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Abstract—It is of growing concern to ensure resilience in power
distribution systems to extreme weather events. However, there
are no clear methodologies or metrics available for resilience
assessment that allows system planners to assess the impact
of appropriate planning measures and new operational proce-
dures for resilience enhancement. In this paper, we propose a
resilience metric using parameters that define system attributes
and performance. To represent extreme events (tail probability),
the conditional value-at-risk of each of the parameters are com-
bined using Choquet Integral to evaluate the overall resilience.
The effectiveness of the proposed resilience metric is studied
within the simulation-based framework under extreme weather
scenarios with the help of a modified IEEE 123-bus system. With
the proposed framework, system operators will have additional
flexibility to prioritize one investment over the others to enhance
the resilience of the grid.

Index Terms—Distribution system resilience, monte-carlo sim-
ulation, multi-criteria decision-making, resilience metric, risk
analysis

I. INTRODUCTION

In recent years, weather-related extreme events have

severely affected the performance of electric power systems,

especially the aging mid-voltage and low-voltage power dis-

tribution grid [1]. This calls for proactive threat management

of power distribution systems by improving their resilience

to high-impact low-probability (HILP) events with the help of

new operational procedures and/or hardening of the infrastruc-

ture. Planning for resilience requires a metric that can not only

quantify the impacts of a future event on the grid but also,

help in evaluating/comparing different planning alternatives

for their contribution to improving resilience [2].

In literature, multiple articles have sought to define the

resilience metrics and have proposed several methods to solve

the resilience planning problem. The existing metrics for

resilience can be broadly categorized as: a) attribute-based

metrics that identify power system attributes such as robust-

ness, resourcefulness, adaptivity, recoverability, and situational

awareness [3] and b) performance-based metrics that describes

the system’s ability to maintain supply (i.e., the system’s

availability [4]) and often measured using the conceptual

resilience curve [5]. Different resilience indicators that are

widely used in literature are based on the optimal repair

time of critical components [6], energy not served after an

extreme event [7], total critical loads supplied during the

aftermath of a disaster [8], and in terms of infrastructure

recovery [9]. An exhaustive list of examples of resilience
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indicators for consideration in developing a suitable metric can

be found in [10]. The resilience of power distribution systems

is dependent on several factors such as network configuration,

available resources and controls, and several other smart grids

features such as distributed energy resources (DERs), smart

switches, intentional islanding, and self-healing. Towards this

goal, references [11], [12] introduce the use of multi-criteria

decision-making (MCDM) methods to quantify resilience by

taking different topological parameters based on graph theory.

Despite these existing approaches no formal resilience met-

ric is universally accepted. The existing metrics to quantify

power distribution system resilience pose one or more limita-

tions including: (1) they are post-event measures and mostly

evaluated for a single event [6], [8], [13] ; (2) they do not

specifically measure the impacts of HILP events on system

performance (kW loss, critical assets without power, total

outage duration) [11], [12]; (3) they do not provide additional

flexibility to system operators to prioritize one investment

decision over the other to evaluate the system resilience [14].

Additionally, in resilience assessment events with higher im-

pact and lower probability are considered contrary to reliability

analysis [15]. Thus, we need a probabilistic approach to

calculate the resilience metric that captures both the system

attributes as well as its response to a given extreme event.

In prior work, we introduced a framework to evaluate the

resilience of power distribution systems using risk-based mea-

sures [16]. Here, we use the framework and evaluate resilience

by combining both the attributes-based and performance-

based resilience measures. The combined use will effectively

maximize the baseline assessment of resilience and allow

system operators to examine different efforts and associated

investment activities [10]. We use a risk-based quantitative

measure, conditional value-at-risk (CVaR), to derive several

resilience-driven parameters that comprise both the system

attributes and the system performance. These parameters are

computed using Monte-Carlo simulation to reflect the impact

of risk and uncertainty of extreme events. Finally, a resilience

metric is evaluated using the MCDM process that incorporates

all of the resilience-driven parameters of the distribution grid.

