (Ogunyemi et al. 2023)
promoted plant growth, improved
photosynthetic activity, and
reduced BLB expression

Ni+SiO, Rice (Oryza sativa) Bacterial Suppressed the BLB disease (Abdallah et al. 2023)

SiO, Pea (Pisum sativum) Bacterial Inhibited 88.42% hatching and (Kashyap and Siddiqui 2021)
induced 43.79% mortality of
Meloidogyne incognita

Ag Tomato (Solanum lycopersicum) Fungal Increased total chlorophyll profile (Kumari et al. 2017)
by 32.58% and fresh weight by
23.52% in tomato

Ag Onion (Allium cepa), Garlic (Allium Fungal Raised yield by 23.2% and 24.9% of (Darwesh and Elshahawy 2021)

sativum) onion and garlic, respectively
Chitosan Rice (Oryza sativa) Fungal Suppressed rice blast fungus (Manikandan and Sathiyabama
2016)

Chitosan+ SA  Wheat (Triticum aestivum) Fungal Enhanced growth, activated tran- (Elsharkawy et al. 2022)
scription level, and protected from
leaf rust

Cu Tomato (Solanum lycopersicum) Fungal Enhanced the shoot biomass by (Cao et al. 2021)
55.6% and suppressed the disease
by 47.6%

Cu Tomato (Solanum lycopersicum) Fungal Inhibited the Fusarium wilt by 66.5— (Lopez-Lima et al. 2021)
68% and enhanced the chlorophyll
content by 19.3-28.6%

CuO Tomato (Solanum lycopersicum) Fungal Chitosan-loaded CuONPs were (Mosa and El-Abeid 2023)
effective against Fusarium oxyspo-
rum in reducing the disease

Se+Ti Tomato (Solanum lycopersicum) Fungal Reduced the severity by 20.4% (Helmy et al. 2023)
and 41.5% by using Ti and Se,
respectively

Si Oat (Avena sativa) Fungal Alleviated fungal stress and (Ahmad et al. 2023b)
enhanced germination up to 80%,
furthermore, increased relative
water content, plumule, and radi-
cle length

SiO, Watermelon (Citrullus lanatus) Fungal Reduced disease severity by 40% (Buchman et al. 2019)

TiO, Tomato (Solanum lycopersicum); Fungal Reduced mycelial growth by 90% (El-Gazzar and Ismail 2020)

Potato (Solanum tuberosum)

ZnO Wheat (Triticum aestivum) Fungal Inactivated Fusarium oxysporum by (Zudyte and Luksiene 2021)
51.7%

ZnO Wheat (Triticum aestivum) Fungal Controlled leaf rust (Badar et al. 2023)

Bacterial leaf blight, BLB; Copper, Cu; Copper(Il) oxide nanoparticles, CitONPs; Magnesium oxide, MgO; Manganese dioxide, MnO,; Nickel,
Ni; Salicylic acid, SA; Selenium, Se; Silicon dioxide, SiO,; Silver, Ag; Titanium, Ti; Titanium dioxide, TiO,; Zinc oxide, ZnO

Multifunctional nanoplatforms have been developed as
smart pesticide delivery systems including mesoporous
silica, porous inorganic material, graphene oxide (GO),
clay, and polymer (Wang et al. 2019¢; Mukarram et al.
2021). Nano pesticides are reported to be widely utilized
against various plant diseases for the targeted release of
organic and inorganic components (Gahukar and Das

2020). The Cu and Ag nano pesticides have shown remark-
able effectiveness in reducing pest activities (Athanassiou
et al. 2018). Lambda-Cyhalothrin/Silver nano pesticide
has shown 37% more insecticidal activity on cotton leaf-
worm, Spodoptera littoralis, as compared to pesticide
treatment alone (Ahmed et al. 2019). Additionally, diacyl
hydrazine-based nanoformulation enhanced pest control
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activity by utilizing diet and topical incorporation methods
(Pandey et al. 2020). Recently, chitosan-based rotenone
NPs reported pesticidal activity against Solenopsis invicta,
causing damage to vegetable crops (Zheng et al. 2022b).

To summarize this, innovative solutions are required to
cope with the detrimental effects of traditional pesticides
on environment. Targeted nano pesticides provide eco-
friendly qualities and greater efficacy. In order to address
pesticide related environmental damage, active ingredient
delivery also offers efficient and productive agriculture
future.

Nano fungicides Fungal pathogens pose a significant threat
to both food security and the agriculture sector due to con-
ventional fungicidal resistance. Nanotechnology has the best
solution to cope with this issue by developing antifungal
drugs composed of NPs. Notably, AgNPs exhibited a higher
antifungal activity biosynthesized by Malva parviflora
extract (Al-Otibi et al. 2021). Additionally, AgNPs have
demonstrated the antifungal activities against Stromatinia
cepivora, a pathogen responsible for causing white-rot dis-
ease in onion and garlic. The AgNPs were found to showcase
fungicidal effect within the concentration range of 40 and
200 mg/L affecting the sclerotia germination and mycelial
development (Darwesh and Elshahawy 2021). Moreover,
AgNPs exhibited antifungal activity using Aspergillus niger
(Guilger-Casagrande et al. 2019) and Trichoderma harzi-
anum (Al-Zubaidi et al. 2019). Similarly, AuNPs possess
wound healing and antifungal effects (Korani et al. 2021).
The SiO,NPs have also exhibited the potential to miti-
gate fungal disease severity in watermelon. For example,
mesoporous silica and chitosan-coated mesoporous SiO,NPs
enhanced the innate defense response by lowering disease
severity by 40% and 27%, respectively (Buchman et al.
2019). Moreover, CuNPs provide essential nutrition to the
plant, whereas the conventional fungicide copper hydroxide
impedes proper plant growth. Additionally, CuNPs inhibited
the fungal activity by 66.5-68.0%, improved the chlorophyll
content by 19.3-28.6%, and served as plant growth promot-
ers (Lopez-Lima et al. 2021). The application of CuNPs has
proven effective in inhibiting the development of Fusarium
oxysporum by 47.6% within tomato stems, demonstrating
their potential for use in agricultural protection strategies
(Cao et al. 2021) and reducing the disease incidences by
51.7% (Zudyte and Luksiene 2021).

The NPs offer the breakthroughs in improvement of plant
health by providing effective antifungal activity, and fungi-
cidal resistance as well as managing environmental impacts.
More research is needed to explore the potential of NPs to
advance these promising strategies.
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Nano bactericides In tomato studies, CuNPs have been
reported to demonstrate antibacterial activity, inducing
modifications in the concentration of phenols, glutathione,
lycopene, and p-carotene (Cumplido-Néjera et al. 2019).
Similarly, MgO induced antibacterial activity against the
wilt disease in tomato (Imada et al. 2016). Bacterial inac-
tivity was reported in pea by the application of SiO,NPs.
This effect was further complemented by foliar spray that
resulted in remarkable 10% increase in chlorophyll and 9.7%
enhancement in carotenoid level (Kashyap and Siddiqui
2021). A recent study was conducted to check the effect of
bacterial leaf blight (BLB) disease in rice plants. The Ni-
SiO,NPs composite increased the plant growth and vitality
as well as lowered the severity of BLB by enhancing the
apoptosis of bacterial cells up to 99.61% (Abdallah et al.
2023). Moreover, the treatment of plants with MnO, and
MgONPs protected the plants from BLB, enhanced pho-
tosynthetic activity, and promoted the seedling growth of
rice plants. The foliar spray of MnO, and MgONPs resulted
in diseased leaf areas by 21.86% and 15.04% as well as
decreased bacterial number by 71.47% and 77.78%, respec-
tively (Ogunyemi et al. 2023).

