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Abstract—With massive penetrations of active grid-edge tech-
nologies, distributed computing and optimization paradigm has
gained significant attention to solve distribution-level optimal
power flow (OPF) problems. However, the application of generic
distributed optimization techniques to OPF problems leads to a
very large number of macro-iterations or communication rounds
among the distributed computing agents delaying the decision-
making process or resulting in suboptimal solutions. Moreover,
the existing distribution-level OPF problems typically model
inverter-interfaced distributed energy resources (DERs) as grid-
following inverters; grid-supporting and grid-forming functional-
ities have not been explicitly considered. The added complexities
introduced by different inverter models require further attention
to developing an appropriate model for new types of inverter-
based DERs and computationally-tractable OPF algorithms. In
this paper, we expand the distribution-level OPF model to
include a combination of the grid-forming, grid-supporting, grid-
following inverter-based DERs and also present the application
of a domain-specific problem decomposition and distributed
algorithm for the topologically radial power distribution systems
to efficiently solve distribution-level OPF problem.

Index Terms—Inverter models, distributed optimization, opti-
mal power flow, power distribution systems.

I. INTRODUCTION

Massive integration of DERs in the power distribution

systems requires applications of optimal power flow (OPF)

methods to coordinate their operations [1], [2]. Although

both centralized and distributed optimization techniques have

been used to solve the distribution-level OPF problem, lately,

the distributed optimization methods have gained significant

attention to solving OPF due to their robustness to single-point

failures [1]. In addition, the scalability and complexity of the

centralized OPF (C-OPF) mechanism, which stems from both

the size of the network and the increased inverter-interfaced

DERs, can be managed using distributed optimization methods

[1]. However, the direct application of the existing distributed

OPF algorithms results in slow converges. Moreover, the

DERs are generally coupled with smart inverters, with possible

grid-following and grid-supporting functionalities, capable of

providing grid services such as voltage and frequency support

[3], [4]. Incorporating different inverter operating modes can

further increase the computational complexities and make it

more challenging for state-of-art D-OPF algorithms to con-

verge within a reasonable time or number of macro-iterations.

This work was partially supported by NSF Career award no. 1944142 and
U.S. Department of Energy under Contract DE-AC05-76RL01830.

Typically, the models of grid-forming & supporting invert-

ers are either developed for dynamic simulations or mod-

eled for microgrid operations [5]–[7]. Although in [2], [8],

such inverter-connected buses are modeled for the quasi-

static power-flow study, the appropriate models to formulate

the distributed OPF, require further attention. A majority of

the existing OPF literature, the inverter-interfaced DERs are

usually modeled as negative loads assuming a grid-following

functionality [1], [9], [10]. Upon solving the OPF, the grid-

following DERs are set to dispatch the optimal active and/or

reactive power to the network. In [5], [6], only dynamic

simulation cases have been considered while developing the

models for grid-forming and supporting inverters; thus, they

can not be directly adopted in OPF formulations. In [7], a

generalized model of such inverters are developed for quasi-

static OPF problems; however, they assumed the inverters

would operate exclusively in a grid-following mode in the grid-

connected setting. Recent work models the grid-supporting

inverts in the OPF formulation by adding the Q-V droop

constraints to the formulation; however, they solve a convex

relaxed problem centrally to reduce the resulting compute

complexities [11]. Note that depending upon their settings,

DERs can operate in grid-forming and grid-supporting mode

in the grid-connected distribution networks [2], [4], [8]. To the

authors’ best knowledge, the existing work does not include

a comprehensive model of different inverter operation modes

for quasi-static OPF problems for power distribution systems.

In addition, the state-of-the-art distributed optimization

methods for OPF, such as Alternating Direction Method of

Multipliers (ADMM), Auxiliary Problem Principle (APP), pri-

marily suffer from a large number of macro-iterations among

distributed agents to solve one instance of the problem [9],

[12]. A large number of communication rounds for solving

one time-step of the OPF problem is not desirable in power

distribution systems, as it will lead to crucial delays in the

decision-making process. Further, the intermediate iterates can

fail to satisfy the power flow equations leading to violation of

the critical power systems operating constraints [1]. This prob-

lem of slow convergence will get aggravated upon including

more complex grid-edge devices such as inverter-based DERs

with grid-supporting and grid-forming modes of operation.

To address these limitations, previously, we have proposed a

novel distributed OPF (D-OPF) algorithm that uses specialized

problem decomposition and information exchange protocols.