The specific contribution of this paper are two folds:

• A novel risk-based resilience metric that considers a com-

prehensive power system resilience definition. We take mul-

tiple resilience-driven parameters – availability, robustness,

brittleness, resistance, and resourcefulness to holistically

evaluate the power distribution system resilience based on
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these parameters.

• A simulation-based approach that allows system opera-

tors to evaluate different mitigating actions. The proposed

framework provides additional flexibility to prioritize one

investment decision over the others to enhance the system’s

resilience; The operators can come up with economic in-

vestment decisions without compromising the resilience of

the system.

The rest of the paper is organized as follows: Section II details

the modeling of extreme events and their impact. Section III

describes the resilience-driven parameters of a distribution

grid. Section IV details the MCDM approach using Choquet

Integral. Simulation-based Monte-Carlo method is described

in Section V. Section VI demonstrates the effectiveness of

the proposed frameworks with results and analysis. Finally,

Section VII concludes the paper.

II. EVENT AND IMPACT MODELING

In this section, we discuss modeling an extreme event and its

impact on the distribution grid. For this work, we only consider

wind-related events and their impact, which is discussed in the

following subsections.

A. Modeling Probabilistic Events

A probabilistic wind event is characterized by the intensity

of the wind speed and its probability of occurrence. The

intensity here is a function of wind speed, v. Although wind-

related events have spatiotemporal dynamics [17], we assume

that for a distribution system, that covers a small region, the

wind speed for the entire region is the same. Thus, each of the

components in the distribution system experiences a similar

wind intensity. The wind speed profile for different intensity

levels of the windstorm can be represented by a probability

density function (PDF) as discussed in [16].

B. Line Fragility Models

The impact of the wind-related event can be represented by

the fragility model of a distribution line [18]. For simplicity,

we only consider the impact of wind-related events on the

distribution line and not on the other components of the

distribution system. The fragility model of any distribution

line gives the outage probability of the line subjected to a

particular wind speed and can be represented as:

P
l
v =

⎧

⎪

«

⎪

¬

F
l
n v < vcri

P
l(v) vcri ≤ v < vcol

1 v ≥ vcol

(1)

where F
l
n is the failure rate of line l in normal weather

condition, Pl(v) is the failure probability of line l as a function

of v, vcri is the critical wind speed at which line l experiences

failure, and vcol is the wind speed threshold beyond which line

l is guaranteed to fail.

III. RESILIENCE OF POWER DISTRIBUTION GRID

The ultimate goal of a resilient distribution grid is to have

a continuous power supply to critical loads (CLs) even during

extreme contingencies. In this section we discuss the resilience

curve based on number of CLs and resilience-based parameters

of a distribution grid.

A. Resilience Curve

Fig. 1 shows a typical resilience assessment curve in which

the x-axis represents time whereas the y-axis represents the

number of weighted CLs online. The plot is represented for

two cases namely base network, which does not have any

restoration strategy once the event occurs and smart network,

in which distributed generators (DGs) and smart damage

assessment tools are placed for enhanced situational awareness

and restoration. To avoid any confusion, the time variables

representing only the smart network are used in Fig. 1 and

are represented with an additional letter s.

Let NC be the total number of CLs that are online at a

particular instance of time. The time in which all of the CLs

remain online to the time an event occurs is denoted by T1,U

and represented by phase 1. In this work, T1,U is considered

the same for all CLs. The event occurs at the end of T1,U

and sustains for a certain time. The time of event progress

depends on the nature and intensity of the event and is denoted

by phase 2 of the resilience assessment curve. Some CLs

get disconnected due to the severity of the event. N̄C be the

number of CLs that remain online after an event occurs. Phase

3 denotes the time for damage assessment. Smart networks

have smart devices and damage assessment tools that can

decrease the damage assessment time significantly. The CLs

get disconnected when an event occurs until the point when

repair or restoration starts. This is the downtime for CL and

is denoted by TD. ∆t1 is the period from the initial time to

the time when repair/restoration begins. For the base case, the

repair does not start until the recovery state, phase 5, whereas

for the smart network DGs and remote-controlled switches

(RCSs) can assist in load restoration, phase 4. At the point of

repair/restoration, some of the CLs become online again and

remain online for a time T2,U . Let N ′

C be the number of CLs

that are online after the load restoration phase. The total up

and downtime of CL for the entire duration is represented by

T = T1,U + TD + T2,U .