Deployment of NPs showcases the antibacterial activity,
vitality, resistance to diseases, and positive effects of bio-
chemical concentration ultimately leading to enhancement
of crop production.

Nano insecticides Insecticides are useful in mitigating vari-
ous species of insects, moreover, these may have a nega-
tive influence by impacting non-targeted living species and
risking environment (Alsafran et al. 2022). Additionally, it
may result in bioaccumulation which is a greater threat to
plants and animals (Zhang et al. 2023). Different NPs like-
wise CuO, ZnO, SiO,, and Ag have been implemented to
resolve this problem and have insecticidal properties (Deka
et al. 2021). By using NPs to deliver the active chemical
to the appropriate target at the precise concentration and
time, pesticide delivery systems (PDS) have been developed
for maximum biological efficacy. This approach not only
mitigates the drastic effects on non-targeted organisms but
also achieves targeted control over specific insects. The NPs
serve as carriers to efficiently deliver insecticide molecules.
The SiO, gel NPs have been reported to have both direct and
indirect effects in repelling or killing insect pests, includ-
ing Chrysoperla carnea and Aphis craccivora (Thabet et al.
2021). The AgNPs treatment resulted in the mortality of lar-
vae in Tinea pellionella and Tenebrio molitor, demonstrating
their promising insecticidal properties (Rankic et al. 2021).

Nano insecticides provide the promising alternative by
preventing risks to non-target organisms because of enabled
targeted pesticide delivery systems. Ongoing studies may
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help to optimize NPs by offering insecticidal qualities and
lowering undesired consequences.

Nano herbicides In agriculture, weeds are a major threat
hindering crop productivity, demanding effective elimina-
tion strategies (Pirzadah et al. 2019). Unfortunately, frequent
use of herbicides stimulated the development of herbicide-
resistant weeds. Despite resistance management techniques,
such as integrated weed management, frequent herbicide use
can disrupt the ecosystem and render these techniques inef-
fective. A viable solution lies in encapsulation of herbicide
in polymeric NPs, offering an alternative approach that can
reduce herbicide consumption by improving solubility, effi-
ciency, and productivity rate. This approach can ultimately
contribute to environmental safety (Pudake et al. 2019). If
a smart delivery system is bound with active compounds
there will be less use and superior efficacy of herbicides. The
fabrication of glyphosate herbicide by coating on diatomite/
Fe;0, nanocarriers resulted in 99% efficacy against weed
(Cynodon dactylon) as compared to bare glyphosate with
efficacy of 96% (Nasrollahzadeh et al. 2019; Xiang et al.
2017). The NPs coated on herbicide enter the root system
and hinder glycolysis, leading to the starvation and death of
the target weed (Yata et al. 2018).

Various NPs like nano-clay, chitson, lipids, and alginate
can be employed as nano bioherbicides. These NPs ensure
the controlled release of active compounds, thereby effec-
tively regulating their distribution. This approach improves
the utilization rate while minimizing the loss of active
components (Singh et al. 2021). Chitosan NPs coated with
metabolites extracted from Fusarium oxysporum showed
notable anti-herbicidal activity against weeds (Namasivayam
et al. 2015). The use of AgNPs and carboxymethyl cellulose
(CMCO) can influence the breakdown of herbicides (Kanwar
et al. 2019). Nanoemulsion is another way to deliver the
herbicides effectively that are evenly distributed on the leaf
surface enhancing the permeability of active compounds in
weeds (Zainuddin et al. 2019). Nanoencapsulation of her-
bicides such as astrazin, triazine, and ametryn has demon-
strated an improvement in plant absorption capacity by up to
84% (Yadi et al. 2018). Nanocapsules containing mint essen-
tial oil have shown herbicidal activity for weeds while exert-
ing a mild effect on non-targeted crops (Taban et al. 2020).
The improved distribution and controlled release may revo-
lutionize weed control with the help of nano herbicides uti-
lizing different NPs.

Uptake and delivery of nano pesticides
To improve the efficiency of nano pesticide utilization and

minimize the losses, achieving strong adhesion and depo-
sition of nano pesticides onto foliar surface is important

(Yu et al. 2017). The NPs can enter in tissues of plants via
shoot or root with the aid of foliar spray and root appli-
cation, respectively (Ali et al. 2021c) (Fig. 4a). The NPs
have more surface reactivity and large surface area and thus
can deposit on epidermis of plant by hydrophobic affinity,
adhesion and electrostatic adsorption (Achari and Kowshik
2018). For example, the tomato phloem and mesophyll tis-
sues may quickly absorb 14-32 nm sized nano bactericides
by depositing on cuticle and epidermis (Zhang et al. 2020b).
In weeds, hydathodes permit the 256-345 nm sized nano
herbicides to directly enter into mesophyll and vascular tis-
sues (Bombo et al. 2019). Biological barriers allow smaller
NPs to enter into cells due to the size limited structures
(5-20 nm) (Fincheira et al. 2020). Moreover, large nano
pesticides (80-200 nm) can still enter cells because of the
interaction with cell wall including endocytosis, pore for-
mation, carrier proteins, or cracks at lateral roots (Li et al.
2020) (Fig. 4b).

Generally, the interaction of plants and nano pesticides
typically involves three steps (Su et al. 2019). Firstly, NPs
are aggregated or absorbed on plant surfaces including
leaves, stem, and root (Fig. 4b). Secondly, NPs traverse into
cuticle and epidermis tissues from where they move towards
vascular bundles through apoplasts (extracellular spaces
including xylem vessels and cell wall) or symplasts (sieve
tube, plasmodesmata) (Fig. 4c). Lastly, NPs are migrated
to other parts of the plants via vascular tissues (xylem and
phloem) (Fig. 4d). Similarly, same features are present in
leaves (wax crystals, trichomes and cuticle) and roots (meso-
phyll, vascular bundle and epidermis containing stomata)
but the differences in morphology features of leaves and
roots may cause hurdle in the entry of NPs (Su et al. 2019).
The successful transport and delivery of NPs depends on
several factors including, type of plant tissue, NP shape, and
application method (Schwab et al. 2016). Notably, phloem
transport mechanism is involved in the delivery of NPs from
leaf to root (Raliya et al. 2016).