The proposed approach actively leverages the topologically
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radial distribution feeder; it significantly reduces the commu-

nication rounds (by order of magnitude) needed to converge

compared to ADMM based methods [13]. However, our prior

work does not include different modes of inverter operation;

we only considered grid-following inverters in the D-OPF

formulation. This paper aims to (i) model different modes of

operations for inverter-interfaced DERs in the quasi-static OPF

problem formulation, and (ii) demonstrate the applicability

and superiority of the previously developed D-OPF algorithm

for distribution systems with a combination of grid-forming,

grid-following, and grid-supporting inverter-interfaced DERs.

Specifically, we develop the models for grid-following, grid-

supporting, and grid-forming DER inverter in the distribution-

level OPF formulation. Next, we study and evaluate the

applicability of a faster and scalable D-OPF algorithm for

a combination of grid-forming and grid-supporting inverters

(with various penetration levels), and then the method is

compared with the state-of-the-art ADMM based method.

II. POWER FLOW & DER MODELS

In this paper, (·)T represents matrix transpose; | . | sym-

bolizes the absolute value of a number or the cardinality for

a discrete set; (·)(n) represents the nth macro-iteration; Here,

we discuss about the network and DER models. The DERs

are modeled as photovoltaic modules interfaced using smart

inverters, capable of four-quadrant operation. These inverters

can be (i) grid following (GFLI), (ii) grid supporting (GSI),

or (iii) grid forming (GFI) DERs [6]. Please note, traditional

DGs can also be incorporated in the model.

A. Nonlinear Network Model

Let us assume a balanced, radial power distribution network,

represented by the directed graph G = (N , E), where N and

E be the set of all nodes j and all distribution lines connecting

the ordered pair of buses {ij} in the system. Let rij & xij

be the series resistance & reactance ∀{ij} ∈ E . In k : j → k,

k represents the children nodes for the node j. We denote

vj and lij as the squared magnitude of voltage (at node j)

and current flow (in branch {ij}), respectively. Also, complex

power pLj
+ jqLj

is the load connected and pDj + jqDj is

the output power of DER, and qCj is the capacitor at node j.

The network is modeled using the branch flow equations [14]

defined for each line {ij} ∈ E and ∀j ∈ N in (1).

Pij − rij lij − pLj
+ pDj =

∑

k:j→k

Pjk (1a)

Qij − xij lij − qLj
+ qCj + qDj =

∑

k:j→k

Qjk (1b)

vj = vi − 2(rijPij + xijQij) + (r2ij + x
2
ij)lij (1c)

vilij = P
2
ij +Q

2
ij (1d)

B. Grid Following Inverter-interfaced DERs

Generally in OPF for power distribution networks, DERs

are modeled as grid following inverters – that can generate

power within their physical limits for optimal operations. A

negative load model is adopted to model them in OPFs, i.e.,

maxQ

minQ

refV

minV maxV
refQ

qk
max min

max min

Q Q

V V

−

−

slope= − =

V

Dq

Fig. 1: Droop Curve for GSIs

qDj or pDj or both is considered as decision variables [1]. In

the grid following mode, if qDj is modeled as the decision

variable for the optimal operation, then pDj is assumed to be

known (measured). Let the rating of the DER connected at

node j be SDRj , then the limits on qDj are given by (2a). On

the contrary, if pDj is modeled as the decision variable, then

qDj is set to 0, and pDj is upper-bounded, see (2b).

−
√

S2
DRj − p2Dj ≤ qDj ≤

√

S2
DRj − p2Dj (2a)

Or, 0 ≤ pDj ≤ SDRj (2b)

C. Grid Supporting Inverter-interfaced DERs

The GSI DERs deliver proper active and reactive power to

contribute to the grid operations, such as, frequency and volt-

age. This GSI DERs are represented either as an current-source

or voltage-source based converters [6]. Generally, the optimal

actions from these DERs are extracted by implementing droop

curves, and dynamically modify their operating points. How-

ever, the frequency of changing the droop operating points

might be lower than the frequency of solving OPFs due to

the communication constraints associated with GSIs. Thus, it

is often requires to optimize considering a droop curve of

the GSI, rather than optimize the droop curve itself [4], [11].

Please note, although the current-source and voltage-source

based GSIs have different control loops in the hardware, they

have similar droop characteristics with negative slopes [4],

[6]; thus, their model for OPF formulation is same. The pDj is

known here, and qDj is considered as an optimization variable.