Fig. 1. Typical resilience assessment curve based on the number of weighted
CL online. The time variables on the x-axis refer to the smart network [19].

B. Resilience-driven Parameters

In this work, we only consider phases 1 through 4 for

quantifying the resilience metric. We will discuss a few

parameters that help us define the resilience of a distribution
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grid as referred to the critical loads and phases described in

Fig. 1. A detailed explanation of these parameters are given

in [19] while some of them are modified as necessary for this

work.

1) Availability: Let i = 1, 2, ..., NC be the CLs connected

in a system, T i
U = T i

1,U +T i
2,U be the time period when a CL

i is connected to system (up time), and T i
D be the time period

when i is disconnected from the system (down time) due to

an extreme event. Hence, availability refers to the fraction of

time when i is online and is defined as:

Rψ =

∑NC
i=1 T

i
U

∑NC
i=1(T

i
U + T i

D)
(2)

Here, T i
U and T i

D for each i depends on the type of network.

For smart network, some disconnected CLs are restored in

phase 4 which increases the overall availability of the system.

Here, the choice of NC is problem specific and can represent

a single customer as well as a particular feeder [19].

2) Robustness: Let n0 be the number of CLs that are

disconnected from the system at a given time. Then the outage

incidence, θ is defined as:

θ =
n0

NC

(3)

If NC − N̄C be the maximum number of CLs disconnected

from the system and θmax is the maximum outage incidence

for a given time, then robustness is defined as:

Rβ = 1− θmax = 1−
NC − N̄C

NC

=
N̄C

NC

(4)

3) Brittleness: Let D be the percentage of infrastructure

damage in the system. For simplicity, we only consider distri-

bution lines as infrastructures in this work. Brittleness is the

level of disruption that occurred in the system with respect to

damage. For instance, if the damage of a single distribution

line affects the entire system then the system is highly brittle.

The brittleness of a system with NC critical loads is defined

as:
Rγ = 100×

θmax

D
(5)

4) Resistance: According to [19], a system has higher resis-

tance if it can withstand extreme events better and can operate

the loads for a longer period before getting disconnected. With

this notion, a resistant system should have better physical

infrastructures, proper damage assessment methods, and situ-

ational awareness in case of extreme events. Furthermore, the

resistance is also dependent on the nature of the extreme event.

Here, σ is the measure of an extreme event and is obtained as

described in [19]. Based on the measure of the event and time

before which the repair and restoration begins, the resistance

of a system is given by:

Rξ =
σ
∑NC

i=1 T
i
1,U

θmaxNC∆t1
(6)

5) Resourcefulness: Let NSW be the number of tie-line

switches, NS be the number of generating sources, and NP

be the number of simple paths from each of the sources to CLs

after an event has occurred in a network. Then the available

resources are useful only if their existence is meaningful in

system restoration. Thus, resourcefulness is defined as:

Rδ =
NP

(NSW +NS)×NC

(7)

For the base network, the only available source is the

substation so NS = 1 for the base case. For the smart network,

NS increases as the number of DG increases. However, the

resourcefulness decreases if those DGs are not utilized in

network restoration after the event has occurred which is

ensured by NC . Thus, resourcefulness can be useful for

planning the placement and number of DGs to enhance system

resilience.

C. Risk-based Resilience Measures

A resilient distribution system should not only handle the

expected events but also events with a lower probability of

occurrence that might impose a greater impact on the grid. As

discussed in [16], we use CV aR as a risk measure for each

of the parameters. V aR is defined as the specific threshold

ζ, such that with a specified probability of α V aR does not

exceed ζ. On the other hand, CV aR is the expected value

of the distribution that exceeds V aR. Both of these metrics

depend on the value of α and are commonly represented as

V aRα and CV aRα. If p(I) be the probability distribution

of a random weather event I then the cumulative probability

distribution that the parameter R will not exceed ζ when

impacted by I is given by:

Ψ(ζ) =

∫

R(I)≤ζ

p(I)dI (8)

Thus, V aRα and CV aRα are then defined by:

V aRα(ζ) = inf{ζ ∈ R : ψ(ζ) ≥ α} (9)

CV aRα(ζ) = (1− α)−1

∫

R(I)≥V aRα

R(I) p(I) dI (10)

CV aRα represents the value of parameter for the extreme (1−
α)% of impacts. It is also to be noted that the distribution of

parameters below and above the specified threshold ζ represent

the complete distribution of extreme events with a probability

of α and 1− α respectively.