The structure of leaves possesses higher hydrophobic-
ity thus creating the hurdle for pesticides to attach to them
thereby leading to waste of pesticides. The modifications in
NPs can attach active groups and improve the pesticides’
capacity to adhere to leaves by adding or changing charges.
The NPs have better adhesion to leaves and stems that cannot
affect washing by rainwater and extend their contact period
and utilization efficiency when compared to conventional
pesticides (Yin et al. 2023). In cotton leaves, the activity
period of Cry toxin was reduced by rainwater scouring. In
contrast, when the Cry1Ac produced by Bacillus thurigien-
sis was loaded with magnesium hydroxide (Mg(OH),), it
enhanced the death rate of pests by 75% and increased the
adhesion of toxin to leaves by 59% (Rao et al. 2018). Simi-
larly, polydopamine-coated GO enhanced the oxaproxim
retention on plant leaves (Tong et al. 2018). Moreover,
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Fig.4 Schematic representation of plant-soil system showing nano
pesticides’ uptake, translocation, and biotransformation as well as
the influence on rhizosphere microbes. (a) Nano pesticides (type 2).
(b) Foliar and soil application; opening in above-ground parts (sto-
mata, cuticle, and shoot) provide the entry site for nano pesticides
and transport them to lower portion via phloem. On contrary, the
below-ground parts (root caps, lateral root junctions, epidermis, and
cortex) facilitate the entry of nano pesticides from soil to plants and
then translocate to upper parts through xylem. Rhizosphere micro-
biomes (fungi, bacteria, and archaea), rhizosphere invertebrates
(worms, nematodes, and earthworms), symbiotic microbiota (rhizo-

concave Janus carriers enhanced the retention and deposi-
tion of pesticides to leaves (Zhao et al. 2019).

Recently, there has been a growing interest in develop-
ment of abamectin-based NPs. One study investigated three
different functional abamectin poly NPs to increase foliar
retention in cucumber. The degree of adhesion was regulated
by altering the functional groups attached to the NPs and
was largely dependent on functional group (Yu et al. 2017).
In another approach, chitosan based NPs for avermectin was
utilized with poly-y-glutamic acid (y-PGA) adhesive group.
This modification significantly enhances the adhesion of
NPs on the foliage surface (Liang et al. 2018a). Addition-
ally, multifunctional avermectin coated with glycine methyl
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bia), rhizosphere deposits (plant root exudates), organic material and
soil particles (sand, clay) have impact on uptake and translocation of
nano pesticides. (¢) Two important pathways, apoplastic and symplas-
tic, are responsible to translocate the nano pesticides across various
plant tissues. Smart release of active ingredients (Al) from responsive
nanoscale delivery platform (RNDP) of nano pesticides improves
adhesion and maintains long-term concentration against pests. (d)
Internal pathways of piercing nano pesticides in plant cells involve
endocytosis, pore formation, carrier protein and plasmodesmata.
[Source: (Wang et al. 2022a)]

nanocarrier improved the uptake and delivery of avermectin
in rice plants (Wang et al. 2018). These nanocarriers also
interact with amino acid transporters, leading to increased
phloem loading and cellular uptake (Wu et al. 2021). The
above-mentioned findings report that nonsystemic aver-
mectin biopesticides improve the uptake and delivery in
plants. Furthermore, AuNPs conjugated with D-glucose
were actively transported and serve as an important ligand
for uptake and translocation of nano pesticides in tobacco
(Jia et al. 2017).

Future studies based on interaction between plants and
nano pesticides should also examine residual behavior,
dynamic digestion, and toxicity of NPs in addition to the
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migratory path mechanism. The interaction mechanism of
nano pesticides with plants needs to be extensively studied
to prevent the threat affecting the human and animal health
which may be caused by long term accumulation in plants
(Kannan et al. 2023; Ijaz et al. 2023). Additionally, nano
pesticides may lead to negative effects in plants, for example,
CuO nano pesticides induced membrane damage, nutrient
uptake alteration, and disturbed antioxidant pathways in
soybean and wheat as well as Ag nano pesticide application
were more phytotoxic to tomato (Xu et al. 2023). Further-
more, to facilitate the development of environment friendly
and effective nano pesticides, it is important to explore the
changes in the physiological and morphological features of
plants before and after NPs treatment. Such investigations
would assist in the optimization of pesticide dosages, selec-
tion of suitable nanosized carriers, and identification of key
factors determining the penetration process of NPs in plants.

Abiotic stresses

Annually, abiotic stresses (climatic constraints) such as
drought, heat salinity, waterlogging, and lack of nutri-
ent deficiency, resulted in 51-80% crop losses (Li et al.
2021a). Such stresses induce pervasive challenges to cellu-
lar machinery affecting biochemical, molecular, and physi-
ological changes in plants (Mushtaq et al. 2020). Abiotic
stresses compromise the plant’s defense mechanism and
make it more prone to biotic stresses. In response to these
challenges, NPs hold potential to improve the plant’s sec-
ondary metabolism, offering a way to alleviate both biotic
and abiotic stresses (Garcia-Ovando et al. 2022). Various
studies reported the role of NPs to cope with the abiotic
stresses (Table 6).

Effect of nanomaterial on heat stress

A study on heat stress suggested the association with yield
reduction of 2.9%, 5.6%, 7.1%, and 10.6% for wheat, rice,
maize, and soybean, respectively (Wang et al. 2020b). The
SeNPs have demonstrated their potential in mitigating heat
stress effects in various plants. For instance, in sorghum, the
utilization of SeNPs was reported to enhance the growth,
hydration, and chlorophyll content of tomato plants under
heat stress (Djanaguiraman et al. 2018). Similarly, the foliar
application of SeNPs application under high-temperature
stress enhanced the proline level, relative water content,
POD (peroxidase), and CAT (catalase) activities in cucum-
ber plants (Shalaby et al. 2021). In case of wheat, AgNPs
synthesized using the leaf extract of Moringa oleifera allevi-
ated the heat stress by influencing the morphological growth
of the plants (Igbal et al. 2019). In mungbean, ZnONPs alle-
viated heat stress by improving physiological and biochemi-
cal attributes (Kareem et al. 2022). To sum up, the negative

impacts of heat stress on crop productivity emphasize the
dire need to figure out promising solutions for mitigation.
The investigations mentioned above highlight the promising
role of NPs in improving the adverse effects of heat stress
on various crops, thus contributing to the development of
strategies for enhancing crop resilience in the face of climate
challenges.

Salinity stress and NPs

Increased population and reduced water resources force the
farmers to use saline water for irrigating crop plants. Unfor-
tunately, salinity stress negatively affects the biochemistry
and physiology of plants, posing a greater threat to food
security and crop production (Rossi et al. 2016). Epigenetic
regulations are an area poised to revolutionize agriculture.
Advancements in epigenetic mechanisms, particularly under
plant stress, show promising potential in cereals, where
external factors like drought and heat can now be better man-
aged through these epigenetic changes. This could lead to
stress-resilient crop varieties, significantly boosting produc-
tivity in cereals (Dinkar et al. 2024). In parallel, advances
in nanotechnology are offering complementary solutions
to environmental stresses, including salinity, drought, and
nutrient deficiencies. Engineered NPs are being developed
for use in agricultural soils and irrigation water, enhancing
nutrient delivery and helping plants better withstand stress
conditions.

