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Abstract—Grid hardening is one of the most effective ap-
proaches to improving the power distribution systems’ resilience
against extreme events. Unfortunately, hardening and upgrading
the entire system is prohibitively expensive, mostly to protect
against high-impact low-probability (HILP) events. This paper
adopts a reinforcement learning (RL) algorithm to effectively
search for the optimal hardening strategy to enhance power
distribution systems’ resilience — the resilience is quantified using
a risk-based metric for the loss of load probability. The proposed
Q-learning algorithm identifies the sequential optimal actions for
grid hardening that minimizes the Conditional Value at Risk
(CVaR) for the loss of load for a given budget. A case study
is presented using the IEEE 123-bus test feeder to demonstrate
the proposed approach’s effectiveness in optimally allocating the
budget-limited resources in resilient distribution system planning.

Index Terms—Resource planning, resilience, grid hardening,
machine learning, power distribution systems.

I. INTRODUCTION

The growing frequency and duration of extreme weather
events significantly increase the power grid’s propensity for
extended disruptions. Power distribution systems are especially
prone to extended outages, given their radial topology with
limited visibility and controllability—around 90% of the power
outage incidents are related to the distribution systems in
the United States [1]. The staggering cost of power system
outages and their impacts on personal safety demands ex-
pedited incorporation of resilience in the aging and stressed
power distribution systems towards extreme weather events
[2]. Thus, it is of growing concern to minimize the impacts
of such catastrophic events with effective resilience-enhancing
strategies.

Recently, the resilience oriented design of the power dis-
tribution system is of growing research interest. The efforts
are focused on how to harden/upgrade the system given the
budget constraints optimally. A few popular methods include
the optimization-based decision support tool and robust mod-
eling for designing/upgrading the distribution network [3]-
[5], and graph-theoretic formulation for resilient distribution
grid topology designs [6]. While promising, the traditional
distribution grid planning methods pose limitations due to
an inadequate characterization of HILP events and/or overly
simplified representation of power systems operational models
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[7]. Incorporating HILP events requires a risk-based charac-
terization of resilience [8]. Unfortunately, incorporating such
risk-based metrics in a model-based optimization setting for
planning poses modeling and computational challenges [9].
This calls for a resilience planning framework that uses the
risk-based characterization of HILP events’ impacts in identi-
fying optimal strategies to enhance distribution grid resilience.

In recent years, to address some of the limitations of the
model-based techniques, machine learning (ML) algorithms
have gained popularity with strategic decision-making in the
power grid [10]. For example, ML tools help respond to the
HILP events by generating accurate component outages and
load curtailment forecasts [11]. Recent work also focuses on
generating synthetic and realistic power grid data to analyze
different events and their impacts on the distribution systems
[12]. In [13], the authors analyzed the power grid’s resilience
utilizing different machine learning techniques. Likewise, Q-
learning has been used to identify worst impact zones in the
power distribution systems [14], and vulnerability assessment
of the power transmission system using different machine
learning and game theory techniques [15]. The related litera-
ture, however, is sparse on resilient distribution grid planning
using ML techniques.

Inspired by the need to improve the distribution system
resilience, our primary focus of this study is to identify the
optimal resilience enhancement strategy with a risk-based
resilience quantification. We focus on the specific distribution
grid problem hardening to wind storms by undergrounding the
distribution lines toward this goal. Here, we adopted a risk-
averse approach to resource planning in the distribution grid
that includes adequate models to characterize HILP events and
incorporates advanced operations [8]. To manage the resulting
problem formulation’s computational tractability, we develop
a framework based on the Q-learning approach to generate
the optimal decisions for line hardening for a given budget
constraint. Resilience is quantified using risk-based metrics,
value-at-risk (V aR), and conditional value-at-risk (C'V aR), as
proposed in our previous articles [8]. The planning problem
is modeled as a Markov decision process (MDP) with the se-
quential line upgrade actions to minimize the resulting C'VaR.
We validate the proposed approach using simulation on the
IEEE 123-bus test system. While other RL approaches can
be used, Q-learning employed in this work was successful in
obtaining strategic line hardening decisions. Further research
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Fig. 1. Optimal planing for enhancing resilience to weather events via line
hardening using fragility curves.

is needed to validate the scalability of the proposed algorithm
for larger systems.