IV. MULTI-CRITERIA DECISION MAKING

USING CHOQUET INTEGRAL

All of the parameters defined in Section III-B are important

for enhancing the resilience of a distribution system. Thus,

an efficient decision-making strategy is required to identify

the important parameters to focus on. The Choquet Integral is

an effective method for the MCDM problem [20] and is well

suited for our framework.

A. λ-Fuzzy Measures

Let a finite universal set be defined by Γ, which has N

parameters; Γ = {R1,R2, ...,RN}. If P(Γ) be the power set

of Γ, then a fuzzy measure on Γ is defined by,

µ : P(Γ) → [0, 1] (11)

if and only if, a) µ(φ) = 0, µ(Γ) = 1 and b) A ⊂ B

⊂ Γ ⇒ µ(A) ≤ µ(B). Here, a) ensures that every parameter
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Fig. 2. Simulation-based framework for resilience metric computation; Fragility modeling feeds the failure probability to Monte-Carlo simulation. Monte-Carlo
simulation calculates the average value of a performance measure for a given event. CV aRα is then calculated using the pdf of a given extreme event case.

contributes something and the contribution is maximum when

all parameters are included in the set whereas b) shows the

monotonic property of fuzzy measures which means that the

interaction of parameters should not overshadow the contribu-

tion of individual parameters. If λ be the interaction degree

between two disjoint sets P and Q, then for λ > −1, the

Sugeno λ-fuzzy measure is defined as:

µ(P ∪Q) = µ(P ) + µ(Q) + λµ(P )µ(Q) (12)

where λ is obtained by solving the first condition of fuzzy

measures, i.e., µ(Γ) = 1. A detail explanation of calculating

λ is given in [21].

B. Behavioral Analysis of Fuzzy Measures

Although λ defines some form of interaction among dif-

ferent parameters, the initial fuzzy weights do not provide

concrete evidence on the importance of using one criterion

over the other. The Shapely index, also known as the im-

portance index, provides insight into interpreting the fuzzy

measures [21]. For any parameter R ∈ Γ, the Shapely index

of R is defined as:

ηR :=
∑

S⊂Γ\R

(N − |S| − 1)!|S|!

N !
[µ(S ∪ {R})− µ(S)] (13)

where |.| denotes the cardinality of a set and ηR is the Shapely

index of parameter R. The Shapely index is based on the

interpretation that the weight of a parameter R ∈ Γ should not

only be defined by its individual fuzzy measure µ({R}) but

by all µ(S∪{R}) such that S ⊂ Γ\R. The term µ(S∪{R})−
µ(S) is defined as the marginal contribution of parameter R
in S . In this work, ηR is used as the initial weight of each R.

C. Choquet Integral

If µ denote the fuzzy measure on Γ then the discrete

Choquet integral of a function f : Γ → R
+ with respect to µ

is defined as [20]:

Cµ(f) :=

n
∑

i=1

(f(i)− f(i− 1))µ({R1,R2, ....,Rn}) (14)

where f(.) are arranged in ascending order of its magnitude

and is the CV aRα of the parameters calculated using (10),

µ(R) = ηR is obtained from (13), and f(0) = 0. Choquet

integral gives the overall score of alternative decisions in

problem involving multiple parameters for each decision.

V. RESILIENCE METRIC EVALUATION FRAMEWORK

In this section, we describe the simulation-based framework

to quantify the resilience of power distribution systems. First,

each resilience parameter is evaluated using a probabilistic

method, and a corresponding risk-based metric is defined.