In alfalfa, the physiological response was improved by
the application of potassium sulfate (K,SO,) NPs due to the
reduction of electrolyte leakage by 53%, enhanced proline
content by 33%, a three-fold increase in catalase content,
and 26% boost in antioxidant enzyme activity under salt
stress (El-Sharkawy et al. 2017). The exogenous applica-
tion of SiO,NPs at 50 mg/L mitigated the negative effects
of the salinity in potato by increased activity of antioxidant
enzymes (Gowayed et al. 2017). Seed germination and seed-
ling growth were improved by the application of AgNPs in
tomato plants (Almutairi 2016). Furthermore, salinity tol-
erance was reported in tomato plants (Alharby et al. 2017)
and banana (Deepika et al. 2018) by the use of ZnONPs. In
ajowan, the exogenous application of SA along with FeONPs
adapted the plant to salinity stress by enhancing photosyn-
thetic pigments, osmolytes, and antioxidant capacity (Abdoli
et al. 2020). Application of ZnONPs mitigated the effects
of salinity stress in wheat by increasing chlorophyll content
(Adil et al. 2022). Recent studies reported that the applica-
tion of ZnONPs improved physiological and biochemical
indices in rice (Singh et al. 2022a) and sorghum (Rakgotho
et al. 2022) and enhanced seed germination and enzymatic
performance in maize (Alhammad et al. 2023; Ahmad et al.
2023a). Moreover, chitosan-MgONPs enhanced salinity tol-
erance in rice leaves (Song et al. 2023). The NPs coated with
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Table 6 Impact of various NPs on plants under abiotic stress

NPs Target Crops Abiotic Stresses  Responses/Roles References

Zn0O Sorghum (Sorghum bicolor) Drought Improved 94% Zn in grains, (Dimkpa et al. 2019)
enhanced K acquisition by
16-30%, and mitigated drought
stress

ZnO Wheat (Triticum aestivum) Drought Increased 18-29% Zn contents (Dimkpa et al. 2020b)
in seeds and improved plant
growth

ZnO Wheat (Triticum aestivum) Drought Enhanced drought stress toler- (Kausar et al. 2023)
ance

ZnO Wheat (Triticum aestivum) Drought Promoted wheat performance and (Dimkpa et al. 2020a)
enhanced Zn uptake by 28%

ZnO Tomato (Solanum lycopersicum)  Drought Higher activity of ascorbic acid  (El-Zohri et al. 2021)
antioxidants and free phenols,
moreover, enhanced biomass,
SOD, CAT and reduced H,0,

ZnO Cucumber (Cucumis sativus) Drought Improved soluble sugars, total (Ghani et al. 2022)
amino acids, proline, glycine,
betaine, and decreased the ROS

ZnO Maize (Zea mays) Drought Upregulated melatonin forma- (Sun et al. 2020b)
tion and increased antioxidant
behavior

7ZnO Maize (Zea mays) Drought The combined effect of ZnONPs  (Fatima et al. 2023)

and abscisic enhanced root
length, chlorophyll contents,
carotenoid, and relative water
content, furthermore, reduced
leaf damage index and stomatal

opening

Zn0 +Si0, Potato (Solanum tuberosum) Drought Enhanced quality, yield, and (Seleiman et al. 2023)
mitigated water stress

Fe, Co, Cu, and ZnO  Soybean (Glycine max) Drought Fe, Co, Cu, and ZnO upregulated (Linh et al. 2020)

the expression of drought sensi-
tive genes by 2.16, 2.03, 1.73,
and 1.40-fold, respectively
Ag Wheat (Triticum aestivum) Heat Enhanced leaf area (18.3-33.8%), (Igbal et al. 2019)

root length (22.2-26.1%), and
shoot length (6.6-7.5%)

Se Cucumber (Cucumis sativus) Heat Improved proline, CAT, and (Shalaby et al. 2021)
POD by 41%, 29%, and 48%,
respectively

ZnO +TiO, Wheat (Triticum aestivum) Heat Improved antioxidant effect, (Thakur et al. 2021)
seedling performance, and com-
bat heat stress by increasing the

activity of SOD and CAT
Ag Pearl millet (Pennisetum glau- Salinity Improved the height growth and  (Khan et al. 2020)
cum) defense system
Ag Roselle (Hibiscus sabdariffa) Salinity Activated the antioxidant (Sadat-Hosseini et al. 2022)

enzymes and improved the
flavonoid and anthocyanin
contents by 69% and 77%,

respectively
C Lettuce (Lactuca sativa) Salinity Enhanced the seed germination (Baz et al. 2020)

by up to 35%
Fe,04 Peppermint (Mentha piperita) Salinity Stress resistor (Askary et al. 2017)
K,SO, Alfalfa (Medicago sativa) Salinity Enhanced plant biomass by 72%  (El-Sharkawy et al. 2017)
SiO, Potato (Solanum tuberosum) Salinity Improved the plant growth at (Gowayed et al. 2017)

50 mg/L

@ Springer



Functional & Integrative Genomics (2024) 24:216

Page 150f38 216

Table 6 (continued)

NPs Target Crops

Abiotic Stresses

Responses/Roles References

SiO, Strawberry (Fragaria X anana-
ssa)

Salinity

SiO, Cotton (Gossypium hirsutum) Salinity

Si Soybean (Glycine max) Salinity

ZnO/Si Mango (Mangifera indica) Salinity

ZnO Wheat (Triticum aestivum) Salinity

ZnO Alfalfa (Medicago sativa) Salinity

ZnO Maize (Zea mays) Salinity

ZnO Rice (Oryza sativa) Salinity

ZnO Eggplant (Solanum melongena)  Salinity

AlL,Oy Soybean (Glycine max) Flooding
Si Rice (Oryza sativa)

Si Tomato (Solanum lycopersicum)

ZnO Wheat (Triticum aestivum)

Heavy metal
Heavy metal

Heavy metal

Improved cuticular transpiration ~ (Avestan et al. 2019)
and proline contents by 54%

and 81%, respectively

Improved the leaf area, plant
height, and biomass by 5.37%,
7.68%, and 43%, respectively

Alteration in antioxidant activity

(Liang et al. 2023)

(Farhangi-Abriz and Torabian
2018)

Improved resistance and produc-  (Elsheery et al. 2020a)

tion by 57%
Improved chlorophyll contents,

boosted yeild and physical
attributes

(Adil et al. 2022)

Enhanced salinity tolerance (Hassan et al. 2023)
in addition to shoot and root
growth by 29% and 28.4%,

respectively

Mitigated salinity stress and
significantly enhanced antioxi-
dants, photosynthetic, and yield
related traits

Enhanced root length, fresh and
dry weight, enzymatic activity,
and K™ content

The combination of ZnONPs
and melatonin improved the
total soluble proteins, total
soluble sugars, photosynthetic
pigments, and total free amino
acids

