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Abstract—With massive penetrations of active grid-edge tech-
nologies, distributed computing and optimization paradigm has
gained significant attention to solve distribution-level optimal
power flow (OPF) problems. However, the application of generic
distributed optimization techniques to OPF problems leads to a
very large number of macro-iterations or communication rounds
among the distributed computing agents delaying the decision-
making process or resulting in suboptimal solutions. Moreover,
the existing distribution-level OPF problems typically model
inverter-interfaced distributed energy resources (DERs) as grid-
following inverters; grid-supporting and grid-forming functional-
ities have not been explicitly considered. The added complexities
introduced by different inverter models require further attention
to developing an appropriate model for new types of inverter-
based DERs and computationally-tractable OPF algorithms. In
this paper, we expand the distribution-level OPF model to
include a combination of the grid-forming, grid-supporting, grid-
following inverter-based DERs and also present the application
of a domain-specific problem decomposition and distributed
algorithm for the topologically radial power distribution systems
to efficiently solve distribution-level OPF problem.

Index Terms—Inverter models, distributed optimization, opti-
mal power flow, power distribution systems.

I. INTRODUCTION

Massive integration of DERs in the power distribution
systems requires applications of optimal power flow (OPF)
methods to coordinate their operations [1], [2]. Although
both centralized and distributed optimization techniques have
been used to solve the distribution-level OPF problem, lately,
the distributed optimization methods have gained significant
attention to solving OPF due to their robustness to single-point
failures [1]. In addition, the scalability and complexity of the
centralized OPF (C-OPF) mechanism, which stems from both
the size of the network and the increased inverter-interfaced
DERs, can be managed using distributed optimization methods
[1]. However, the direct application of the existing distributed
OPF algorithms results in slow converges. Moreover, the
DERs are generally coupled with smart inverters, with possible
grid-following and grid-supporting functionalities, capable of
providing grid services such as voltage and frequency support
[3], [4]. Incorporating different inverter operating modes can
further increase the computational complexities and make it
more challenging for state-of-art D-OPF algorithms to con-
verge within a reasonable time or number of macro-iterations.
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Typically, the models of grid-forming & supporting invert-
ers are either developed for dynamic simulations or mod-
eled for microgrid operations [S]-[7]. Although in [2], [8],
such inverter-connected buses are modeled for the quasi-
static power-flow study, the appropriate models to formulate
the distributed OPF, require further attention. A majority of
the existing OPF literature, the inverter-interfaced DERs are
usually modeled as negative loads assuming a grid-following
functionality [1], [9], [10]. Upon solving the OPF, the grid-
following DERs are set to dispatch the optimal active and/or
reactive power to the network. In [5], [6], only dynamic
simulation cases have been considered while developing the
models for grid-forming and supporting inverters; thus, they
can not be directly adopted in OPF formulations. In [7], a
generalized model of such inverters are developed for quasi-
static OPF problems; however, they assumed the inverters
would operate exclusively in a grid-following mode in the grid-
connected setting. Recent work models the grid-supporting
inverts in the OPF formulation by adding the Q-V droop
constraints to the formulation; however, they solve a convex
relaxed problem centrally to reduce the resulting compute
complexities [11]. Note that depending upon their settings,
DERs can operate in grid-forming and grid-supporting mode
in the grid-connected distribution networks [2], [4], [8]. To the
authors’ best knowledge, the existing work does not include
a comprehensive model of different inverter operation modes
for quasi-static OPF problems for power distribution systems.

In addition, the state-of-the-art distributed optimization
methods for OPF, such as Alternating Direction Method of
Multipliers (ADMM), Auxiliary Problem Principle (APP), pri-
marily suffer from a large number of macro-iterations among
distributed agents to solve one instance of the problem [9],
[12]. A large number of communication rounds for solving
one time-step of the OPF problem is not desirable in power
distribution systems, as it will lead to crucial delays in the
decision-making process. Further, the intermediate iterates can
fail to satisfy the power flow equations leading to violation of
the critical power systems operating constraints [1]. This prob-
lem of slow convergence will get aggravated upon including
more complex grid-edge devices such as inverter-based DERs
with grid-supporting and grid-forming modes of operation.