Next, these parameters are combined with Choquet integral

that evaluates a single value based on multiple different param-

eters and their associated importance in the decision-making

process. Fig. 2 shows the overall framework to quantify the

system resilience using a stochastic simulation-based approach

and is described in detail below. It is to be noted that the

smart network contains DG-based restoration and RCS that

can improve the damage assessment and restoration phase to

enhance the overall resilience of the system.

A. Evaluating Resilience-driven Parameters

The extreme wind event and its impact is characterized

using its probability distribution and line fragility model as de-

scribed in Section II. Since the process of identifying an event

and its impact is purely stochastic, Monte-Carlo simulations

are conducted to evaluate the probabilistic impacts of the event

on the power distribution grid. The approach is generic as

each event is simulated for several trials. The fragility models

provide the failure probability of any distribution lines. With

the increase in wind intensity, the failure probability increases

accordingly. Monte-Carlo simulations help us identify the
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Fig. 3. Modified IEEE-123 test case with DGs, tie switches, and CLs.

number of lines being failed in each trial, and resilience-

driven parameters are evaluated using (2) – (7). For smart

network, the optimization framework using DGs are modeled

and simulated as described in [8]. In the optimization model,

all the CLs are equally important and a weight factor of

10 is used for CLs and 1 for non-CLs. At the end of each

simulation, the average of evaluated parameters for all trials is

then mapped with the respective intensity of the events to form

a distribution of each parameter corresponding to its intensity.

B. Risk-driven Resilience Quantification

The probability distribution of each of the parameters cor-

responds to the distribution of the intensity of the event.

Thus, CV aRα of each of the parameters can be calculated

using (10). It is to be noted that the value of α is consistent for

each of the parameters. To combine CV aRα in the decision-

making process, the priorities of each of the parameters are

obtained from the system operators and Shapely values of

those priorities are evaluated using (13). Finally, based on

the CV aRα of each of the parameters and their Shapely

values, Choquet Integral gives an overall score using (14).

To identify the interaction of each of the parameters, λ is

also considered in the overall calculation process. The overall

score obtained from Choquet Integral is the resilience metric

for the distribution system. The described process is holistic

as it considers all of the resilience-driven parameters (both

attribute-based and performance-based) with their priorities in

a system along with the associated risk.

VI. RESULTS AND ANALYSIS

The proposed method of resilience metric quantification

using CV aRα of multiple parameters and Choquet Integral

is demonstrated on IEEE 123-bus test system, Fig. 3. The

simulation is carried out for extreme wind-related events. It

was experimentally verified that 1000 trials are enough to

achieve convergence of MCS for any wind speed scenarios.

Fig. 4. PDF of availability for base and smart network.

TABLE I
CV aRα OF NORMALIZED RESILIENCE-BASED

PARAMETERS FOR BASE AND SMART NETWORK

Cases Rψ Rβ Rγ Rξ Rδ

Base 0.01115 0.00012 0.01656 0.0037 0.00005
Smart 0.01932 0.00012 0.01656 0.0039 0.00314

A. Calculating CVaR of Parameters

The five parameters defined in Section III are calculated

based on Fig. 1 and using the simulation method described

in Section V. Fig. 4 shows the PDF of Rψ obtained for each

wind speed along with V aRα and CV aRα values. For all of

the cases, the value of α is set to be 0.95. The V aRα and the

CV aRα are calculated using (9) and (10). The risk metrics

for other parameters are calculated in a similar fashion and

are shown in Table I. Each of the parameters are normalized

using min-max normalization technique for generality.

B. Quantifying Resilience using Choquet Integral

To compute the resilience metric based on the multiple

parameters and their respective importance, five different cases

are developed. For each of the cases, µ(.) is assigned for each

parameter as shown in Table II. These are the initial fuzzy

weights given by the experts or system operators that indicate

the priority of one parameter over others.

Table III shows the Shapely value of each of the parameter

calculated using (13) from their initial fuzzy weights. These

values also indicate the marginal contribution of each of the

parameters in the respective cases. For instance, in Case I the

importance of Rψ and Rδ are greater than the importance of

other parameters. Hence, these two parameters contribute more

towards resilience quantification than the others. For different

cases, the marginal contribution of each of the parameters

differ according to the priority set by the system operator or

expert.