(Singh et al. 2023a)

(Anwar et al. 2023)

(Mustafa and Komatsu 2016)
(Sharma et al. 2022a)
(Yan et al. 2023)

Improved scavenging activity

Alleviated Cr toxicity

Improved oxidative damage in
shoot and root and significantly
reduced its accumulation

Enhanced dry weight and Zn con- (Usman et al. 2023)

tent in plants while significant
lowered the Cd accumulation

Aluminum oxide, Al,05; Cadmium, Cd; Carbon, C; Catalase, CAT; Chromium, Cr; Cobalt, Co; Copper, Cu; Hydrogen peroxide, H,O, ; Iron,
Fe; Iron(III) oxide, Fe,05; Peroxidase, POD; Potassium, K; Potassium ion, K+; Potassium sulfate, K,SO, ; Reactive oxygen species, ROS; Sele-
nium, Se; Silicon, Si; Silicon dioxide, SiO,; Silver, Ag; Superoxidedismutase, SOD; Titanium dioxide, TiO,; Zinc, Zn; Zinc oxide, ZnO

calcium phosphate (Ca;(PO,)) mitigated salinity effects,
improved plant growth, activated oxidative stress indicators
Malondialdehyde (MDA) and hydrogen peroxide (H,0,)
and photosynthetic pigments in broad beans (Nasrallah et al.
2022). In tomato plants, SiNPs are responsible for allevi-
ating salt stress and enhancing antioxidant activity (Alam
et al. 2022). The CeONPs improved the fresh weight (41%),
dry weight (38%), and seedling root length (56%) in cotton
plants (An et al. 2020).

Conclusively, engineered NPs exhibit enhanced physi-
ological responses and reduced biochemical changes due to
salinity stress in a variety of plant species. With the goal to
enhance plant resilience to salinity stress, nanotechnology

can continue to expand NPs, utilization, investigate novel
NPs and improve methods for delivery.

Role of nanotechnology in environment
sustainability and quality improvement
Precision farming

Conventional farming practices excessively rely on agri-
cultural inputs such as water, pesticides, machinery, and

other inputs have resulted in severe environmental issues,
including the release of greenhouse gases. The emergence

@ Springer
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of precision farming, also known as smart farming, attempts
to address this issue by aiming to safeguard the environ-
ment and maximize the yield of crops (Klerkx et al. 2019).
Precision farming can also help to reduce pollution, mini-
mize expenditures and improve pesticide usage (Huang
et al. 2018). Agriculture is being revolutionized worldwide
by precision farming, which has many potential benefits
for food safety, environmental protection, crop quality, sus-
tainability, profitability, productivity, and rural economic
development. Precision farming has grown to be an essen-
tial component to achieve these goals (Zhang et al. 2021).
Due to the rapid increase in the cost of raw materials such
as synthetic insecticides and fertilizers as a result of limited
supply of natural gas and petroleum fuels, the importance
of precision farming has even become more pronounced
(Majumdar and Keller 2021). It serves as a promising alter-
native approach to enhance the yield and reduce the crop
production costs (Prasad et al. 2017). However, introduction
of precision farming may be challenging for some farmers.
Not all will be able to deal with or may not accept the com-
plicated processes such as computerized assessment of field
conditions and subsequent data, which are crucial aspects of
smart farming (Klerkx et al. 2019).

Precision farming combines sensors, computers, remote
sensing devices, and global satellite positioning systems to
collect real-time data as extensively as possible (Duhan et al.
2017). An excellent way to advance precision farming is
through the use of nanosensors. In such scenario, nanosen-
sors are used to quickly identify contaminations and patho-
gens that hinder crop growth and reduce crop production. To
check the health status of plants, electronic devices incorpo-
rated nano based light emitting diodes are used to determine
chlorophyll contents that significantly reduce pesticides and
other agrochemicals (Acharya and Pal 2020). Several nano
biosensors detected and measured viruses, bacteria, and
pathogens for precision farming depending on the inhibi-
tion of enzymes or nanogenetics (Duhan et al. 2017). Nano
biosensors have certain significant benefits over last genera-
tion biosensors (Antonacci et al. 2018). These provide the
wise and sustainable utilization of chemicals (pesticides and
fertilizer) and resources (water and land) with the real-time
or continuous evaluation as well as traceability of factors
responsible for production enhancement. Another benefit of
nano biosensors is to work better in complex matrices like
soil with accumulated chemicals and less homogenized soil
that are responsible for background noise.

It is assumed that in near future precision farming will
develop agricultural robots with nano biosensors which
might serve as “decision support system” for farmers by
robotically selective weeding (Acharya and Pal 2020). Nano
biosensors are responsible for “sensing, monitoring and
detection” of any biophysical or biochemical signal at a cel-
lular or molecular level under stress conditions (Chand Mali

@ Springer

et al. 2020). In order to truly recognize the potential advan-
tages for environmental sustainability and global food secu-
rity, this sector requires constant innovations and studies.

Quality enhancement/fortification

Nanotechnology involves both the improvement of quality
and quantity of crop plants in agriculture through bioforti-
fication (Xiong et al. 2017). Engineered NPs with desirable
physical characteristics offer a viable solution for biofor-
tification of food crops (Elemike et al. 2019). These NPs
can boost growth, in planta micronutrient and crop output
(root, shoot, and yield), through foliar spray or soil applica-
tion (Ganesan 2015) (Fig. 5) [Source: (Kapoor et al. 2022)].
The NPs possess unique characteristics such as slow and
controlled release mechanisms and high surface-to-volume
ratios (Kabiri et al. 2017), which make them ideal candidates
for addressing the micronutrient deficiencies in crops (Dim-
kpa and Bindraban 2018). Nano fertilizers supply nutrients
more effectively than traditional agrochemicals, as they are
required in small quantities. This precise delivery of NPs
improves crop resilience, reduces nutrient losses through
volatilization, boosts productivity, and even improves
pesticide absorption in a sustainable manner. Innovations
through newer technologies are driving value addition
across the agri-food and nutrition sectors, offering potential
breakthroughs in crop productivity, nutritional value, and
sustainability. The development of value-added products uti-
lizing integrated technologies will enhance the efficiency of
agricultural production systems, ensuring a sustainable food
supply chain (Kumar et al. 2018). Various NPs including Zn,
Se, Cu, and Fe are most commonly used for quality improve-
ment (Prasad et al. 2017). Detailed list of biofortified crops
with micronutrient NPs are mentioned in Table 7.

Role of nanotechnology in genetic
engineering

The NP-mediated delivery offers a favorable technique for
plant genetic engineering, presenting a good alternative to
conventional methods such as polyethylene glycol (PEG)
treatment, Agrobacterium-mediated transgenic procedures,
or gene gun bombardment (Wu and Li 2022). This innovative
technique involves NPs to efficiently transfer genetic mate-
rial into plant cells, streamlining the genetic modification
process. Recent studies by Chandra et al. 2021 highlight how
metal-based NPs, such as Zn and Fe, regulate the expression
of key genes responsible for homeostasis in finger millet, a
crucial cereal crop. The precise modulation of these homeo-
static mechanisms opens doors for future genetic improve-
ments in nutrient efficiency and stress resilience, enabling
better yields under challenging environmental conditions.
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Fig.5 Biofortification of crops via foliar spray and soil application of Zn, Se, Cu, and FeNPs

Compared to the traditional methods, NP-mediated delivery
offers advantages, including enhanced efficiency, reduced
complexity, and less disruption to plant tissues.

