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Abstract—It is of growing concern to ensure resilience in power
distribution systems to extreme weather events. However, there
are no clear methodologies or metrics available for resilience
assessment that allows system planners to assess the impact
of appropriate planning measures and new operational proce-
dures for resilience enhancement. In this paper, we propose a
resilience metric using parameters that define system attributes
and performance. To represent extreme events (tail probability),
the conditional value-at-risk of each of the parameters are com-
bined using Choquet Integral to evaluate the overall resilience.
The effectiveness of the proposed resilience metric is studied
within the simulation-based framework under extreme weather
scenarios with the help of a modified IEEE 123-bus system. With
the proposed framework, system operators will have additional
flexibility to prioritize one investment over the others to enhance
the resilience of the grid.

Index Terms—Distribution system resilience, monte-carlo sim-
ulation, multi-criteria decision-making, resilience metric, risk
analysis

I. INTRODUCTION

In recent years, weather-related extreme events have
severely affected the performance of electric power systems,
especially the aging mid-voltage and low-voltage power dis-
tribution grid [1]. This calls for proactive threat management
of power distribution systems by improving their resilience
to high-impact low-probability (HILP) events with the help of
new operational procedures and/or hardening of the infrastruc-
ture. Planning for resilience requires a metric that can not only
quantify the impacts of a future event on the grid but also,
help in evaluating/comparing different planning alternatives
for their contribution to improving resilience [2].

In literature, multiple articles have sought to define the
resilience metrics and have proposed several methods to solve
the resilience planning problem. The existing metrics for
resilience can be broadly categorized as: a) attribute-based
metrics that identify power system attributes such as robust-
ness, resourcefulness, adaptivity, recoverability, and situational
awareness [3] and b) performance-based metrics that describes
the system’s ability to maintain supply (i.e., the system’s
availability [4]) and often measured using the conceptual
resilience curve [5]. Different resilience indicators that are
widely used in literature are based on the optimal repair
time of critical components [6], energy not served after an
extreme event [7], total critical loads supplied during the
aftermath of a disaster [8], and in terms of infrastructure
recovery [9]. An exhaustive list of examples of resilience
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indicators for consideration in developing a suitable metric can

be found in [10]. The resilience of power distribution systems

is dependent on several factors such as network configuration,
available resources and controls, and several other smart grids
features such as distributed energy resources (DERs), smart
switches, intentional islanding, and self-healing. Towards this
goal, references [11], [12] introduce the use of multi-criteria
decision-making (MCDM) methods to quantify resilience by
taking different topological parameters based on graph theory.

Despite these existing approaches no formal resilience met-
ric is universally accepted. The existing metrics to quantify
power distribution system resilience pose one or more limita-
tions including: (1) they are post-event measures and mostly
evaluated for a single event [6], [8], [13] ; (2) they do not
specifically measure the impacts of HILP events on system
performance (kW loss, critical assets without power, total
outage duration) [11], [12]; (3) they do not provide additional
flexibility to system operators to prioritize one investment

decision over the other to evaluate the system resilience [14].

Additionally, in resilience assessment events with higher im-

pact and lower probability are considered contrary to reliability

analysis [15]. Thus, we need a probabilistic approach to
calculate the resilience metric that captures both the system
attributes as well as its response to a given extreme event.

In prior work, we introduced a framework to evaluate the

resilience of power distribution systems using risk-based mea-

sures [16]. Here, we use the framework and evaluate resilience
by combining both the attributes-based and performance-
based resilience measures. The combined use will effectively
maximize the baseline assessment of resilience and allow
system operators to examine different efforts and associated
investment activities [10]. We use a risk-based quantitative
measure, conditional value-at-risk (CVaR), to derive several
resilience-driven parameters that comprise both the system
attributes and the system performance. These parameters are
computed using Monte-Carlo simulation to reflect the impact
of risk and uncertainty of extreme events. Finally, a resilience
metric is evaluated using the MCDM process that incorporates
all of the resilience-driven parameters of the distribution grid.

The specific contribution of this paper are two folds:

o A novel risk-based resilience metric that considers a com-
prehensive power system resilience definition. We take mul-
tiple resilience-driven parameters — availability, robustness,
brittleness, resistance, and resourcefulness to holistically
evaluate the power distribution system resilience based on
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these parameters.

o A simulation-based approach that allows system opera-
tors to evaluate different mitigating actions. The proposed
framework provides additional flexibility to prioritize one
investment decision over the others to enhance the system’s
resilience; The operators can come up with economic in-
vestment decisions without compromising the resilience of
the system.