II. PROBLEM DESCRIPTION

Investments that augment distribution grid resilience include
system hardening and operational measures such as deploying
new sensing and control technologies and distributed energy
resources for faster recovery [2]. Hardening measures refer
to topology and structural changes to make the network
less susceptible to damage under extreme events. In contrast,
operational measures refer to smart actions to deal with the
emergency as it unfolds effectively. Grid hardening denoted
as infrastructure reinforcement actions, is one of the most
effective methods to protect systems against extreme weather
events. Various grid hardening strategies include overhead
structure reinforcement, vegetation management, underground-
ing, and integrating black-start resources.

Fig. 1 shows the procedure of resilience enhancement using
the concept of fragility curves. These component-level fragility
curves can be used to model the impacts of hurricanes or
other high-wind events on power system components. By
hardening, components are made robust to higher intensities
of weather events by reducing the probability of wind-induced
damages. In essence, hardening modifies the fragility curve for
the distribution system components and reduces system loss.
This probabilistic loss can be measured using a conceptual
resilience curve as the event progresses. The system tries to
avoid, react, and/or recover from such an event using the pre-
defined risk-based metrics. In a long-term planning problem,
the sequential hardening of the system is more relevant. As
the budget becomes available, the simulation-based framework
can assess the system’s resilience for a probabilistic event
and decide on line hardening. Such a process is beneficial
for utilities as planning for extreme events is an incremental
process. It is essential to learn from past events to plan
efficiently for the future.

Although system hardening could reduce component fail-
ures and restoration efforts, hardening and modernizing the
entire system is prohibitively expensive. Hence, it is imperative

to allocate budget-limited resources effectively. As a result, the
problem of optimally hardening the given network for a given
budget constraint is of interest.

III. METHODOLOGY

A probabilistic formulation of the risk-based resilience mea-
surement framework for a distribution system can characterize
the HILP events and their impacts on the distribution network.
The adoption of Q-learning framework takes the candidate
lines for hardening, measures the resilience based on the risk-
based metric, and through the learning process, identifies the
optimal line for hardening from the set of candidate lines. In
this section, we discuss the approach to measure the resilience
of the system using risk-based metrics. Next, we detail the
RL-based approach to identify the optimal line hardening
decisions.

A. Risk-based metrics

The planning problem’s main goal is to optimally allocate
the available resources to minimize the highest-impact events’
risk. This requires a mechanism to quantify the risks associated
with the highest impact events for a given resource allocation.
In this work, we use the framework based on Monte-Carlo
simulation [8] to evaluate the impacts of HILP events (e.g.,
wind storms) on distribution system performance and quantify
the risks posed by such events on the system’s resilience.
The risk-based quantitative measures that are adopted in this
work are: Value-at-risk (VaR) and conditional-value-at risk
(CVaR) [8].

VaR calculates the maximum loss expected over a given
period and given a specified degree of confidence. VaR refers
to the lowest amount ¢ such that with probability «, the loss
will not exceed (. In the case of resilience quantification,
the decrease in resilience or system loss function, U(I), is
measured to quantify the VaR metric. The probability of
system loss, U(I), when impacted by event I not exceeding
a threshold ( is given by (1).

¥(C) = /U Lo P )

where, v is the cumulative distribution function for the loss
which determines the behavior of random event, /. By defini-
tion, with respect to a specified probability level « in (0,1),
VaR,, is given by (2).

VaRo =min{¢ € R: ¢(¢) > a} 2

Similarly, the CVaR metric is defined to calculate the
expected system loss due to probabilistic threat events, condi-
tioned on the events being HILP, i.e., due to the top 1-a% of
highest impact events (See Fig. 2). In our case, the metric finds
the expected resilience loss in MWh, and is mathematically
represented in (3).

CVaRy=(1—-a)™" / U(I) p(I) dI. 3)

JU(I)>VaRg,
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Fig. 2. VaR and C'VaR assessment for a probabilistic weather event. HILP
events identified as the top (1 — )% high impact disruptions.

B. Q- Learning

Q-learning is a Reinforcement Learning (RL) algorithm
and one of the semisupervised machine learning algorithms.
Typically an agent interacts with the environment by executing
actions. In return, the environment provides feedback to the
learning agent based on the action evaluation, which we call
rewards. An agent aims to maximize the reward by taking
optimal actions. A typical learning framework involves an
environment, states (s € S), corresponding actions (a € A),
and rewards (r). The environment is generally formed as
Markov Decision Process (MDP). The applications of RL
includes autonomous vehicle, robotics, navigation, etc.