To address these limitations, previously, we have proposed a
novel distributed OPF (D-OPF) algorithm that uses specialized
problem decomposition and information exchange protocols.
The proposed approach actively leverages the topologically
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radial distribution feeder; it significantly reduces the commu-
nication rounds (by order of magnitude) needed to converge
compared to ADMM based methods [13]. However, our prior
work does not include different modes of inverter operation;
we only considered grid-following inverters in the D-OPF
formulation. This paper aims to (i) model different modes of
operations for inverter-interfaced DERs in the quasi-static OPF
problem formulation, and (ii) demonstrate the applicability
and superiority of the previously developed D-OPF algorithm
for distribution systems with a combination of grid-forming,
grid-following, and grid-supporting inverter-interfaced DERs.
Specifically, we develop the models for grid-following, grid-
supporting, and grid-forming DER inverter in the distribution-
level OPF formulation. Next, we study and evaluate the
applicability of a faster and scalable D-OPF algorithm for
a combination of grid-forming and grid-supporting inverters
(with various penetration levels), and then the method is
compared with the state-of-the-art ADMM based method.

II. POWER FLOW & DER MODELS

In this paper, (-)7 represents matrix transpose; | . | sym-
bolizes the absolute value of a number or the cardinality for
a discrete set; (-)(") represents the nt" macro-iteration; Here,
we discuss about the network and DER models. The DERs
are modeled as photovoltaic modules interfaced using smart
inverters, capable of four-quadrant operation. These inverters
can be (i) grid following (GFLI), (ii) grid supporting (GSI),
or (iii) grid forming (GFI) DERs [6]. Please note, traditional
DGs can also be incorporated in the model.

A. Nonlinear Network Model

Let us assume a balanced, radial power distribution network,
represented by the directed graph G = (N, &), where N and
£ be the set of all nodes j and all distribution lines connecting
the ordered pair of buses {ij} in the system. Let r;; & x;;
be the series resistance & reactance V{ij} € £. In k: j — k,
k represents the children nodes for the node j. We denote
v; and [;; as the squared magnitude of voltage (at node j)
and current flow (in branch {ij}), respectively. Also, complex
power pr; + jqr, is the load connected and pp; + jqp; is
the output power of DER, and g¢; is the capacitor at node j.
The network is modeled using the branch flow equations [14]
defined for each line {ij} € £ and Vj € N in (1).

Pij = rijliy —pr, +poj = > Pk (1a)
k:j—k
Qij — mijliy — az; +qc; +ap; = Qi (1b)
k:j—k
v = v; — 2(ri; Pij + 2i;Qij) + (ri; + a3l (Io)
viliy = P+ Q% (1d)

B. Grid Following Inverter-interfaced DERs

Generally in OPF for power distribution networks, DERs
are modeled as grid following inverters — that can generate
power within their physical limits for optimal operations. A
negative load model is adopted to model them in OPFs, i.e.,
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Fig. 1: Droop Curve for GSIs

gpj Oor pp; or both is considered as decision variables [1]. In
the grid following mode, if gp; is modeled as the decision
variable for the optimal operation, then pp; is assumed to be
known (measured). Let the rating of the DER connected at
node j be Spgj, then the limits on ¢p; are given by (2a). On
the contrary, if pp; is modeled as the decision variable, then
gp; is set to 0, and pp; is upper-bounded, see (2b).

- \/S%Rj *pQDj < qpj <4/ S%)Rj *pQDj (2a)
Or, 0<pp; < Sprj (2b)

C. Grid Supporting Inverter-interfaced DERs

The GSI DERs deliver proper active and reactive power to
contribute to the grid operations, such as, frequency and volt-
age. This GSI DERs are represented either as an current-source
or voltage-source based converters [6]. Generally, the optimal
actions from these DERs are extracted by implementing droop
curves, and dynamically modify their operating points. How-
ever, the frequency of changing the droop operating points
might be lower than the frequency of solving OPFs due to
the communication constraints associated with GSIs. Thus, it
is often requires to optimize considering a droop curve of
the GSI, rather than optimize the droop curve itself [4], [11].
Please note, although the current-source and voltage-source
based GSIs have different control loops in the hardware, they
have similar droop characteristics with negative slopes [4],
[6]; thus, their model for OPF formulation is same. The pp; is
known here, and gp; is considered as an optimization variable.
The Q-V droop curves as depicted in Fig. 1 are considered here
instead of piece-wise linear curves (see [4]: Fig. 11-1), as the
later ones are usually configured optimally [4].