The rest of the paper is organized as follows: Section II details

the modeling of extreme events and their impact. Section III

describes the resilience-driven parameters of a distribution

grid. Section IV details the MCDM approach using Choquet

Integral. Simulation-based Monte-Carlo method is described

in Section V. Section VI demonstrates the effectiveness of

the proposed frameworks with results and analysis. Finally,

Section VII concludes the paper.

II. EVENT AND IMPACT MODELING
In this section, we discuss modeling an extreme event and its
impact on the distribution grid. For this work, we only consider
wind-related events and their impact, which is discussed in the
following subsections.

A. Modeling Probabilistic Events

A probabilistic wind event is characterized by the intensity
of the wind speed and its probability of occurrence. The
intensity here is a function of wind speed, v. Although wind-
related events have spatiotemporal dynamics [17], we assume
that for a distribution system, that covers a small region, the
wind speed for the entire region is the same. Thus, each of the
components in the distribution system experiences a similar
wind intensity. The wind speed profile for different intensity
levels of the windstorm can be represented by a probability
density function (PDF) as discussed in [16].

B. Line Fragility Models

The impact of the wind-related event can be represented by
the fragility model of a distribution line [18]. For simplicity,
we only consider the impact of wind-related events on the
distribution line and not on the other components of the
distribution system. The fragility model of any distribution
line gives the outage probability of the line subjected to a
particular wind speed and can be represented as:

IFln v < Vers
!
Py = S P (v) veri <0 < Vool )]
1 v 2 Vcol

where F! is the failure rate of line [ in normal weather
condition, P! (v) is the failure probability of line [ as a function
of v, v.; is the critical wind speed at which line [ experiences
failure, and v,; is the wind speed threshold beyond which line
[ is guaranteed to fail.

III. RESILIENCE OF POWER DISTRIBUTION GRID

The ultimate goal of a resilient distribution grid is to have
a continuous power supply to critical loads (CLs) even during
extreme contingencies. In this section we discuss the resilience
curve based on number of CLs and resilience-based parameters
of a distribution grid.

A. Resilience Curve

Fig. 1 shows a typical resilience assessment curve in which
the z-axis represents time whereas the y-axis represents the
number of weighted CLs online. The plot is represented for
two cases namely base network, which does not have any
restoration strategy once the event occurs and smart network,
in which distributed generators (DGs) and smart damage
assessment tools are placed for enhanced situational awareness
and restoration. To avoid any confusion, the time variables
representing only the smart network are used in Fig. 1 and
are represented with an additional letter s.

Let N¢ be the total number of CLs that are online at a
particular instance of time. The time in which all of the CLs
remain online to the time an event occurs is denoted by T 7
and represented by phase 1. In this work, 7' ;7 is considered
the same for all CLs. The event occurs at the end of 11 ¢
and sustains for a certain time. The time of event progress
depends on the nature and intensity of the event and is denoted
by phase 2 of the resilience assessment curve. Some CLs
get disconnected due to the severity of the event. N be the
number of CLs that remain online after an event occurs. Phase
3 denotes the time for damage assessment. Smart networks
have smart devices and damage assessment tools that can
decrease the damage assessment time significantly. The CLs
get disconnected when an event occurs until the point when
repair or restoration starts. This is the downtime for CL and
is denoted by Tp. Aty is the period from the initial time to
the time when repair/restoration begins. For the base case, the
repair does not start until the recovery state, phase 5, whereas
for the smart network DGs and remote-controlled switches
(RCSs) can assist in load restoration, phase 4. At the point of
repair/restoration, some of the CLs become online again and
remain online for a time 75 7. Let N/, be the number of CLs
that are online after the load restoration phase. The total up
and downtime of CL for the entire duration is represented by
T=Ty+Tp+Ty.

Number of 1 Pre-event stage 4 Restorative stage
CLs online 2 Event progress 5 Recovery
Event 3 Post-event damaged state
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Fig. 1. Typical resilience assessment curve based on the number of weighted
CL online. The time variables on the x-axis refer to the smart network [19].

B. Resilience-driven Parameters

In this work, we only consider phases 1 through 4 for
quantifying the resilience metric. We will discuss a few
parameters that help us define the resilience of a distribution
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grid as referred to the critical loads and phases described in
Fig. 1. A detailed explanation of these parameters are given
in [19] while some of them are modified as necessary for this
work.