Nanoparticles-mediated transformation efficiency

The cell wall in plants having a pore size limit of 5-20 nm
serves as a major barrier to the transport of exogenous mol-
ecules (Zhang et al. 2019). Additional obstacles that must
be overcome for the nuclear or plastid genomes to undergo
genetic transformation include nuclear and organelle mem-
branes in plant cells, which have significantly wider pore
size limits of approximately 300-500 nm (Cunningham
et al. 2018). A notable difficulty in genetic transformation
involves the similarity in sizes of biolistic Au microparti-
cles and micrometer-sized plant plastids, which renders it
challenging to transfer DNA biolistically without destroy-
ing the organelle. The NP-medicated transformation presents
a solution to these challenges, tackling issues such as low
transformation efficiency and tissue damage to plants. This

method can efficiently deliver the DNA across the cell wall,
overcoming the barriers presented by plant structure (Lv
et al. 2020).

Several reports indicated that biomolecule delivery via
cell walls is possible without requiring any mechanical
assistance like vertexing, ultrasound, electroporation, and
biolistics (Table 8). Examples include: (1) Clay nanosheets
delivered the RNA interference (RNAi) molecules to pro-
tect the tobacco plants against viruses (Mitter et al. 2017).
(2) The magnetic iron oxide (Fe;0,) NP loaded into pollen
allowed stable transformation to get diseased-free plants in
cotton (Zhao et al. 2017b). (3) DNA nanostructures have
been utilized for their capacity to carry short interfering
RNAs (siRNAs) into the mature plant cells, leading to coor-
dinated gene silencing in tobacco leaves (Zhang et al. 2019).
(4) Several studies demonstrated the use of carbon nanotubes
in model and non-model plants for the delivery of plasmid
DNA (Demirer et al. 2019b, ¢; Kwak et al. 2019) and siRNA
(Demirer et al. 2019a). Moreover, recent research reported
the application of SiO, in cannabis (Ahmed et al. 2021),
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ferroferric oxide (Fe,O5) in maize (Wang et al. 2022b), ferric
chloride (FeCl,) in okra (Farooq et al. 2022) for the delivery
of plasmid DNA and GO in tobacco protoplast (Li et al.
2022) to deliver siRNA. Thus, these NPs combined with new
technologies provide promising solutions to advance plant
biotechnology by getting transgenic plants that are stably
efficient and transformed.

Nano-enabled precise genome editing

The emergence of precise and efficient plant genome editing
technologies has created new opportunities for crop develop-
ment and establishment of sustainable farming systems (Li
et al. 2021a, 2024; Rahman et al. 2022). One of the most
prominent technologies, CRISPR/Cas (CRISPR-associated
protein), has transformed genome editing in crops, enabling
precise genome modification of crops that lead to the devel-
opment of stress tolerant and high yielding crop varieties
(Sharma and Lew 2022). The CRISPR/Cas9 system coupled
with nanotechnology has been widely used in livestock, and
food industry and demonstrated widespread acceptability
(Islam et al. 2020). The NPs are species-specific (Fig. 6),
adding a layer of precision to genome editing approach.
However, to fully explore the possibilities of CRISPR-
mediated genome editing systems in plant biology, further
advancements are needed in nanotechnologically specialized
tools. Nanomaterials allow the CRISPR/Cas genome modi-
fications to be organelle specific and have been applied for
the identification of infectious disorders and the reduction
of infection rates (Zafar et al. 2020a, b).

Nanotechnology coupled with CRISPR/Cas9 targeted
gene editing technique could help us overcome many
obstacles in agriculture industry. Nanotechnology assisted-
CRISPR/Cas9 system may regulate gene expression for a
specific characteristic based on gene function, resulting in
development of resilient crops (Demirer et al. 2021). Nano-
material-assisted CRISPR/Cas genome modifications have
not yet been reported in plants because of the high delivery
efficiencies and the distinct physicochemical properties of
CRISPR reagents, despite the success of delivering genes
and proteins into different cells of the plant by utilizing NPs
for transgenics (Demirer et al. 2020; Yan et al. 2022).

A recent study by Demirer et al. (2021) has discussed
in detail how nanotechnology is advancing CRISPR-Cas
in plant genetic editing. The use of nanomaterials for plant
genome editing is still challenging with numerous unresolved
problems. Firstly, the amount and size of DNA and protein
efficiently delivered to plants and surface chemistry of NPs
compatible with plant tissues. Secondly, although the effi-
cient delivery of some nanomaterials into plant chloroplasts,
it is still unknown whether these nanomaterials can carry
CRISPR elements to modify the genome of plants by using
mitochondria and chloroplasts. Thirdly, the compatibility

@ Springer

of nanomaterials with regeneration and tissue culture still
requires more studies when genetic transformation is not
applicable. Lastly, is there any change in plant regulation
modified via nanomaterials and traditionally modified ones?

Keeping in view these issues, the adoption of this tech-
nology requires comprehensive understanding of delivery
mechanisms, nanomaterial-plant interaction, developmental
progress of NP chemistries, and health and environmental
hazards.

The major contribution of nanotechnology in genetic
engineering is the targeted delivery in cells and tissues of
plant species. Mesoporous SiO,NPs with genetic material
have been delivered through the cell wall into the cyto-
plasm of plant protoplasts and seedlings using the biolis-
tic method (Torney et al. 2007). Certain NPs’ unique or
engineered fluorescent features enable imaging of cargo
delivery and release processes in planta, in addition to
precise delivery, controlled release of cargo and protection
of cargo from breakdown (Hu et al. 2020). DNA nano-
structures triggered gene silencing in mature plants (Zhang
et al. 2019) and delivery of clay nanosheets enhanced the
resistance against pepper mild mottle virus (PMMoV) and
cucumber mosaic virus (CMV) (Mitter et al. 2017). More-
over, clay nanosheets prevented the degradation of artifi-
cial micro-RNA (amiRNA) that targets tomato yellow leaf
curl virus (TYLCV) by silencing the targets produced by
virus and increasing the level of H,O, (Liu et al. 2020b).
Additionally, plasmids can be induced by NPs to penetrate
plant tissues and enhance gene expression (Demirer et al.
2019a; Kwak et al. 2019). The genetic modification in cot-
ton plants was conducted via magnetic NPs as carriers in
the pollens (Zhao et al. 2017b). The goal of future studies
must be directed to explore real-time imagining technolo-
gies, refinement of NPs for the improvement of delivery
efficiency, and broaden the adaptability and genome edit-
ing in diverse plant species.