An agent in Q-learning follows the Bellman equation to
update the cumulative rewards for its corresponding state and

action.
N

Q=> ""ri(se,ar) )

t=1

Here @) represents the quality of state, S. t represents the
time steps and ranges from {1.2,3,..., N},  represents the
discount factor and ranges from O to 1, r represents the reward
at state, s due to the execution of action, a. Value of ~y close to
0 ensures the learning process is focused on short term reward,
and the value of « close to 1 helps the learning agent focus
on long term rewards.

a; = arg Jnax Q (st,a ) ©)
Here, a; represents the optimal action at time step ¢ which
maximizes the () value of that state. The generic Bellman
equation can be expressed as follows:

Q (s, at) (1 — @)@ (s, ar)

6
+ {Tt+1 (s¢,a¢) + VmgXQ (3t+17a)} ©

where, « represents the learning rate. The equation above can
simplified as follows:

Q(s¢,at) + r(se, at) +7m3XQ(st+1,a) 7

There is an exploration-exploitation trade-off, which helps
to take random action during exploration and greedy action
during exploitation. The value of € balances this exploration-
exploitation trade-off during the learning process.

IV. PROPOSED Q-LEARNING FRAMEWORK

The proposed Q-learning framework for resilience planning
enables strategic decision making on behalf of a power grid
agent. The components of this RL based framework includes
state (s € S), action (a € A), reward (R). The states are
generally represented as follows: S = {si,82,53,...,83}.
Here, the Q-learning framework is developed as a one-shot
process. And the set of actions A can be generally represented
as follows: A = {a1,az,as,...,an}. The states are the power
system states with the selection of line hardening actions.
The set of actions includes the tentative set of lines. In
this study, we randomly select 10 lines, and the learning
agent aims to select an optimal line for hardening actions to
make the grid resilient battling the HILP events. The learning
framework is developed in Python, and the power system is
conducting operations in MATLAB. The learning framework
sends an action execution command with the action index to
the MATLAB. The MATLAB executes the action, calculates
the CVaR,, and returns the value to the Python. The learning
framework receives the returned value and considers it as the
reward. For the experiment’s ease, we consider 10 random
lines as candidate lines to be selected for hardening during the
HILP events. For the event, we consider wind-related events.
The set of candidate lines are: A = {1,2,3,...,10}. The
initial state of the system is considered as the steady-state
condition of the system. The agent changes action strategies by
selecting lines from the action set, A. To conduct the learning
process, the agent explores and exploits about 500 episodes.
The learning aims to find the optimal line that maximizes the
value of CVaR, so that the learned line can be used for line
hardening.

As we mentioned earlier, the Q-learning agent utilizes
exploration-exploitation trade-off to balance between random
action and greedy/optimal action selection. The agent selects
an action with a e-greedy policy. In e-greedy policy, an agent
selects the optimal action that gives the maximum reward

Algorithm 1: Q-learning for optimal line hardening

Input : Fragility curve, Set of lines (A), Budget
1 Initialize the action counter, probability, and Q-table;
2 if Number of executed action < Budget then

3 for Maximum number of episodes do

4 if Prob > e then

5 | a < Rand (A);

6 else

7 | a < Greedy (A);

8 end

9 Update the action counter and probability, P;
10 Execute the action;

11 Calculate C'VaR, and assign the reward;
12 Update Q-table;

13 end

14 else

15 | Terminate the simulation;

16 end

Output: Optimal selection of line for hardening.
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TABLE 1
CSFR AND THEIR ASSOCIATED PROBABILITIES.

Actions  Cum. Sum of Future Rewards  Probability
1 —9180.56 0.7200
2 —9380.99 0.0824
3 —9357.11 0.0861
4 —9212.15 0.0904
5 —9310.78 0.0904
6 —9385.20 0.0819
7 —9403.18 0.0802
8 —9410.01 0.0789
9 —9309.34 0.0859
10 —9471.44 0.0859

with 1 — € probability and a random action with e proba-
bility. Algorithm 1 represents the workflow of the adoption
of Q-learning while selecting the optimal action for line
hardening. The traditional Q-learning solves optimal decision-
making by maximizing the cumulative sum of future rewards
(CSFR). However, we want to minimize the expected long
term discounted reward. So the reward function is formulated
as follows:

R=—-CVaRa = —(1 — a)*l/ U(I) p(I) dI  (8)

U()2VaRa
The action selection probability, P(s,a) can be expressed as

below:
oW C(s,a)

ZaeA 0(87 a)

where C(s,a) represents the frequency of state s visited by
the agent while taking action a € A. The probability is
measured based on the frequency of that specific state-action
pairs visited.