1) Availability: Let i = 1,2, ..., No be the CLs connected
in a system, Tj; = T} ;; + Ty ;; be the time period when a CL
i is connected to system (up time), and T}, be the time period
when ¢ is disconnected from the system (down time) due to
an extreme event. Hence, availability refers to the fraction of
time when ¢ is online and is defined as:

YNe T
SNG(TE +T5)

Here, T["] and T% for each i depends on the type of network.
For smart network, some disconnected CLs are restored in
phase 4 which increases the overall availability of the system.
Here, the choice of N¢ is problem specific and can represent
a single customer as well as a particular feeder [19].

2) Robustness: Let ng be the number of CLs that are
disconnected from the system at a given time. Then the outage
incidence, 6 is defined as:

Rf/) = 2)

no
6= 3
Ne 3
If No — Ne be the maximum number of CLs disconnected
from the system and 6,,,,, is the maximum outage incidence
for a given time, then robustness is defined as:
Nc — Ne  Ne

R :1_9'"“1.1':1 = 7
g Ne Ne

(C))

3) Brittleness: Let D be the percentage of infrastructure
damage in the system. For simplicity, we only consider distri-
bution lines as infrastructures in this work. Brittleness is the
level of disruption that occurred in the system with respect to
damage. For instance, if the damage of a single distribution
line affects the entire system then the system is highly brittle.
The brittleness of a system with N critical loads is defined

as: 0
— 1 max
Ry =100 x ~5* ©)

4) Resistance: According to [19], a system has higher resis-
tance if it can withstand extreme events better and can operate
the loads for a longer period before getting disconnected. With
this notion, a resistant system should have better physical
infrastructures, proper damage assessment methods, and situ-
ational awareness in case of extreme events. Furthermore, the
resistance is also dependent on the nature of the extreme event.
Here, o is the measure of an extreme event and is obtained as
described in [19]. Based on the measure of the event and time
before which the repair and restoration begins, the resistance
of a system is given by:

N, i
Re = 039 Tiu (6)
Omaz No Aty

5) Resourcefulness: Let Ngyy be the number of tie-line
switches, Ng be the number of generating sources, and Np
be the number of simple paths from each of the sources to CLs
after an event has occurred in a network. Then the available

resources are useful only if their existence is meaningful in
system restoration. Thus, resourcefulness is defined as:
Np

Rs =
’ (Nsw + Ns) x Ne

()

For the base network, the only available source is the
substation so Ng = 1 for the base case. For the smart network,
Ng increases as the number of DG increases. However, the
resourcefulness decreases if those DGs are not utilized in
network restoration after the event has occurred which is
ensured by N¢. Thus, resourcefulness can be useful for
planning the placement and number of DGs to enhance system
resilience.

C. Risk-based Resilience Measures

A resilient distribution system should not only handle the
expected events but also events with a lower probability of
occurrence that might impose a greater impact on the grid. As
discussed in [16], we use C'VaR as a risk measure for each
of the parameters. VaR is defined as the specific threshold
¢, such that with a specified probability of o VaRR does not
exceed (. On the other hand, CVaR is the expected value
of the distribution that exceeds VaR. Both of these metrics
depend on the value of o and are commonly represented as
VaR, and CVaR,. If p(I) be the probability distribution
of a random weather event / then the cumulative probability
distribution that the parameter R will not exceed ¢ when
impacted by I is given by:

o) = [ pr ®)
RI)<C
Thus, VaR, and CVaR,, are then defined by:
VaRa(¢) =inf{¢ € R:4(¢) = a} )
OVaRa(()=(1—a)™" / R(I) p(I) dI ~ (10)
R(I)>VaRq

CVaR, represents the value of parameter for the extreme (1—
a)% of impacts. It is also to be noted that the distribution of
parameters below and above the specified threshold { represent
the complete distribution of extreme events with a probability
of o and 1 — « respectively.

IV. MULTI-CRITERIA DECISION MAKING
USING CHOQUET INTEGRAL

All of the parameters defined in Section III-B are important
for enhancing the resilience of a distribution system. Thus,
an efficient decision-making strategy is required to identify
the important parameters to focus on. The Choquet Integral is
an effective method for the MCDM problem [20] and is well
suited for our framework.

A. A-Fuzzy Measures
Let a finite universal set be defined by I', which has N
parameters; I' = {Ry, Ra, ..., Rn}. If P(I') be the power set
of I', then a fuzzy measure on I" is defined by,
i P(T) = [0, 1] (11)
if and only if, a) pu(¢) = 0, u(I') = 1 and b) A C B
C T = u(A) < u(B). Here, a) ensures that every parameter
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Fig. 2. Simulation-based framework for resilience metric computation; Fragility modeling feeds the failure probability to Monte-Carlo simulation. Monte-Carlo
simulation calculates the average value of a performance measure for a given event. CVaR, is then calculated using the pdf of a given extreme event case.

contributes something and the contribution is maximum when
all parameters are included in the set whereas b) shows the
monotonic property of fuzzy measures which means that the
interaction of parameters should not overshadow the contribu-
tion of individual parameters. If A be the interaction degree
between two disjoint sets P and @, then for A > —1, the
Sugeno A-fuzzy measure is defined as:

w(PUQ) = p(P)+ pu(Q) + Au(P)p(Q)

where A is obtained by solving the first condition of fuzzy
measures, i.e., 4(I') = 1. A detail explanation of calculating
A is given in [21].