(V) = Qreg + kg(Viey — V) 3)

The Q-V droop curve for the GSIs are detailed in (3);
where the reactive power output, gp is dependent on the
nodal voltage V, and k, is the negative of the slope of the
droop curve. An example of this linear relation, gp(V), is
depicted in Fig. 1. However, the network model does not use
the magnitude V, rather use the squared of that value, v. So,
to be able to use the droop curves in the OPF formulation, the
gp(v) curve has to be formulated.

Mostly in power distribution systems, the nodal voltage is
maintained between 0.95 to 1.05 pu. For V,..y € [0.95,1.05],
then we can approximate the gp (V) relation by using Taylor’s
series. Around the reference voltage, V,.r, voltage v can be
approximated by (4). Using this approximation, we get the
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gpj(v) relation in (5) for a GSI node j. The equation (5) can
be used for droop curves with any slope and reference points.

v=Vig + 2% Viep(V = Viey) (4a)
Vv = Ve (4b)
ref 2“;75”’
ref,j vy
403 (v3) = Qregs + s (—2—2) ®)
J J) fid a,j Wrer s

D. Grid Forming Inverter-interfaced DERs

The DERs with grid forming capabilities act as an ideal
voltage source that can generate a specified voltage and
maintain the system’s frequency. Specifically, they provide
the voltage and frequency support in case islands are formed.
In grid-connected mode, they still provide a firm voltage at
the point of common coupling [2]. To solve the quasi-static
OPF problem in grid-connected mode for GFIs, the voltage of
such nodes are kept fixed, while the real and reactive power
generation is modeled as the decision variable for that node.
The model for grid-connected GFIs are detailed in (6). Here,
for the GFI at node j, the voltage is set to v; s¢¢ (6a); the real
power generation pp;, and the reactive power generation ¢p;
is limited by the physical limit of that DER, Spr; (6b).

Vj = Vj,set
p%j + Q%j < SQDR]‘

(6a)
(6b)

Besides gp;, the real power generation, pp; is also consid-
ered as a decision variable for a stable quasi-static operation,
and the angle stability is thus ensured. As the power flow
solutions are unique for radial networks [15], fixing multiple
nodal voltages with fixed real power generations at those nodes
can lead to angle instability — causing unavailability of feasible
power flow solutions.

III. OpTIMAL POWER FLOW PROBLEM FORMULATION

In this section, first, the centralized optimal power flow for-
mulation is developed. Then the decomposition approach and
the distributed optimization problem formulation is detailed.

A. Centralized OPF (C-OPF) Problems

In this section a centralized OPF problem is formulated for
power distribution system with different types of DERs. The
problem is defined by a network-level problem objective, the
power flow models in (1), and the operating constraints on the
power flow variables. In this paper, we formulate the active
power loss minimization problem; the problem objective is
to reduce the network losses by controlling the power output
from DERs. Let X = [P’ij7 Qij7 lw‘, Vj, PDj, qu]T be the
problem variables Vj € N, and V{ij} € £. Note that, if pp;,
gp; is known and uncontrollable, then we set these values
at node j with their known measurements. Also, let F'(X)
be the cost function representing the total power loss in the
given distribution system. Then, the OPF problem is defined
as the following in (C1). Here, N'¢51 and N'¢F! denotes the
sets of GSI and GFI buses, respectively; Vi, = 0.95 and
Vinaz = 1.05 are the limits on bus voltages, and (I,T'j“ted)2 is
the thermal limit for the branch {ij}.
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(C) min F(X)= > ljry (7a)
{ijtee
s.t. (1), 2 (5) V5 € N9 and (6) Vj € NCFT (7b)
Viin <v;i < Vi SViEN (7c)
2
L < (I{;“d) w{ij} e € (7d)

B. Distributed OPF (D-OPF) Problems

The OPF problem described by (C1) can be solved by
several decision-making agents in parallel, and over macro-
iterations, they can get a consensus in the shared variables
to achieve overall convergence. For the distributed OPF, the
decomposition approach is adopted from [13], that is based on
primal decomposition techniques. Furthermore, the proposed
approach leverages the properties of the radial power flow
in specifying the sub-problems and shared variables. The
network is assumed to be decomposed into several areas, each
with one decision-making agent. Thus, the C-OPF problem
is decomposed into several sub-problems, where each sub-
problem is associated with one area. While solving the local
sub-problem, the shared boundary variables with the upstream
area (UA) and the downstream areas (DAs) are approximated
as a fixed voltage source and fixed loads, respectively. These
fixed values are changed at every macro-iteration step and
set equal to the neighbors’ computed value of that respective
shared bus variable, from the previous macro-iteration step.