P(s,a) + )

V. SIMULATION RESULTS AND DISCUSSIONS

The modified IEEE 123-bus test feeder [8] is selected as
the test case in this study. We randomly select 10 lines as the
learning agent’s target set to choose as the optimal action for
line hardening. Note that the set of lines to harden in practice
would be selected based on some metrics. A commonly used
way of selecting lines is to upgrade previously damaged
facilities or perform targeted hardening based on experiences.
The selection can be made using the fragility curves for
different intensities of weather event [16] or using the assets
information and ranking the lines based on some predefined
vulnerability index or topological metrics [17].

During the simulation, we have selected the lines one by
one. This sequential decision-making approach is adopted
because the budget to harden the overall system is not always
available at once. However, if the budget is available for
multiple lines, the selected candidate can be more than one.
On the other hand, as the budget becomes available, the
approach can be re-run, and the additional candidate lines
can be selected from the set. As described in the previous
section, the learning agent aims to select the optimal action
minimizing the CSFR with the help of Q-learning. In the first
case study, we assume the agent has a budget of only one
line hardening out of 10 lines. We conduct the learning to
select the optimal action for line hardening. The fragility curve
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Fig. 3. Probability update for optimal line selection for hardening.

represents the failure probability of the distribution system
components associated with the wind speed.

Q-learning based simulation for optimal line hardening is
presented in Table I. Table I represents the Q-Table of the
learning process. The first column of the table represents the
possible actions, i.e., the set of candidate lines to harden. The
second column represents the resulting converged values of the
cumulative future reward function (—CVaR,) for o = 0.95.
The last column represents the action selection probability
of the lines as an optimal decision. From the table, we can
observe that the selecting line results in a maximized reward
for the RL agent and thus a maximum reduction in CVaR,,
for loss-of-load probability. Note that the C'V aR,, for the base
case, without any line upgrades for o = 0.95, was 1147 MWhr.
Next, we further elaborate on the working of the proposed
algorithm. Figure 3 represents the probability update for all
the lines to be selected as an optimal decision by the agent.
The initial oscillations are due to random action selection
during the exploration stage of the learning. For the proposed
algorithm, the value of € is gradually reduced from 0.9 to a low
value. The initial value of € = 0.9 represents that, initially, there
is a 90% probability of exploration (random action selection)
and 10% nrobahilitv of exnloitation (oreedv action celection).
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Fig. 4. CSFR for first candidate selection.

Fig. 4 shows that after enough exploration and exploita-
tion, the agent converges to the maximum cumulative future
rewards (cumulative CVaR,,) by selecting optimal action for
line hardening. Since, from Table I, it is found that line 1
accumulates the maximum value of the CSFR, line 1 is the
optimal choice as the first candidate for line hardening.
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TABLE II
CSFR AND THEIR ASSOCIATED PROBABILITIES.

Actions  Cum. Sum of Future Rewards  Probability
[1,2] —7321.28 0.1818
(1, 3] —T7428.17 0.0845
[1,4] —7382.40 0.0867
[1,5] —7372.99 0.1055
(1,6] —7462.17 0.0756
[1,7] —7320.00 0.6660
[1,8] —7432.40 0.0821
(1,9] —7421.90 0.0800
[1,10] —7381.16 0.0837
0 [T T T T T
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Fig. 5. CSFR for second candidate selection.

Now, let us assume the budget increases from one-line
hardening to two-line hardening. Since line 1 has been selected
from the tentative lines, this line will be removed from the set
of potential lines for the next selection. Following the same
process, we continue looking for the second optimal action
for line hardening out of 9 lines (excluding line 1). Table II
shows that line 7 has the maximum CSFR while selecting the
optimal line for hardening as the second candidate, and Figure
5 shows the convergence of the learning curve for choosing
the second line for hardening.

Finally, in Table III, we compare the C'VaR, before and
after hardening the optimal lines selected by the Q-learning
agent. The value of CVaR, reduces after the hardening of
the first and second candidate lines compared to the base
case (no line hardening). Similarly, if the budget allows, the
learning agent can select an additional line for hardening,
further increasing the system’s resilience.