(12)

B. Behavioral Analysis of Fuzzy Measures

Although A defines some form of interaction among dif-
ferent parameters, the initial fuzzy weights do not provide
concrete evidence on the importance of using one criterion
over the other. The Shapely index, also known as the im-
portance index, provides insight into interpreting the fuzzy
measures [21]. For any parameter R € I', the Shapely index
of R is defined as:

) (N =S| =D)Ys|!

TR (S URY) - u(S)
SCT\R

MR = 13)

where |.| denotes the cardinality of a set and 1% is the Shapely
index of parameter R. The Shapely index is based on the
interpretation that the weight of a parameter R € I" should not
only be defined by its individual fuzzy measure p({R}) but
by all u(SU{R}) such that S C I'\'R. The term pu(SU{R})—
w(8S) is defined as the marginal contribution of parameter R
in S. In this work, 7% is used as the initial weight of each R.

C. Chogquet Integral

If o denote the fuzzy measure on I' then the discrete
Choquet integral of a function f : I' — R™ with respect to
is defined as [20]:

Culf) = D_(F@) = f = (R, Ray s Rud) - (14)

where f(.) are arranged in ascending order of its magnitude
and is the C'VaR,, of the parameters calculated using (10),
u(R) = nr is obtained from (13), and f(0) = 0. Choquet
integral gives the overall score of alternative decisions in
problem involving multiple parameters for each decision.

V. RESILIENCE METRIC EVALUATION FRAMEWORK

In this section, we describe the simulation-based framework
to quantify the resilience of power distribution systems. First,
each resilience parameter is evaluated using a probabilistic
method, and a corresponding risk-based metric is defined.
Next, these parameters are combined with Choquet integral
that evaluates a single value based on multiple different param-
eters and their associated importance in the decision-making
process. Fig. 2 shows the overall framework to quantify the
system resilience using a stochastic simulation-based approach
and is described in detail below. It is to be noted that the
smart network contains DG-based restoration and RCS that
can improve the damage assessment and restoration phase to
enhance the overall resilience of the system.

A. Evaluating Resilience-driven Parameters

The extreme wind event and its impact is characterized
using its probability distribution and line fragility model as de-
scribed in Section II. Since the process of identifying an event
and its impact is purely stochastic, Monte-Carlo simulations
are conducted to evaluate the probabilistic impacts of the event
on the power distribution grid. The approach is generic as
each event is simulated for several trials. The fragility models
provide the failure probability of any distribution lines. With
the increase in wind intensity, the failure probability increases
accordingly. Monte-Carlo simulations help us identify the
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number of lines being failed in each trial, and resilience-
driven parameters are evaluated using (2) — (7). For smart
network, the optimization framework using DGs are modeled
and simulated as described in [8]. In the optimization model,
all the CLs are equally important and a weight factor of
10 is used for CLs and 1 for non-CLs. At the end of each
simulation, the average of evaluated parameters for all trials is
then mapped with the respective intensity of the events to form
a distribution of each parameter corresponding to its intensity.

B. Risk-driven Resilience Quantification

The probability distribution of each of the parameters cor-
responds to the distribution of the intensity of the event.
Thus, CVaR,, of each of the parameters can be calculated
using (10). It is to be noted that the value of « is consistent for
each of the parameters. To combine C'VaR,, in the decision-
making process, the priorities of each of the parameters are
obtained from the system operators and Shapely values of
those priorities are evaluated using (13). Finally, based on
the CVaR, of each of the parameters and their Shapely
values, Choquet Integral gives an overall score using (14).
To identify the interaction of each of the parameters, A is
also considered in the overall calculation process. The overall
score obtained from Choquet Integral is the resilience metric
for the distribution system. The described process is holistic
as it considers all of the resilience-driven parameters (both
attribute-based and performance-based) with their priorities in
a system along with the associated risk.