Role of nanotechnology in genomics
NanoPCR

The traditional PCR (Polymerase Chain Reaction) is
associated with certain drawbacks including difficulty in
amplifying GC-rich regions in genomic DNA and non-
specific product amplification. To resolve this problem,
one of the modified approaches termed as NPs-assisted
PCR (nanoPCR) has undergone substantial research since
2004 (Tabatabaei et al. 2021). A variety of nanomaterials
has been employed to improve the efficiency of nanoPCR
such as CNPs, nanoalloys, quantum dots, liposomes, and
metal NPs (Gao et al. 2019).
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Plant species

Fig.6 Delivery of CRISPR- a
Cas in cells and organelles /
of different plant species. (a)
Target of CRISPR-Cas elements
including cell types (meristem,
leaf, and root) and organelles
(nucleus). (b) Genome editing
is carried out by delivering the
CRISPR-Cas system into cells.
The sgRNA guides the Cas pro-
tein to create double-stranded
break (DSB). Two DNA repair-
ing mechanisms are triggered;
Homology directed repair
(HDR) and Non-homologous
end joining (NHEJ). Chloro-
plast, Ct; Cytoplasm, Cyt; Cell
wall, CW; Mitochondrion, M;
Nucleus, N; Vacuole, V; Single-
guide RNA, sgRNA; Genomic
RNA, gRNA; Protospacer b
adjacent motif, PAM. [Source:

(Demirer et al. 2021)]

~ sgRNA
Cas =
) sgRNA
Cas 7 OR —
| 4+
Plasmids

Integrating NPs into PCR experiments often enhanced
DNA replication fidelity, improved PCR yield, boosted
template DNA’s ability to bind to DNA polymerase and
primers, as well as processed the thermal cycling mecha-
nism. In contrast to inorganic NPs, which are usually
added to PCR process as enhancers, liposome-based PCR
is a unique kind of nanoPCR serving as hardware for the
PCR assay in a nucleus or cell. Future directions must
focus on tackling challenges involved in genomic DNA
amplification by expanding and optimizing the range of
NPs to improve PCR efficiency.

ELISA
An enzyme-based immunoassay, the traditional enzyme-

linked immunosorbent assay (ELISA), recognizes and
enhances affinity interactions among antigens and antibodies
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with the help of enzymes by converting chromogenic sub-
strates (Tabatabaei et al. 2021).

To overcome the drawbacks of traditional ELISA, NPs-
based immunoassays have drawn a lot of interest because
of their longevity, sensitivity, and cost-effectiveness (Singh
et al. 2019). For example, by enhancing the signal strength
and adding more binding sites for detecting antibodies,
nanomaterials increased the detection ability of traditional
ELISA assays (Billingsley et al. 2017). The quantification
of immunoglobulin G enhanced specificity, sensitivity, and
stability by employing Hemin-MnO, nanocomposite as an
enzymatic label in place of horse radish peroxidase (HRP)
enzyme (Guo et al. 2017). Magnetic NPs modified ELISA
(MELISA) assay showed significant signal amplification,
source for magnetic enrichment, and improved the detec-
tion capability (Wu et al. 2017). Further research and inte-
gration of NPs in immunoassay technology is required to
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boost stability, specificity, and sensitivity. Future directions
must be with the aim to wider and improved performance in
diagnostic and healthcare.

Nano biosensors

Conventional agricultural detection methods are typically
expensive and labor-intensive approaches that require several
sample preparation steps before detection, as well as complex
instruments and trained workers that are not readily available,
particularly for people living in remote regions (Mufamadi and
Sekhejane 2017). In the agri-food industries, nano biosensors
provide a cost-effective detection instrument with better sensi-
tivity. The efficiency of sensors is greatly increased by adding
NPs and nanostructures on the basis of portability, selectivity,
multiplex detection capabilities, and sensitivity (Sharma et al.
2021b; Kumar et al. 2021). In biosensing research, a number of
NPs have now garnered significant attention. Multiple analytes
can be detected using biological probes combined with various
NPs, including metallic, magnetic, carbon nanotubes, GO, and
quantum dots (Thakur et al. 2022).

Nano biosensors enable quick screening of contaminants
in water and soil at nanomolar to picomolar levels. Addition-
ally, these are particularly useful for monitoring sustainable
farming techniques for excessive fertilizer application and
in the areas of food safety (Verma and Rani 2021). The low
limit detection and the sensing ability have earned them
significant recognition in agriculture farming (Sharma et al.
2021b; Mathivanan 2021). Due to their remarkable chemi-
cal, optical, and electrical properties, as well as excellent
biological compatibility and low toxicity, ZnO and CNPs
are multipurpose nanomaterials for the agricultural indus-
try (Shojaei et al. 2019). The Se, platinum (Pt) and Ag are
widely used metal NPs due to surface electric effect, cata-
lytic and optical properties (Lau et al. 2017; Ahmed et al.
2020; Yu et al. 2021). Graphene-based biosensors are poten-
tially useful due to their distinguishing features including
oxygenated functional groups and high biocompatibility that
help to create metal composites (Verma et al. 2022). Detec-
tion of pathogens, plant diseases, heavy metals, pesticides,
phytohormones, and soil quality are the most crucial func-
tions of nano biosensors (Ali et al. 2021b).

Plant pathogens are the main cause of declining crop
yield, which could lead to a food shortage for humans as
well as livestock. Globally, plant pathogens are thought to be
responsible for 16% of crop productivity losses (Ficke et al.
2018). Scientists have devised various biosensing strategies
including voltametric sensing, aptamer sensing, electro-
chemical sensing, photoelectrochemical sensing, immune
sensing, etc. for pathogen and disease detection, physiologi-
cal stress detection, toxic chemical ddetection, and heavy
metal detection (Table 9). Some other electrochemical bio-
sensors were also present that can detect the phytohormones

under different stress conditions (Wang et al. 2020b; Cao
et al. 2020; He et al. 2020).

Ultimately, nano biosensors offer effective and economi-
cal way for contaminant detection, environment friendly
farming techniques and solving agricultural issues like
ensuring food safety and overfertilizer use. In order to
encourage sustainable agriculture and food security, the
future prospects might include expanding the growth of nano
biosensors to identify a wider variety of analytes, improving
techniques involved in detection of disease and pathogens,
as well as optimization of biosensing devices.

Socio-economical, environmental,
and health implications of nanoagriculture

A rapid increase in the use of different NPs in agriculture
and food industry has raised serious concerns among scien-
tists working to safeguard the environment by releasing a
significant number of NPs into the environment. Nanoagri-
culture has both positive and negative impacts (Khan et al.
2019b; Pokharel et al. 2024).

The agri-food-nutrition and health sector has witnessed
significant advancements, driven by the integration of newer
technologies. As highlighted in Kumar et al. (2018), the stra-
tegic intervention of these technologies has led to the devel-
opment of innovative value-added products. This trend has
been particularly evident in the realm of nanotechnology,
where metal-based NPs have demonstrated their potential
to influence gene expression and regulate essential nutrient
homeostasis, as explored by Chandra et al. (2021).