Suppose the network is composed of N areas- {A;, Ao,
Az, ..., Ax}, and A, = G(Np, En) for m = {1,2,...,N}.
Let X, be the set of local variables and X = ngl Xom.
Also, area A,,, shares bus 0 with its UA and node k (where
{jk} € &) is shared with the DA. Since each shared bus
is solved by both neighboring areas, a subscript notation has
been introduced for those shared nodes — the subscript of a
node represents the area, that has solved the variable; e.g., vo, ,
Dk,, are solved by area A,,, where vy, ,, Pji,, are solved by
UA and DA, respectively. At each A,,, area, the optimization
problem (D1) is solved V{ij} € &,, and Vj € N, at macro-
iteration step n. Constraint (8c) represents the UA & DA
approximations. The macro-iteration stops when the shared
boundary variables reach a consensus among all the neighbors,
and then the decision variables are dispatched within the area.
The consensus at the boundary can also be achieved using
other Fixed Point Iteration methods [13], [16].

®n min FXI) = Y 1Py, (8a)
{ij}Y€Em

s.t. (7b)-(7d) (8b)

o =, = P sl = Qi 6o

IV. NUMERICAL SIMULATIONS & RESULTS

This section presents a detailed evaluation of the D-OPF
algorithm with GFLI, GSI, and GFI DERs. Three test cases
have been simulated: (a) Case I: All the DERs are in grid
following mode, (b) Case II: Various levels of DERs in
grid supporting mode, and (c) Case III: GFLI, GFI and GSI
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Fig. 3: Case I: Numerical Results

inverters are active in the network with some synchronous DG
buses — considered as generator bus (PV type bus).

A. Simulation Setup

The balanced IEEE 123-bus test system, assumed to be
composed of four areas, is used for numerical studies (Fig.
2). Each Area has a local compute agent, that solves local
sub-problems and communicates with the other neighboring
agents. 85 DERs are placed at every load nodes. The nominal
power rating of all the DERs is 42% of the load at that bus.
For GSIs, the droop curve depicted in Fig. 1 is adopted. The
substation voltage is set to 1.03 pu, and the solution time for
D-OPF is defined as the summation of the maximum time
required by agents at each macro-iteration step.

B. Case I: Validation and Comparison

In this case, all the DERs are assumed to be operating in grid
following mode, i.e., generating the specified P and Q. This
case validates the effectiveness of the proposed D-OPF over
state-of-the-art ADMM based methods, such as [9]. From the
Table I, we can see the line loss for the D-OPF is 12.18 kW,
which is very close to the central solution of 12.10 kW, and it
only takes 4 macro-iterations to reach a consensus. The nodal
voltages of D-OPF and C-OPF have also been compared in
Fig. 3a. Additionally, the D-OPF solutions have been validated
using OpenDSS (see Fig. 3a) — the decision variables from
the D-OPF solution is implemented in OpenDSS. Further,
the ADMM based distributed algorithm has been compared;
though the solutions are similar — compared with central or
simulated D-OPF method, the number of macro-iterations is
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Residual

Test Cases C-OPF | D-OPF |Iteration
Loss [12.10 kW | 12.18 kW
Case I 100% GFLI Time | 14.93 sec | 13 sec 4
Loss | 12.6 kW | 12.4 kW
10% GSI Time | 12.6 sec | 12.13 sec 4
Loss | 12.9 kW | 13.0 kW
Case IT 30% GSI Time | 8.15 sec | 11.5 sec 6
Loss | 13.9 kW | 13.9 kW
100% GSI Time | 2.15 sec | 2.2 sec 8
Case TII 80% GFLI, 5% GFI, 5% |Loss| 9.6 kW | 9.87 kW 36
PV type and 10% GSI |Time| 30 sec 100 sec

more than 10 times higher (60 iterations) than the proposed
D-OPF method (4 iterations).