The Choquet Integral values for the base and the smart

network and each of the cases are shown in Table IV. It can be

seen that the resilience of the smart network is always greater

than that of the base network regardless of individual test

cases due to the presence of DGs. However, the resilience for
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TABLE II
INITIAL FUZZY WEIGHTS OF PARAMETERS

FOR RESILIENCE METRIC CALCULATION

Cases µ(Rψ) µ(Rβ) µ(Rγ) µ(Rξ) µ(Rδ)

I 0.9 0.25 0.15 0.6 0.85
II 0.6 0.5 0.45 0.5 0.6
III 0.3 0.8 0.85 0.6 0.2
IV 0.9 0.6 0.6 0.6 0.2
V 0.2 0.6 0.6 0.6 0.9

TABLE III
SHAPELY VALUES OF EACH PARAMETERS

BASED OF THEIR INITIAL WEIGHTS.

Cases ηRψ
ηRβ

ηRγ
ηRξ

ηRδ

I 0.35235 0.07617 0.04451 0.20400 0.32294
II 0.23225 0.18573 0.16404 0.18573 0.23225
III 0.09441 0.30385 0.33202 0.20849 0.06121
IV 0.34422 0.19903 0.19903 0.19903 0.05869
V 0.05869 0.19903 0.19903 0.19903 0.34422

individual networks varies with the Shapely values of each of

the parameters. For instance, if we look at the smart network,

Case IV is more resilient than any of the other cases as

higher priority is given to load availability and infrastructural

investments (i.e., Rβ , Rγ , and Rξ). However, this is not true

for the base network as loads are not picked up during the

restoration phase in the base network making its availability

lower than the smart network. It is also interesting to notice

that, the resilience for Case I and Case IV does not have

a huge difference although for Case I, the priority towards

infrastructural investment is less. Hence, the operators can

have the flexibility to focus more on less expensive decisions

and still enhance the system’s resilience.

VII. CONCLUSION

In this paper, a risk-based resilience metric is proposed

which incorporates multiple parameters of the distribution grid

that can alter the resilience of the grid. A stochastic simulation-

based approach is presented to quantify the resilience of the

distribution grid. Since resilient systems should be able to

withstand extreme events that have a minimum probability of

occurrence, the CV aRα of the grid parameters for extreme

event cases are used to calculate the resilience metric. The

simulation results showed that prioritizing one parameter over

the others can either enhance or degrade the system’s resilience

depending upon how the investment decisions are prioritized.

Additionally, it was concluded that the framework provides

added flexibility to choose economically feasible investments

without compromising the resilience of the system. A future

avenue of research is to include various planning decisions

such as line hardening, DG placements and sizing, and so

forth along with the cost-benefit analysis of those measures

within the optimization framework to quantify the system’s

resilience.

REFERENCES

[1] J. Furman, “Economic benefits of increasing electric grid resilience to
weather outages,” Washington, DC: Executive Office of the President,
2013.

TABLE IV
CHOQUET INTEGRAL VALUES BASED ON

SHAPELY VALUES OF EACH PARAMETERS

Network Case I Case II Case III Case IV Case V

Base 5.45 6.03 7.36 7.89 4.72
Smart 9.36 8.68 8.36 10.93 6.31

[2] J.-P. Watson et al., “Conceptual framework for developing resilience
metrics for the electricity oil and gas sectors in the united states,” Sandia

National Laboratories, Albuquerque, NM (United States), Tech. Rep,
2014.

[3] G. Kandaperumal and A. K. Srivastava, “Resilience of the electric
distribution systems: concepts, classification, assessment, challenges,
and research needs,” IET Smart Grid, vol. 3, no. 2, pp. 133–143, 2020.

[4] B. Cai, M. Xie, Y. Liu, Y. Liu, and Q. Feng, “Availability-based engi-
neering resilience metric and its corresponding evaluation methodology,”
Reliability Engineering & System Safety, vol. 172, pp. 216–224, 2018.