Although nanotechnology has great potential to advance
food processing and create novel goods, it still faces signifi-
cant challenges (Jain et al. 2018). It is important to consider
the possible risks to human health and long-term environ-
mental effects of the deliberate release of nanomaterials
(Gilbertson et al. 2020; Pokharel et al. 2024). Nanotechnol-
ogy faces many challenges, especially in terms of NP behav-
ior. The NPs may be added directly, indirectly, or become
isolated due to their movement. When compared to bulk
materials, the properties of the material will be completely
different (Kah and Kookana 2020). Therefore, it is crucial to
comprehend the functions and toxicity of NPs. The NPs pen-
etrate the biological barrier and penetrate cells and organs.
Different chemical processes are utilized to manufacture the
NPs, which results in significant environmental contamina-
tion and dangerous by-products (Chugh and Dar 2021).

Due to the incorporation of NPs into the food from the
inadequate packaging, nanopackaged foods could pose a
health risk. The type of packing matrix, degree of migra-
tion, rate of food ingestion, and toxicity of the nanomaterial
all have a role in this impact (Kannan et al. 2020). Evidence
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of the health risks posed by NPs is becoming more preva-
lent day by day. The bioaccumulation, excessive intake, and
increased activity of nano-based products have a negative
impact on safety risks and health-related problems (Raj et al.
2021). The NPs occurring in packaging materials could
enter food and accumulate in organs like stomach, kidney,
liver, and small intestine (Fajardo et al. 2022).

Agriculture is administered by laws to ensure the security
of food and feed sources (Hofmann et al. 2020). The use
of smart nanomaterials in agriculture, a recently emerging
technology, is constrained by the absence of adequate risk
assessment and legislation to address safety issues (Lowry
et al. 2019). When new technology is introduced, legislators
often face hurdles, especially when the technology’s com-
mercially represented benefits raise concerns about environ-
mental, and human health risks (Gottardo et al. 2021).

Beyond these immediate concerns, nanotechnology and
genomics in agriculture also pose socio-economic, envi-
ronmental, and biosafety challenges that must be carefully
managed to ensure equitable and sustainable development.

Socio-economically, these innovations may widen the gap
between large agribusinesses and smallholder farmers, as the
high costs of adopting nanotechnology and genomics can
limit access for farmers in developing countries. Additionally,
the rise of proprietary seeds and nanotechnologies controlled
by large corporations can lead to dependency, reducing the
autonomy of farmers and exacerbating inequalities in rural
areas. Environmentally, nanomaterials can persist in ecosys-
tems, with potential effects on soil, water, and biodiversity
that are not yet fully understood. Genomic innovations, such
as genetically modified crops, may further disrupt ecosystems
by affecting non-target species and reducing genetic diversity,
particularly if transgenes spread to wild relatives.

Biosafety concerns also arise from the use of nanotech-
nology and genomics in food production, as NPs could accu-
mulate in the food chain and unintended genetic modifica-
tions in crops could pose health risks. Ensuring food safety
and environmental sustainability will require robust regula-
tory frameworks, especially in developing countries where
the necessary infrastructure for monitoring and managing
these risks may be lacking. Ethical considerations, including
public perceptions of genome editing and the potential for
irreversible ecological impacts, add another layer of com-
plexity to the adoption of these technologies.

Future aspects of nanotechnology
in agriculture

Nanotechnology is playing a crucial role in enhancing crop
production in the agricultural sector. More efforts are required
to study the toxic effects of NPs on soil properties, soil fertility,
and plant growth and development. Plant growth and soil-plant

@ Springer

system may be affected by the presence of NPs in the soil.
The safety, interaction with plants, side effects, and possible
mechanism of action need some more research in this area.

The nano agrochemicals, practices such as nano fertiliz-
ers and nano pesticides, are well recognized to efficiently
provide crop protection from pests, enhance plant growth
and nutrition, and increase agricultural output. New nano-
materials and nanotechnology are becoming popular in the
agricultural sector in which research has focused on nano
formulated pesticide development (Jampilek and Kralova
2019). Several nano pesticide patents have been developed
by many agricultural companies including Badische Anilin
und Soda Fabrik (BASF), Monsanto, Bayer, Syngenta, and
Dow AgroScience (Peters et al. 2016; Kah et al. 2019). It’s
also important to evaluate the bio effectiveness and long-
term toxicity of a substance to non-target organisms.

The physicochemical characterization of nanomaterials
must be emphasized, as well as how the quality and traits
influence the environment (Tomak et al. 2021). In agricul-
ture sector, there are no regulatory laws for nanotechnology
field. That’s why for their safe implementation, effective
laws and regulations are needed. Nanomaterials only address
the broader concepts, and the actual law is in its infancy due
to these limitations.

To fulfill the demands of the future, the food and agri-
cultural industries must switch to green technologies. Agro
nanotechnology is essential for sustainable farming as well
as fulfilling the needs of future generations. We must con-
centrate on synthesis, screening, and nanomaterial optimiza-
tion of green technology for different kinds of plants prior to
commercialization. Nanomaterials’ properties and stability
can be modified to alter their efficacy and behaviour.

Nanotechnology has the power to revolutionize agricul-
ture. Future research should focus on exploring the long-
term impacts of nanomaterials on ecosystems and human
health. Additionally, there is a need to develop standardized
protocols for the safe and sustainable application of nano-
technology in agricultural practices (Saritha et al. 2022). By
addressing these challenges and capitalizing on the opportu-
nities presented by emerging technologies, we can create a
more resilient, efficient, and sustainable agri-food-nutrition
and health sector.

Conclusion

This review critically explored the integration of nanotechnol-
ogy and genetic innovations in agriculture, highlighting the
strides made, persistent challenges, and potential opportunities
for future advancements. This fusion has showcased promising
solutions for improving agricultural practices. Use of nanoma-
terials for targeted delivery in agriculture has shown potential
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in optimizing resource utilization and minimizing environmen-
tal impact. Simultaneously, genetic innovations, especially in
precision gene editing like CRISPR, have shown opportuni-
ties to tailor crop modifications for better yields, resilience,
and nutritional value. However, several critical issues persist,
demanding comprehensive solutions for effective genome
delivery, modern hybrid nanomaterial design, and enhance-
ment of techniques such as pollen magnetofection and CRISPR
strategies. Moreover, the impact of nanomaterials on plant and
soil health, alongside their potential toxicity, remains a critical
concern. In addition, regulatory framework guiding the usage
of nanomaterials in agriculture is still evolving, highlighting
comprehensive guidelines for safe implementation.

Further research into nanomaterial properties, their stability,
and optimization techniques prior to commercialization could
pave the way for more effective and safer applications in farm-
ing. Additionally, refining delivery mechanisms for genetic
modifications and advancing precision editing technologies
will play pivotal roles in improving agriculture practices.

In conclusion, the fusion of nanotechnology and genetic
innovations represents a transformative approach that can
revolutionize farming practices, ensuring sustainable and
efficient food production for generations to come.
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