VI. RESULTS AND ANALYSIS

The proposed method of resilience metric quantification
using C'VaR, of multiple parameters and Choquet Integral
is demonstrated on IEEE 123-bus test system, Fig. 3. The
simulation is carried out for extreme wind-related events. It
was experimentally verified that 1000 trials are enough to
achieve convergence of MCS for any wind speed scenarios.
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TABLE I
CVaRs OF NORMALIZED RESILIENCE-BASED
PARAMETERS FOR BASE AND SMART NETWORK

Cases ‘ RU) ‘ R/-; ‘ R,Y ‘ R§ ‘ R5
Base | 0.01115 | 0.00012 | 0.01656 | 0.0037 | 0.00005
Smart | 0.01932 | 0.00012 | 0.01656 | 0.0039 | 0.00314

A. Calculating CVaR of Parameters

The five parameters defined in Section III are calculated
based on Fig. 1 and using the simulation method described
in Section V. Fig. 4 shows the PDF of R, obtained for each
wind speed along with VaR, and CVaR, values. For all of
the cases, the value of « is set to be 0.95. The VaR, and the
CVaR,, are calculated using (9) and (10). The risk metrics
for other parameters are calculated in a similar fashion and
are shown in Table I. Each of the parameters are normalized
using min-max normalization technique for generality.

B. Quantifying Resilience using Choquet Integral

To compute the resilience metric based on the multiple
parameters and their respective importance, five different cases
are developed. For each of the cases, p(.) is assigned for each
parameter as shown in Table II. These are the initial fuzzy
weights given by the experts or system operators that indicate
the priority of one parameter over others.

Table IIT shows the Shapely value of each of the parameter
calculated using (13) from their initial fuzzy weights. These
values also indicate the marginal contribution of each of the
parameters in the respective cases. For instance, in Case I the
importance of R, and Rs are greater than the importance of
other parameters. Hence, these two parameters contribute more
towards resilience quantification than the others. For different
cases, the marginal contribution of each of the parameters
differ according to the priority set by the system operator or
expert.

The Choquet Integral values for the base and the smart
network and each of the cases are shown in Table IV. It can be
seen that the resilience of the smart network is always greater
than that of the base network regardless of individual test
cases due to the presence of DGs. However, the resilience for
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TABLE II
INITIAL FUZZY WEIGHTS OF PARAMETERS
FOR RESILIENCE METRIC CALCULATION

Cases | p(Ry) [ u(Rp) | u(Ry) [ u(Re) | u(Rs)

1 0.9 0.25 0.15 0.6 0.85

11 0.6 0.5 0.45 0.5 0.6

111 0.3 0.8 0.85 0.6 0.2

v 0.9 0.6 0.6 0.6 0.2

\ 0.2 0.6 0.6 0.6 0.9

TABLE III
SHAPELY VALUES OF EACH PARAMETERS
BASED OF THEIR INITIAL WEIGHTS.
Cases | 1R, NRg MR, MR NRs

1 0.35235 | 0.07617 | 0.04451 | 0.20400 | 0.32294
1T 0.23225 | 0.18573 | 0.16404 | 0.18573 | 0.23225
111 0.09441 | 0.30385 | 0.33202 | 0.20849 | 0.06121
1\% 0.34422 | 0.19903 | 0.19903 | 0.19903 | 0.05869
\4 0.05869 | 0.19903 | 0.19903 | 0.19903 | 0.34422

individual networks varies with the Shapely values of each of
the parameters. For instance, if we look at the smart network,
Case IV is more resilient than any of the other cases as
higher priority is given to load availability and infrastructural
investments (i.e., Rg, R+, and R¢). However, this is not true
for the base network as loads are not picked up during the
restoration phase in the base network making its availability
lower than the smart network. It is also interesting to notice
that, the resilience for Case I and Case IV does not have
a huge difference although for Case I, the priority towards
infrastructural investment is less. Hence, the operators can
have the flexibility to focus more on less expensive decisions
and still enhance the system’s resilience.

VII. CONCLUSION

In this paper, a risk-based resilience metric is proposed
which incorporates multiple parameters of the distribution grid
that can alter the resilience of the grid. A stochastic simulation-
based approach is presented to quantify the resilience of the
distribution grid. Since resilient systems should be able to
withstand extreme events that have a minimum probability of
occurrence, the CVaR, of the grid parameters for extreme
event cases are used to calculate the resilience metric. The
simulation results showed that prioritizing one parameter over
the others can either enhance or degrade the system’s resilience
depending upon how the investment decisions are prioritized.
Additionally, it was concluded that the framework provides
added flexibility to choose economically feasible investments
without compromising the resilience of the system. A future
avenue of research is to include various planning decisions
such as line hardening, DG placements and sizing, and so
forth along with the cost-benefit analysis of those measures
within the optimization framework to quantify the system’s
resilience.
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