[5] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou,
“Power systems resilience assessment: Hardening and smart operational
enhancement strategies,” Proceedings of the IEEE, vol. 105, no. 7, pp.
1202–1213, 2017.

[6] M. Wen, Y. Chen, Y. Yang, R. Kang, and Y. Zhang, “Resilience-based
component importance measures,” International Journal of Robust and

Nonlinear Control, vol. 30, no. 11, pp. 4244–4254, 2020.
[7] S. Espinoza, A. Poulos, and et al., “Seismic resilience assessment and

adaptation of the northern chilean power system,” in 2017 IEEE Power

& Energy Society General Meeting. IEEE, 2017, pp. 1–5.
[8] S. Poudel and A. Dubey, “Critical load restoration using distributed

energy resources for resilient power distribution system,” IEEE Trans-

actions on Power Systems, vol. 34, no. 1, pp. 52–63, 2018.
[9] A. Umunnakwe, H. Huang, K. Oikonomou, and K. Davis, “Quantitative

analysis of power systems resilience: Standardization, categorizations,
and challenges,” Renewable and Sustainable Energy Reviews, vol. 149,
p. 111252, 2021.

[10] Frederic Peti, et al. Grid Modernization: Metrics Analysis (Grid Modern-
ization: Metrics Analysis (GMLC1.1) )-Resilience. No. PNNL-28567.
Pacific Northwest National Lab.(PNNL), Richland, WA, 2020.

[11] P. Bajpai, S. Chanda, and A. K. Srivastava, “A novel metric to quantify
and enable resilient distribution system using graph theory and choquet
integral,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2918–
2929, 2018.

[12] S. Chanda and A. K. Srivastava, “Defining and enabling resiliency of
electric distribution systems with multiple microgrids,” IEEE Transac-

tions on Smart Grid, vol. 7, no. 6, pp. 2859–2868, 2016.
[13] H. Gao, Y. Chen, Y. Xu, and C.-C. Liu, “Resilience-oriented critical load

restoration using microgrids in distribution systems,” IEEE Transactions

on Smart Grid, vol. 7, no. 6, pp. 2837–2848, 2016.
[14] V. Venkataramanan, A. Hahn, and A. Srivastava, “Cp-sam: Cyber-

physical security assessment metric for monitoring microgrid resiliency,”
IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1055–1065, 2020.

[15] M. Panteli and P. Mancarella, “The grid: Stronger, bigger, smarter?:
Presenting a conceptual framework of power system resilience,” IEEE

Power and Energy Magazine, vol. 13, no. 3, pp. 58–66, 2015.
[16] S. Poudel, A. Dubey, and A. Bose, “Risk-based probabilistic quantifica-

tion of power distribution system operational resilience,” IEEE Systems

Journal, vol. 14, no. 3, pp. 3506–3517, 2019.
[17] A. Poudyal, V. Iyengar, D. Garcia-Camargo, and A. Dubey, “Spatiotem-

poral Impact Assessment of Hurricanes on Electric Power Systems,” in
2022 IEEE Power Energy Society General Meeting, 2022 (to appear).

[18] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, and P. Mancarella,
“Power system resilience to extreme weather: Fragility modeling, proba-
bilistic impact assessment, and adaptation measures,” IEEE Transactions

on Power Systems, vol. 32, no. 5, pp. 3747–3757, 2017.
[19] A. Kwasinski, “Quantitative model and metrics of electrical grids’

resilience evaluated at a power distribution level,” Energies, vol. 9, no. 2,
p. 93, Feb. 2016.

[20] Choquet, G., “Theory of Capacities,” Annales de l’Institut Fourier, pp.
131–195, 1953.

[21] M. Grabisch and C. Labreuche, “A decade of application of the choquet
and sugeno integrals in multi-criteria decision aid,” Annals of Operations

Research, vol. 175, no. 1, pp. 247–286, 2010.

Authorized licensed use limited to: Washington State University. Downloaded on January 20,2025 at 21:09:52 UTC from IEEE Xplore.  Restrictions apply. 