The Q-V droop curves as depicted in Fig. 1 are considered here

instead of piece-wise linear curves (see [4]: Fig. 11-1), as the

later ones are usually configured optimally [4].

qD(V ) = Qref + kq(Vref − V ) (3)

The Q-V droop curve for the GSIs are detailed in (3);

where the reactive power output, qD is dependent on the

nodal voltage V, and kq is the negative of the slope of the

droop curve. An example of this linear relation, qD(V ), is

depicted in Fig. 1. However, the network model does not use

the magnitude V, rather use the squared of that value, v. So,

to be able to use the droop curves in the OPF formulation, the

qD(v) curve has to be formulated.

Mostly in power distribution systems, the nodal voltage is

maintained between 0.95 to 1.05 pu. For Vref ∈ [0.95, 1.05],
then we can approximate the qD(V ) relation by using Taylor’s

series. Around the reference voltage, Vref , voltage v can be

approximated by (4). Using this approximation, we get the
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qDj(v) relation in (5) for a GSI node j. The equation (5) can

be used for droop curves with any slope and reference points.

v = V
2
ref + 2× Vref (V − Vref ) (4a)

⇒ Vref − V =
V 2
ref − v

2Vref

(4b)

qDj(vj) = Qref,j + kq,j

(V 2
ref,j − vj

2Vref,j

)

(5)

D. Grid Forming Inverter-interfaced DERs

The DERs with grid forming capabilities act as an ideal

voltage source that can generate a specified voltage and

maintain the system’s frequency. Specifically, they provide

the voltage and frequency support in case islands are formed.

In grid-connected mode, they still provide a firm voltage at

the point of common coupling [2]. To solve the quasi-static

OPF problem in grid-connected mode for GFIs, the voltage of

such nodes are kept fixed, while the real and reactive power

generation is modeled as the decision variable for that node.

The model for grid-connected GFIs are detailed in (6). Here,

for the GFI at node j, the voltage is set to vj,set (6a); the real

power generation pDj , and the reactive power generation qDj

is limited by the physical limit of that DER, SDRj (6b).

vj = vj,set (6a)

p
2
Dj + q

2
Dj ≤ S

2
DRj (6b)

Besides qDj , the real power generation, pDj is also consid-

ered as a decision variable for a stable quasi-static operation,

and the angle stability is thus ensured. As the power flow

solutions are unique for radial networks [15], fixing multiple

nodal voltages with fixed real power generations at those nodes

can lead to angle instability – causing unavailability of feasible

power flow solutions.

III. OPTIMAL POWER FLOW PROBLEM FORMULATION

In this section, first, the centralized optimal power flow for-

mulation is developed. Then the decomposition approach and

the distributed optimization problem formulation is detailed.

A. Centralized OPF (C-OPF) Problems

In this section a centralized OPF problem is formulated for

power distribution system with different types of DERs. The

problem is defined by a network-level problem objective, the

power flow models in (1), and the operating constraints on the

power flow variables. In this paper, we formulate the active

power loss minimization problem; the problem objective is

to reduce the network losses by controlling the power output

from DERs. Let X = [Pij , Qij , lij , vj , pDj , qDj ]
T be the

problem variables ∀j ∈ N , and ∀{ij} ∈ E . Note that, if pDj ,

qDj is known and uncontrollable, then we set these values

at node j with their known measurements. Also, let F (X)
be the cost function representing the total power loss in the

given distribution system. Then, the OPF problem is defined

as the following in (C1). Here, NGSI and NGFI denotes the

sets of GSI and GFI buses, respectively; Vmin = 0.95 and

Vmax = 1.05 are the limits on bus voltages, and (Iratedij )2 is

the thermal limit for the branch {ij}.

(C1) min F (X) =
∑

{ij}∈E

lijrij (7a)

s.t. (1), (2); (5) ∀j ∈ NGSI
, and (6) ∀j ∈ NGFI

(7b)

V
2
min ≤ vj ≤ V

2
max ; ∀j ∈ N (7c)

lij ≤
(

I
rated
ij

)2

; ∀{ij} ∈ E (7d)

B. Distributed OPF (D-OPF) Problems

The OPF problem described by (C1) can be solved by

several decision-making agents in parallel, and over macro-

iterations, they can get a consensus in the shared variables

to achieve overall convergence. For the distributed OPF, the

decomposition approach is adopted from [13], that is based on

primal decomposition techniques. Furthermore, the proposed

approach leverages the properties of the radial power flow

in specifying the sub-problems and shared variables. The

network is assumed to be decomposed into several areas, each

with one decision-making agent. Thus, the C-OPF problem

is decomposed into several sub-problems, where each sub-

problem is associated with one area. While solving the local

sub-problem, the shared boundary variables with the upstream

area (UA) and the downstream areas (DAs) are approximated

as a fixed voltage source and fixed loads, respectively. These

fixed values are changed at every macro-iteration step and

set equal to the neighbors’ computed value of that respective

shared bus variable, from the previous macro-iteration step.