C. Case II: Impacts of GSI DERs

In this case, various numbers of GSI DERs have been intro-
duced in the system to study the impacts of such converters in
the power distribution networks. Also, the performance of the
simulated D-OPF have been investigated. Three different levels
- 10%, 50%, 100%, of the DERs are assumed to be with GSI
functionalities for this case. For 10% GSIs, nodes 7, 22, 39,
48, 58, 60, 90 and 105 are selected (Fig. 2). For 50% scenario,
42 DERs are selected randomly from those 85 DERs. From
the Table I, it is observed that with increasing GSIs, the line
losses in the system increases — 12.4 kW to 13.9 kW. Generally
for loss minimization, the Q dispatches and the voltages are
gravitated towards the max value, however, the droop curves
dictates the Q dispatches based on the voltages — activating
more constraints on the Q dispatches, causing higher losses
with increased GSIs. On the other hand, though the macro-
iterations slightly increases (4 to 8), the overall solution time
decreases (12 to 2 sec) as the solution space is reduced by
the added constraints. For ADMM based algorithm, it takes
60-70 macro-iterations for these cases. The nodal voltages
for these scenarios are also compared and validated using
OpenDSS. The D-OPF and OpenDSS voltages are exactly
same — validating the solution quality of D-OPF with GSIs
(Fig. 4). Also, with increased GSIs, the voltages are decreased
— causing higher line losses.

D. Case III: Impacts of GFI DERs

The last case implements DERs — interfaced with GFLI, GSI
and GFI, to show the solution quality and the robustness of the
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Fig. 5: Case III: Numerical Results

simulated D-OPF. While 10% nodes are GSIs, nodes 32, 50,
67 & 78 are assumed to be GFI buses. The rating of the GFI
DERs are increased 10 times to maintain the specified voltage
at those nodes. We also included some DGs (node 33, 41, 98
and 109), that can operate as a generator bus (PV type bus) as
mentioned in [2]. For these DGs, the active power generation,
pp; is kept fixed and the nodal voltage, v; is maintained near
the set value, v; s.; by generating optimal reactive power, gp;.
We model such DERs by adding penalty term with the cost
function (F(X) = Zlijrij + MZjENPVBus ('Uj - 'Uset)),
and pp; is kept fixed. Here, M is a high number (10?) and
vset 18 the specified voltage at that node. Within the physical
limits, these buses tries to maintain the voltage and dispatches
the set generation values [2]. All the specified voltages for
this case are set to 1.00 pu. The inclusion of GFIs increases
the macro-iteration number to 36 for D-OPF (Table I) due
to the augmented complexity introduced by the GFI models,
but the solution matches with the central OPF; the result is
also validated against OpenDSS (Fig. 5a). On the contrary, the
ADMM based method takes more than 2000 macro-iterations
to converge, and the solution gives a sub-optimal result (Fig.
5b). This showcases that the inclusion of GFI DERs can
increase the computational time, however the simulated D-
OPF method is robust enough to reach the global solution,
where the ADMM based method fails to reach that — even
with 2000 iterations.

V. CONCLUSION

We developed models for the inverter-interfaced DERs
operating in grid-forming and grid-supporting modes for the
quasi-static OPF problems in the power distribution system.
A specialized distributed optimization algorithm that actively
leverages the distribution system’s radial topology (in struc-
ture) is used to solve the resulting OPF problem in a distributed
manner. Compared to ADMM, the simulated distributed OPF
(D-OPF) algorithm not only reduced the number of macro-
iterations required to converge by orders of magnitude but
also converged to the same solution as the centralized OPF
method. Note that for some cases, especially with a large
number of grid-forming inverters, ADMM-based distributed
OPF converged to a higher cost even after thousands of macro-
iterations. This paper is the first to incorporate models for
grid-forming and grid-supporting functions of DERs (along
with grid-following) in the OPF problem and demonstrate
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the use of a computationally tractable and scalable D-OPF
algorithm to solve the resulting more complex OPF problem
efficiently. This is also the first study to demonstrate that
the specialized D-OPF algorithm outperforms state-of-the-
art ADMM-based D-OPF algorithms for radial distribution
feeders connected to various inverter-based DER technologies.
Although inverters can switch their modes to meet the grid
requirements, we do not consider such transition stages or
mode changes in the current formulation. Extending OPF
formulations to smart inverters with mode change capability
is an interesting direction for future research work.
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