TABLE III
CVaRa CALCULATION BEFORE AND AFTER LINE HARDENING

Second Candidate
732

First Candidate
918

Base Case

1147

CVaR, (MWhr)

VI. CONCLUSION

We propose a Q-learning approach to plan resilient power
distribution systems by identifying the optimal line hard-
ening actions for a given budget constraint. The proposed
approach optimizes the allocated budget to optimally harden
the line to improve a risk-based resilience metric characteriz-
ing HILP events’ impacts. Here, we harden the distribution

system against high wind speed events by undergrounding
the lines. The proposed Q-learning-based algorithm can ef-
fectively search for optimal hardening actions by minimizing
the conditional value at risk (CVaR) for the loss of load.
Further, a sequential upgrade/hardening plan is generated upon
relaxing the budget constraint. Finally, we demonstrate the
proposed approach’s applicability using numerical experiments
on the IEEE 123-bus test system. It is shown that the proposed
Q-learning algorithm converges and results in optimal risk-
averse hardening decisions to increases the distribution grid
resilience.

REFERENCES

[1] President’s Council of Economic Advisers and the U.S. Department
of Energy’s Office of Electricity and Energy Reliability, “Economic
benefits of increasing electric grid resilience to weather outages,”
Aug 2013. [Online] Available: http://energy.gov/downloads/economic-
benefits-increasing-electric-grid-resilience-weather-outages.

[2] E. National Academies of Sciences and Medicine, Enhancing the
Resilience of the Nation039;s Electricity System. Washington, DC: The
National Academies Press, 2017.

[3] W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust
optimization-based resilient distribution network planning against natu-
ral disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2817—
2826, 2016.

[4] E. Yamangil, R. Bent, and S. Backhaus, “Resilient upgrade of electri-
cal distribution grids,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[5]1 S. Ma, B. Chen, and Z. Wang, “Resilience enhancement strategy for
distribution systems under extreme weather events,” IEEE Transactions
on Smart Grid, vol. 9, no. 2, pp. 1442—-1451, 2018.

[6] A. Dubey and S. Santoso, “Availability-based distribution circuit design
for shipboard power system,” IEEE Transactions on Smart Grid, vol. 8,
no. 4, pp. 1599-1608, 2015.

[71 C. A. MacKenzie and C. W. Zobel, “Allocating resources to enhance
resilience, with application to superstorm sandy and an electric utility,”
Risk Analysis, vol. 36, no. 4, pp. 847-862, 2016.

[8] S. Poudel, A. Dubey, and A. Bose, “Risk-based probabilistic quantifica-
tion of power distribution system operational resilience,” IEEE Systems
Journal, vol. 14, no. 3, pp. 3506-3517, 2020.

[9] A. Chaudhuri, M. Norton, and B. Kramer, “Risk-based design optimiza-

tion via probability of failure, conditional value-at-risk, and buffered

probability of failure,” in AIAA Scitech 2020 Forum, p. 2130, 2020.

T & D World, Transmission System Operator Uses Al to Reduce Costs,

(accessed Nov. 3, 2020). Available at: https://www.tdworld.com/test-

and-measurement/article/21119870/transmission-system-operator-uses-

artificial-intelligence-to-reduce-costs.

R. Eskandarpour and A. Khodaei, “Leveraging accuracy-uncertainty

tradeoff in svm to achieve highly accurate outage predictions,” IEEE

Transactions on Power Systems, vol. 33, no. 1, pp. 1139-1141, 2018.

S. Soltan, A. Loh, and G. Zussman, “A learning-based method for

generating synthetic power grids,” IEEE Systems Journal, vol. 13, no. 1,

pp. 625-634, 2019.

R. Nateghi, “Multi-dimensional infrastructure resilience modeling: An

application to hurricane-prone electric power distribution systems,” IEEE

Access, vol. 6, pp. 13478-13489, 2018.

S. Paul and F. Ding, “Identification of worst impact zones for power

grids during extreme weather events using q-learning,” in 2020 IEEE

Power Energy Society Innovative Smart Grid Technologies Conference

(ISGT), pp. 1-5, 2020.

S. Paul, Z. Ni, and C. Mu, “A learning-based solution for an adversarial

repeated game in cyber-physical power systems,” IEEE Transactions on

Neural Networks and Learning Systems, pp. 1-12, 2019.

M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D.

Hatziargyriou, “Metrics and quantification of operational and infrastruc-

ture resilience in power systems,” IEEE Transactions on Power Systems,

vol. 32, no. 6, pp. 47324742, 2017.

S. Chanda and A. K. Srivastava, “Defining and enabling resiliency of

electric distribution systems with multiple microgrids,” IEEE Transac-

tions on Smart Grid, vol. 7, no. 6, pp. 2859-2868, 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: Washington State University. Downloaded on January 20,2025 at 21:15:38 UTC from IEEE Xplore. Restrictions apply.