Suppose the network is composed of N areas- {A1, A2,

A3, ..., AN}, and Am = G(Nm, Em) for m = {1, 2, ..., N}.

Let Xm be the set of local variables and X =
⋃N

m=1 Xm.

Also, area Am shares bus 0 with its UA and node k (where

{jk} ∈ Em) is shared with the DA. Since each shared bus

is solved by both neighboring areas, a subscript notation has

been introduced for those shared nodes – the subscript of a

node represents the area, that has solved the variable; e.g., v0m ,

pkm
are solved by area Am, where v0ua

, Pjkda
are solved by

UA and DA, respectively. At each Am area, the optimization

problem (D1) is solved ∀{ij} ∈ Em and ∀j ∈ Nm at macro-

iteration step n. Constraint (8c) represents the UA & DA

approximations. The macro-iteration stops when the shared

boundary variables reach a consensus among all the neighbors,

and then the decision variables are dispatched within the area.

The consensus at the boundary can also be achieved using

other Fixed Point Iteration methods [13], [16].

(D1) min F (X(n)
m ) =

∑

{ij}∈Em

l
(n)
ij rij (8a)

s.t. (7b)-(7d) (8b)

v
(n)
0m

= v
(n−1)
0ua

; p
(n)
km

= P
(n−1)
jkda

; q
(n)
km

= Q
(n−1)
jkda

(8c)

IV. NUMERICAL SIMULATIONS & RESULTS

This section presents a detailed evaluation of the D-OPF

algorithm with GFLI, GSI, and GFI DERs. Three test cases

have been simulated: (a) Case I: All the DERs are in grid

following mode, (b) Case II: Various levels of DERs in

grid supporting mode, and (c) Case III: GFLI, GFI and GSI
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(a) Nodal voltages (b) Convergence

Fig. 3: Case I: Numerical Results

inverters are active in the network with some synchronous DG

buses – considered as generator bus (PV type bus).

A. Simulation Setup

The balanced IEEE 123-bus test system, assumed to be

composed of four areas, is used for numerical studies (Fig.

2). Each Area has a local compute agent, that solves local

sub-problems and communicates with the other neighboring

agents. 85 DERs are placed at every load nodes. The nominal

power rating of all the DERs is 42% of the load at that bus.

For GSIs, the droop curve depicted in Fig. 1 is adopted. The

substation voltage is set to 1.03 pu, and the solution time for

D-OPF is defined as the summation of the maximum time

required by agents at each macro-iteration step.

B. Case I: Validation and Comparison

In this case, all the DERs are assumed to be operating in grid

following mode, i.e., generating the specified P and Q. This

case validates the effectiveness of the proposed D-OPF over

state-of-the-art ADMM based methods, such as [9]. From the

Table I, we can see the line loss for the D-OPF is 12.18 kW,

which is very close to the central solution of 12.10 kW, and it

only takes 4 macro-iterations to reach a consensus. The nodal

voltages of D-OPF and C-OPF have also been compared in

Fig. 3a. Additionally, the D-OPF solutions have been validated

using OpenDSS (see Fig. 3a) – the decision variables from

the D-OPF solution is implemented in OpenDSS. Further,

the ADMM based distributed algorithm has been compared;

though the solutions are similar – compared with central or

simulated D-OPF method, the number of macro-iterations is

Fig. 4: Case II: Voltages for Different Levels of GSIs

TABLE I: Comparison of OPF Solutions

Test Cases C-OPF D-OPF Iteration

Case I 100% GFLI
Loss 12.10 kW 12.18 kW

4
Time 14.93 sec 13 sec

Case II

10% GSI
Loss 12.6 kW 12.4 kW

4
Time 12.6 sec 12.13 sec

50% GSI
Loss 12.9 kW 13.0 kW

6
Time 8.15 sec 11.5 sec

100% GSI
Loss 13.9 kW 13.9 kW

8
Time 2.15 sec 2.2 sec

Case III
80% GFLI, 5% GFI, 5% Loss 9.6 kW 9.87 kW

36
PV type and 10% GSI Time 30 sec 100 sec

more than 10 times higher (60 iterations) than the proposed

D-OPF method (4 iterations).

C. Case II: Impacts of GSI DERs

In this case, various numbers of GSI DERs have been intro-

duced in the system to study the impacts of such converters in

the power distribution networks. Also, the performance of the

simulated D-OPF have been investigated. Three different levels

– 10%, 50%, 100%, of the DERs are assumed to be with GSI

functionalities for this case. For 10% GSIs, nodes 7, 22, 39,

48, 58, 60, 90 and 105 are selected (Fig. 2). For 50% scenario,

42 DERs are selected randomly from those 85 DERs. From

the Table I, it is observed that with increasing GSIs, the line

losses in the system increases – 12.4 kW to 13.9 kW. Generally

for loss minimization, the Q dispatches and the voltages are

gravitated towards the max value, however, the droop curves

dictates the Q dispatches based on the voltages – activating

more constraints on the Q dispatches, causing higher losses

with increased GSIs. On the other hand, though the macro-

iterations slightly increases (4 to 8), the overall solution time

decreases (12 to 2 sec) as the solution space is reduced by

the added constraints. For ADMM based algorithm, it takes

60-70 macro-iterations for these cases. The nodal voltages

for these scenarios are also compared and validated using

OpenDSS. The D-OPF and OpenDSS voltages are exactly

same – validating the solution quality of D-OPF with GSIs

(Fig. 4). Also, with increased GSIs, the voltages are decreased

– causing higher line losses.

D. Case III: Impacts of GFI DERs

The last case implements DERs – interfaced with GFLI, GSI

and GFI, to show the solution quality and the robustness of the
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(a) Nodal voltages (b) Convergence

Fig. 5: Case III: Numerical Results

simulated D-OPF. While 10% nodes are GSIs, nodes 32, 50,

67 & 78 are assumed to be GFI buses. The rating of the GFI

DERs are increased 10 times to maintain the specified voltage

at those nodes. We also included some DGs (node 33, 41, 98

and 109), that can operate as a generator bus (PV type bus) as

mentioned in [2]. For these DGs, the active power generation,

pDj is kept fixed and the nodal voltage, vj is maintained near

the set value, vj,set by generating optimal reactive power, qDj .

We model such DERs by adding penalty term with the cost

function (F (X) =
∑

lijrij + M
∑

j∈NPV Bus(vj − vset)),
and pDj is kept fixed. Here, M is a high number (102) and

vset is the specified voltage at that node. Within the physical

limits, these buses tries to maintain the voltage and dispatches

the set generation values [2]. All the specified voltages for

this case are set to 1.00 pu. The inclusion of GFIs increases

the macro-iteration number to 36 for D-OPF (Table I) due

to the augmented complexity introduced by the GFI models,

but the solution matches with the central OPF; the result is

also validated against OpenDSS (Fig. 5a). On the contrary, the

ADMM based method takes more than 2000 macro-iterations

to converge, and the solution gives a sub-optimal result (Fig.

5b). This showcases that the inclusion of GFI DERs can

increase the computational time, however the simulated D-

OPF method is robust enough to reach the global solution,

where the ADMM based method fails to reach that – even

with 2000 iterations.

V. CONCLUSION

We developed models for the inverter-interfaced DERs

operating in grid-forming and grid-supporting modes for the

quasi-static OPF problems in the power distribution system.

A specialized distributed optimization algorithm that actively

leverages the distribution system’s radial topology (in struc-

ture) is used to solve the resulting OPF problem in a distributed

manner. Compared to ADMM, the simulated distributed OPF

(D-OPF) algorithm not only reduced the number of macro-

iterations required to converge by orders of magnitude but

also converged to the same solution as the centralized OPF

method. Note that for some cases, especially with a large

number of grid-forming inverters, ADMM-based distributed

OPF converged to a higher cost even after thousands of macro-

iterations. This paper is the first to incorporate models for

grid-forming and grid-supporting functions of DERs (along

with grid-following) in the OPF problem and demonstrate

the use of a computationally tractable and scalable D-OPF

algorithm to solve the resulting more complex OPF problem

efficiently. This is also the first study to demonstrate that

the specialized D-OPF algorithm outperforms state-of-the-

art ADMM-based D-OPF algorithms for radial distribution

feeders connected to various inverter-based DER technologies.

Although inverters can switch their modes to meet the grid

requirements, we do not consider such transition stages or

mode changes in the current formulation. Extending OPF

formulations to smart inverters with mode change capability

is an interesting direction for future research work.
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